
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Antisloshing Trajectories for High-Acceleration Motions in Automatic Machines / Guagliumi L.; Berti A.;
Monti E.; Carricato M.. - In: JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT AND CONTROL. - ISSN 0022-
0434. - STAMPA. - 144:7(2022), pp. 071006.1-071006.10. [10.1115/1.4054224]

Published Version:

Antisloshing Trajectories for High-Acceleration Motions in Automatic Machines

Published:
DOI: http://doi.org/10.1115/1.4054224

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/889873 since: 2022-07-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1115/1.4054224
https://hdl.handle.net/11585/889873


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  
 
Guagliumi, L., Berti, A., Monti, E., and Carricato, M. (April 22, 2022). "Antisloshing 
Trajectories for High-Acceleration Motions in Automatic Machines." ASME. J. Dyn. 
Sys., Meas., Control. July 2022; 144(7): 071006 

The final published version is available online at: 

https://doi.org/10.1115/1.4054224 

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1115/1.4054224


Anti-sloshing trajectories for high-acceleration
motions in automatic machines

Luca Guagliumi
PhD student,

Department of Industrial Engineering
University of Bologna
Bologna, Italy 40137

Email: luca.guagliumi3@unibo.it

Alessandro Berti
R&D departement Marchesini Group S.p.a.

Pianoro (BO), Italy 40065
Email: alessandro.berti@marchesini.com

Eros Monti
R&D departement Marchesini Group S.p.a.

Pianoro (BO), Italy 40065
Email: eros.monti@marchesini.com

Marco Carricato
Full Professor,

Department of Industrial Engineering
University of Bologna
Bologna, Italy 40137

Email: marco.carricato@unibo.it

This paper studies the design of anti-sloshing trajectories
for application in automatic machines for packaging liq-
uid products, with specific reference to cylindrical contain-
ers and emphasis on prescribed motion durations. Different
strategies, based on a discrete linear model of the sloshing
phenomenon and applicable in real-time, are analyzed to
perform anti-sloshing feedforward control of the container
motion: FIR filters (input shapers and others), dynamic-
model inversion, and IIR filters. Unlike the previous litera-
ture, these strategies are applied to highly dynamical motion
laws, with maximum accelerations from 4m/s2 to 13m/s2.
The effectiveness of the proposed anti-sloshing trajectories
is assessed by experiments.

Keywords — Sloshing, Anti-sloshing trajectories, Input
shaping, IIR filters, FIR filters, Experimental Analysis.

1 Introduction
When a container partially filled with a liquid is moved,

the sloshing phenomenon arises, i.e., the uncontrolled vibra-
tion of the liquid free surface. The high productivity required

by automatic machines for packaging liquid products leads
to the necessity of using highly dynamic trajectories to move
the products, with accelerations and velocities roughly up to
10m/s2 and 2m/s, respectively. Due to these demanding mo-
tion laws, the liquid free-surface oscillation may cause the
product to overflow, which is an undesired effect. Even when
no liquid spilling occurs, it is often required to dirty the con-
tainer walls as little as possible. Accordingly, the trajectory
designer must choose the most suitable motion law to main-
tain the liquid motion under control, in spite of the stringent
productivity requirements.

The problem of designing an optimal anti-sloshing mo-
tion law is well known in the literature. In [1] a sliding-
mode controller is designed, which is based on the ability to
measure the sloshing height and its rate of change in real-
time; however, these measurements are difficult to obtain.
A study specifically related to the packaging industry is pre-
sented in [2] and [3], with the objective of finding a reference
trajectory to limit the liquid sloshing in rectangular contain-
ers. Reference [2] develops a minimum-energy-based opti-
mization problem, whereas Ref. [3] uses an iterative learning
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control, based on measurements of the liquid state collected
in an experimental testbed: both approaches are numerical
and computationally intensive. Another approach based on
a constraint optimization problem is studied in [4] for build-
ing time-optimal spatial trajectories. In [5] a hybrid-shape
approach using notch and low-pass filters is proposed for 3-
D spatial paths, while in [6], a similar method based on a
time-varying notch filter is applied with an interesting use
of the container tilting; indeed, an appropriate change in the
container orientation can be used to reduce sloshing also in
complex spatial movements [7]. However, the tilting-based
approach cannot be used if the container orientation must re-
main constant, as is often the case in packaging lines.

Another class of approaches to design anti-sloshing tra-
jectories is based on optimization techniques for linear dy-
namic systems. The Input Shaping is a method based on a
particular class of Finite Impulse Response (FIR) filters. It
is used to reduce sloshing in a cylindrical container moved
by a robotic manipulator along rectilinear paths in [8]and
along more complex spatial motions in [9]. A general study
about robust shapers is presented in [10] and validated by
experimentation on a rectangular container. In [11] an input
shaper is combined with command smoothing to suppress
sloshing not only for the first oscillation mode, but also for
higher ones. Input shaping is also applied to more complex
situations: for example, in [12], the flexibility of the con-
veyor belt used for the container motion is considered in the
model, and in [13] the container is suspended like a pendu-
lum. The latter situation is analyzed in several recent studies,
since it represents the practical application of cranes moving
filled containers (as in the casting industry), where command
shaping procedures similar to input shaping are used to sup-
press the liquid free surface vibration: a sequence of steps is
used in [14], a multisine-wave function is used in [15] and
a smooth polynomial shaped command is proposed in [16].
Another method based on the same assumptions as input
shaping is applied in [17] to a linearized model describing
sloshing in a rectangular container. Though input shaping is
the most common strategy, the literature also presents other
solutions to generate anti-sloshing trajectories for linear dy-
namic systems based on different FIR exponential filters [18]
or Infinite Impulse Response (IIR) filters [19]. All these
methods share the drawback of introducing a delay in the
system response. Moreover, to our knowledge, all techniques
based on a linear dynamic model are analyzed and validated
in the literature only for motions with relatively low dynam-
ics, with maximum accelerations of the container in the order
of 2.5m/s2 or lower. However, in automatic packaging ma-
chines, container trajectories must have a specified duration
to allow synchronized operations performed on the product,
and the involved accelerations achieve much higher values.

In a previous work [20], we developed a simple and gen-
eral method to predict the sloshing height when the container
moves on a prescribed planar path. The technique was then
studied also on more complex spatial movements performed
by an industrial robot [21]. This method uses the linear
mass-spring-damper model for sloshing. We showed by ex-
perimental tests that this technique is suitable to estimate the

maximum sloshing height reached by the free surface even
for highly dynamic container motions, with maximum accel-
eration up to 12m/s2. This suggests us to study if the lin-
ear mass-spring-damper model and the vibration-mitigation
techniques valid for linear dynamic systems can be used to
design anti-sloshing trajectories even when high container
accelerations are involved. Accordingly, the current paper
has the following objectives:

1. to evaluate the applicability of anti-sloshing optimiza-
tion methods for linear dynamic systems in highly dy-
namic motions with container accelerations higher than
2.5÷ 3m/s2, for which the assumptions at the basis of
the linear mass-spring-damper model are not obviously
satisfied;

2. to compare, by employing experimental tests, the afore-
mentioned optimization methods to obtain anti-sloshing
trajectories;

3. to give practical tips to generate anti-sloshing motion
laws with a prescribed duration, paying particular atten-
tion to real-time applicability.

We will focus on fast rest-to-rest rectilinear motions, and
we will aim at both controlling the maximum sloshing height
during movement and the residual oscillation of the liquid af-
ter the motion ends. Indeed, intermittent rectilinear motions
are the most common in automatic packaging machines, so
that after each movement there is a rest period before the
successive translation. Accordingly, on the one hand, the
maximum sloshing height during motion must be kept be-
low a given threshold to prevent the liquid from overflowing
or dirtying the container walls. On the other hand, residual
oscillations after the motion end must be quickly suppressed
since they would add to the ones generated by the subsequent
translation, thus exponentially increasing.

Finally, we will consider cylindrical containers partially
filled with water since this shape is the most common in au-
tomatic packaging machines and low-viscosity liquids (like
water) are those for which sloshing effects are more signifi-
cant.

The paper structure is as follows. Section 2 briefly
presents the discrete linear model used to describe sloshing.
Section 3 presents several optimization methods to obtain
anti-sloshing trajectories based on the linear model. Section
4 studies the design of motion laws with a prescribed du-
ration. Section 5 analyzes the problem of using trajectories
with high accelerations. Section 6 shows the results of the
experimental tests. Finally, conclusions are drawn in Section
7.

2 Sloshing model
A complete analytical study about sloshing is presented

in [22]. Therein, a continuum model is studied under the
assumptions of an incompressible, irrotational, and non-
viscous fluid. For applications in the gravitational field, cap-
illarity and surface tensions can be neglected. From the con-
tinuum model and for a cylindrical container, one can com-
pute the generic natural frequency of the m-th circumferen-
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tial mode and the n-th radial mode as:

ωmn =

√
gξmn

R
tanh

(
ξmnh

R

)
(1)

where R is the internal radius of the container, h is the fill-
ing height in static conditions, g is the gravity acceleration,
and ξmn is one of the roots of the Bessel function derivative
with respect to the radial coordinate r (its values are known
constants tabulated in [23]). Only the fundamental circum-
ferential mode can be considered (m= 1) since the other ones
are negligible [22], so that, for the sake of conciseness, we
can set ω1n = ωn and ξ1n = ξn.

Different equivalent discrete models can be derived by
imposing the same mass properties, oscillation modes, and
inertia wrenches exerted on the container walls as in the con-
tinuum model. A discrete mass (sloshing mass) represents
every mode of the continuum model. One or more differen-
tial equation describe the motion of each sloshing mass. The
complexity of the discrete models grows with the complexity
of the free-surface movement that we want to represent: if we
want to describe the non-linear behavior of the liquid, also
the motion equations of the sloshing masses should be non-
linear, and if we want to describe rotary sloshing [22], we
need two (coupled) motion equations for one sloshing mass.
Springs (or pendulums) and dampers connect every sloshing
mass to the container walls. The higher is the number of used
masses, the higher is the model precision. For each discrete
mass, the damping coefficient is estimated by empirical for-
mulations; for a cylindrical container filled with a fluid with
density ρ and dynamic viscosity µ, we can use [22]:

ζn = 0.92

√
µ/ρ√

gR3
·

·
[

1+
0.318

sinh(1.84h/R)

(
1+

1−h/R
cosh(1.84h/R)

)]
(2)

The discrete linear model is presented in [22] and his
schematic representation is shown in Fig. 1, where the liquid
free surface is assumed to remain planar during its oscilla-
tions. Every sloshing mass mn is connected to a stiffness kn

(a) (b)

Fig. 1: Linear mass-spring-damper model (a) and represen-
tation of the liquid free surface (b).

and to a damper with damping constant cn = 2ζnωnmn. The
natural frequency of the nth mass is equal to the one of the
nth sloshing mode, i.e. ωn =

√
(kn/mn). A fixed mass m0

represents the liquid that does not take part in the sloshing
phenomenon. The nth sloshing mass motion equation is:

ẍn +2ζnωnẋn +ω
2
nxn =−ẍ0 (3)

where ẍ0 is the container acceleration.
By integrating Eq. (3) for every n, one can compute

the evolution in time of xn for every container motion law.
According to [20], the maximum sloshing height at the con-
tainer wall can be estimated as:

η = 8∑
n

xn

ξn (ξ2
n−1)

tanh
(

ξn
h
R

)
(4)

3 Optimization based on the linear model
This Section analyzes a class of methods based on the

linear model described in Section 2 to design trajectories
that mitigate liquid sloshing in the container. These methods
are applied to some of the most common trajectories used
in automatic packaging machines, such as polynomial (like
poly5) and modified trapezoid acceleration trajectories [24].
The latter are obtained by connecting constant acceleration
segments with sinusoidal functions (eg. Traj. 1 in Fig. 9(a)).

For the application of all the anti-sloshing techniques
described in this Section, only the fundamental mode of the
model is considered (the one described by Eq. (3) with n =
1), for a reason that will be clarified at the end of Section 4.

3.1 Input shaping
Input shaping for linear dynamic systems is a well-

known technique [25]. The main idea consists in performing
a convolution between a train of impulses (the input shaper)
and a motion law, and then applying the resulting trajectory
to the system. The amplitude and the time delay of the im-
pulses can be calculated to cancel the residual oscillation of
the response. The amplitude of the residual vibration related
to the nth mode of a mechanical system subjected to a train
of N +1 impulses is:

Zn(ωn,ζn) =

√√√√[ N

∑
j=0

B j cos(γ j)

]2

+

[
N

∑
j=0

B j sin(γ j)

]2

with:

γ j = ωn

√
1−ζ2

n (tN − t j) , B j =
A jωne−ζnωn(tN−t j)√

1−ζ2
n

where A j is the amplitude of the jth impulse and t j is its time
delay.
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To obtain a zero vibration (ZV) shaper (by a train with
two impulses, i.e. N = 1) the following conditions must be
imposed:

1. the amplitude of the residual vibration at the end of the
train of impulses is equal to zero: Zn(ωn,ζn) = 0;

2. the first impulse has no delay: t0 = 0;
3. the train of impulses is normalized so that the steady-

state response of the shaped law is equal to the original
one: ∑

N
j=0 A j = 1.

Similarly, we can calculate the parameters for robust shapers
by imposing to cancel the amplitude of the residual vibration
and its derivatives with respect to the natural frequency. With
three and four impulses, we obtain, respectively, a zero vibra-
tion derivative (ZVD) shaper and a zero vibration derivative
- derivative (ZVDD) shaper. This procedure is useful when
the system’s parameters (in particular its natural frequency)
are not sure, which is very common in practice. By impos-
ing these conditions, we can compute the parameters of every
shaper, which depend on:

K = e−ζnπ/
√

1−ζ2
n , T =

2π

ωn
√

1−ζ2
n

(5)

In particular, if v is the highest derivative order of Zn that
is set to zero, v+ 2 impulses must be used, each one with a
time delay equal to:

t j =
T
2

j , j = 0,1, . . . ,v+1 (6)

The amplitudes A j of the impulses are functions of the pa-
rameter K in Eq. (5), and their values are different for differ-
ent shapers [25].

A robust shaper may also be built by admitting a certain
percentage of residual vibration z, thus obtaining a so-called
extra-insensitive (EI) shaper. In particular, for the one-hump
shaper, we have three impulses with time delays expressed
by Eq. (6) and amplitudes that are functions of z [26]. We
can also use EI shapers with more humps to achieve a more
robust behavior.

The use of any input shaper always causes a delay in the
system response, which is equal to the time delay of the last
impulse, and so it is given by Eq. (6), with j = v+1. Thus,
the main drawback of robust shapers is that the more robust
the method, the higher the introduced delay.

3.2 Inversion of the dynamic model
The general idea at the basis of the inversion of the dy-

namic model is to filter the input trajectory with an appropri-
ate transfer function that yields a response like the one of a
first-order dynamic system [24]. In the following, a specific
declination for the sloshing problem at hand is provided.

For the linear mass-spring-damper model, the transfer
function between the container trajectory x0(t) and the dis-

placement of the sloshing mass with respect to a fixed refer-
ence frame, namely xnAbs(t) = xn(t)+ x0(t), is:

G1(s) =
kn + cns

mns2 + cns+ kn
=

ω2
n +2ζnωns

s2 +2ζnωns+ω2
n

where s is the variable of the Laplace domain. We can mod-
ify the motion law x0(t) by pre-multiplying it by a trans-
fer function Finv(s) such that Finv(s) · G1(s) = 1, namely
Finv(s) = 1/G1(s), thus obtaining a new trajectory y0(t):

y0(t) = L−1 {Finv(s)L {x0(t)}} (7)

where the operators L {−} and L−1 {−} represent respec-
tively the Laplace transform and the inverse Laplace trans-
form of a given function. Clearly, this way, xnAbs(t) = x0(t)
and so: xn(t) = x0(t)− y0(t). From here,

L{xn(t)}=−
1

ω2
n
· 1

1+(2ζn/ωn)s
L{ẍ0(t)}

This is exactly the response of a first-order dynamic system
with a time constant equal to 2ζn/ωn. This value is always
near to zero, because ζn ≈ 0 and ωn > 1. This means that the
delay introduced in the response is, in practice, negligible.
This is useful because we want to design trajectories with a
prescribed duration. However, this method requires a good
knowledge of the dynamic-model parameters to be effective,
and this causes a noticeable lack of robustness.

3.3 Infinite Impulse Response (IIR) filters
Infinite Impulse Response (IIR) filters were proposed

in [27] to reduce the uncontrolled oscillations of flexible me-
chanical systems. They were later applied in [19] to damp
the oscillations of a liquid in a container. The idea is similar
to the inversion of the dynamic model, but now the filter is
designed to produce a response on the mass-spring-damper
like the one of a critically damped second (or third) order
system. In practice, we are looking for a transfer function
FIIR(s) such that Gd2(s) = FIIR(s)G(s), with G(s) being the
transfer function of the linear model (3) and Gd2(s) being:

Gd2(s) =−
1

ω2
n

τ2

(s+ τ)2

Accordingly:

FIIR(s) =
1

ω2
n

τ2

(s+ τ)2

(
s2 +2ζnωns+ω

2
n
)

(8)

Here, τ is a parameter chosen to manage the delay introduced
in the response. If τ is high, the delay is small. In particu-
lar, if τ→ +∞, we obtain the same result achieved by the
inversion of the dynamic model.
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A filter like (8) can produce an initial unwanted peak in
the response. To avoid it, we may opt for a critically-damped
system of the third order:

Gd3(s) =−
1

ω2
n

τ3

(s+ τ)3

so that:

FIIR(s) =
1

ω2
n

τ3

(s+ τ)3

(
s2 +2ζnωns+ω

2
n
)

(9)

To calculate the optimized container trajectory ÿ0, we
have to apply the Laplace transform to the original mo-
tion law ẍ0, then multiply the result by the transfer function
FIIR(s), and finally apply the inverse Laplace transform. This
procedure is computationally expensive. Alternatively, by
using the Z-transform (Z {−}) on FIIR(s), we can obtain a
finite difference equation that allows us to find the output of
the filter in sampled instants of time. Procedures to do so are
described in [27] and [19], but they give results with a low
precision for a sampling period of 1ms, which is common
in industrial applications. An alternative method, based on
the theory of digital control [28], is proposed hereafter. The
idea is to use a First-Order Hold (FOH) so that the discrete
formulation equivalent to a general transfer function H(s) is:

H(z) =
z−1
Tsz

Z
{

H(s)
s2

}
(10)

where Ts is the sampling period. By applying the transfor-
mation (10) to Eq. (8), if y(k) is the output filtered trajectory
and u(k) is the input trajectory at the sampled instant k, then:

y(k) =−a1y(k−1)−a2y(k−2)+
+b0u(k+1)+b1u(k)+b2u(k−1)+b3u(k−2) (11)

where:

a1 =−2e−τTs , a2 = e−2τTs , b0 = Q(A+C)

b1 = Q
[
(−2A−C+DTs)e−τTs −A+BTs−2C

]
b2 = Q

[
Ae−2τTs +(2A−2BTs +2C−2DTs)e−τTs +C

]
b3 = Q

[
(−A+BTs)e−2τTs +(−C+DTs)e−τTs

]
and the constants are:

Q =

(
τ

ωn

)2 1
Ts

, A =
2
(
ζnωnτ−ω2

n
)

τ3 , B =
(

ωn

τ

)2

C =
−2
(
ζnωnτ−ω2

n
)

τ3 , D =
τ2−2ζnωnτ+ω2

n

τ2

In the same way, by applying transformation (10) to Eq. (9),
we find:

y(k) =−a1y(k−1)−a2y(k−2)−a3y(k−3)+
+b0u(k+1)+b1u(k)+b2u(k−1)+

+b3u(k−2)+b4u(k−3) (12)

where:

a1 =−3e−τTs , a2 = 3e−2τTs , a3 =−e−3τTs

b0 = Q(A+C)

b1 = Q
[
(−3A−2C)e−τTs −A−2C+D+E +BTs

]
b2 = Q

[
(3A+C)e−2τTs+

+
(
3A−3BTs +4C−D+E

)
e−τTs +C−2D−2E

]
b3 = Q

[
−Ae−3τTs +(−3A+3BTs−2C)e−2τTs+

+
(
−2C+2D−2E

)
e−τTs +D+E

]
b4 = Q

[
(A−BTs)e−3τTs +Ce−2τTs +

(
−D+E

)
e−τTs

]
and:

Q =
τ3

ω2
n

1
Ts

, A =
2ζnωnτ−3ω2

n

τ4 , B =
ω2

n

τ3

C =
−2ζnωnτ+3ω2

n

τ4 , D =
−2
(
ζnωnτ−ω2

n
)

τ3

D = DTse−τTs , E =
τ2−2ζnωnτ+ω2

n

τ2 , E = E
T 2

s

2
e−τTs

In both Eq. (11) and Eq. (12), we notice the presence
of the term u(k+1). This means that the output motion law
in the instant k also depends on the value of the input tra-
jectory in the next instant k+ 1. In fact, using a FOH leads
to a non-casual filter (i.e., the output after filtering also de-
pends on future values of the input). In some applications,
non-causality cannot be tolerated, but in our case, it is ac-
ceptable since the original trajectory is completely known at
every instant, and so we can easily evaluate the term u(k+1).

3.4 Multi-segment trajectories based on Finite Impulse
Response (FIR) filters

Reference [29] proposes a new method to design multi-
segment trajectories with time and frequency constraints.
The idea is to use a sequence of Finite Impulse Response
(FIR) filters to filter an input step with an amplitude equal
to the length of the motion required. Every filter of the
chain represents a rectangular window function with dura-
tion Ti and amplitude 1/Ti (i.e., the window area is 1). In the
Laplace domain, the generic FIR filter is represented by:

Mi(s) =
1
Ti

1− e−sTi

s
(13)

With a chain of three FIR filters like the one in Eq. (13)
we obtain a trajectory with a trapezoid acceleration, which is
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common in automatic packaging machines. Reference [29]
suggests to calculate T1 and T2 by a method based on the
maximum velocity and acceleration allowed by the applica-
tion at hand. However, for the aim of this paper, the choice
of T3 is more important. In fact, by suitably choosing T3,
we can find a motion law that cancels the residual vibration
of the system. To achieve this aim, Ref. [30] suggests to ap-
proximately calculate T3 (for a damped system) as in Eq. (5).

Once T1, T2, and T3 are chosen, we can calculate the final
motion law by right-multiplying the original step transform
by the transfer functions of the filters, and then applying the
inverse Laplace transform. It is interesting to notice that, if
the following conditions are satisfied, the obtained trajectory
has a trapezoid acceleration profile:

{
T1 ≥ T2 +T3

T2 ≥ T3
(14)

For damped systems, instead of using a classical FIR
filter, expressed in the Laplace domain by (13), Ref. [30]
suggests the use of an exponential FIR filter. This filter is
more complex and also gives a more complex trajectory. We
did not use it in this paper because, for low-viscosity liquids
like the ones used in our application, it provides motion laws
very similar to those obtained with the classical FIR filter,
which is simpler to use.

Like for the trajectories obtained with an IIR filter, cal-
culating the output motion law using the inverse Laplace
transform is computationally expensive. For this reason, here
too, we can apply the Z-transform to find a finite difference
equation to obtain the output of each FIR filter of the chain.
Reference [29] suggests an expression based on the integra-
tion backward-difference formula, but this approach is not
accurate for a sampling period of 1ms. A more precise for-
mula can be obtained based on numerical integration by the
trapezoid rule:

qi(k) = qi(k−1)+
1

2Ns
[qi−1(k)+qi−1(k−1)+

−qi−1(k−Ns)−qi−1(k−Ns−1)] (15)

Here, Ns is the number of samples, and qi(k) and qi−1(k)
are, respectively, the output and input trajectories to the ith
filter of the chain at the sampled instant k. For the first filter,
the input is a step function with amplitude equal to the total
movement described by the final trajectory.

4 Computation of trajectories with a prescribed motion
duration
We have already mentioned that it is important to design

trajectories with a prescribed time in the field of automatic
packaging machines. In contrast, many optimization tech-
niques presented in Section 3 introduce time delays.

The delay ∆T introduced by an input shaper is known
in advance. For example, with a ZV shaper, setting j = 1 in

(a) (b)

Fig. 2: Trajectories obtained by applying the inversion of
the dynamic model (a) and the IIR filtering (b) to a modi-
fied trapezoid acceleration motion on the large container de-
scribed in Section 6.

Eq. (6), ∆T = T/2, where T is expressed by (5) and it can
be computed by means of the model parameters. For a ZVD
shaper, ∆T is doubled, and so on. If we want a trajectory
with a total time equal to t f , it suffices to apply a shaper to
a trajectory with a total duration equal to t f −∆T , as done
in [31]. The value of ∆T is distinct for different shapers, but
Eqs. (5) and (6) allow to easily calculate it. The drawback of
this procedure for practical applications is that the container
acceleration and/or jerk may reach high values: in general,
the more so with increasing values of ∆T (see the motion
laws in Figures 7(a) and 8(a) as examples).

The dynamic model inversion produces a trajectory with
a delay that is practically zero. However, this technique has
other problems. The first one is the already-mentioned lack
of robustness (see Section 3.2). The second problem is that
there is no control on the trajectory obtained after applying
the method. For example, suppose we use a modified trape-
zoid acceleration profile with a total duration equal to 1s. In
that case, we get an optimized motion law like the one in
Fig. 2(a) for the large container described in Section 6. Such
an acceleration profile has a trend with too many oscillations
and jumps, which is harmful in practice: it can trigger vi-
brations of mechanical components, resulting in a negative
effect on the liquid sloshing. For these reasons, the method
of dynamic-model inversion was discarded.

Like input shaping, IIR filters introduce a delay in the
system response, but in this case, we do not know a priori
the amplitude of the delay because it depends on both the
constant τ in Eqs. (8) and (9) and the input trajectory. After
setting a value for τ, we can compute and simulate the filtered
trajectory, thus evaluating the introduced delay ∆T . Then,
we can calculate a new motion law with a total time equal to
t f −∆T , and so we can apply the IIR filter again to this new
trajectory. We can reiterate the procedure until the differ-
ence between the duration of the filtered trajectory and t f is
less than 1ms. In practice, one iteration is usually sufficient.
As far as the choice of parameter τ is concerned, if τ is too
large, the delay introduced is too small, and the filter gives
results similar to those provided by the dynamic-model in-
version with the corresponding drawbacks. If τ is too small,

6



the delay introduced is too high: the new trajectory has a
total duration t f −∆T too short, and the acceleration peaks
can be too high. The choice of τ is thus a trade-off between
these two aspects. For motion laws like the ones analyzed in
this paper (with a total time of about 1s) and for cylindrical
containers, a value of τ between 40 and 100 was heuristi-
cally found to be in most cases adequate. We also notice that
the acceleration profile obtained by the application of an IIR
filter to a modified trapezoid acceleration trajectory for the
large container, in Fig. 2(b), has too many oscillations, and
so it is not suitable for a real application. For this reason, in
the experimental tests, IIR filters are applied only on poly5
trajectories for the large container. At the same time, they
are used on modified trapezoid acceleration motion laws for
the medium vessel.

The use of FIR filters as described in Section 3.4, di-
rectly produce a motion law with a known duration deter-
mined by the number of filters that are used. By considering
a sequence of three filters, the total duration of the optimized
motion law is equal to T1 +T2 +T3. We have seen in Section
3.4 that the parameter T3 can be computed by Eq. (5), and
so it only depends on the characteristics of the system. This
means that the parameters T1 and T2 must be chosen such that
T1 +T2 = t f −T3 and so, to satisfy this relation, only one of
these parameters can be freely chosen. It is interesting to no-
tice that conditions (14) may not always be satisfied. If this
happens, the resulting acceleration profile is not trapezoidal.
However, the motion law is still simple (see Opt. Traj. 15
in Fig. 9(a)) and able to cancel the residual vibrations of the
system. The use of FIR filters to design anti-sloshing trajec-
tories with a prescribed duration is very interesting because,
unlike the other methods, it provides motion laws with a sim-
ple shape and so easy to apply in practical cases. This is also
the main difference with the results reported in Ref. [18],
where exponential FIR filters were used to obtain more com-
plex anti-sloshing trajectories, inducing time delays in the
response.

It is possible to apply all anti-sloshing methods not only
to the fundamental mode, but also to the higher ones. For
example, this is done in [32] with input shaping. However,
this strategy is not applied in this paper, since every mode
taken into account produces a higher delay in the movement.
This means that if we want to damp more than one mode of
the liquid free surface, it is necessary to use shorter motion
laws, and the benefit obtained by smoothing higher-mode vi-
brations is canceled out by the higher accelerations reached
by the container.

5 High-acceleration effects
This Section analyze the problem of using trajectories

characterized by high accelerations.
First of all, high values of container acceleration pro-

duce high amplitude oscillations of the liquid free surface.
One of the main assumptions for building the discrete linear
model for the sloshing described in Section 2 is to consider
small oscillations of the free surface. For high accelerations
of the container, this is not strictly true. However, the anti-

(a) (b)

Fig. 3: Three modified trapezoid motion laws with different
maximum accelerations (a) and their harmonic content (b).

(a) (b)

Fig. 4: Trajectories shown in Fig 3(a) modified with a ZV
shaper (a) and their harmonic content (b).

sloshing methods presented in Section 3 are based on the lin-
ear model, so it is interesting to verify whether they are still
valid when the conditions to build the model are not neces-
sarily respected.

The second problem is related to the harmonic content
of high-acceleration motion laws. We can consider the mo-
tion laws in Figs. 3 and 4 as an example. In Fig. 3(a)
three different modified trapezoid acceleration motion laws
are shown. All trajectories perform a one-meter movement
and they have the same shape, but their duration is different
(0.8s, 1.6s and 2.4s). This produces maximum accelerations
that are higher for shorter motion laws. The harmonic con-
tent of the trajectories, obtained by the Fourier transform, is
shown in Fig. 3(b), normalized with respect to the maximum
value. We can notice that the higher the container acceler-
ation, the higher the amplitude spectrum of the motion law.
In particular, the harmonic content of the trajectories in cor-
respondence to the natural frequencies ω1,ω2,ω3,ω4, of the
free surface is important: when accelerations are high, it is
easier to have high peaks corresponding to the first sloshing
mode and also to excite higher modes. When we apply an
anti-sloshing method (for example, in Fig. 4(a), the trajec-
tories shown in Fig. 3(a) are modified with a ZV shaper),
the harmonic content of the motion law is modified by cut-
ting the frequencies that correspond to the first mode (4(b)).
However, when high accelerations are reached, the higher

7



(a)

(b) (c)

Fig. 5: Experimental setup (a) and frames taken from
recorded videos when the container is at rest (b) or in mo-
tion (c).

modes are still excited and, even if their contribution is lower,
they still cooperate to generate sloshing.

Moreover, we can notice that the harmonic content of
the low acceleration motion laws is much flatter than the the
content of the high-acceleration trajectory near the funda-
mental mode. This means that even if the estimated natu-
ral frequency in Eq. (1) differs from the real one, the anti-
sloshing method proves effective, whereas a little difference
in the real natural frequency for the high-acceleration motion
law has a greater influence on the liquid behavior.

6 Experimental results
This Section reports the experimental tests performed

to verify the effectiveness of the methods described in Sec-
tions 3 and 4 to design anti-sloshing trajectories. Figure 5(a)
shows the test bench: a Beckhoff XTS with a 1m-long rec-
tilinear stroke is used to perform different trajectories, and
a camera mounted on the XTS cart is used to record videos
of the liquid free surface; from the analysis of the frames
(like the ones in Fig. 5) the evolution in time of the slosh-
ing height is derived. Cylindrical containers with different
diameters (27mm, 50mm, 92mm) were tested. The volume
of water in the small, medium, and large container is respec-
tively 15170mm3, 80500mm3, and 500000mm3. A minimal
amount of blue dye was introduced into the water to ease
the observation of the liquid motion. The quantity of dye
was so small to change the fluid properties (density, viscos-
ity, and surface tension) in no appreciable way. Due to the
reduced diameter of the small container (27mm), the liquid
sloshing in experimental tests involving this vessel was very
small, since a small diameter tends to reduce the vibrations
of the free surface, even when anti-sloshing motion laws are
not used. This is probably caused by the effect of the sur-
face tension of the liquid, which becomes more important
in the modeling of the system when small diameters are in-

Fig. 6: Liquid surface shape during the free response of the
system after the container motion ends. The dashed line rep-
resents the liquid level at rest.

volved. However, in this study, we are interested in show-
ing the effectiveness of anti-sloshing methods for movements
with high accelerations. Thus, the interest in applying these
techniques to systems that are already well-damped is mini-
mal. For this reason, only the results regarding the medium
and large containers are discussed in the following.

In the experimental results (Figures 7-13) we often no-
tice an asymmetrical behavior of the liquid free-response, af-
ter the container motion ends. The positive and negative am-
plitudes of the free surface oscillation are not centered with
respect to the rest plane, because its shape is not planar as as-
sumed by the linear model. We can see an example in Fig. 6.
This is probably due to the non-linear behavior of the system
that is caused by large oscillations and rotary sloshing.

6.1 Motion laws with a prescribed duration
All the methods described in Section 3, except the dy-

namic model inversion, were applied to several motion laws
with prescribed duration, performing a 1m movement in 1s
for the large container and 0.8s for the medium container,
thus achieving high accelerations, roughly from 6 to 13m/s2.
Data about the motion laws and the corresponding responses
are listed in Tables 1 and 2, respectively for the large and the
medium container. The original motion law and the applied
optimization method are listed in the second and the third
column. The maximum acceleration and velocity reached
during the movement are shown in columns four and five.
ηrest is the sloshing height during the rest phase, i.e., at the
end of the motion law, when the container is at rest, but the
free surface is still oscillating. Then, columns six and seven
report the maximum sloshing height measured, respectively,
during the container motion and its rest phase. Finally, the
last two columns, ∆ηmax and ∆ηrest , report the percentage
differences of the maximum sloshing height, respectively
during the motion and the rest phase, between the experi-
mental value obtained with the initial trajectory (ηOrig) and
the optimized one (ηOpt ):

∆η =
ηOpt −ηOrig

ηOrig
·100
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Table 1: Comparison of the maximum sloshing heights obtained for non-optimized and optimized trajectories of the large
container (t f = 1s).

Traj. Original traj. Opt. method max(ẍ0) max(ẋ0) max(η) max(ηrest) ∆ηmax ∆ηrest

[m/s2] [m/s] [mm] [mm]

Traj. 1 Mod. trap. / 6.2 1.5 60.9 51.8 / /

Traj. 2 Poly5 / 5.8 1.9 48.9 10.3 / /

Opt. traj. 8 Mod. trap. IS-ZV 7.9 1.8 50.4 13.0 −17.2% −74.9%

Opt. traj. 9 Mod. trap. IS-EI 6.7 2.1 52.4 24.0 −14.0% −53.7%

Opt. traj. 10 Mod. trap. IS-ZVDD 8.5 2.2 48.1 24.2 −21.0% −53.3%

Opt. traj. 11 Poly5 IS-ZV 6.9 2.8 37.9 13.3 −22.5% +29.2%

Opt. traj. 12 Poly5 IS-EI 7.3 2.2 40.9 9.5 −16.4% −7.8%

Opt. traj. 13 Poly5 IS-ZVDD 8.1 2.2 46.4 12.5 −5.1% +21.4%

Opt. traj. 14 Poly5 IIR (τ = 100) 6.1 1.9 29.3 4.4 −34.8% −57.3%

Opt. traj. 15 / FIR 7.9 2.2 39.7 3.5 −34.8% −93.2%

Table 2: Comparison of the maximum sloshing heights obtained for non-optimized and optimized trajectories of the medium
container (t f = 0.8s).

Traj. Original traj. Opt. method max(ẍ0) max(ẋ0) max(η) max(ηrest) ∆ηmax ∆ηrest

[m/s2] [m/s] [mm] [mm]

Traj. 5 Mod. trap. / 10.0 2.0 47.5 24.6 / /

Traj. 6 Poly5 / 9.0 2.3 30.9 6.7 / /

Opt. traj. 16 Mod. trap. IS-ZV 12.6 2.3 29.8 15.2 −37.3% −38.2%

Opt. traj. 17 Mod. trap. IIR (τ = 70) 13.2 2.4 30.2 23.4 −36.4% −4.9%

Opt. traj. 18 Poly5 IS-ZV 10.8 2.6 26.2 8.6 −15.2% +28.4%

Opt. traj. 19 Poly5 IIR (τ = 70) 11.3 2.7 31.9 8.9 +3.2% +32.8%

Opt. traj. 20 / FIR 11.8 2.7 28.6 15.4 −39.8% −37.4%

For the FIR filters (which are not used to modify a pre-
calculated trajectory, but to build a motion law from scratch),
the values are compared with those obtained for the modified
trapezoid trajectory.

For the large container, Figures 7 and 8 show the effect
of applying different shapers to a modified trapezoid trajec-
tory and a poly5 trajectory, respectively. In the former case
(Opt. traj. 8 through 10), the damping effect on the motion
law at the end of the movement is significant (the maximum
of ηrest is reduced by 75% with Opt. traj. 8). In contrast,
for the polynomial trajectory (Opt. traj. 11 through 13),
the effect of the shapers is less evident since the initial re-
sponse is already well-damped. However, a 22.5% reduction
in the maximum sloshing height during motion is still ob-
tained with the ZV shaper (Opt. traj. 11). In general, the re-
sponse to a polynomial trajectory is better than the response

(a) (b)

Fig. 7: Acceleration profiles (a) and system responses (b) ob-
tained by the application of different input shapers to a mod-
ified trapezoid acceleration trajectory on the large container.

9



(a) (b)

Fig. 8: Acceleration profiles (a) and system responses (b)
obtained by the application of different input shapers to a
poly5 trajectory on the large container.

(a)

(b)

Fig. 9: Acceleration profiles (a) and system responses (b)
obtained by the application of different optimization methods
to poly5 and trapezoid acceleration trajectory on the large
container.

to a modified trapezoid trajectory, even before optimization.
Figure 9 shows a comparison of the system responses ob-
tained by applying different methods, namely EI input shap-
ing (Opt. traj. 12) and IIR filter with τ = 100 (Opt. traj.
14) to a poly5 motion law and a trajectory obtained with a
chain of three FIR filters (Opt. traj. 15). The best result
is the one received by the application of the IIR filter (Opt.
traj. 14), in terms of both maximum sloshing height during
the movement and maximum peak of residual vibrations af-

(a) (b)

Fig. 10: Acceleration profiles (a) and system responses (b)
obtained by the application of different optimization tech-
niques to a modified trapezoid acceleration trajectory on the
medium container.

(a) (b)

Fig. 11: Acceleration profiles (a) and system responses (b)
obtained by the application of different optimization tech-
niques to a poly5 trajectory on the medium container.

ter the motion end, with a reduction of 35% of the former
and 57% of the latter compared to the original poly5 law
(Traj. 2). If we compare these results with the ones obtained
for the modified trapezoid motion law (Traj. 1), the anti-
sloshing effect is more marked: the reduction in the sloshing
height peak during the container motion increases to 52%,
while the one in the rest phase reaches the 92%. These re-
sults are not shown in Tables, since they do not measure the
effectiveness of the anti-sloshing method itself, but they rep-
resent the benefit obtained by a careful choice of the motion
law, with the poly5 law generally performing better than the
modified trapezoid law. These results show a good effect in
reducing the free oscillations of the free surface of the liq-
uid even for motions with very high input accelerations, be-
tween 6m/s2 and 8.5m/s2. Obviously, for the same motion
duration, the lower is the maximum acceleration achieved by
applying an anti-sloshing method, the better is the result ob-
tained in terms of reduction of maximum sloshing height and
residual vibrations of the system.

For the medium container, the responses obtained are
shown in Fig. 10 and 11. Here, the effectiveness of the
anti-sloshing methods is less marked due to the very high
accelerations reached (roughly 13m/s2). In particular, if we
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choose a poly5 trajectory (Traj. 6) for the optimization (Fig.
11), the higher accelerations introduced by the optimization
methods (Opt. traj. 18 through 20) produce slightly higher
residual vibrations, so there is no apparent benefit in applying
anti-sloshing methods. The result is different if we apply the
optimization techniques to a worse original trajectory, like a
modified trapezoid (Traj. 5 Fig. 10). In this case, the reduc-
tion of the maximum sloshing height during the motion and
in the rest phase obtained by applying different anti-sloshing
methods (Opt. traj. 16, 17, 20) is clear: in both cases, the
reduction of the sloshing height may achieve 38%.

6.2 Motion laws without a prescribed duration
Figures 12 and 13 show the results obtained by the clas-

sical application of optimization methods, i.e., without the
constraint of a prescribed motion duration. The main char-
acteristics of these trajectories are listed in Tables 3 and
4, which are referred to motion laws applied, respectively,
to the large and medium container. Since the optimization
methods introduce a delay, the fourth column in both Tables
indicates the trajectory total execution time. Like in Section
6.1, input shaping and IIR filters are applied to motion laws
of 1s for the large vessel and 0.8s for the medium one; a
chain of FIR filters is used to obtain an exact trapezoid ac-
celeration trajectory satisfying the condition 14. Tables 3
and 4 report also data about motion laws with a duration of
1.4s for the large container (Traj. 3 and Traj. 4) and 1s for the
medium container (Traj. 7). In this way, one can assess the
effectiveness of the optimization techniques not only with re-

(a)

(b)

Fig. 12: Acceleration profiles (a) and system responses (b)
with delay introduction (large container).

(a)

(b)

Fig. 13: Acceleration profiles (a) and system responses (b)
with delay introduction (medium container).

spect to the original trajectories (Traj. 1, 2, 5), which have a
shorter duration, but also with respect to non-optimized tra-
jectories with a comparable or longer duration. In Tables 3
and 4 only the column ∆ηrest is reported since the maximum
sloshing height during the motion is strongly influenced by
the movement duration, which is now different for different
motion laws. The column ∆ηrest reports two numbers: the
first one is the reduction of the sloshing-height peak with re-
spect to the short non-optimized trajectory (1s for the large
container and 0.8s for the medium one), while the second
value is computed with reference to the long non-optimized
trajectory (1.4s for the large container and 1s for the medium
one). The results show optimal damping of the free-surface
vibration even for highly dynamic motions, with peak accel-
erations much higher (roughly 10m/s2) than those studied in
the previous literature (approximately 2.5m/s2).

7 Conclusions
Different methods to design anti-sloshing trajectories

with a prescribed motion time were analyzed by applying
them to highly-dynamical container trajectories, i.e., mo-
tion laws with maximum accelerations between 4m/s2 and
13m/s2. These methods are supposed to be particularly use-
ful in automatic packaging machines, where the motion time
is usually assigned and cannot be changed, and very fast
movements are required to meet productivity demands. The
objective of these trajectories is to reduce the stirring of the
liquid both during the container motion and after its end.
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Table 3: Comparison of the results obtained on the large container with different optimization methods applied with no
prescribed motion duration (i.e., with the introduction of a delay).

Traj. Original traj. Opt. method t f max(ẍ0) max(ẋ0) max(η) max(ηrest) ∆ηrest

[s] [m/s2] [m/s] [mm] [mm]

Traj. 1 Mod. trap. / 1.0 6.2 1.5 60.9 51.8 /

Traj. 2 Poly5 / 1.0 5.8 1.9 48.9 10.3 /

Traj. 3 Mod. trap. / 1.4 3.1 1.3 32.8 33.5 /

Traj. 4 Poly5 / 1.4 2.9 1.3 14.1 6.6 /

Opt. traj. 21 Mod. trap. IS-EI 1.32 4.5 1.5 22.7 10.0 −80.7%/−70.1%

Opt. traj. 22 Mod. trap. IS-ZVDD 1.48 4.6 1.5 21.2 8.5 −83.6%/−74.6%

Opt. traj. 23 Poly5 IIR (τ = 50) 1.19 5.1 1.8 23.4 3.8 −63.1%/−42.4%

Opt. traj. 24 / FIR 1.37 4.1 1.4 18.6 2.3 −95.6%/−93.1%

Table 4: Comparison of the results obtained on the medium container with different optimization methods applied with no
prescribed motion duration (i.e., with the introduction of a delay).

Traj. Original traj. Opt. method t f max(ẍ0) max(ẋ0) max(η) max(ηrest) ∆ηrest

[s] [m/s2] [m/s] [mm] [mm]

Traj. 5 Mod. trap. / 0.8 10.0 2.0 47.5 24.6 /

Traj. 7 Mod. trap. / 1.0 6.2 1.5 20.1 11.7 /

Opt. traj. 25 Mod. trap. IS-ZV 0.92 9.8 2.0 29.3 3.5 −85.7%/−70.1%

Opt. traj. 26 Mod. trap. IS-EI 1.03 7.3 2.0 19.6 3.8 −84.6%/−67.5%

Opt. traj. 27 Mod. trap. IIR (τ = 40) 1.04 8.9 2.0 28.2 3.5 −85.7%/−70.1%

Opt. traj. 28 / FIR 0.98 8.0 2.0 21.9 1.3 −94.7%/−88.9%

In particular, four optimization methods were investigated,
based on input shaping, dynamic-model inversion, IIR fil-
ters, and FIR filters. The inversion of the dynamic model
was shown to be unsuitable and was discarded, whereas the
other methods were experimentally compared. These meth-
ods were analyzed with the objective of application in real-
time, namely generating motion laws that electric drives can
directly calculate.

Experimental results proved the effectiveness of all
methods based on FIR and IIR filters to build anti-sloshing
motion laws, even in the case of highly dynamic motions.
We notice that no optimization method seems a priori emerge
above the others. In general, and according to physical intu-
ition, the best technique is the one that guarantees the move-
ment execution with the lowest maximum acceleration. The
combination of the aforementioned anti-sloshing techniques
and the sloshing prediction model described in [20] repre-
sents a complete instrument for the design of anti-sloshing
motion laws, since, as a matter of fact, the designer can
choose between different optimization methods by simulat-

ing the system response through the model shown in [20].

If one may not simulate the liquid sloshing caused by
different trajectories, the recommended methods are input
shaping and multi-segment trajectories built with 3 FIR fil-
ters. The first one applied to a polynomial trajectory is par-
ticularly suggested when the main objective is to minimize
the maximum sloshing height during the container motion.
In particular, since we are considering a prescribed motion
duration, it is better to use a ZV shaper, which in general
guarantees lower accelerations than more robust shapers. A
multi-segment trajectory built with 3 FIR filters generally al-
lows one to have the lowest residual vibration of the free sur-
face and so it is recommended when the main objective is
to minimize the oscillation in the rest phase. Both strategies
are applicable in real-time and they do not require complex
computations even for a prescribed duration of the motion.
Finally, input shaping may be the preferred technique to be
used in general: it is very simple and applies to any existing
transport system, independently from the sampling period Ts,
while the FIR-filter formulation in Eq. (15) cannot be applied
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with good results when Ts > 1ms.
The effectiveness of the analyzed methods drops for ac-

celerations higher than approximately 10m/s2.
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