
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Improved penalty algorithm for mixed integer PDE constrained optimization problems / Garmatter D.;
Porcelli M.; Rinaldi F.; Stoll M.. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. -
STAMPA. - 116:(2022), pp. 2-14. [10.1016/j.camwa.2021.11.004]

Published Version:

Improved penalty algorithm for mixed integer PDE constrained optimization problems

Published:
DOI: http://doi.org/10.1016/j.camwa.2021.11.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/889824 since: 2022-09-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.camwa.2021.11.004
https://hdl.handle.net/11585/889824

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Garmatter, D., Porcelli, M., Rinaldi, F., & Stoll, M. (2022). Improved penalty
algorithm for mixed integer PDE constrained optimization problems. Computers
and Mathematics with Applications, 116, 2-14

The final published version is available online at
https://dx.doi.org/10.1016/j.camwa.2021.11.004

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.camwa.2021.11.004

IMPROVED PENALTY ALGORITHM FOR MIXED INTEGER PDE
CONSTRAINED OPTIMIZATION PROBLEMS

DOMINIK GARMATTER∗, MARGHERITA PORCELLI† , FRANCESCO RINALDI‡ , AND

MARTIN STOLL∗

Abstract. Optimal control problems including partial differential equation (PDE) as well as
integer constraints merge the combinatorial difficulties of integer programming and the challenges re-
lated to large-scale systems resulting from discretized PDEs. So far, the branch-and-bound framework
has been the most common solution strategy for such problems. In order to provide an alternative
solution approach, especially in a large-scale context, this article investigates penalization techniques.
Taking inspiration from a well-known family of existing exact penalty algorithms, a novel improved
penalty algorithm is derived, whose key ingredients are a basin hopping strategy and an interior point
method, both of which are specialized for the problem class. A thorough numerical investigation is
carried out for a standard stationary test problem. Extensions to a convection-diffusion as well as a
nonlinear test problem finally demonstrate the versatility of the approach.

Key word. mixed integer optimization, optimal control, PDE-constrained optimization, exact
penalty methods, interior point methods

1. Introduction. Optimal control problems that are governed by a partial dif-
ferential equation (PDE) as well as integer constraints on the control and possible
additional constraints are commonly referred to as mixed integer PDE-constrained
optimization (MIPDECO) problems. They pose several challenges as they combine
two fields that have been surprisingly distinct from each other in the past: inte-
ger programming and PDEs. While integer optimization problems have an inherent
combinatorial complexity that has to be dealt with, PDE-constrained optimization
problems have to deal with possibly large-scale linear systems resulting from the dis-
cretization of the PDE, see, e.g., [1].

In spite of these challenges, MIPDECO problems are gaining increased attention
as they naturally arise in many real world applications such as gas networks [2],
[3], the placement of tidal and wind turbines [4]–[6] or power networks [7]. From the
theoretical point of view, there have been recent advances in the field including a Sum-
up-Rounding strategy [8], [9], a derivative-free approach [10], and new sophisticated
rounding techniques [11].

A classical solution approach for a MIPDECO problem is to first-discretize-then-
optimize, where the PDE and the control are discretized such that the continuous
MIPDECO problem is then approximated by a finite-dimensional (and possibly large-
scale) mixed-integer nonlinear programming problem (MINLP). Standard techniques,
see, e.g., [12] for an excellent overview, such as branch-and-bound can then be used
to solve the MINLP. Unfortunately, depending on the size of the finite-dimensional
approximation, these techniques may struggle. On the one hand, the discretization of
the control might result in a large amount of integer variables and thus an immense
combinatorial complexity of the MINLP. On the other hand, the discretization of the
PDE results in large-scale linear systems occurring whenever an NLP-relaxation of
the MINLP has to be solved.

∗Department of Mathematics, Chemnitz University of Technology, Reichenhainer Str.41, Chem-
nitz, 01926, Germany (dominik.garmatter@math.tu-chemnitz.de, martin.stoll@math.tu-chemnitz.de)
†Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, Bologna,

40126, Italy (margherita.porcelli@unibo.it)
‡Department of Mathematics ”Tullio Levi-Civita”, University of Padova, via Trieste 63, Padova,

35121, Italy (rinaldi@math.unipd.it)

1

ar
X

iv
:1

90
7.

06
46

2v
4

 [
m

at
h.

N
A

]
 8

 S
ep

 2
02

1

mailto:dominik.garmatter@math.tu-chemnitz.de
mailto:martin.stoll@math.tu-chemnitz.de
mailto:margherita.porcelli@unibo.it
mailto:rinaldi@math.unipd.it

2 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

The contribution of this article to the field is to provide an alternative approach
for MIPDECO problems via an equivalent penalty formulation of the original problem.
While penalty reformulations have been studied in the context of integer program-
ming, see, e.g., [13]–[16], and penalty approaches have been developed, see, e.g., [17]–
[19], there have been (to the knowledge of the authors) no contributions that explicitly
deal with MIPDECO problems.

The general idea of penalty reformulations is to relax the integer constraints of the
problem and add a suitable penalty term to the objective function, thus penalizing
controls that violate the previously present integer constraints. A naive solution
strategy is to iteratively solve the resulting penalty formulation while increasing the
amount of penalization in each iteration until one ends up with an integer solution.
The upside of such penalization strategies is that the combinatorial complexity of the
integer constraints is eliminated from the problem formulation and the penalty term
then ensures that the resulting solution satisfies the integer constraints. The downside
is that penalty terms are usually concave such that one has to deal with non-convex
NLPs with a possibly exponential amount of local minimizers.

To still provide qualitative solutions in this context, the main contribution of
this article is the development of a novel algorithm that is closely related to a family
of existing exact penalty (EXP) algorithms, which have been analyzed both in the
context of general constrained optimization [20], [21] and in the context of integer
optimization [18]. Roughly speaking, a general EXP algorithmic framework, which is
an iterative procedure, provides an automatic tool for when to increase penalization
and when to aim for a better minimizer via a suitable global solver for the penalized
subproblems. One can then show convergence towards a global minimizer of the
original problem, see, e.g., [18, Corollary 1] for the analysis of the integer case.

A practical implementation of an EXP algorithm is carried out in this paper.
Although the algorithm is developed taking into account a model problem, it will
become clear that it can handle quite general MIPDECO problems. The idea of the
resulting improved penalty algorithm (IPA) is to combine the EXP framework with
a suitably developed search approach, closely connected to basin hopping or iterated
local search methods, see, e.g., [22], [23]. The search combines a local optimization
algorithm with a perturbation strategy (both tailored to the specific application) in
order to find either the global or a good local minimum of the penalty reformulation.

Our suitably developed local optimization solver is an interior point method that
exploits the structure of the penalty formulation related to a MIPDECO problem in
the following ways:

• it explicitly handles the non-convexity introduced by the penalty term;
• it uses a specific preconditioner to efficiently handle the linear algebra.

Via this approach, large-scale problems can be handled and the IPA is numerically
compared, both for a standard test problem and a convection-diffusion problem, to a
traditional penalty method as well as a branch-and-bound routine from CPLEX [24].

The remainder of this work is organized as follows: the model problem is pre-
sented and discretized in Section 2. Section 3 reviews the EXP algorithm, extends its
convergence theory to the class of MIPDECO problems considered, and then develops
the novel improved penalty algorithm. Section 4 gathers implementation details of the
IPA, such as the interior point method, and briefly collects the remaining algorithms
for the numerical comparison that is carried out in Section 5. Finally, conclusions
are drawn in Section 6 including an outlook on MIPDECO problems with a nonlinear
PDE constraint.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 3

2. Problem formulation. We begin with the description of the optimal con-
trol model problem in function spaces. Following the first-discretize-then-optimize
approach, we then present the discretized model problem as well as its continuous
relaxation. Finally, we review existing solution techniques.

2.1. Binary optimal control problem. We begin with the description of the
PDE in order to formulate the optimal control problem. Consider a bounded domain
Ω ⊂ R2 with Lipschitz boundary, source functions φ1, . . . , φl ∈ L2(Ω) and based

on these the PDE: for a given control vector u = (u1, . . . , ul)
ᵀ ∈ Rl find the state

y ∈ H1
0 (Ω) solving

−∆y(x) =

l∑
i=1

uiφi(x), x ∈ Ω,(2.1)

where the PDE is to be understood in the weak sense. Existence and uniqueness of
a solution y ∈ H1

0 (Ω) of (2.1) follow from the Lax–Milgram theorem. For now, we
choose to model the sources φ1, . . . , φl as Gaussian functions with centers x̃1, . . . , x̃l
in the interior of Ω. Thus, for x ∈ R2,

φi(x) := κe−
‖x−x̃i‖22

ω , i = 1, . . . , l,(2.2)

with height κ > 0 and width ω > 0. The optimal control problem in function
spaces then reads: given a desired state yd ∈ L2(Ω), find a solution pair (y, u) ∈
H1

0 (Ω)× {0, 1}l of

min
y∈H1

0 (Ω),u∈{0,1}l
1
2 ‖y − yd‖

2
L2(Ω) ,

s.t. (y, u) fulfill (2.1), and
∑l
i=1 ui ≤ S ∈ N,

(2.3)

where the inequality constraint in (2.3) is commonly referred to as a knapsack con-
straint. This problem can be interpreted as fitting a desired heating pattern yd by
activating up to S many sources that are distributed around the domain Ω. Since
the set of feasible controls {0, 1}l is finite and for each control there is a uniquely
determined state y, problem (2.3) is essentially a combinatorial problem so that exis-
tence of at least one global minimizer is guaranteed. We close this section with some
remarks on the presented model problem.

Remark 2.1. (a) The Gaussian source functions are motivated by porous-media
flow applications to determine the number of boreholes, see, e.g., [25], [26], and
problem (2.3) with this choice is furthermore a model problem mentioned in [27,
Section 19.3]. We will see throughout the development of our algorithm that it
does not rely on this particular modelling of the control. Exemplarily, Section
5.2 will deal with a convection-diffusion equation with piecewise constant source
functions φi (and we mention that piecewise constant source functions were also
used in [28]).

(b) Having a fixed number of l source functions results in the number of integer
variables being independent of the discretization mesh. While the algorithm pre-
sented in this article could in principle handle a general distributed control (as
for exmaple proposed in [11]) such that the amount of controls would then scale
with the physical space discretization, we note that the overall problem would be
more challenging.

4 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

(c) It is well-known that problems with general integer constraints can be reduced
to problems with binary constraints, see, e.g., [29]. Furthermore, [14, Section 4]
provides an alternative in the context of penalty approaches by directly penalizing
general integer constraints.

2.2. Discretized model problem and continuous relaxation. We introduce
a conforming mesh over Ω with N vertices such that, after choosing a suitable finite
element space, M ∈ RN×N and K ∈ RN×N denote the mass and stiffness matrices
and we note that K and M are positive definite and M is symmetric. We refer to [30]
for a discussion on the convergence of the discretized quantities. Furthermore, let the
matrix Φ ∈ RN×l contain the finite element coefficients of the source functions in its
columns, i.e., each column contains the evaluation of the respective source function at
the N vertices of the grid. With these matrices at hand, we formulate the discretized
optimal control problem

min
y∈RN ,u∈{0,1}l

1
2 (y − yd)

ᵀ
M(y − yd),

s.t. Ky = MΦu, and
∑l
i=1 ui ≤ S ∈ N.

(2.4)

In (2.4) and for the remainder of this article, y denotes the vector of the finite element
coefficients of the corresponding finite element approximation of (2.1) rather than the
actual PDE-solution. The same holds true for the desired state yd, which from now
on represents a finite element coefficient vector instead of an actual L2(Ω)-function.
Relaxing the integer constraints in (2.4) yields the continuous relaxation

(2.5)
min

y∈RN , u∈Rl

1
2 (y − yd)

ᵀ
M(y − yd)

s.t. Ky = MΦu, 0 ≤ u ≤ 1, and
∑l
i=1 ui ≤ S ∈ N.

We reformulate both problems (2.4) and (2.5) in a more compact way.

Lemma 2.2. Introducing for x ∈ RN+l

J̃(x) :=
1

2
x
ᵀ
[
M 0
0 0

]
x− x

ᵀ
[
Myd

0

]
+

1

2
y
ᵀ
dMyd

and f : Rl → RN : u 7→ K−1MΦu, problems (2.4) and (2.5) are equivalent to

(P) min
x∈W

J̃(x) W :=

{
x = (y, u)

ᵀ
∈ RN+l

∣∣∣ u ∈ {0, 1}l, l∑
i=1

ui ≤ S, y = f(u)

}
and

(Pcont) min
x∈X

J̃(x) X :=

{
x = (y, u)

ᵀ
∈ RN+l

∣∣∣ u ∈ [0, 1]l,

l∑
i=1

ui ≤ S, y = f(u)

}
,

respectively. W ⊂ RN+l is a compact set and X ⊂ RN+l is compact and convex such
that (Pcont) is a convex problem.

Proof. The equivalence of the problems in question follows from the definition of
the sets W and X and the map f . Furthermore, W is obviously compact and X as
the image of a compact convex set under a linear map is compact and convex. Thus,
the convexity of (Pcont) follows from the convexity of X and the convexity of J̃ where

the matrix

[
M 0
0 0

]
, with M being positive definite, is positive semidefinite.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 5

The authors acknowledge that (P) might be tackled by existing methods, see, e.g.,
[17], [19], [28], and thus want to comment on the limitations of these approaches in a
large-scale context.

1. In [28], a branch-and-cut algorithm is presented, where the computation of a
cutting plane requires one linear PDE solution per dimension of the control
space. Therefore, this approach can become excessively time-consuming for
large l.

2. In [17], an EXP framework that embeds an iterative genetic algorithm is
presented, where the amount of objective function evaluations per iteration of
the genetic algorithm in [17] scales quadratically with the problem dimension
l. But in the PDE-constrained optimization context of (P) an evaluation of
the objective function requires a PDE solution, such that the approach can
become costly for large l and/or N .

3. In [19], a penalty-based approach combined with a smoothing method is con-
sidered to solve nonlinear and possibly non-convex optimization problems
with binary variables. The main drawback in this case is: there is no the-
oretical guarantee that one converges towards the global minimum. Hence,
the smoothing and penalty parameters need to be carefully initialized and
handled during the optimization process in order to avoid getting stuck in
bad local minima.

4. Lastly, a comparison of our method towards strategies such as a Sum-Up
Rounding method for PDEs [9] and a sophisticated rounding technique [11]
are topics for future work.

Although not strictly considering mixed-integer problems, we mention that the multi-
bang approach described in [31] may also be considered to solve MIPDECO problems.
In view of (P), it is not clear how the approach from [31] translates from distributed
to modeled controls and how the addition of a knapsack constraint can be dealt with.

3. Improved penalty algorithm (IPA). This section contains the main con-
tribution of this article, the development of our novel improved penalty algorithm
(IPA). We will first introduce a well-known equivalent penalty reformulation of (P),
followed by an exact penalty algorithm from [18]. Afterwards we will develop the IPA,
where the idea is to combine the EXP framework with a local search strategy such
that the resulting algorithm only relies on a local solver.

3.1. Penalty formulation and exact penalty (EXP) algorithm. Starting
from the continuous relaxation (2.5), we add the well-known penalty term

(3.1)
1

ε

l∑
i=1

ui(1− ui)

to the objective function. Obviously, this concave penalty term penalizes a non-binary
control, where ε > 0 controls the amount of penalization. This yields the following
penalty formulation

(3.2)
min

y∈RN , u∈Rl

1
2 (y − yd)

ᵀ
M(y − yd) + 1

ε

∑l
i=1 ui(1− ui)

s.t. Ky = MΦu, 0 ≤ u ≤ 1 and
∑l
i=1 ui ≤ S ∈ N.

6 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Following Lemma 2.2, (3.2) can be rewritten as

min
x∈X

J(x; ε), with

J(x; ε) :=
1

2
x
ᵀ
[
M 0
0 − 2

εIl

]
x− x

ᵀ
[
Myd
− 1
ε1

]
+

1

2
y
ᵀ
dMyd,

(Ppen)

where Il ∈ Rl×l is the identity-matrix and 1 := (1, . . . , 1)
ᵀ ∈ Rl.

Proposition 3.1. There exists an ε̃ > 0 such that for all ε ∈ (0, ε̃] problems (P)
and (Ppen) have the same minimizers. Having the same minimizers here means that
both problems (P) and (Ppen) have the same global minima (if there exist multiple).
In this sense both problems (P) and (Ppen) are equivalent.

Proof. From Lemma 2.2 it is clear that J ∈ C1(RN+l) and that W and X are
compact. Together with the results derived in [14, Section 3] all assumptions of [14,
Theorem 2.1] are fulfilled such that the desired statement follows.

We mention that the equivalence result from Proposition 3.1 also holds for a variety of
concave penalty terms, see, e.g., [14, Equations (19)-(23)] or [15, Equation (21)]. We
chose the penalty term (3.1) in this article since it is quadratic and thus the combined
objective function J remains quadratic.

Before we formulate the exact penalty algorithm, we introduce a rounding strategy
that suitably handles the knapsack constraint in X and W and prove that it is the
correct tool required for the algorithm design.

Definition 3.2. For x = [y, u]
ᵀ ∈ X and S ∈ N, with S ≤ l, let uS ∈ RS denote

the S largest components of u. The smart rounding of x is given as follows:

[x]SR := (f([u]SR), [u]SR)
ᵀ
∈W,

with f defined as in Lemma 2.2 and [u]SR obtained by rounding uS component-wise
to the closest integer, while setting the remaining components to 0.

We illustrate the smart rounding by considering a simple example working only with
control values: it will demonstrate that the smart rounding does, by definition, satisfy
the knapsack constraint, while the usual rounding to the closest integer may fail to
do so.

Example 3.3. Let S = 2 and l = 3 and let [·] denote the usual rounding to the
closest integer. Then, for

u = (0.8, 0.7, 0.1)
ᵀ

and v = (0.63, 0.61, 0.62)
ᵀ

it is uS = (0.8, 0.7)
ᵀ

such that [u]SR = (1, 1, 0)
ᵀ

= [u], whereas vS = (0.63, 0.62)
ᵀ

such that [v]SR = (1, 0, 1)
ᵀ
6= [v] = (1, 1, 1)

ᵀ
.

With Definition 3.2 at hand, we state in Algorithm 3.1 the adaptation of the EXP
algorithm from [18, Section 3] to our model problem (Ppen). We note that Algorithm
3.1 is obtained from the original EXP algorithm following the ideas of [18, Section 4],
where an adaptation for bound-constrained mixed integer problems was defined.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 7

Algorithm 3.1 EXP(ε0 > 0, δ0 > 0, σ ∈ (0, 1))

1: n = 0, εn = ε0, δn = δ0

2: Step 1. Compute xn ∈ X such that J(xn; εn) ≤ J(x; εn) + δn for all x ∈ X.
3: Step 2.
4: if xn /∈W and J(xn; εn)− J([xn]SR; εn) ≤ εn ‖xn − [xn]SR‖2 then
5: εn+1 = σεn, δn+1 = δn

6: else
7: εn+1 = εn, δn+1 = σδn

8: end if
9: Step 3. Set n = n+ 1 and go to Step 1.

Algorithm 3.1 assumes that in Step 1 a so-called δ-global optimizer, i.e., an iterate
fulfilling the condition in Step 1, can be found, for example via a global optimization
method, see, e.g., [32] for an overview of existing methods. Step 2 of the algorithm
then provides a tool to decide when to increase penalization and when to seek for
a better global minimizer. Before we discuss the main convergence property of the
algorithm, we want to comment on the second condition in line 4 of Algorithm 3.1:
this condition is based on [18, Equation (3)], a Hölder-condition for the unpenalized
objective function. Since our objective function J is quadratic, it is Hölder-continuous
with Hölder-exponent equal to 1. Furthermore, the Hölder-constant that appears in
the original formulation of the algorithm in [18, Section 3], can for simplicity be
set to 1 since it only influences the convergence speed of the algorithm. Thus, it
does not appear in our formulation. We notice that the updating rule in line 4 of
Algorithm 3.1 is tailored for problem (P): the key step in here is choosing a suitable
feasible point zn = [xn]SR with respect to which we can build up a neighborhood
at minimum distance from xn. This check is crucial to guarantee convergence of the
given algorithmic scheme (see [18, Lemma 1]).

Before we prove a fundamental result in the upcoming Proposition 3.5 that is the
nedeed adaptation of [18, Proposition 2], we give a useful definition. Once Proposition
3.5 is proven, one can easily obtain [18, Lemma 1] such that the convergence of
Algorithm 3.1 follows from [18, Theorem 2] and [18, Corollary 1].

Definition 3.4. The Chebyshev distance between a point x ∈ RN+l and a closed
set C ⊂ RN+l is defined as

dist∞(x,C) = min
y∈C
‖x− y‖∞ .

Proposition 3.5. Let f , W and X be the linear map and the sets defined in
Lemma 2.2. For z = (f(zu), zu)

ᵀ ∈ W , where zu denotes the control part of z, let
B(z) be the set

(3.3) B(z) := {x = (y, u)
ᵀ
∈ RN+l | ‖y‖∞ ≤ β, ‖u− zu‖∞ ≤ ρ}.

Letting ρ < 0.5 and choosing β ≥ maxz∈X ‖f(zu)‖∞, it follows that z ∈ B(z) for all
z ∈W and

B(za) ∩B(zb) = ∅, for all za, zb ∈W with za 6= zb.

Furthermore, given a point x̄ = (f(ū), ū)
ᵀ ∈ X, then the point z̄ := [x̄]SR ∈ W

minimizes the Chebyshev distance between x̄ and the sets B(z) with z ∈W , that is

z̄ ∈ arg min
z∈W

dist∞(x̄, B(z)).

8 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Proof. With the choices of ρ and β the first statements are trivial. We furthermore
mention that with f being the linear map from Lemma 2.2 and the ‖·‖∞ inducing a
matrix norm, we have

max
z∈X
‖f(zu)‖∞ = max

z∈X

∥∥K−1MΦzu
∥∥
∞ ≤

∥∥K−1MΦ
∥∥
∞max

z∈X
‖zu‖∞︸ ︷︷ ︸
=1

such that a finite β can be chosen.
Now, if there exists a z ∈ W such that x̄ ∈ B(z), it has to be z=z̄ = [x̄]SR. In

this trivial case, we have dist∞(x̄, B(z̄)) = 0 and the result follows.
For the case that x̄ /∈ B(z) for any z ∈ W , we use a contradictory argument.

Therefore, we assume in the following that x̄ /∈ B(z) for all z ∈ W and that there

exists a point ẑ = (f(ẑu), ẑu)
ᵀ ∈W satisfying

(3.4) dist∞(x̄, B(ẑ)) < dist∞(x̄, B(z̄)).

We can hence find two points p̂ = (p̂y, p̂u)
ᵀ ∈ B(ẑ) and p̄ = (p̄y, p̄u)

ᵀ ∈ B(z̄) satisfying

(3.5) ‖p̂− x̄‖∞ = dist∞(x̄, B(ẑ)) and ‖p̄− x̄‖∞ = dist∞(x̄, B(z̄)).

Equation (3.5) together with the definition of the Chebyshev distance, the definition
in (3.3), as well as the choice of β imply that p̂y = p̄y = f(ū). Equation (3.5) and the
definition in (3.3) then furthermore yield

(3.6) ‖p̂u − ẑu‖∞ = ‖p̄u − z̄u‖∞ = ρ.

We thus obtain

(3.7) ‖p̂− x̄‖∞ = max{‖p̂u − ū‖∞ , ‖p̂y − f(ū)‖∞︸ ︷︷ ︸
=0

} = ‖p̂u − ū‖∞

and equivalently ‖p̄− x̄‖∞ = ‖p̄u − ū‖∞. As a consequence, the set defined in equa-
tion (3.3) together with the definition of the ‖·‖∞–norm yield

(3.8) ‖ū− ẑu‖∞ = ‖ū− p̂u‖∞ + ‖p̂u − ẑu‖∞︸ ︷︷ ︸
=ρ

as well as

(3.9) ‖ū− z̄u‖∞ = ‖ū− p̄u‖∞ + ‖p̄u − z̄u‖∞︸ ︷︷ ︸
=ρ

,

where the equalities stem from the fact that ‖u− zu‖∞ ≤ ρ inside (3.3) defines a unit
cube. On the other hand, we obtain from (3.4) and (3.5) that ‖ū− p̄u‖∞ > ‖ū− p̂u‖∞
such that we conclude from equations (3.4)-(3.9) that

(3.10) ‖ū− z̄u‖∞ − ‖ū− ẑu‖∞ = ‖ū− p̄u‖∞ + ρ− ‖ū− p̂u‖∞ − ρ > 0.

Remembering that z̄ = [x̄]SR, such that z̄u= [ū]SR, and that z̄ 6= ẑ ⇒ z̄u 6= ẑu (follows
from the definition of W), we know that for at least one component i ∈ I = {1, . . . , l}
it holds z̄u,i 6= ẑu,i. Let us now define the set

IL := {i ∈ I | ūi ≥ 0.5}.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 9

If |IL| < S, we have z̄u = [ū]SR = [ū], where [·] denotes the usual rounding to the
nearest integer, such that there exists a component i ∈ I satisfying

‖ū− z̄u‖∞ = |ūi − z̄u,i| ≤ 0.5 ≤ |ūi − ẑu,i| ≤ ‖ū− ẑu‖∞

thus contradicting (3.10).
Therefore, we assume that |IL| ≥ S in the following and define the set IS , with

|IS | = S, so that ūi > ūj for all i ∈ IS and all j ∈ IL \ IS , i.e., the index set of the S
largest components of ū. By the definition of the smart rounding, it is then obvious
that z̄u,i = 1 for i ∈ IS and z̄u,i = 0 for i ∈ I \ IS .

Now, any z̃ ∈ W can be obtained from z̄ by considering any combination of the
following operations:

1. z̄u,i = 1→ z̃u,i = 0 for one i ∈ IS ;
2. z̄u,i = 1→ z̃u,i = 0 for one i ∈ IS and z̃u,j = 1 for one j ∈ I \ IL;
3. z̄u,i = 1→ z̃u,i = 0 for one i ∈ IS and z̃u,j = 1 for one j ∈ IL \ IS .

Since ūi ≥ 0.5 for all i ∈ IS , the first part of any of these operations results in

|ūi − z̄u,i| ≤ |ūi − z̃u,i|.

In the second operation j ∈ I \ IL implies that ūj < 0.5 and z̄u,j = 0 and we obtain

|ūj − z̄u,j | ≤ |ūj − z̃u,j |.

In the third operation j ∈ IL \ IS implies that ūj ≥ 0.5 but z̄u,j = 0 such that

|ūj − z̄u,j | ≥ |ūj − z̃u,j |.

Taking the whole third operation into account and remembering that i ∈ IS as well
as the definition of the smart rounding, we can see that

max{|ūj − z̄u,j |, |ūi − z̄u,i|} ≤ max{|ūj − z̃u,j |, |ūi − z̃u,i|}.

Forming any z̃ ∈W from z̄ via these operations thus implies that

‖ū− z̄u‖∞ ≤ ‖ū− z̃u‖∞

and as especially ẑu ∈ W can be obtained from z̄u, we have ‖ū− z̄u‖∞ ≤ ‖ū− ẑu‖∞
which is a contradiction to (3.10). Hence, we get that

dist∞(x̄, B(ẑ)) ≥ dist∞(x̄, B(z̄)), for all ẑ ∈W,

which concludes the proof.

We end this section with the main convergence property of Algorithm 3.1 that is
reported in the upcoming Proposition 3.6. It shows that Algorithm 3.1 extends global
optimization methods for continuous problems to integer problems.

Proposition 3.6. Every accumulation point x∗ of a sequence of iterates {xn}n∈N
of Algorithm 3.1 is a global minimizer of (P).

Proof. Using Proposition 3.5, we can easily get [18, Lemma 1] proven. Hence, the
statement follows from [18, Theorem 2] and [18, Corollary 1].

10 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

3.2. Development of the improved penalty algorithm (IPA). We want to
stress that the EXP algorithm considered in the previous section needs to calculate a
δ-global optimizer in Step 1 of each iteration. As local minima are introduced around
integer points in (Ppen) for sufficiently large values of ε, finding a δ-global optimizer
requires the use of a global deterministic continuous optimization solver. Thus, the
EXP algorithm, albeit providing a theoretical framework for when to increase the
amount of penalization and when to search for a better minimizer, might be too
costly, especially in a large-scale MIPDECO context.

This is our motivation to drop the requirement for a δ-global optimizer in Step
1 of Algorithm 3.1 and compute an iterate xn ∈ X that simply reduces the objective
function (i.e., J(xn; εn) < J(xn−1; εn)). In order to do so, we employ a probabilistic
approach that, in each iteration, aims at improving the current iterate by perturbing
it and utilizing this perturbation as initial guess for a tailored local optimization solver
(see Section 4.2 for a detailed description of the solver). Do note that this strategy is
closely connected to classic basin hopping or iterated local search strategies, see, e.g.,
[22], [23], for global optimization problems. By combining these two ideas, we end up
with Sub-Algorithm 3.2.a that is then invoked in Step 1 of the novel improved penalty
algorithm (IPA), i.e., the combination of the Algorithms 3.2 & 3.2.a reported below.

Algorithm 3.2 Improved penalty algorithm(x0 ∈ X, ε0 > 0, σ ∈ (0, 1), pmax ∈ N)

1: n = 0, xn = x0, εn = ε0

2: Step 1. Call Algorithm 3.2.a(xn, pmax, εn) to generate a new iterate xn+1.
3: Step 2.
4: if xn+1 /∈W and J(xn+1; εn)− J([xn+1]SR; εn) ≤ εn

∥∥xn+1 − [xn+1]SR
∥∥

2
then

5: εn+1 = σεn

6: else
7: εn+1 = εn

8: end if
9: Step 3.

10: if xn=xn+1 then
11: return [xn+1]SR
12: else
13: Set n = n+ 1 and go to Step 1.
14: end if

Algorithm 3.2.a Reduction via perturbation(x ∈ X, pmax ∈ N, ε > 0)

1: xinit = x
2: for j = 1, . . . , pmax do
3: Use a local optimization solver to determine a solution xloc of (Ppen) for ε

using xinit as initial guess.
4: if J(xloc; ε) < J(x; ε) then
5: return xloc

6: else
7: Generate a point xpert = Perturbation(xloc) and set xinit = xpert.
8: end if
9: end for

10: return x

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 11

Remark 3.7. Clearly, there is a trade-off between the two algorithms: while Al-
gorithm 3.1 guarantees deterministic convergence, it is unable to tackle large-scale
problems. This downside is then lifted in Algorithm 3.2 thanks to the combination
of a local solver and a probabilistic global search approach. Here, the probabilistic
nature of Algorithm 3.2 lies in the perturbation operation in line 7 of Algorithm 3.2.a
and we will go into detail in Section 4.1. As a result, no deterministic convergence
property is available for the overall IPA. Nevertheless, the framework underlying the
EXP algorithm of when to increase the penalization and when to look for a better
minimizer still supports the novel Algorithm 3.2.

Do note that if the for-loop in Algorithm 3.2.a reaches the iteration limit (and thus no
better iterate was found after pmax∈ N perturbations), the algorithm terminates with
x, which was the input iterate. In that case it is xn+1=xn and the overall Algorithm
3.2 then terminates. Therefore, the perturbation strategy in Algorithm 3.2.a together
with the choice of pmax give the information at what point no further reduction in
the objective function can be found. Algorithm 3.2.a does not specify a perturbation
strategy in line 7 and one can develop a strategy that is beneficial for one’s model
problem. We will present our strategy in the upcoming Section 4.1.

While ε is decreased during Algorithm 3.2 (and thus the amount of penalization
is increased), the concave penalty term (3.1) grows larger and introduces local minima
to the objective function J(x; ε). As ε is further decreased, the shape of the objective
function continues to change such that these local minima then move towards the
integer points (follows from the definition of the penalty term). Due to this behavior,
the condition J(xloc; εn) < J(x; εn) in line 4 of Algorithm 3.2.a is always fulfilled as
long as εn < εn−1 holds in Algorithm 3.2. Thus, as long as it was εn < εn−1 in
Algorithm 3.2, the for-loop in Algorithm 3.2.a terminates after the first iteration and
the perturbation loop is not invoked. As a result, we expect Algorithm 3.2 to have a
two-phase behavior: in the first phase, the penalization is increased due to line 5 of
Algorithm 3.2 until a feasible integer iterate xn+1 ∈ W is found (due to the nature
of the penalty term this has to happen for small enough values of ε). Do note that,
as long as the current iterate is not too close to an integer, the second condition of
line 4 is also fulfilled (due to the shape of the objective function the left hand side
is then negative). If an iterate xn+1 ∈ W is found (or one is close enough such that
the second condition on line 4 is violated), line 7 of Algorithm 3.2 keeps the amount
of penalization such that the shape of the objective function remains the same and a
better iterate can only be found via the perturbation strategy inside Algorithm 3.2.a
in Step 1 of Algorithm 3.2 (after line 7 of Algorithm 3.2, Algorithm 3.2.a is called
with εn = εn−1 such that the first iteration of the for loop simply reproduces the local
minimum which was the input iterate). Thus, Algorithm 3.2.a then tries to improve
the current iterate by perturbing it and restarting the local solver with this perturbed
iterate. This way, one wants to escape bad basins of attraction of J and then move
towards better local minimizers and eventually the global one.

Finally, we want to mention that a new iterate xn+1 =
[
yn+1, un+1

]ᵀ
found by

Algorithm 3.2.a is always feasible so that xn+1 ∈ X. Thus, the criterion xn+1 /∈ W
in line 4 of Algorithm 3.2 can, in an actual implementation, be replaced by∥∥un+1 − [un+1]SR

∥∥
∞ > εfeas

with some feasibility tolerance εfeas. Thus, it is reasonable to return [xn+1]SR such
that the control of our output iterate is always integer and respects the knapsack
constraint.

12 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

4. Algorithmic details, local solver, and numerical setup. We begin with
a discussion on various details of our implementation of the IPA including the per-
turbation strategy and the local solver. Afterwards, we shortly introduce two other
solution strategies for (P) and discuss the setup for the numerical investigation that
will be carried out in Section 5.

4.1. Implementation details of the IPA. We start with the presentation
of our perturbation strategy used in Algorithm 3.2.a. The details are described in
Algorithm 3.2.b and since the algorithm has θ ∈ N as an input, this is consequently
another input of the overall IPA.

Algorithm 3.2.b Perturbation(x ∈ X, θ ∈ N)

1: Split x = (y, u)
ᵀ

into the state y ∈ RN and control u ∈ Rl. Define upert := u.
2: Find IS , the set containing the indices of the entries of u that are larger than 1

2 .
3: for j = 1, . . . ,min{|IS |, θ} do
4: Randomly select ı̂ ∈ IS .
5: Define Iadj the set of indices corresponding to sources adjacent to x̃ı̂.
6: Randomly select ı̂adj ∈ Iadj .
7: Set (upert)ı̂ to a randomly chosen value smaller than 1

2 .
8: Set (upert)ı̂adj

to a randomly chosen value larger than 1
2 .

9: Remove ı̂ from IS .
10: end for
11: Compute the state ypert corresponding to upert, i.e., ypert = f(upert).

12: return xpert := [ypert, upert]
ᵀ

As mentioned in Section 3.2, this perturbation strategy should only be called upon
in the later stages of Algorithm 3.2 where the amount of penalization is significant
enough such that the set IS in Algorithm 3.2.b is not empty. When Algorithm 3.2.b
is called by Algorithm 3.2.a inside Algorithm 3.2, x is equal to the current iterate

xn = [yn, un]
ᵀ
. The algorithm then essentially performs θ ∈ N flips to the current

control un, where a flip is one iteration of the for-loop of Algorithm 3.2.b, i.e., a large
value of un is set to a small value and an entry of un corresponding to a source that
is adjacent to the source corresponding to the large value is set to a large value. By
this strategy the resulting perturbation xpert possibly lies outside the current basin
of attraction and therefore might be an initial guess for the local solver in Algorithm
3.2.a resulting in a point with a potentially better function value. It remains to explain
what we mean by adjacent in the above context.

Definition 4.1. Given a collection of points x1, . . . , xn ∈ Ω and a radius r > 0,
we define for a point xi the set of adjacent indices

Iadj := {j ∈ {1, . . . , n} | j 6= i, ‖xi − xj‖∞ ≤ r}.

Inside Algorithm 3.2.b, we can thus obtain Iadj via Definition 4.1 where we use the
centers x̃1, . . . , x̃l ∈ Ω of our source functions as points. Assuming that they are
arranged in a uniform m×m grid, a possible radius might be r = 1

m .
Although the perturbation strategy presented so far depends on the uniform grid

of source centers in order to determine the index set Iadj , the underlying concept
of this flipping does not depend on the chosen modelling. The large component
(upert)ı̂ of the control can often be associated to a spatial counterpart denoted, for

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 13

the purpose of clarity, as xı̂ here. In our case this is xı̂ = x̃ı̂, the center of the Gaussian
source function. If the control would for example be modeled via piecewise constant
functions {χi(x)}li=1 (as in [28] or Section 5.2), xı̂ could be the center of the patch
of the subdomain that corresponds to χı̂(x). If the control would be distributed, xı̂
would be the vertex of the grid that corresponds to uı̂. Thus, one would always find a
set of points for Definition 4.1 and could then select a proper radius (and of course a
suitable norm). With this interpretation, as long as the control can be associated to
spatial counterparts of the domain Ω, the presented perturbation strategy can easily
be applied to different kinds of controls, models, and domains.

Finally, we found it effective in our experiments to set (upert)ı̂ to a random value
in [0.1, 0.2] during Algorithm 3.2.b. Afterwards, we calculate dı̂ := | (u)ı̂ − (upert)ı̂ |
and set (upert)ı̂adj

to a random value in [dı̂ − 0.1, dı̂]. This strategy ensures that the

perturbed control upert is still feasible (especially fulfilling the knapsack constraint).
Furthermore, this prohibits the perturbed control of having values that are too close
to 0 or 1. By this, xpert is then an initial guess for the local solver in Algorithm 3.2.a
that (possibly) lies outside the current basin of attraction and is at the same time not
too close to other local minimizers (at this stage of the IPA there are local minimizers
nearby all integer points).

In the remainder of this section, we want to discuss the termination of Algorithm
3.2.a and thus Algorithm 3.2. The criterion J(xloc; εn) < J(xn; εn) in Algorithm
3.2.a (as it is called inside Algorithm 3.2 with x = xn and ε = εn) can be numerically
challenging in an actual implementation. Although the criterion should be fulfilled
when it was εn < εn−1 in Algorithm 3.2 as mentioned in Section 3.2, this might not
be the case numerically since any local solver used in Algorithm 3.2.a only computes

xloc =
[
yloc, uloc

]ᵀ
up to some internal tolerance. Furthermore, if xn is close to an

integer already, we do not want to accidentally fulfill J(xloc; εn) < J(xn; εn) due to
numerical effects although [uloc]=[un] such that no progress towards a better integer
solution would be made. To cover both of these cases in our implementation, we first
calculate the two distances

dloc :=
∥∥uloc − un∥∥∞ and dlocSR :=

∥∥[uloc]SR − [un]SR
∥∥
∞

and replace J(xloc; εn) < J(xn; εn) by the following two criteria and thus return xloc

in Algorithm 3.2.a if one of these is fulfilled.
1. If εn < εn−1 and either J(xloc; εn) < J(xn; εn), dloc < 0.2, or dlocSR = 0 are

fulfilled.
2. If εn = εn−1 and dlocSR 6= 0, as well as J(xloc; εn) < J(xn; εn), and additionally
J([xloc]SR; εn) < J([xn]SR; εn) are fulfilled.

The first criterion targets the case when J(xloc; εn) ≮ J(xn; εn) numerically (although
it was εn < εn−1 in Algorithm 3.2) and thus also accepts iterates that are either
close to, or presumably in the same basin of attraction as, the previous iterate. We
mention that this usually happens during the first phase of the IPA where the amount
of penalization is increased (due to εn+1 = σεn) and is not yet large enough for the
local solver to produce near integer solutions fulfilling

∥∥uloc − [uloc]SR
∥∥
∞ ≤ εfeas. As

a result it is not necessary to search for better solutions via the perturbation strategy
such that this criterion tries to prevent non-productive iterations in Algorithm 3.2.a.
If a feasible iterate was found and the amount of penalization was not increased,
the second criterion only accepts better iterates that lie outside the current basin of
attraction and thus enforces progress towards a better integer solution and should
prevent the algorithm from getting stuck in an unsatisfactory local minimum.

14 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

4.2. Implementation of the local solver: an interior point framework for
the large-scale setting. We now discuss our implementation of line 3 in Algorithm
3.2.a, that is the choice of the local solver for finding a solution xloc of (Ppen) for
a given ε. Due to the structure of (Ppen), which was equivalent to (3.2), we opt
for an interior point method (IPM) that is particularly suitable for solving quadratic
programming problems and it also allows the use of an efficient preconditioner in the
linear algebra phase, see, e.g., [33], [34]. Following [34], we present the derivation of
a standard interior point method for the following reformulation of problem (Ppen),
that is

min
y∈RN ,u∈Rl,z∈R

J(y, u; ε) = 1
2 (y − yd)

ᵀ
M(y − yd) + 1

ε (1
ᵀ
u− uᵀu),

s.t. Ky = MΦu and 1
ᵀ
u+ z − S = 0,

0 ≤ u ≤ 1 and z ≥ 0,

where z ≥ 0 is a scalar slack variable and the notation has been adapted to distinguish
the control u and the state y. For the sake of generality we include the case when the
stiffness matrix K is non-symmetric. The main idea of an IPM is the elimination of
the inequality constraints on u and z via the introduction of corresponding logarithmic
barrier functions. The Lagrangian associated with the barrier subproblem reads

Lµ,ε(y, u, z; p, q) =J(y, u; ε) + p
ᵀ
(Ky −MΦu) + q(1

ᵀ
u+ z − S)

− µ
l∑
i=1

log(ui)− µ
l∑
i=1

log(1− ui)− µ log(z),

where p ∈ RN is the Lagrange multiplier (or adjoint variable) associated with the
state equation, q ∈ R is the Lagrange multiplier associated with the scalar equation
1
ᵀ
u+z−S = 0, and µ > 0 is the barrier parameter that controls the relation between

the barrier term and the original objective J(y, u; ε). As the method progresses, µ is
decreased towards zero.

First-order optimality conditions are derived by applying duality theory resulting
in a nonlinear system parametrized by µ as detailed below. Thus, differentiating Lµ,ε
with respect to the variables y, u, z, p, and q gives the nonlinear system

My −Myd +K
ᵀ
p = 0,(4.1a)

1

ε
(1− 2u)− Φ

ᵀ
Mp+ q1− λu,0 + λu,1 = 0,(4.1b)

q − λz,0 = 0, Ky −MΦu = 0, 1
ᵀ
u+ z − S = 0,(4.1c)

where the Lagrange multipliers λu,0, λu,1 ∈ Rl and λz,0 ∈ R are defined as

(4.2) (λu,0)i :=
µ

ui
, (λu,1)i :=

µ

1− ui
, for i = 1, . . . , l, and λz,0 :=

µ

z
.

Furthermore, the bound constraints λu,0 ≥ 0, λu,1 ≥ 0, and λz,0 ≥ 0 then enforce the
constraints on u and z.

The crucial step of deriving the IPM is the application of Newton’s method to
the above nonlinear system. Letting y, u, z, p, q, λu,0, λu,1, and λz,0 denote the most
recent Newton iterates, these are then updated in each iteration by computing the

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 15

corresponding Newton steps ∆y, ∆u, ∆z, ∆p, ∆q, ∆λu,0, ∆λu,1, and ∆λz,0 through
the solution of the following Newton system

M 0 0 K
ᵀ

0

0 − 2
εIl + Θu 0 −Φ

ᵀ
M 1

0 0 θz 0 1
K −MΦ 0 0 0

0 1
ᵀ

1 0 0

∆y
∆u
∆z
∆p
∆q

(4.3)

= −

My −Myd +K

ᵀ
p

1
ε (1− 2u)− Φ

ᵀ
Mp+ q1− λu,0 + λu,1
q − λz,0

Ky −MΦu

1
ᵀ
u+ z − S

 .

Here, Θu := U−1Λu,0 + (Il − U)−1Λu,1, θz := λz,0/z, and U, Λu,0, and Λu,1 are
diagonal matrices with the most recent iterates of u, λu,0, and λu,1 appearing on
their diagonal entries. The matrices Θu and θz > 0, while being positive definite, are
typically very ill-conditioned. Also, due to the term − 2

εIl, the block − 2
εIl + Θu may

be indefinite, especially for small values of ε. Following suggestions in [33, Chapter
19.3] to handle nonconvexities in the objective function by promoting the computation
of descent directions, we heuristically keep the diagonal matrix − 2

εIl + Θu positive
definite by setting any negative values to some value γ > 0. Once the above system
is solved, one can compute the steps for the Lagrange multipliers via

∆λu,0 = −U−1Λu,0∆u− λu,0 + µU−11,

∆λu,1 = (Il − U)−1Λu,1∆u− λu,1 + µ(Il − U)−11,

∆λz,0 = −(λz,0/z)∆z − λz,0 + µ/z.

A general IPM implementation only involves one Newton step per iteration. Thus,
after choosing suitable step-lengths so that the updated iterates remain feasible, the
new iterates can be calculated and the barrier parameter µ is reduced, thus concluding
one iteration of the IPM. Finally, we report the primal and dual feasibilities

ξp :=

[
Ky −MΦu

1
ᵀ
u+ z − S

]
and ξd :=

 My −Myd +K
ᵀ
p

1
ε (1− 2u)− Φ

ᵀ
Mp+ q1− λu,0 + λu,1
q − λz,0

 ,
as well as the complementarity gap

ξc :=
[
Uλu,0 − µ1, (Il − U)λu,1 − µ1, zλz,0 − µ

]ᵀ
,

as measuring the change in the norms of ξp, ξd and ξc allows us to monitor the
convergence of the entire process.

Clearly, the computational burden of this IPM lies in the solution of the Newton
system (4.3) and our strategy regarding this issue is twofold: on the one hand we
employ an inexact Newton-Krylov strategy for the solution of the nonlinear system
(4.1) and on the other hand we design a suitable preconditioner to speed up the con-
vergence of our Krylov method of choice for the Newton system (4.3). Regarding the
inexactness strategy, the idea is to increase the accuracy in the solution of the Newton
equation as µ decreases. This minimizes the occurrence of so-called oversolving in the

16 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

first interior point steps. Global convergence results to a solution of the first-order
optimality conditions for the resulting inexact IPM can be found in [35].

Preconditioning for the interior point method. We will now present our linear
algebra strategy for the solution of the Newton system (4.3), i.e., we choose our
Krylov method and design a suitable preconditioner. Investigating the system matrix
of the Newton system, we observe that with the choice

A =

M 0 0
0 − 2

εIl + Θu 0
0 0 θz

 , B =

[
K −MΦ 0

0 1
ᵀ

1

]

we have to solve a saddle point system

[
A BT

B 0

]
. As discussed already, the block

− 2
εIl + Θu is kept positive definite throughout the interior point method, so that we

can assume that A is positive definite.
Such systems are a cornerstone of applied mathematics and appear in many ap-

plication scenarios, see, e.g., [36], [37]. While the system is symmetric and we could
apply minres [38], we here use a nonsymmetric method, namely gmres [39], be-

cause we found that a block-triangular preconditioner

[
Â 0

B −Ŝ

]
performs better in

our experiments. It would also be possible to use symmetric solvers, which are based
on nonstandard inner products, see, e.g., [40], [41]. We here focus on the design of
the approximations for the (1, 1)-block Â ≈ A and for the Schur-complement

Ŝ ≈ S =

[
KM−1K

ᵀ
+MΦ(− 2

εIl + Θu)−1Φ
ᵀ
M 0

0 1
ᵀ
(− 2

εIl + Θu)−11 + θ−1
z

]
.

In our preconditioning approach, we neglect the term 1
ᵀ
(− 2

εIl+Θu)−11+θ−1
z and set

the preconditioner to 1 as this typically does not result in many additional iterations
and we avoid dealing with the ill-conditioning of both (− 2

εIl + Θu) and θz. In our
setup here we thus end up with the following approximation

Ŝ =

[
KM−1K

ᵀ
0

0 1

]
and A = Â.

We close this section with two short remarks.

Remark 4.2. The purpose of this basic preconditioner is to speed up the solution
process of our IPM, but for future research we need to enhance this based on recent
progresses in preconditioning for interior point methods, see, e.g., [42]–[44].

Remark 4.3. Although this IPM together with the preconditioner are formulated
for the penalty formulation (Ppen) that refers to the model problem (2.1), it is clear
that the IPM generalizes to general linear PDE constraints (in fact, Section 5.2 will
contain experiments for a convection-diffusion problem resulting in a nonsymmetric
stiffness matrix K). Furthermore, the IPM and the preconditioner can be formally
adapted to a nonlinear PDE constraint F (y, u) = 0, where F : RN+l → RN is a
smooth nonlinear function. One simply has to introduce F ′(y, u) ∈ RN×(N+l), the
Jacobian of F as well as F ′y ∈ RN×N and F ′u ∈ RN×l, the submatrices of the Jacobian
such that F ′(y, u) = [F ′y, F

′
u]. We then obtain the IPM for this nonlinear problem by

replacing in the Newton system (4.3) K
ᵀ

by (F ′y)
ᵀ
, −MΦ by F ′u (and thus −Φ

ᵀ
M

by (F ′u)
ᵀ
), and Ky−MΦu by F (y, u). In the nonlinear case, convergence of the IPM

is ensured when embedded in suitable globalization strategies [33].

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 17

4.3. Simple penalty and branch-and-bound method. We shortly discuss
a simple penalty approach and our branch-and-bound solver of choice for the solution
of (P) to which we want to compare our IPA in the numerical Section 5.

Starting with the penalty formulation (Ppen), we follow the simple iterative pe-
nalization strategy already mentioned in the introduction: in each iteration, use a
local solver to determine a solution of (Ppen) which then is the next iterate; decrease
the penalty parameter; stop if the control part of the new iterate is integer. This
approach leads to the following penalty algorithm, i.e., Algorithm 4.0.

Algorithm 4.0 Penalty(x0 ∈ X, ε0 > 0, σ ∈ (0, 1))

1: n = 0, xn = x0, εn = ε0

2: repeat
3: Use a local solver to determine a solution xn+1 of (Ppen) for εn using xn as

initial guess.
4: εn+1 = σεn

5: n = n+ 1
6: until ‖un − [un]SR‖∞ < εfeas
7: return [xn]SR

As already discussed in Section 3.2, we use the criterion ‖un − [un]SR‖∞ < εfeas
instead of xn ∈ W to determine whether or not an integer iterate has been found
and then return [xn]SR. Algorithm 4.0 is a simplification of the IPA in several ways:
the penalty parameter is reduced in every iteration, a new iterate xn+1 generated by
the local solver is always accepted as such, and the algorithm terminates as soon as
an iterate xn+1 ∈ W is found. Thus, Algorithm 4.0 has no theoretical justification,
whereas Algorithm 3.2 utilizes the theoretical framework of the EXP algorithm for the
correct selection of the penalty parameter as well as a local iterative search strategy
for the computation of the new iterate.

Finally, we choose cplexmiqp the branch-and-bound routine of CPLEX [24] for
quadratic mixed integer problems, as our branch-and-bound solver for our numerical
comparison in Section 5. We refer the reader to [12] for an elaborate overview of the
branch-and-bound framework and simply note that cplexmiqp incorporates many
algorithmic features lately developed to improve branch-and-bound performance.

4.4. Numerical setting and parameter choices. We present the setting
in which the numerical experiments will be conducted including default parameter
choices for the algorithms. If different choices are utilized, it will be mentioned.

We choose Ω := [0, 1]2 as our computational domain. Regarding the Gaussian
sources defined in (2.2), we choose l = 100 sources with centers x̃1, . . . , x̃l being
arranged in a uniform 10 × 10 grid with step size 1

11 (resulting in a radius of 1
10 for

Definition 4.1). The height of the sources is κ = 100 and the width ω is chosen such
that every source takes 5% of its center-value at a neighboring center. We mention
that this choice of height and width is motivated by [6, Section 4.2]. The PDE (2.1)
is discretized using uniform piecewise linear finite elements with a step size of 2−7

(unless specified otherwise) resulting in N = 16641 vertices.
Whenever a local solver is required, i.e, in Algorithms 3.2.a and 4.0, we use

the IPM derived in Section 4.2. The outer interior point iteration is stopped as
soon as either max{‖ξp‖2 , ‖ξd‖2 , ‖ξc‖2} ≤ 10−6 or the safeguard µ ≤ 10−15 is
triggered. Furthermore, starting from an initial µ = 1 we decrease µ by the fac-
tor 0.1 in each outer interior point iteration. The inexactness is implemented by

18 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

stopping GMRES when the norm of the unpreconditioned relative residual is below
η = max{min{10−1, µ}, 10−10}. Finally, the diagonal block − 2

εIl + Θu in the Newton
system (4.3) is kept positive definite by setting any negative values to γ = 10−6 and
the preconditioner proposed at the end of Section 4.2 is applied by performing the
Cholesky decomposition of both M and K once at the beginning of the IPA process.

As initial guess for Algorithms 3.2 and 4.0 the solution of (Pcont) obtained by
our IPM is used. Do note that this is not necessary since (Ppen) for large enough
ε0 is usually still a convex problem in the first iteration of these algorithms so that
any initial guess would be sufficient. Further default parameters are ε0 = 105 for
both algorithms as well as σ = 0.9 for Algorithm 4.0 and σ = 0.7 for Algorithm 3.2.
The more conservative value of σ for Algorithm 4.0 is necessary here, since with σ
being closer to 0 one would risk increasing the amount of penalization too fast and
thus possibly ’skipping’ a good local minimum and settling for an unsatisfactory local
minimum. Finally, we used the feasibility tolerance εfeas = 0.1.

Regarding cplexmiqp, we use default options except that we set a time limit
of 1 hour (unless specified otherwise) and a memory limit of 16000 megabytes for
the search tree. All experiments were conducted on a PC with 32 GB RAM and
a QUAD-Core-Processor INTEL-Core-I7-4770 (4x 3400MHz, 8 MB Cache) utilizing
Matlab 2019a via which CPLEX 12.9.0 was accessed.

5. Numerical Experiments. We begin with two different experiments for our
Poisson model problem (P) and then shortly discuss a convection-diffusion problem
as well as the behaviour of our local solver.

5.1. Poisson model problem. In the first experiment we want to see that the
IPA can indeed handle large-scale problems and convince ourselves that cplexmiqp,
the branch-and-bound method of CPLEX introduced in Section 4.3, can not handle
large-scale problems. In the second experiment we then carry out a detailed com-
parison of the IPA with the solution strategies presented in Section 4.3. We further
mention that two more experiments were conducted that can be found in a previous
version of this article1:

• A parameter study for the IPA with respect to pmax ∈ N and θ ∈ N was
conducted upon which pmax = 300 and θ = 3 have been selected.

• The stochastic robustness of the IPA was investigated, i.e., how robust the
solution quality and time is with respect to the random choices made. It was
found that while different minima may be found by the IPA for the same
problem instance, the minima are all of high quality and the difference in
solution time is neglectable.

Do note that due to the different implementation languages included in these
experiments, the reported computational times only give a qualitative information on
the performance of the solvers.

In general, we create an instance of our optimal control problem by generating a
desired state yd that is a solution of (the discretized version of) (2.1) with S active
sources in the right-hand side and the centers of these sources are randomly distributed
over Ω̃ = [0.1, 0.9]2. The height and width of these sources coincide with the values
that were used for the source-grid in Section 4.4. Clearly, the combinatorial complexity
of the optimization problem corresponding to such a desired state increases drastically
for larger values of S. To further illustrate the optimization problem here, Figure 5.1
exemplarily shows two desired states, one for S = 3 and one for S = 20, where the

1https://arxiv.org/abs/1907.06462v2

https://arxiv.org/abs/1907.06462v2

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 19

white stars depict x̃1, . . . , x̃l, the centers of the source grid introduced in Section 4.4,
and the red stars depict the centers of the S active sources in yd.

Fig. 5.1: Exemplary desired states with S = 3 active sources (left) and S = 20 active
sources (right) including the centers of the source grid (white stars) and the centers
of the active sources of the respective desired state (red stars).

First experiment. We want to see that the IPA can handle large-scale problems
and cplexmiqp, the branch-and-bound routine of CPLEX, can not. Therefore, we
create a problem instance per value of S ∈ {3, 10, 20} and per step-size h ∈ {2−7, 2−8}
of the FEM grid and solve each instance with the IPA, cplexmiqp with a 1 hour time
limit, cplexmiqp with a 10 hour time limit, and (for comparison reasons) with the
simple penalty approach from Algorithm 4.0. Regarding the solution quality, the
algorithm with the lowest objective function value is indicated with a ’min’ in Table
5.1 (or a ’min∗’ if it was the global minimum) and for each other algorithm the relative
error towards this minimum objective function value is then displayed. Furthermore,
Table 5.1 contains the run times in seconds for each algorithm in each instance, where
in case of cplexmiqp ’TL’ indicates that the respective time limit was reached.

h 2−7 2−8

S 3 10 20 3 10 20
rel err time rel err time rel err time rel err time rel err time rel err time

Penalty min∗ 89 20% 163 57% 188 min 541 8% 1101 12% 1400
IPA min∗ 925 13% 1035 min 1143 min 6219 min 7550 min 9190

cplexmiqp 1h min∗ 1527 13% TL 19% TL 6805% TL 45535% TL 93718% TL
cplexmiqp 10h - - min TL 1% TL 6805% TL 45535% TL 93718% TL

Table 5.1: Results of the first experiment. For each problem instance the algorithm
with the lowest objective function value is indicated. The respective relative error of
other algorithms as well as the solution times (in seconds) are furthermore reported.

We observe that for h = 2−7 and S = 3 all algorithms find the global minimum,
although we stress that this is only a single problem instance which does not allow for
a conclusive comparison with respect to solution quality. A more detailed comparison
will be carried out in the next experiment. With an increase in S (and thus an
increase in the combinatorial complexity of the problem), cplexmiqp, while hitting
the prescribed time limit, is still able to provide good solutions, although our IPA
is able to at least keep up. Refining the FEM-mesh once and thus moving towards
h = 2−8 (resulting inN = 66049 instead ofN = 16641) results in cplexmiqp not being
able to handle the problem at all. The time limit is always reached and the algorithm
(even given 10 hours time) terminates with a tremendous relative error with respect to
the qualitative solutions found by our IPA. The solution found by the IPA is then by

20 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

construction always better than the solution found by the simple penalty algorithm.
One might be tempted to believe that the simple penalty algorithm could also be a
viable alternative due to its inherent fast solution time but the next experiment will
reveal that the algorithm cannot produce qualitative points in a reliable way.

Second experiment. We carry out a detailed comparison between the IPA, the
penalty algorithm in Algorithm 4.0 and cplexmiqp. In order to do so, we construct a
test set of 20 problem instances per value of S ∈ {3, 6, 10, 15, 20}. We then solve this
test set with the algorithms under analysis and compare the results with respect to
solution time and quality. For the solution time, we report ’t av’ the average solution
time in seconds and for the solution quality, we choose the following two criteria.

• ’min count’: for each desired sate, we check which algorithm achieved the
smallest objective function value. This algorithm is then awarded a score.
Surely, multiple algorithms can be awarded a score in the same run (when
multiple algorithms find the same ’best’ minimum).

• ’rel err av’: for each desired state, we store for each algorithm the relative
error between the objective function value achieved by that algorithm and
the smallest objective function value in that run (the one that was awarded a
’min count’-score). Only runs resulting in a non-zero relative error are taken
into account when computing this average relative error.

We chose to measure the quality of the algorithms via the described two quantities
since, as the centers of the desired states in the test set are randomly distributed
over Ω̃, the global minimum of the optimization problem is not known analytically.
Therefore, the ’min count’-value simply tells us how often an algorithm performed
best compared to the other algorithms. The average relative error is an additional
measure of quality. The results of this experiment can be found in Table 5.2.

t av (s) min count rel err av (%)

S 3 6 10 15 20 3 6 10 15 20 3 6 10 15 20

Penalty 88 125 152 184 202 12 5 2 1 1 33 41 52 33 56
IPA 918 1112 1149 1343 1239 20 13 14 16 15 0 6 37 11 12

cplexmiqp 1885 3486 TL TL TL 20 18 9 5 5 0 13 5035 4311 7582

Table 5.2: Results of the second experiment. Comparison of the penalty algorithm,
the IPA and cplexmiqp for different values of S.

Starting the discussion with the average time, we observe that cplexmiqp is heavily
affected by an increase in S while the IPA is only slightly affected and the simple
penalty algorithm is by construction the fastest. Moving to the solution quality, we
see that cplexmiqp as well as the IPA always find the global minimum for S = 3
where the simple penalty algorithm only finds the global minimum in 12 cases with
an average relative error of 33% in the remaining 8 cases. Increasing S (and thus the
combinatorial complexity of the problem), we observe that cplexmiqp (especially for
S ≥ 10) fails to find the global minimum in the given time. The IPA on the other
hand then starts to be the most competitive algorithm in the ’min count’-sense, i.e.,
producing the smallest objective function values compared to the other algorithms
(do also note the small relative average error of the IPA). Furthermore, we report
that for S = 10, 15, and 20 there was always one problem instance where cplexmiqp

only returned the zero solution (which is feasible but does not make sense from the
application point of view). As a result the average relative error is significantly large.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 21

To put the results of this experiment into a better perspective, Figure 5.2 contains,
for each part of the test set, a boxplot related to the objective function of the final
solutions attained by each algorithm (i.e. for each value of S the test set contains
20 instances, such that for each algorithm a boxplot is created for the 20 objective
function values related to the solutions we found). It is important to note that in the
top of Figure 5.2 the outliers of the data sets have been removed for visual clarity
whilst in the bottom part of Figure 5.2 the outliers are contained in the data sets. As
a result, the previously described phenomenon becomes clearly visible in the bottom
of Figure 5.2: for S = 10, 15, and 20 the data for cplexmiqp includes an outlier with a
significantly larger value such that the remaining box plots are tightly squeezed. Even
if those outliers play a role in getting the large average relative errors from Table 5.2,
when taking a look at the boxplots related to the data without outliers, we can easily
see that the IPA generally has both a smaller median and a smaller variance for larger
S.

Fig. 5.2: Results of the second experiment: for each part of the test set, a boxplot
related to the objective function of the final solutions obtained by each algorithm is
depicted. The outliers of the data sets are not included in the top part of the figure.

The results from Figure 5.2 further strengthen the observation made in Table 5.2: the
objective function values obtained with the points found by the IPA are, on the one
hand, clearly better than the ones found by the Penalty algorithm and, on the other
hand, either very similar (for S = 3 and S = 6) or superior (for larger S) to the ones

22 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

found by cplexmiqp.
Combining the results of this experiment with the results from the first experi-

ment, we can conclude that the IPA can solve large-scale problems, and can, at the
same time, compete with cplexmiqp in smaller problem instances. The simple penalty
approach is very fast but, as we can see in this experiment, fails to produce solutions
of high quality in a reliable fashion.

5.2. Convection-Diffusion model problem. We now consider the original
optimal control problem, but governed by the convection-diffusion PDE

−∆y(x) + w(x) · ∇y(x) =

l∑
i=1

uiχi(x), x ∈ Ω,(5.1)

with the wind vector w(x) = (2x2(1 − x2
1),−2x1(1 − x2

2))
ᵀ

and piecewise constant
source functions χ1, . . . , χl ∈ L2(Ω), that are constant on the subdomains Ω1, . . .Ωl ⊂
Ω forming a uniform decompostion of Ω = [0, 1]2 into l many squares. Here, we use Q1
finite elements, while also employing the Steamline Upwind Petrov-Galerkin (SUPG)
[45] upwinding scheme as implemented in the IFISS software package [46] to discretize
(5.1) and build the relevant finite element matrices.

For the resulting discretized optimal control problem, we repeat the second ex-
periment from the previous section, where all settings and parameters are chosen as
before. We chose not to include the other experiments to keep the length of this
presentation healthy but can report that results similar to the Poisson problem are
obtained. The result of the second experiment for this convection-diffusion problem
can be seen in Table 5.3.

t av (s) min count rel err av (%)

S 3 6 10 15 20 3 6 10 15 20 3 6 10 15 20

Penalty 103 148 198 231 247 16 7 4 0 0 39 27 44 50 38
IPA 943 1008 1083 1223 1337 19 16 15 15 14 16 19 12 16 12

cplexmiqp 1937 TL TL TL TL 20 16 7 5 6 0 10 24 52 24

Table 5.3: Results for the convection-diffusion problem: comparison of the penalty
algorithm, the IPA and cplexmiqp for different values of S.

Investigating Table 5.3, we observe that cplexmiqp shows basically the same behav-
iour as in the Poisson problem: it is always able to solve the problem in the given time
for S = 3, but then requires much more time and starts to produce unsatisfactory
solutions for larger values of S. The IPA again succeeds in finding either the global
minimum or a reasonable solution in around 15 − 20 minutes. The simple penalty
approach is again very fast, but also quite unreliable in terms of solution quality.

As in the previous section, Figure 5.3 contains, for each part of the test set, a
boxplot for the objective function related to the final solutions found by each algo-
rithm. While cplexmiqp does not produce any clear outliers for this data set, the
results still verify that the IPA is the superior algorithm in this comparison.
We conclude this numerical comparison with a final experiment that shall, on the one
hand, highlight the robustness of the optimization results with respect to the FEM
mesh and, on the other hand, show the efficiency of our numerical linear algebra. We
create one problem instance with S = 10 active sources and discretize this instance

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 23

Fig. 5.3: Results of the second experiment: for each part of the test set, a boxplot
related to the objective function of the final solutions attained by each algorithm is
depicted. For S = 10, 15, and 20 the boxplot for cplexmiqp is plotted with respect
to the right y-axis.

with a decreasing FEM mesh size of h = 2−4, 2−5, 2−6, 2−7. The instance is then
solved for each mesh size with the different algorithms from the second experiment
and additionally with a version of the IPA that does not embed the preconditioned
gmres described in Section 4.2. This is done once for the Poisson model problem and
once for the convection-diffusion model problem. Figure 5.4 shows the final objective
function value obtained (top row) and the required computational times (bottom
row) for the Poisson problem (left row) and the convection-diffusion problem (right
column).
It can be observed that for both model problems, the final objective function values
obtained with the various algorithms increasingly agree with each refinement of the
FEM mesh. Furthermore, the bottom row of Figure 5.4 shows the efficiency of our
numerical linear algebra since the version of the IPA using only a direct solver requires
significantly more time, especially for finer FEM mesh sizes.

5.3. Analysis of the local solver. As already mentioned, one of the main
benefits of our IPA is the possibility to exploit the problem features through an
efficient implementation of the local solver in line 3 of Algorithm 3.2.a. We now
briefly report on the numerical behaviour of our implementation of the IPM described
in Section 4.2. Thus, we create an exemplary problem instance (both for the Poisson
and convection-diffusion problem) for S = 10, and vary the step size of the FEM grid
as h ∈ {2−5, 2−6}. The instance is then solved for each step size with the IPA, where
the settings for the IPM and the IPA are as before. Figure 5.5 shows the number
of nonlinear (outer) iterations (NLI) required by the IPM and the average number
of preconditioned GMRES iterations (aGMRES) for each value of ε visited during
the IPA. Clearly, multiple values reported for a single value of ε correspond to active
perturbation cycles of Algorithm 3.2.a.
Firstly, we observe that both values of NLI and aGMRES are higher at the beginning
of the IPA process, that is for larger values of ε. On the other hand, when ε gets smaller
and more perturbation cycles are expected, the number of IPM iterations may get
lower and, mostly, the average number of GMRES iterations is reduced. This shows

24 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Fig. 5.4: Results of the final experiment: the final objective function values obtained
(top row) and the required computational times (bottom row) for the Poisson problem
(left row) and the convection-diffusion problem (right column).

that the IPA together with the IPM efficiently drives the solution of problem (Ppen)
to the mixed-integer solution of the original problem. This behaviour is observed in
Figure 5.5 for both problems and the varying mesh sizes.

Secondly, the reported number of average number of GMRES iterations is pretty
low and does not depend on the mesh size. This reveals the effectiveness of the
proposed preconditioner also in combination with the inexact approach. Remarkably,
values of aGMRES are extremely low in the last IPA iterations when ε is small.

6. Conclusion & Outlook. A standard MIPDECO problem with a linear PDE
constraint and a modelled control was presented and discretized. A novel improved
penalty algorithm (IPA) was developed, that combines well-known exact penalty ap-
proaches with a basin hopping strategy and an updating tool for the penalty param-
eter. As a result, only a local optimization solver is required and an interior point
method (IPM) that is suited for the problem in question was presented. The linear
algebra phase of the IPM was handled by a Krylov space method together with an
efficient preconditioner. Via this, the IPA was shown to work very well in numerical
applications for a Poisson as well as a convection-diffusion problem when compared to
a simple penalty approach and cplexmiqp, the branch-and-bound routine of CPLEX.
As an outlook, the authors want to mention that the IPA has already been success-
fully applied to the presented optimal control problem, but governed by the nonlinear

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 25

104 105
5

10

15

20

aGMRES

NLI

103 104 105

5

10

15

aGMRES

NLI

104 105
5

10

15

20

aGMRES

NLI

103 104 105

5

10

15

aGMRES

NLI

Fig. 5.5: Number of IPM iterations and average GMRES iterations during the IPA
steps for the Poisson (left) and convection-diffusion (right) problems for FEM step-
lengths h = 2−5 (top) and h = 2−6 (bottom) over the penalty parameter ε.

PDE

−∆y(x) + y(x)2 =

l∑
i=1

uiφi(x), x ∈ Ω,

where again the Gaussian source functions defined in (2.2) are used and the IPM
has been adapted as described in Remark 4.3. As first results, Figure 6.1 shows the
desired state of a random problem instance for S = 10, as well as the optimal state
found by the IPA and a difference plot. Furthermore, Figure 6.2 shows the result of
the experiment from the previous Section 5.3 conducted for this problem instance.

Fig. 6.1: Desired state (left), optimal state found by the IPA (middle), and difference
plot (right) for a problem instance for S = 10 of the nonlinear problem.

Overall, these results are already very encouraging and in future work, a comparison
of the IPA with state of the art solvers for such nonlinear problems should be carried
out (do note that CPLEX cannot deal with nonlinear PDE constraints). Furthermore,
future work shall contain the application to MIPDECO problems that are governed
by time-dependent PDEs (as these result in a truly large-scale context) as well as the

26 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

104 105

10

15

20

aGMRES

NLI

104 105

10

15

20

aGMRES

NLI

Fig. 6.2: Number of IPM iterations and average GMRES iterations during the IPA
steps for the nonlinear problem instance for FEM step-lengths h = 2−5 (left) and
h = 2−6 (right) over the penalty parameter ε.

extension from binary to general integer constraints and the development of strategies
to efficiently deal with these.

Acknowledgement. D. Garmatter and M. Stoll acknowledge the financial sup-
port by the Federal Ministry of Education and Research of Germany (support code
05M18OCB). D. Garmatter, M. Porcelli, and M. Stoll were partially supported by
the DAAD-MIUR Joint Mobility Program 2018-2020 (Grant 57396654). The work of
M. Porcelli was also partially supported by the National Group of Computing Science
(GNCS-INDAM).

References.
[1] F. Tröltzsch, Optimal control of partial differential equations: theory, methods,

and applications. American Mathematical Soc., 2010, vol. 112.
[2] M. Hahn, S. Leyffer, and V. M. Zavala, Mixed-Integer PDE-Constrained Optimal

Control of Gas Networks, Argonne National Laboratory, MCS Division Preprint
ANL/MCS-P9040-0218, Feb. 2017.

[3] M. E. Pfetsch, A. Fügenschuh, B. Geißler, N. Geißler, R. Gollmer, B. Hiller, J.
Humpola, T. Koch, T. Lehmann, A. Martin, et al., “Validation of nominations
in gas network optimization: Models, methods, and solutions,” Optimization
Methods and Software, vol. 30, no. 1, pp. 15–53, 2015.

[4] S. Funke, P. Farrell, and M. Piggott, “Tidal turbine array optimisation using
the adjoint approach,” Renewable Energy, vol. 63, pp. 658–673, 2014.

[5] P. Y. Zhang, D. A. Romero, J. C. Beck, and C. H. Amon, “Solving wind farm
layout optimization with mixed integer programs and constraint programs,”
EURO Journal on Computational Optimization, vol. 2, no. 3, pp. 195–219, Aug.
2014.

[6] C. Wesselhoeft, “Mixed-Integer PDE-Constrained Optimization,” M.S. thesis,
Imperial College London, 2017.

[7] S. Göttlich, A. Potschka, and C. Teuber, “A partial outer convexification ap-
proach to control transmission lines,” Computational Optimization and Appli-
cations, vol. 72, no. 2, pp. 431–456, Mar. 2019.

[8] P. Manns and C. Kirches, “Multi-dimensional Sum-Up Rounding for Ellip-
tic Control Systems,” SIAM Journal on Numerical Analysis, vol. 58, no. 6,
pp. 3427–3447, 2020.

[9] S. Leyffer, P. Manns, and M. Winckler, “Convergence of sum-up rounding
schemes for cloaking problems governed by the Helmholtz equation,” Computa-
tional Optimization and Applications, vol. 79, no. 1, pp. 193–221, 2021.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 27

[10] J. Larson, S. Leyffer, P. Palkar, and S. M. Wild, “A method for convex black-box
integer global optimization,” Journal of Global Optimization, pp. 1–39, 2021.

[11] M. Sharma, M. Hahn, S. Leyffer, L. Ruthotto, and B. van Bloemen Waanders,
“Inversion of convection–diffusion equation with discrete sources,” Optimization
and Engineering, pp. 1–39, 2020.

[12] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
“Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131,
2013.

[13] F. Giannessi and F. Niccolucci, “Connections between nonlinear and integer
programming problems,” in Symposia Mathematica, Academic Press New York,
vol. 19, 1976, pp. 161–176.

[14] S. Lucidi and F. Rinaldi, “Exact penalty functions for nonlinear integer pro-
gramming problems,” Journal of optimization theory and applications, vol. 145,
no. 3, pp. 479–488, 2010.

[15] F. Rinaldi, “New results on the equivalence between zero-one programming and
continuous concave programming,” Optimization Letters, vol. 3, no. 3, pp. 377–
386, 2009.

[16] W. X. Zhu, “Penalty Parameter for Linearly Constrained 0–1 Quadratic Pro-
gramming,” Journal of Optimization Theory and Applications, vol. 116, no. 1,
pp. 229–239, 2003.

[17] M. F. P. Costa, A. M. A. C. Rocha, R. B. Francisco, and E. M. G. P. Fernandes,
“Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear
programming,” Optimization, vol. 65, no. 5, pp. 1085–1104, 2016.

[18] S. Lucidi and F. Rinaldi, “An exact penalty global optimization approach for
mixed-integer programming problems,” Optimization Letters, vol. 7, no. 2, pp. 297–
307, 2013.

[19] W. Murray and K.-M. Ng, “An algorithm for nonlinear optimization problems
with binary variables,” Computational Optimization and Applications, vol. 47,
no. 2, pp. 257–288, 2008.

[20] G. Di Pillo, S. Lucidi, and F. Rinaldi, “An approach to constrained global
optimization based on exact penalty functions,” Journal of Global Optimization,
vol. 54, no. 2, pp. 251–260, 2012.

[21] G. D. Pillo, S. Lucidi, and F. Rinaldi, “A Derivative-Free Algorithm for Con-
strained Global Optimization Based on Exact Penalty Functions,” Journal of
Optimization Theory and Applications, vol. 164, no. 3, pp. 862–882, 2013.

[22] A. Grosso, M. Locatelli, and F. Schoen, “A population-based approach for hard
global optimization problems based on dissimilarity measures,” Math. Program.,
vol. 110, no. 2, pp. 373–404, 2007.

[23] R. H. Leary, “Global optimization on funneling landscapes,” J. Global Optim.,
vol. 18, no. 4, pp. 367–383, 2000.

[24] IBM ILOG CPLEX, https://www.ibm.com/analytics/cplex-optimizer.
[25] S. R. Fipke and A. O. Celli, “The Use of Multilateral Well Designs for Improved

Recovery in Heavy-Oil Reservoirs,” in IADC/SPE Drilling Conference, Society
of Petroleum Engineers, 2008.

[26] U. Ozdogan and R. N. Horne, “Optimization of well placement under time-
dependent uncertainty,” SPE Reservoir Evaluation & Engineering, vol. 9, no. 02,
pp. 135–145, 2006.

[27] S. Leyffer, Optimization: Applications, Algorithms and Computations. 24 lec-
tures on Nonlinear optimization and Beyond, 2016.

28 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

[28] C. Buchheim, R. Kuhlmann, and C. Meyer, “Combinatorial optimal control
of semilinear elliptic PDEs,” Computational Optimization and Applications,
vol. 70, no. 3, pp. 641–675, 2018.

[29] F. Giannessi and F. Tardella, “Connections between nonlinear programming and
discrete optimization,” in Handbook of Combinatorial Optimization, Springer
US, 1998, pp. 149–188.

[30] K. Deckelnick and M. Hinze, “A note on the approximation of elliptic control
problems with bang-bang controls,” Computational Optimization and Applica-
tions, vol. 51, no. 2, pp. 931–939, 2012.

[31] C. Clason and K. Kunisch, “Multi-bang control of elliptic systems,” in Annales
de l’IHP Analyse non linéaire, vol. 31, 2014, pp. 1109–1130.

[32] M. Locatelli and F. Schoen, Global optimization: theory, algorithms, and appli-
cations. Siam, 2013, vol. 15.

[33] J. Nocedal and S. J. Wright, Eds., Numerical Optimization. Springer-Verlag,
1999.

[34] J. Gondzio, “Interior point methods 25 years later,” European Journal of Op-
erational Research, vol. 218, no. 3, pp. 587–601, 2012.

[35] S. Bellavia, “Inexact interior-point method,” Journal of Optimization Theory
and Applications, vol. 96, no. 1, pp. 109–121, 1998.

[36] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast itera-
tive solvers: with applications in incompressible fluid dynamics, ser. Numerical
Mathematics and Scientific Computation. New York: Oxford University Press,
2005.

[37] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point
problems,” Acta Numerica, vol. 14, pp. 1–137, 2005.

[38] C. C. Paige and M. A. Saunders, “Solutions of sparse indefinite systems of linear
equations,” SIAM J. Numer. Anal, vol. 12, no. 4, pp. 617–629, 1975.

[39] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput, vol. 7,
no. 3, pp. 856–869, 1986.

[40] M. Stoll and A. Wathen, “Combination Preconditioning and the Bramble–
Pasciak+ Preconditioner,” SIAM J. Matrix Anal. Appl, vol. 30, no. 2, pp. 582–
608, 2008.

[41] H. S. Dollar, N. I. M. Gould, M. Stoll, and A. Wathen, “Preconditioning saddle
point problems with applications in optimization,” SIAM J. Sci. Computing,
vol. 32, pp. 249–270, 2010.

[42] J. W. Pearson, M. Porcelli, and M. Stoll, “Interior-point methods and precondi-
tioning for PDE-constrained optimization problems involving sparsity terms,”
Numerical Linear Algebra with Applications, vol. 27, no. 2, 2020.

[43] J. W. Pearson and J. Gondzio, “On Block Triangular Preconditioners for the
Interior Point Solution of PDE-Constrained Optimization,” Domain Decompo-
sition Methods in Science and Engineering XXIV, vol. 125, p. 503, 2019.

[44] L. Bergamaschi, J. Gondzio, and G. Zilli, “Preconditioning indefinite systems
in interior point methods for optimization,” Computational Optimization and
Applications, vol. 28, no. 2, pp. 149–171, 2004.

[45] A. N. Brooks and T. J. Hughes, “Streamline upwind/Petrov-Galerkin formu-
lations for convection dominated flows with particular emphasis on the incom-
pressible Navier-Stokes equations,” Computer methods in applied mechanics and
engineering, vol. 32, no. 1-3, pp. 199–259, 1982.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 29

[46] H. C. Elman, A. Ramage, and D. J. Silvester, “Algorithm 866: IFISS, a Matlab
toolbox for modelling incompressible flow,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 2, 14–es, 2007.

