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Trajectory Tracking for Discrete-Time
Port-Hamiltonian Systems

Alessandro Macchelli , Senior Member, IEEE

Abstract—This letter presents a regulator for nonlinear,
discrete-time port-Hamiltonian systems that lets the state
track a reference signal. Similarly to continuous-time
approaches, the synthesis is based on the mapping via
state-feedback of the open-loop error system to a target
one in port-Hamiltonian form, and with an asymptotically
stable origin that corresponds to the perfect tracking con-
dition. The procedure is formally described by a matching
equation that, in continuous-time, turns out to be a non-
linear partial differential equation (PDE). This is not the
case for sampled-data systems, so an algebraic approach
is proposed. The solution is employed to construct a
dynamical regulator that performs an “approximated” map-
ping. The stability analysis relies on Lyapunov arguments.

Index Terms—Discrete-time systems, port-hamiltonian
systems, sampled-data control.

I. INTRODUCTION

PORT-HAMILTONIAN systems have been introduced
about thirty years ago to model continuous-time, lumped-

parameter physical systems, [1]. The discrete-time extension
is a popular framework for the geometric integration of ordi-
nary differential equations (ODE) that preserves either the
structure or the energy of continuous-time systems. So, two
categories can be found in literature, i.e., the geometric and the
energetic integrators. In the autonomous case, the number of
contributions is large, and most of the results can be found in
textbooks, [2]. As far as non-autonomous, discrete-time port-
Hamiltonian systems are concerned, a definition on discrete
manifolds can be found in [3]. When the state space is a vec-
tor space, sampled-data (port-)Hamiltonian systems based on
symplectic integrators have been employed, e.g., in [4]–[8].

The discrete-time systems studied here belong instead to
the family of energy-preserving integrators, [9], [10]. As
in [11]–[14], their dynamics depend on the discrete gradient
of the Hamiltonian function. The advantage is that an energy-
balance relation is easily obtained, thus making the stability
analysis based on Lyapunov arguments simpler. The side-effect
is that the state equation is implicit. Not only continuous-time
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physical systems but also systems that naturally evolve in
discrete-time, such as numerical algorithms for convex or non-
convex optimization problems [15], fit into this framework.
This letter deals with control design, and its contribution is a
regulator that lets a nonlinear, discrete-time, port-Hamiltonian
system track a reference trajectory.

The regulator implementations are digital, so the develop-
ment of synthesis methodologies in discrete-time and inspired
by energy-based design paradigms is relevant not only from a
theoretical point of view. Since the regulator is coupled with
continuous-time dynamics, the idea has been to work with
models that belong to the family of energy-preserving inte-
grators and rely on the energy as the “lingua franca” to study
the closed-loop performances. This approach does not require
that the coupling between plant and digital controller is passive
despite the presence of the sample-and-hold block, [16], [17].
This problem is beyond the scopes of this letter, and so is not
tackled here. The state-feedback action is designed so that the
open-loop dynamics is mapped to a time-varying error system
in a port-Hamiltonian form that generalises [13]. Such a tar-
get system has desired structure, energy function, and stability
properties.

The synthesis procedure is similar to [18], where canonical
transformations were employed, and [19] within the Inter-
connection and Damping Assignment Passivity-based Control
(IDA-PBC) framework, both in the continuous-time case.
An extension to sampled-data systems has been proposed
in [11], [20], [21]. In [21], the focus is on the design
of energy-based regulators to stabilize on constant refer-
ences mechanical systems modeled by symplectic, discrete-
time port-Hamiltonian systems. Here, instead, the energy-
preserving, nonlinear, time-varying case is tackled together
with the implicit formulation of the state equation.

The mapping between open-loop and desired error systems
requires solving a matching equation. In continuous-time, this
equation is a nonlinear partial differential equation (PDE),
while in the digital case it is algebraic in the discrete gradi-
ent. Only in particular cases, it is possible to transform the
latter into a PDE that is instrumental to get a solution in
discrete-time. To overcome such a limitation, the approach
proposed in [22] has been extended to deal with time-varying
and sample-data systems to obtain an algebraic solution to
the matching equation. Note that the corresponding stabiliz-
ing laws are not necessarily based on the discrete gradient
of an energy function. To conclude, the design methodology
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is illustrated with an example in which the plant is a two
degrees-of-freedom, fully-actuated, planar manipulator.

Notation: For a matrix M ∈ R
n×m, M⊥ and M+ are the

full-rank left annihilator and pseudo-inverse, respectively. If
n = m, sym M = 1

2 (M + MT) is the symmetric part. Given
the sampled variable xk ∈ R

n, the pair (xk, xk+1) is denoted
by x̂k ∈ R

2n. Finally, the state of the error system is zk and
the quantities related to its evolution are equipped with a ′.

II. DISCRETE-TIME PORT-HAMILTONIAN SYSTEMS

In this section, the discrete-time formulation of the follow-
ing nonlinear, continuous-time, time-varying port-Hamiltonian
system is presented, [1], [18]:

⎧
⎨

⎩

ẋ(t) = F(x(t), t)∇H(x(t), t) + G(x(t), t)u(t)
y(t) = GT(x(t), t)∇H(x(t), t)
x(0) = x0.

(1)

In (1), t ∈ R≥0 and x(t) ∈ R
n are the time and state variable,

u(t), y(t) ∈ R
m the input and output, F(x, t) ∈ R

n×n is such
that sym F(x, t) ≤ 0 for all x and t, G(x, t) ∈ R

n×m is full-
rank, and H : R

n × R≥0 → R is the Hamiltonian (energy)
function. Along system’s trajectories we have that

Ḣ(x(t), t) = ∇TH(x(t), t)F(x(t), t)∇H(x(t), t)

+ yT(t)u(t) + ∂tH(x(t), t), (2)

where ∂t denotes the partial derivative with respect to time.
Consequently, if H(x, t) is lower-bounded and ∂tH(x, t) ≤
0, (1) is passive and H(x, t) is the storage function.

To get a discrete-time formulation of (1), the time derivative
of the state is approximated by the finite difference as

ẋ(tk) 	 1
τ
(xk+1 − xk) (3)

being tk = kτ , with τ > 0 and k ∈ N, the time samples and
xk = x(tk). Besides, a discrete approximation of the gradient
operator is necessary, see, e.g., [9, Definition 3.1].

Definition 1: Let � : Rp → R be a continuously differen-
tiable function. A discrete gradient ∇̄� : Rp ×R

p → R
p is a

continuous map such that for all ϕ, ϕ+ ∈ R
p we have

(ϕ+ − ϕ)T∇̄�(ϕ, ϕ+) = �(ϕ+) − �(ϕ),

lim
ϕ+→ϕ

∇̄�(ϕ, ϕ+) = ∇�(ϕ). (4)

Typical examples are the mean value [23, Th. 2.1], or the
Gonzalez discrete gradients, [9, Proposition 3.1]. If we have
a quadratic function �(ϕ) = ϕTQϕ with Q = QT, it is easy
to check that ∇̄�(ϕ, ϕ+) = Q(ϕ + ϕ+).

Based on (1), (3) and Definition 1, the discrete-time formu-
lation of a port-Hamiltonian dynamics is:

{
xk+1 = xk + τ F̄(x̂k, t̂k)∇̄H(x̂k, t̂k) + τ Ḡ(x̂k, t̂k)uk

yk = ḠT(x̂k, t̂k)∇̄H(x̂k, t̂k)
(5)

in which uk = u(kτ), with k ∈ N. The matrix-valued functions
F̄ : R2n ×R

2 → R
n×n and Ḡ : R2n ×R

2 → R
n×m are discrete

approximations of F and G, respectively, i.e., for all x, x+ ∈ R
n

and t, t+ ∈ R we have that

F̄(x, x+, t, t+) + F̄T(x, x+, t, t+) ≤ 0

F̄(x, x, t, t) = F(x, t)

Ḡ(x, x, t, t) = G(x, t).

Admissible choices for F̄ are F( 1
2 (x + x+), 1

2 (t + t+)) or
1
2 F(x, t) + 1

2 F(x+, t+), and similarly for Ḡ. From (4), we get
the discrete-time counterpart of (2), i.e.:

1
τ

[
H(xk+1, tk+1) − H(xk, tk)

]

= ∇̄TH(x̂k, t̂k)F̄(x̂k, t̂k)∇̄H(x̂k, t̂k)

+ yT
k uk + ∂̄tH(x̂k, t̂k), (6)

where with some abuse in notation ∂̄t denotes the discrete
partial derivative.

Remark 1: The drawback of the discrete-time system (5) is
that the dynamics is in implicit form. This is the price to pay
to have “for free” the energy-balance relation (6), which is the
starting point for control design and stability analysis. Such an
implicit equation can be made explicit, i.e., solved for xk+1,
in the linear case, because H is quadratic and F and G in (1)
are constant. This approach has been followed in [11], [20].
In the nonlinear case, however, it is necessary to keep such
an implicit formulation. Based on passivity arguments and
inspired by [15], under mild conditions on the structure of
the system and on the discrete gradient, it is possible to show
that trajectories exist independently from the sampling time.
This is the same rationale pursued in [13] where a similar
result has been proved under the hypothesis that the sampling
time is sufficiently small. In this letter we assume that the
dynamical equations are well-posed, so the next state can be
always (at least numerically) computed.

III. TRAJECTORY TRACKING: PROBLEM FORMULATION

The goal is to develop a controller that lets the discrete-
time system (5) track a feasible trajectory x�

k ∈ R
n. If (5) is

the sampled version of (1) and x�(t) the desired trajectory, then
x�

k = x�(tk), with k ∈ N. Inspired by [18], the idea is to obtain
an error system for (5) in port-Hamiltonian form via state-
feedback, and for which the origin is either the minimum of
the Hamiltonian function and the configuration that guarantees
perfect tracking. So, the origin has also to be an asymptotically
stable equilibrium. Let us denote by

zk = �(xk, tk), k ∈ N (7)

the error variable, in which �(x, t) is a change of coordinates
such that �(xk, tk) = 0 if and only if xk = x�

k . From (7) and
Definition 1, we get that

zk+1 − zk = ∇̄T�(x̂k, t̂k)(xk+1 − xk) + τ ∂̄t�(x̂k, t̂k) (8)

since tk+1 − tk = τ and with the xk dynamics given in (5).
The conditions that a state-feedback control action

uk = β(x̂k, t̂k) + u′
k, k ∈ N (9)

has to obey so that the zk dynamics is in port-Hamiltonian
form are summarized in the next proposition. In (9), u′

k ∈ R
m

is an auxiliary control input, specified later.
Proposition 1: Let us consider (5) and the two functions

Ha : R
n × R → R and F̄a : R

2n × R
2 → R

n×n such that
Hd = H + H and F̄d = F̄ + F̄a satisfy the same conditions for
H and F̄ in (5). The state-feedback law β(x̂k, t̂k) in (9) leads to
a discrete-time port-Hamiltonian dynamics for zk introduced
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in (7) if and only if

∇̄T�(x̂k, t̂k)
[
F̄(x̂k, t̂k)∇̄Ha(x̂k, t̂k) + F̄a(x̂k, t̂k)∇̄Hd(x̂k, t̂k)

− Ḡ(x̂k, t̂k)β(x̂k, t̂k)
] − ∂̄t�(x̂k, t̂k) = 0. (10)

Proof: From (5), (8) and (9), we get that

zk+1 − zk = τ ∇̄T�
[
F̄∇̄H + Ḡ

(
β + u′

k

)] + τ ∂̄t�, (11)

which leads to zk+1 − zk = τ ∇̄T�F̄d∇̄Hd + τ ∇̄T�Ḡu′
k when

combined with (10). Note that, in the previous expressions,
the dependence on (x̂k, t̂k) has been omitted. Now, with (7) in
mind, if

H′
d(zk, tk) = Hd(xk, tk)

F̄′
d(ẑk, t̂k) = ∇̄T�(x̂k, t̂k)F̄d(x̂k, t̂k)∇̄T�(x̂k, t̂k)

Ḡ′(ẑk, t̂k) = ∇̄T�(x̂k, t̂k)Ḡ(x̂k, t̂k), (12)

we get that

zk+1 = zk + τ F̄′
d(ẑk, t̂k)∇̄H′

d(ẑk, t̂k) + τ Ḡ′(ẑk, t̂k)u
′
k, (13)

where ẑk = (zk, zk+1) ∈ R
2n and since ∇̄Hd = ∇̄T�∇̄H′

d. Due
to the fact that Fd + FT

d ≤ 0, the same property is valid for
F′

d, and so (13) is in port-Hamiltonian form.
As in (5), to get a balance relation similar to (6), the out-

put of (13) is defined as y′
k = Ḡ′T(ẑk, t̂k)∇̄H′

d(ẑk, t̂k). Then,
the design of a controller that lets (5) track the trajectory x�

k
reduces to solve the matching equation (10) with some func-
tion H′

d(zk, tk) that has a (local) minimum at the origin. The
convergence rate is improved by acting on the (u′

k, y′
k) port by

imposing that

u′
k = −Kd(zk, tk)y

′
k, (14)

with Kd : Rn × R → R
m×m and such that Kd = KT

d ≥ 0. In
the zk coordinates, (10) becomes

F̄′(ẑk, t̂k)∇̄H′
a(ẑk, t̂k) + F̄′

a(ẑk, t̂k)∇̄H′
d(ẑk, t̂k) =

= Ḡ′(ẑk, t̂k)β
′(ẑk, t̂k) + ∂̄t�

′(ẑk, t̂k) (15)

where H′
a, F̄′, F̄′

a, ∂̄t�
′, and β ′ are in the coordinates of the

error system. Relation (15) can be re-written as

Ḡ′⊥(ẑk, t̂k)
[
F̄′(ẑk, t̂k)∇̄H′

a(ẑk, t̂k)

+ F̄′
a(ẑk, t̂k)∇̄H′

d(ẑk, t̂k) − ∂̄t�
′(ẑk, t̂k)

] = 0 (16)

and

β ′(ẑk, t̂k) = Ḡ′+(ẑk, t̂k)
[
F̄′(ẑk, t̂k)∇̄H′

a(ẑk, t̂k) + F̄′
a(ẑk, t̂k)

× ∇̄H′
d(ẑk, t̂k) − ∂̄t�

′(ẑk, t̂k)
]
. (17)

If a solution for (16) can be computed, (17) provides the con-
trol action that maps (5) into the target error system (13). The
obtained solution has to guarantee that the zero equilibrium is
(locally) asymptotically stable to achieve perfect tracking of
the reference x�

k.

IV. ALGEBRAIC SOLUTION OF THE MATCHING EQUATION

The aim of this section is to develop an algebraic procedure
that allows us to solve the matching condition (16). To achieve
this, let us introduce the function K′

a : R2n × R
2 → R

n and
re-write (16) as

Ḡ′⊥(ẑk, t̂k)
[
F̄′

d(ẑk, t̂k)K
′
a(ẑk, t̂k)

+ F̄′
a(ẑk, t̂k)∇̄H′(ẑk, t̂k) − ∂̄t�

′(ẑk, t̂k)
] = 0. (18)

These two equations are equivalent if and only if K′
a solution

of (17) is also the discrete gradient of a real-valued function,
namely H′

a. In the continuous-time case, such a requirement
can be met by solving the PDE associated to the matching
condition. This is not the case in the discrete-time setting.
For this reason, inspired by [22], an algebraic solution of the
matching equation (18) is now illustrated.

The Taylor expansion of H′(z, t) around z = 0 is

H′(z, t) = H0(t) + HT
1 (t)z + 1

2 zTH2(t)z + h(z, t) (19)

where H0 ∈ R, H1 ∈ R
n, and H2 = HT

2 ∈ R
n×n, while

h : Rn×R → R is the remainder and such that limz→0
h(z,t)
‖z‖2 =

0. Given z, z+ ∈ R
n and t, t+ ∈ R, it is assumed that

∇̄h(z, z+, t, t+) = 1
2

[
h0(z, z+, t, t+)z + h0(z+, z, t+, t)z+

]
,

where h0 : R2n × R
2 → R

n×n is such that h0(0, 0, t, t+) = 0.
This hypothesis is in line with the fact that ∇̄�(ϕ, ϕ+) =
∇̄�(ϕ+, ϕ), see Definition 1. Besides, it can be checked that
such a property holds for polynomial functions. Then, the
discrete gradient of (19) is

∇̄H′(z, z+, t, t+) = H̄1(t, t+) + 1
2 H̄2(t, t+)(z + z+)

+ ∇̄h(z, z+, t, t+), (20)

where H̄i(t, t+) = 1
2 [Hi(t)+ Hi(t+)], i = 1, 2. With the proce-

dure presented in [22] in mind, the function K′
a:R2n×R

2 → R
n

is defined as

K′
a(z, z+, t, t+) = 1

2 P̄1(z, z+, t, t+)(z + z+)

− H̄1(t, t+) + P̄0(z, z+, t, t+). (21)

Suppose that P̄1(z, z+, t, t+) = 1
2 [P1(z, t) + P1(z+, t+)], being

P1 : Rn × R → R
n×n a function such that P1(z, t) = PT

1 (z, t)
for all z ∈ R

n and t ∈ R, and that

P̄1 = −F̄′+
d

[
Ḡ′	1 + F̄′

a

(
H̄2 + h0

)]
(22)

for a function 	1 : R2n×R
2 → R

m×n. In (22), the dependence
on (z, z+, t, t+) has been omitted to simplify the notation.
As before, P̄0(z, z+, t, t+) = 1

2 [P0(z, t) + P0(z+, t+)], where
P0 : Rn × R → R

n is a function such that

P̄0 = F̄′+
d

[
Ḡ′	0 + (

F̄′H̄1 + ∂̄t�
′)] (23)

for a 	0 : R
2n × R

2 → R
m×n. Note that if in (21) we set

z = zk, z+ = zk+1, t = tk and t+ = tk+1, then K′
a(ẑk, t̂k)

satisfies the matching condition (18).
For any R = RT > 0, let

H′
d(z, w, t) = H′(z, t) + H′

a(z, w, t) (24)
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with

H′
a(z, w, t) = −HT

1 (t)z + PT
0 (w, t)z + 1

2 zTP1(w, t)z

+ 1
2 (z − w)TR(z − w)

be a desired Hamiltonian function defined on R
n ×R

n ×R �
(z, w, t) and for which the origin is a (local) minimum if for
all t and κ > 0 sufficiently large, [22]:

P0(0, t) = 0 P1(0, t) + H2(t) > κIn. (25)

The idea is to design the wk dynamics so that the control
input for (5) is given by (9) and (17), but with ∇̄H′

a replaced
by the K′

a defined in (21), and that (zk, wk) goes to (0, 0). This
problem is tackled in the next section.

V. CONTROL DESIGN AND STABILITY ANALYSIS

The goal is to have a closed-loop system with state vari-
able (zk, wk) whose evolution depends on the discrete gradient
of the energy function (24). So, the first step consists in
computing ∇̄H′

a. With some abuse in notation, we get that

∇̄H′
a(ẑk, ŵk, t̂k) =

( ∇̄zH′
a(ẑk, ŵk, t̂k)

∇̄wH′
a(ẑk, ŵk, t̂k)

)

where

∇̄zH
′
a(ẑk, ŵk, t̂k) = −H̄1(t̂k) + P̄0(ŵk, t̂k) + 1

2 P̄1(ŵk, t̂k)

× (zk + zk+1) + 1
2 R(zk + zk+1 − wk − wk+1)

∇̄wH′
a(ẑk, ŵk, t̂k) = 1

2�(ẑk, ŵk, t̂k)ẑk

− 1
2 R(zk + zk+1 − wk − wk+1) (26)

in which �(ẑk, ŵk, t̂k) takes into account the discrete gradients
with respect to w of the terms in H′

a that depend on P0 and
P1. If there exists a function �1(ẑk, ŵk, t̂k) such that

[
P̄1(ŵk, t̂k) − P̄1(ẑk, t̂k)

]
(zk + zk+1)

= �1(ẑk, ŵk, t̂k)(zk + zk+1 − wk − wk+1)

and a function �0(ẑk, ŵk, t̂k) such that

P̄0(ŵk, t̂k) − P̄0(ẑk, t̂k) = �0(ẑk, ŵk, t̂k)(zk + zk+1 − wk − wk+1)

then the first relation in (26) can be rewritten as

∇̄zH
′
a(ẑk, ŵk, t̂k) = −H̄1(t̂k) + P̄0(ẑk, t̂k)

+ 1
2 P̄1(ẑk, t̂k)(zk + zk+1) + 1

2

[
R − �01(ẑk, ŵk, t̂k)

]

× (zk + zk+1 − wk − wk+1) (27)

with �01 = �0 + �1. From (17) and (21), we obtain that

Ḡ′(ẑk, t̂k)β
′(ẑk, t̂k) + ∂̄t�

′(ẑk, t̂k)

= F̄′
d(ẑk, t̂k)

[
1
2 P̄1(ẑk, t̂k)(zk + zk+1) − H̄1(t̂k) + P̄0(ẑk, t̂k)

]

+ F̄′
a(ẑk, t̂k)∇̄H′(ẑk, t̂k). (28)

Consequently, with an eye on (27), for the extended system
⎧
⎪⎪⎨

⎪⎪⎩

zk+1 = zk + τ F̄′
d(ẑk, t̂k)∇̄zH′

d(ẑk, ŵk, t̂k)
+ τ Ḡ′(ẑk, t̂k)u′

k − 1
2τ F̄′

d

[
R − �01(ẑk, ŵk, t̂k)

]

· (zk + zk+1 − wk − wk+1)

wk+1 = wk − τKw∇̄wH′
d(ẑk, ŵk, t̂k)

(29)

the zk dynamics is (11) with the control input that appears
in (28). The additional input u′

k is instrumental to increase
the convergence rate. As far as the wk dynamics is concerned,
Kw = KT

w > 0 is selected so that wk asymptotically tends to
zk. After few passages, for (29) we get that

1
τ
�kH′

d = ∇̄T
z H′

dF̄′
d∇̄zH

′
d − ∇̄T

wH′
dKw∇̄wH′

d

+ ∇̄T
z H′

dḠ′u′
k − 1

2 ∇̄T
z H′

dF̄′
d[R − �01]

· (zk + zk+1 − wk − wk+1) + ∂̄tH
′
d (30)

where �kH′
d = H′

d(zk+1, wk+1, tk+1) − H′
d(zk, wk, tk), and the

dependence on ẑk, ŵk and t̂k has been omitted. From such a
relation, the dual output for (29) is defined as

y′
k = Ḡ′T(ẑk, t̂k)∇̄zH

′
d(ẑk, ŵk, t̂k), (31)

and additional dissipation is introduced if (14) holds.
In a similar way as in [22], the stability result relies on a

Lyapunov analysis based on the energy-balance relation (30),
which is now re-written to make such a final step as much
simpler as possible. The first condition in (15) implies that P0
is vanishing in case of perfect tracking. This means that there
exists P̃0 : Rn ×R → R

n×n such that P0(z, t) = P̃0(z, t)z and
limz→0 P̃0(z, t)z = 0 for all t. If

ξk :=
(

ẑk

zk + zk+1 − wk − wk+1

)

∈ R
3n

then from (20) and (27) we get that

∇̄zH
′
d(ẑk, ŵk, t̂k) = �z(ẑk, ŵk, t̂k)ξk (32)

where �z = (�z1, �z2, �z3) ∈ R
n×3n, with

�z1(ẑk, ŵk, t̂k) = 1
2

[
H̄2(t̂k) + P̃0(zk, tk) + P̄1(ẑk, t̂k)

+ h0(zk, zk+1, tk, tk+1)
]

�z2(ẑk, ŵk, t̂k) = 1
2

[
H̄2(t̂k) + P̃0(zk+1, tk+1) + P̄1(ẑk, t̂k)

+ h0(zk+1, zk, tk+1, tk)
]

�z3(ẑk, ŵk, t̂k) = 1
2

[
R − �01(ẑk, ŵk, t̂k)

]

From the second relation in (26) we get that

∇̄wH′
d(ẑk, ŵk, t̂k) = �w(ẑk, ŵk, t̂k)ξk, (33)

where

�w(ẑk, ŵk, t̂k) = 1
2

(
�(ẑk, ŵk, t̂k) − R

) ∈ R
n×3n. (34)

Because of (32), the second term in (30) is now re-written as
ξT

k �(ẑk, ŵk, t̂k)ξk, with � = 1
2 (03n×2n, �T

z F̄′
d[R − �01]), so

that the left side of (30) becomes

− ξT
k

[−�T
z F̄′

d�z + �
]
ξk − ξT

k Kwξk + y′T
k u′

k, (35)

where (31) and (33) have been taken into account.
Proposition 2: Let us consider the discrete-time

system (29) with “energy” function H′
d(z, w, t) and out-

put y′
k defined in (24) and (31), respectively. Assume that (25)

holds true that u′
k is given as in (14). Let

H = �T
z

[−sym F̄′
d + Ḡ′KdḠ′T]

�z + sym �

Z =
(

I
R−1�

)

(36)
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Fig. 1. The two degrees-of-freedom planar manipulator.

with H and Z functions of (ẑk, ŵk, t̂k). If there exist H̄d > 0
and Kd = KT

d ≥ 0 such that for all ẑk, ŵk and t̂k for which
H′

d(zk, wk, tk) ≤ H̄d and H′
d(zk+1, wk+1, tk+1) ≤ H̄d, we have

that

Z
T
HZ ≥ 0

KerZT
HZ = KerZT

H
2
Z (37)

and ∂̄� ′(ẑk, ŵk, t̂k) ≤ 0 along the trajectories of (29), there
exists κw ≥ 0 so that, if Kw ≥ κwI, then (0, 0) is a locally sta-
ble equilibrium. Besides, if (29) with output (31) is zero-state
detectable, then such an equilibrium is locally asymptotically
stable.

Proof: This result is a slight modification of
[22, Proposition 2], and so the proof is based on simi-
lar arguments. Note that ImZ = Ker �w, with �w defined
in (34). From [24, Th. 4.2], we have that if (37) are met, then
there exists a positive κw such that for all κ ≥ κw, we have
that H + κ�T

w�w ≥ 0. For the autonomous system resulting
from (29) in which u′

k is given as in (14) with y′
k defined

in (31), because of (36) and once Kw ≥ κw I, the balance
relation (30) can be compactly written as

1
τ
�kH′

d = −ξT
k

[
H + �T

wKw�w
]
ξk ≤ 0 (38)

where (35) and the fact that ∂̄� ′ ≤ 0 have been taken into
account. Relation (38) is satisfied in a neighborhood of the
origin of (29), and this implies that such an equilibrium is
locally stable. As in [18, Th. 1], asymptotic stability follows
from the fact that (29) with output mapping (31) is zero-state
detectable, once the feedback gain Kd in (14) is replaced by
Kd + εdIm, with εd > 0.

VI. NUMERICAL EXAMPLE

The design methodology is applied to a the two degrees-
of-freedom planar manipulator of Fig. 1. This is the same
example treated in [21] but within the symplectic integrators
framework and in case of regulation on constant references.

The Hamiltonian is H(q, p) = 1
2 pTM−1(q)p + V(q), where

q = (q1, q2) ∈ R
2 are the generalized coordinates,

M(q) =
(

M11(q) M12(q)

M12(q) M22

)

is the inertia matrix in which M22 = j2 + m2a2
2, and

M11(q) = j1 + j2 + m1a2
1 + m2

(
l22 + a2

2 + 2a2l1 cos q2

)

M12(q) = j2 + m2

(
a2

2 + a2l1 cos q2

)
,

p(t) = M(q(t))q̇(t) ∈ R
2 are the generalized momenta, and

V(q) = m1ga1 sin q1 + m2g(l1 sin q1 + a2 sin(q1 + q2)) is

TABLE I
PARAMETERS OF THE PLANAR MANIPULATOR OF FIG. 1

Fig. 2. Reference path and closed-loop trajectory in the workspace.

the potential energy, with g the gravity acceleration. The
continuous-time model is (1), with x = (q, p) ∈ R

4, and

F =
(

0 I2
−I2 − b I2

)

G =
(

0
I2

)

being b ≥ 0 a coefficient that takes into account the vis-
cous friction. The inputs u(t) ∈ R

2 are the torques applied
at each joint. The parameters are reported in Table I. The
goal is to let the robot track a reference trajectory q�(t) or,
equivalently, that x(t) converges to x�(t) = (q�(t), p�(t)), with
p�(t) = M(q�(t))q̇�(t). The reference path in the workspace
(X, Y) is depicted in Fig. 2 (red line).

In the continuous-time case, the tracking problem can be
solved as illustrated in [18, Remark 4]. Besides, the matching
equation (16) allows for a perfect cancelation of the poten-
tial energy V(q). However, in these simulations a steady-state
compensation has been performed to precisely follow the
procedure of Section IV. First of all, the coordinate trans-
formation (7) is defined as zk = (q̄k, p̄k), with q̄k = qk − q�

k
and p̄k = pk − p�

k, which implies that, in (19), we have that

H1 =
(∇V(q�) + 1

2∇q̄[p�TM−1(q̄ + q�)p�]q̄=0

M−1(q�)p�

)

.

In the design procedure, it is not necessary to modify the
system structure, so F′

a = 0. A K′
a that satisfies the match-

ing condition (18) is with P1(q̄, p̄) = diag(P11(q̄, p̄), 02) in
(22), with P11(q̄, p̄) ∈ R

2×2, and P0 = 0 in (21). The idea
is to have a gain that increases with a weighted norm of the
position error in a controller that is not realisable thanks to
the discrete gradient of a scalar function. So, in (25) we let
P11(q̄) = diag(p1(q̄), p2(q̄)), with

p1(q̄) = k0 + k1

[
α1q̄2

1 + (1 − α1)q̄
2
2

]

p2(q̄) = k0 + k1

[
(1 − α2)q̄

2
1 + α2q̄2

2

]
(39)

being ki a positive scalar and αi ∈ [0, 1], i = 1, 2.
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Fig. 3. Reference trajectory and closed-loop response in the joint
space.

Fig. 4. Tracking error and applied torques at each joint.

The trajectories of the closed-loop system in the work and
joint spaces are reported in Fig. 2 and 3, respectively. On the
other hand, the tracking error in the joint space and the control
inputs are in Fig. 4. As far as the controller parameters are
concerned, in the desired Hamiltonian function (24) we have
that R = 20 I4, and that ki = 15 and αi = 0.8, i = 1, 2, in (39).
Note that in (24), w ∈ R

4. The wk dynamics is defined as in
(29), with w0 = 1

2 z0 and Kw = 25 I4, while the damping
injection gain in (14) is Kd = 10 I2. Finally, the mean-value
discrete gradient has been employed, but similar results have
been also achieved with the Gonzalez one.

VII. CONCLUSION AND FUTURE ACTIVITIES

In this letter, a framework for the design of passivity-based
control laws to let nonlinear, sample-data port-Hamiltonian
systems track a reference trajectory has been proposed. The
synthesis procedure requires solving a matching equation.
Inspired by a similar result developed in the continuous-time
setting, an algebraic solution is computed. So, we take advan-
tage of the algebraic nature of such a matching equation, and
we can obtain control laws that do not necessarily depend
on the gradient of an energy function. Regarding the future
research activities, since this design technique is model-based,
one of the topics is to investigate its robustness against para-
metric uncertainties, as long as the performances that are
obtained when the controller acts on continuous-time dynam-
ics. A second topic is to pair such a design technique with
optimization schemes. The idea is to rely on such tools to
select the controller parameters or even its structure.
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