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Abstract

The progressive advent of artificial intelligence machines may represent both an opportunity

or a threat. In order to have an idea of what is coming we propose a model that simulate a

Human-AI ecosystem. In particular we consider systems where agents present biases,

peer-to-peer interactions and also three body interactions that are crucial and describe two

humans interacting with an artificial agent and two artificial intelligence agents interacting

with a human. We focus our analysis by exploring how the relative fraction of artificial intelli-

gence agents affect that ecosystem. We find evidence that for suitable values of the interac-

tion parameters, arbitrarily small changes in such percentage may trigger dramatic changes

for the system that can be either in one of the two polarised states or in an undecided state.

Introduction

Artificial Intelligence (AI) is the property of human-made systems with specific or general

goals and the ability to perceive and process information from their environment, to take

action towards achieving their goals. Fields of applications include understanding human

speech, pattern recognition, recommendation systems, navigation, health care, military and

many more [1]. Such systems have become ubiquitous during the recent decades and are influ-

encing our lives in many ways. Consciously or not, human-AI interactions have become natu-

ral in several domains like e-commerce, medical diagnostics, self-driven vehicles or online

social networks.

The economic, sociological and ethical aspects of this emergent, complex human-AI ecosys-

tem are of eminent interest, yet, we are only at the beginning of their investigation and even

finding the right questions and approaches are challenging tasks. Unavoidably, complexity sci-

ence should have a significant role in the endeavor of exploring this “terra incognita”. Using its

tools ranging from non-linear dynamics to network science and the theory of collective phe-

nomena we have learned much about the human society [2]. Extending the results to the

human-AI system and discovering the related new phenomena will be the goals of the period

ahead.

Our main focus here stems from a paramount consideration of historical perspective. It is

expected that the advent of machines that cover part of the intellectual activities of humans (AI
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agents) is as unavoidable as the advent of those machines that came to help our physical work

during the industrial revolution. At that time, in fact, the production of work from energy

started to be shifted from the human and animal body to that of combustion engines. The pro-

gressive lowering of costs of both energy sources and work production from those machines

pushed toward an unavoidable increase in their number. The lowering costs of information

processing and the parallel increase of their abilities up to the modern deep learning marvels is

analogously pushing the increase of their number and frequency of use. A specific problem we

are interested in is understanding how the Human-AI ecosystem reacts therefore to an

increase of the relative fraction of machines α. In particular, will the ecosystem react smoothly

or abruptly? In the first scenario humans can optimize the outcomes by feedback while in the

second there could be irreversible consequences.

Our plan is to describe the Human-AI ecosystem using the complex systems, statistical

physics approach which has a well developed framework to spot abrupt changes and phase

transitions.

Complex systems consist of interacting agents spanning a network. In social systems the

nodes are individuals and the links between pairs of them stand for the different kinds of rela-

tionships humans may have. Recently the importance of so-called higher order interactions

has been emphasized [3–5], where interactions beyond pairs are considered and processes on

such networks have been studied, including opinion dynamics. From the mathematical point

of view such generalization implies going from a simple graph-theoretical setting of vertices

and edges to a more complex hyper-graph environment where also three-body terms faces or

higher are considered. For example, in social systems the binding of a triple is significantly dif-

ferent from the sum of three links between its components. Analogously the presence of differ-

ent types of agents, i.e. the nature of the agent inhabiting a node, represents a further element

of complexity to be considered (see for instance [6]).

In the present paper we focus on ecosystems with both humans and AI agents with the pres-

ence of binary and higher order interactions. There are several reasons why such a system can-

not be discussed in its full complexity. There is no generally accepted model of the problem,

and we are not aware of the details of the interactions. In such a situation there are two main

and in some sense opposite routes of theoretical approaches. First, one can set up a complex

agent-based model where the numerous parameters can be target of a complex fitting proce-

dure [7] to mimic behaviour which is thought to be reasonable. Second, one can chose an over-

simplified model, where some basic elements of the original problem are present and where

the analytical approach can be pushed to its limits. We can expect from such a model insight

into the qualitative behaviour of the system, information about possible phases and the transi-

tions between them. We follow in this paper the second route.

The first approach of this type can be traced back to Daniel McFadden’s Discrete Choice

theory [6]. It is possible to show indeed that such theory is equivalent to a multi-populated

model without interaction or, in other words, a model of independent agents belonging to a

finite number of groups [8]. In that model each agent aims to optimize its utility function up

to some fluctuation of logistic type. In [9–11] the model, for a single group case, was general-

ized to include a mean field interaction between agents. A full interacting generalization of the

McFadden model to the multi-group case came in [12–15] where specific case studies were

investigated. It is important to emphasize that, for all the mentioned examples, the Gibbs dis-

tribution is only a working hypothesis to be used as a possible guide and, at best, to be tested

against data: a distribution is assumed and the free parameters it depends on are statistically

inferred. For an information theoretical perspective see [16–18].

As the starting point we have chosen the Ising model [19], the fundamental model of statis-

tical physics, which was originally designed to describe the paramagnetic-ferromagnetic phase
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transition. It consists of agents with binary state variables represented by nodes of a network,

interacting with their neighbors, where interactions prefer alike or opposite states. A transition

probability of the state variables depending on the neighbors’ states and the noise level (tem-

perature) completes the definition of the model. Later on we will define the model in mathe-

matical terms. The Ising model has been solved analytically in the limit of large number of

agents on the complete graph (mean-field solution) and on two-dimensional lattices. Here

solution means the description of the system in its equilibrium, stationary state. It is worth

noticing that Ising models with cubic interaction were studied in [20] in the context of occupa-

tion number variables (i.e. taking 0 and 1 values). In that study, the phase diagram and the seg-

regation kinetics of a system of particles on a two-dimensional square lattice were investigated.

The Ising model has been extensively used for modelling social phenomena [21].

In this work we extend the original mean-field Ising model in two ways. First, we have

introduced two kinds of agents for humans and AI units, both having binary state variables,

but the interaction between the different types of agents can be different. It should be noted

that such a generalization to a two-component model has been studied earlier in a different

context [22, 23]. Furthermore, we introduce higher order interactions to investigate the effects

mentioned above. Our task is to calculate the phases and the transitions between them as a

function of the coupling parameters and, especially, of the relative size of the two components

that we call α 2 [0, 1]. When α = 1/2 the two groups, for instance Human and AI would be of

the same size, α = 0 would mean only Human agents are present and vice versa α = 1 only AI.

Our aim is to gain insight into the possible behaviour of the human-AI ecosystem.

The paper is organized as follows. In the next section, we define the mathematical model

with three-body interaction. The third section is devoted to the exploration of the results. We

describe the solution with one component, and solve the two-component model. The analysis

of the phases, and the determination of the order of the transitions are also discussed in the

same section. General remarks and perspectives are discussed in the final section Conclusion

and Outlook.

Materials and methods

The model and mathematical results

The human-AI ecosystem is an interacting system with two components, i.e., two kinds of

entities. There are many ways to model mathematically such a system, depending on the char-

acterization of the entities, the types of interactions, and the topology of the interactions. Our

choice has been governed by the following viewpoints. We wanted to have an analytically trac-

table model, as such a solution enables general conclusions and qualitative predictions. Fur-

thermore, we wanted to work with a model, which is closely related to standard theoretical

models to be able to tie in with traditional techniques and results. Our choice has been a spe-

cific class of solvable Ising models that we can analytically control and make qualitative predic-

tions with. Applications of the same class of models have been used in different fields such as

health [12], immigration [8, 14, 24], education [15], energy conservation [25], and protein

structure [26], among others. The paradigm we’re considering therefore doesn’t have to be

understood as strictly typical to AI and Human agents; it is rather a flexible analytical guide to

a variety of phenomena characterised by ecosystems of multi-components interacting agents.

The interactions that will be taken into account are the binary, quadratic ones (H-H, H-AI

and AI-AI), the triplet or cubic (AI-AI-AI, AI-AI-H, AI-H-H, H-H-H) while the higher order

ones (quartic, etc.) will be ignored. Furthermore, we consider the state (or opinion) variables

of the agents as binary having in mind a task with possible binary outcome, like should a

patient be operated or not. The nature of the interaction is that two or more agents in contact
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may like (or dislike) each others “opinion” and they change their state variables such that the

system finds a stationary state. We assume that all agents are in contact with each other, i.e.,

they sit on the nodes of a complete graph—an assumption needed for the analytical solvability

of the system.

The model described above can be formulated mathematically as follows. Let us consider a

system of N interacting agents, where each agent i has an internal degree of freedom described

by a spin variable σi 2 {−1, 1} that represents the agent’s opinion. A configuration of the system

is then determined by a vector σ 2 SN = {−1, 1}N. The class of models we are interested in is

described by a Hamiltonian function or cost function of the following form

HNðsÞ ¼ �
XN

i;j;k¼1

Ki;j;k sisjsk �
XN

i;j¼1

Ji;jsisj �
XN

i¼1

hisi ; ð1Þ

where Ki,j,k, Ji,j are families of real parameters that tune the interactions among agents and the

hi tunes the bias of each agent. Eq (1) is the Hamiltonian of the Ising model with two-body and

three-body interactions. Eq (1) is very general and it naturally includes the possibility of

describing a two-component system, like the Human-AI ecosystem.

The parameter Ji,j tunes the interaction among the couple of agents, while the Ki,j,k those

among triples. The positivity of those parameters imply, for the GKS inequalities [27–29], that

the configurations with aligned opinions are the favored ones. The collective properties of the

equilibrium state of the system are codified by a Boltzmann-Gibbs type probability distribu-

tion, related to the cost function (1)

mNðsÞ ¼
e� HN ðsÞ

ZN

ð2Þ

where the normalization factor, ZN also called the partition function, is used to compute the

generating function of the moments for the previous distribution (2)

pN ¼
1

N
log ZN ; ð3Þ

which coincides, up to a multiplicative factor, with the free energy of the model.

Clearly, the large N behaviour or thermodynamic limit (TDL) of pN depends on the choice

of the parameters of the Hamiltonian (1). In the sequel we will show how to represents the

large number limit of pN as a finite dimensional variational problem in two specific mean-field

cases.

Results and discussion

The one component cubic mean-field model

In the sequel we consider only mean-field interaction among agents, i.e. we make the assump-

tion based on the full permutation symmetry among agents, Ki,j,k = K/3N2, Ji,j = J/2N and hi =

h. The resulting model turns out to be a cubic mean-field model:

HNðsÞ ¼ � N
K
3
m3

NðsÞ þ
J
2
m2

NðsÞ þ hmNðsÞ

� �

; ð4Þ

where mNðsÞ ¼
1

N

PN
i¼1
si is average opinion. In Eq (4) K and J are the cubic and binary cou-

plings, respectively, and h is the uniform bias. A remarkable fact about the considered model is

that it may be solved exactly [30] by means of the large deviations technique, a method devel-

oped in [31]. One can prove that the large limit number of the generating functional (3) related
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to the Hamiltonian (4) admits the following variational representation:

pðK; J; hÞ ≔ lim
N!1

pN ¼ sup
m2½� 1;1�

�ðmÞ; ð5Þ

where ϕ(m) = U(m) − I(m) with

UðmÞ ¼
K
3
m3 þ

J
2
m2 þ hm ð6Þ

is the energy contribution and

IðmÞ ¼
1 � m

2
log

1 � m
2

� �

þ
1þm

2
log

1þm
2

� �

ð7Þ

is the entropy contribution, expressing the logarithm of the number ways the value m can be

produced with different σ configurations.

The structure of the probability measure identified by the variational principle (5) select sta-

ble solutions, i.e. a small stochastic disturbance of the system will produce small changes on

the opinions unless the system is close to a second order phase transition.

The solutions of the variational principle (5) must satisfy the stationarity condition

�m ¼ tanhðK �m2 þ J �m þ hÞ; ð8Þ

the equation can be solved [30] by means of the local fixed-point method. Among those solu-

tions we are only interested in the ones that realize the supremum of ϕ in (5) since they repre-

sent the overall opinion of the system with respect to the measure (2) in the equilibrium state.

The quantity �m is called the order parameter of the model. The overall phase picture that

emerges presents novel features.

Unlike the quadratic mean field model that, for h = 0, has a second order continuous phase

transition in J, the cubic case analyzed here displays a remarkable discontinuous first order
phase transition in K when J = h = 0 shown in Fig 1. Starting from small absolute valued K-s

and increasing or decreasing it, the value �m characterizing the stable stationary solution

remains at zero until K = Kc� ±2.016295 where suddenly we observe a jump in the order

parameter.

The behaviour of the order parameter in the planes (K, J, 0) and (K, 0, h) is shown in Fig 2,

while the case (0, J, h) correspond to the classical two-body mean-field model. From panel (a)

one can observe the presence, for J< 1, of three distinct phases: the one with negative average

opinion (in blue), the one with zero average opinion (in gray) and the one with positive aver-

age opinion (red). In that region therefore a progressive increase in K from negative to positive

values encounter two consecutive jumps.

The two component cubic mean-field model

Our main interest is to understand the behaviour of a system consisting of two kinds of agents,

corresponding to AI and H. To this end we investigate the two component version of the

model in Eq (1), defined as follows. Let partition the system of N agents into two subsystems

AI and H of sizes N1 and N2 respectively, such that AI \H = ; and N1 + N2 = N. Let mSðsÞ ¼

1

jSj

P
i2Ssi be the average opinion of agents in a subsystem S and denote m1 and m2 as the aver-

age opinion for the subsystems AI and H respectively. Further, we define as the relative sizes of

AI and H agents a1 ¼
N1

N and a2 ¼
N2

N respectively. The two component cubic mean-field model
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has the following energy contribution:

Uðm1;m2Þ ¼
1

3
K111a

3

1
m3

1
þ 3K112a

2

1
a2m

2

1
m2 þ 3K122a1a

2

2
m1m

2

2
þ K222a

3

2
m3

2

� �

þ
1

2
J11a

2

1
m2

1
þ 2J12a1a2m1m2 þ J22a

2

2
m2

2

� �
þ h1a1m1 þ h2a2m2½ �:

ð9Þ

Fig 2. Average opinion surfaces of the cubic mean-field model. In panel (a), h = 0 while in (b) J = 0. When J = 0 in

(a), we observe the global stable solution found in Fig 1 which indicates jumps at Kc and when K = 0, we obtain the

solution of the simple Ising model without cubic interaction. For fixed J< 1 and moving along K the system presents

two jumps separated by a plateau at zero. Those two jumps coalesce into a single one when J cross the unit value. In (b)

we observe a discontinuity in the average opinion for two separated jumps when h and K falls within certain

thresholds.

https://doi.org/10.1371/journal.pone.0267310.g002

Fig 1. Average opinion, �m, of the system for J = h = 0 as a function of K. There is a transition in �m from zero to

positive average opinion when crossing K = 2.016295 from below and a transition from zero to negative average

opinion when crossing K = −2.016295 from above. The curves represent all the solutions of the stationary condition

(8), the blue ones corresponds to the global stable ones, i.e., the solution that realize the supremum of ϕ, the green ones

are locally stable solutions and the red ones are the unstable solutions.

https://doi.org/10.1371/journal.pone.0267310.g001
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The variational form of the large number limit of the generating functional (3) associated to

the two component cubic mean-field model (9) is [30]:

sup
m2½� 1;1�2

FðmÞ ¼ sup
m2½� 1;1�2

½Uðm1;m2Þ � ða1Iðm1Þ þ a2Iðm2ÞÞ� ð10Þ

where I(m1) and I(m2) are the entropy associated to the average opinions of the subsystems

and they sum up to the total number of configurations as a product of the individual ones. The

stationary solutions �m of F are as follows

�ml ¼ tanh hl þ
X2

p;q¼1

apðJlp þ aqKlpq �mqÞ �mp

 !

for l ¼ 1; 2; ð11Þ

from which the global stable ones are to be selected. In the rest of this work, we assign α = α1

and (1 − α) = α2 then α 2 [0, 1] and the total average opinion �m ¼ a �m1 þ ð1 � aÞ �m2 will be

used as combined order parameter. It is worth recalling that, when α = 0 then there are only

Human agents in the population and when α = 1 there are only AI agents in the population.

For the rest of the work, we adopt the re-parameterisation of h1 and h2 found in [22]. In this

sense, the parameters h1 and h2 are thought of as dependent on the internal average opinion

(given by m�
1

and m�
2
) and interaction within each subsystem without interaction with the

other agents. Hence following the fixed point method, we define h1 and h2 as follows;

h1 ¼ tanh� 1
ðm�

1
Þ � K111m�12 � J11m�1

h2 ¼ tanh� 1
ðm�

2
Þ � K222m�22 � J22m�2

ð12Þ

Surfaces of the solution of (11) that gives rise to the global maxima of F in Eq (10), with

respect to the free parameters α and K112 = K122 = K for fixed values of the other parameters

are shown as Fig 3.

Fig 3. Total average opinion surfaces of the two component cubic mean-field model. In panel (a) we observe first

order phase transitions at Kc. Here, α is constant in K. When the cubic interactions are fixed (i.e.K111 = K112 = K122 =

K222 = K) the proportion of AI and Human agents present in the system has no effect on their average opinion as

observed in panel (a). Two distinct jumps in �m are observed in panel (b) for certain values of K and α. For panel (c)

and (d) α varies smoothly for the total average opinion and then observe sudden jump to another phase.

https://doi.org/10.1371/journal.pone.0267310.g003
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When cross cubic interactions (i.e. K112 = K122 = K) are fixed, as observed in panels (b), (c)

and (d) of Fig 3, there are jumps in the average opinion of the agents depending on their rela-

tive fractions. Smaller values of α (i.e. more Human agents), may lead to an inclination of the

minus opinion while positive opinion inclination may result from larger values of α (i.e. more

AI agents). Hence, a larger proportion of the AI agent population may lead to abrupt changes

in behaviour of the ecosystem.

AI machines are made to assist and work with humans, therefore they are assumed to inter-

act with humans. Fig 4 gives the scenario of an interacting system where only Humans or only

AI agents are not interacting among themselves (see panel (a)) and when we assume that the

cubic interaction among humans and AI agents are equal (see panel (b)). In both cases we

observe transitions for large enough fraction of the AI agents in the order parameter when

interaction bias and mutual interaction are absent.

Exploration of the effect of the composition

In this section we present phase diagrams of the model relating the parameter α and one

among the interacting ones. The black continuous line is used to separate the opinion phases

and in particular it emphasises the first order phase transitions, i.e. sudden jumps of the opin-

ion resulting in abrupt changes of color in the picture. This is illustrated in Fig 5. The α-value

found in correspondence of the black line indicates the proportion of AI agents required for

Human opinion to lose its prevalence over the entire population.

The simulation of the results obtained for suitable values of the model parameter in Fig 5(a)

suggest that even in the case where there is very small fraction of AI agents we can still observe

abrupt behaviours in opinion formation within the Human AI ecosystem. This observation is

likewise similar to that of panel (d) of Fig 5, which illustrate that for a system where there is

less interaction among Human agents (K222), smaller fraction of the AI agents may lead to

phase transition and hence prevalent opinion formation.

Conclusion and outlook

The rapid spread of AI raises sharply the question of the relationship between humans and

machine intelligence. How far can we control this development? Will we become vulnerable or

will we succeed in humanising this new form of collaboration [32]? In fact, the problems are

already all around us. What happens when AI and human participants in a medical consulta-

tion take different positions? Can trust or reticence develop between representatives of

Fig 4. Average opinion for K111 = K222 = 0 and K111 = K222 = 1 with K112 = K122 = K varying. In the left panel, panel

(a), the cubic in-group interaction for the AI agents and that of humans are set to zero (i.e. K111 = K222 = 0) and in (b)

to one (i.e. K111 = K222 = 1) with varying inter-group interaction.

https://doi.org/10.1371/journal.pone.0267310.g004
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different origins? Can group interactions play a role? Our simple model aims to clarify such

questions.

With the advancement of AI systems, there are growing concerns among scientists and psy-

chologists about the creation of a machine world with AI and its eventual replacement of peo-

ple in the labour force [33, 34]. In light of this possible occurrence, the following works [35–

40] advise users and developers, as well as humans in general, to take an ethical approach to

the design and use of these AI technologies, ensuring that humans are at the center of the algo-

rithms with AI machines.

Notwithstanding these important factors, AI machines are needed to meet our daily needs

as humans. To illustrate the significance of this study, let us first consider the undoubted bene-

fit of AI machines to our healthcare system. Starting from chronic diseases and cancer to radi-

ography and risk assessment, there are virtually endless opportunities to leverage technology

to deliver more precise, efficient, and forceful interventions at precisely the appropriate

Fig 5. Phase diagram for fixed parameters of the cubic mean-field model. In panel (a), when K112 = K122 is small the system require a larger fraction (i.e.

α) of the AI agents to observe a phase transition and as K112 = K122 increases, the proportion of AI agents required for a phase transition decreases. In this

scenario, the relative fraction of the AI agents corresponding to the black line is a decreasing function of K112 = K122. While panel (b) illustrate two separate

jumps in the average opinion depending on the values of K112 = K122 and α. We observe from panel (c) that when interaction among AI agents (K111)

increases their proportion needed to observe a phase transition decreases. While in panel (d), when interaction among Human agents (K222) increases, the

fraction of AI agents needed to effect a phase transition increases and vice versa.

https://doi.org/10.1371/journal.pone.0267310.g005
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moment in a patient’s care. Given the massive amount of data accessible, artificial intelligence

is clearly positioned to be the primary engine that will propel our healthcare system forward as

need dictates.

In this study we propose a simple, analytically solvable, mathematical model with higher

order interaction that seeks to model the complex interactions between humans and AI agents.

Using this model we predict and emphasize some crucial features of the system that are trig-

gered on its composition i.e. the proportion of AI participating in a joint decision with us. This

aspect is especially important in the light of the new tendency toward distributed AI, when the

interaction of a large number of AI units is be more the standard than the exception [41]. The

model utilized here has the potential to forecast the likely outcome in opinion formation (such

as whether a patient should be operated on or not) for a certain proportion of AI or Human

agents as they interact. Abrupt changes, known as discontinuous phase transitions in statistical

physics, may predict thresholds beyond which AI machines may gain control prevalence.

Experts in human-computer interaction, industries, institutions, psychologists, and others

who work with AI machines may rely on the use of these models to set boundaries in order to

achieve the desired and ethical benefit to humans while reducing its negative impact. The sim-

ulations conducted with our model (see Fig 5) show that a seemingly modest proportion of AI

agents may lead to their prevalence in opinion formation over humans.

A noteworthy feature of the cubic mean-field model stems from the fact that we can observe

three distinct phases depending on the parameter values in the absence of interaction bias of

the agent(s) in the ecosystem (see for instance Figs 2(a), 3(a) and 4). Unlike the quadratic

mean-field model, where we observe a jump from negative to positive state, instead one can

observe a jump from the negative average opinion to a zero average opinion and a jump to a

positive average opinion when three body interaction is considered. The zero average opinion,

which is a stable paramagnetic state, is an indication of symmetry in opinion such that the

agents have no preference for one over the other. As K increases or decreases, the symmetry in

opinion is broken, and the total average opinion of the agents in the ecosystem shifts to either

a positive or negative state.

The results illustrated in this work are some of the possible simulation for a wide class of

values of the parameters. The model used and the whole statistical mechanics approach pre-

sented might also be used to infer the values of those parameters starting from real data as it

was done in [12, 13–15].

Clearly, our approach has limitations. First, the dynamics leading to the stationary statistical

distribution described by Eq (3) is a special one, while in reality opinion dynamics may be

quite different as reflected in the numerous models introduced to study it [42]. However, we

believe that our simplified model is sufficient for calling the attention to a possible source of

criticality, namely that the dependence of the outcome in an AI/H ecosystem depends very

non-linearly on the composition of the participants and this may have severe consequences.

A further aspect is that in realistic settings time should play an important role, which has

been completely ignored here. With reference to the example above about the decision making

process in a critical situation in health care, there is probably not enough time to achieve a

complete equilibrium state of the participating opinion carriers. Another source of non-statio-

narity could be that the system is driven by a continuous flow of data. Therefore, more realistic

models have to be dynamic in nature.

The above critical points give a guide to us in which direction one should continue the

research on the Human-AI ecosystem. An important step should be to collect and use data of

related systems as a starting point for the developments of adequate models.
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