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Following a brief review of the management of environmental externalities under
strategic interactions in the traditional temporal domain, results are extended to the
spatiotemporal domain. Conditions for spatial open-loop and feedback Nash equilibria,
along with conditions for the benchmark cooperative solution, are presented and
compared. A simplified numerical example illustrates the spatial patterns emerging at a
steady state under Fickian diffusion and dispersal kernels, and the inefficiency of spatially
flat emission taxes. This conceptual framework could provide new research areas.
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A very important class of pollutants is those for which the stock is built into the ambient
environment as emissions accumulate at a rate exceeding that which natural processes can
absorb. For a stock pollutant, the damages are not caused by the flow of emissions per unit
time but rather by the stock of the accumulated pollutants. Stock pollutants are associated
with a number of very important environmental problems.

Climate change is a very good example—most likely, the ultimate example—of a global
stock externality, since it is the accumulated stock of greenhouse gases (GHGs) in the
atmosphere and not the flow of GHG emissions that causes the climate damages. The stock
of GHGs has increased from∼600 GtC in the preindustrial period to a value of∼830 GtC
in the present time, with a corresponding increase in the average global temperature of
∼1 ◦C (1). Other examples of stock externalities include the accumulation of nutrients,
especially phosphorus in ground and surface water, which contributes to nitrate pollution;
the accumulation of heavy metals such as lead in the soil; acid depositions in soil; and
the uncontrollable accumulation of nondegradable waste in landfills. In all these cases, it
is the accumulation of the pollutant that creates the environmental damages. Typically,
the stock externality which accumulates in the ambient environment is the outcome of
decisions taken by many decision makers (DMs), such as countries in the case of GHGs
accumulation, or farmers in the case of phosphorus loadings.

Negative stock externalities are also associated with harvesting open access or common
pool resources when property rights among the DMs (harvesters, appropriators) are
lacking (2). In this case, DMs do not take into account the full depletion cost of the
resources in their harvesting decisions. In both types of problems, the action of one DM
affects the utility of the others through the damages generated by the ambient stock of the
externality (e.g., GHG, phosphorous) or by reducing the stock of the resource beyond the
socially optimal level (e.g., fishery collapse).

The presence of many DMs implies that each of them takes actions, such as emissions
or harvesting, in a forward-looking optimization context by making assumptions about
the actions of the rest of the agents, since it is this collective action that determines
the evolution of the stock and the strength of the externality. The stock externality
generates damages to all agents, but each individual agent acts strategically by maximizing
noncooperatively their own net benefits less their own externality damages, subject to the
constraints imposed by the evolution of the stock externality.

The evolution of the externality takes place in a temporal domain, which is clear given
the accumulation process, but also in a spatial domain, since pollutants and resources,
in general, diffuse in space. There is transport of environmental state variables across
geographical space due to natural processes. Airborne contaminants in the atmosphere
are transported from the source of emissions, due to turbulent eddy motion and wind.
Resources move in space, due to biological characteristics or in search of food or because
of other exogenous forces such as climate change. In patchy groundwater aquifers, water
flows across patches according to hydrological rules (e.g., Darcy’s law). There is heat
and moisture transport across the globe—from the equator to the poles—in nonzero
dimensional energy balance climate models.
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When the forward-looking optimizing agents face the spa-
tiotemporal constraint, new issues emerge which are not captured
by the traditional approach that considers only the temporal
domain and implicitly assumes that the spatial diffusion of the
externality is infinite and that the externality is therefore uniform
in space. This uniform mixing characteristic is true for the accu-
mulation of GHGs in the atmosphere, but can only be regarded
as an approximation in other cases.*

In this context, the purpose of this paper is twofold: first, to
briefly review results related to the management of environmen-
tal and resource externalities under strategic interactions in the
traditional temporal domain, and, second, to provide extensions
when the strategic interactions take place in a spatiotemporal
domain. In this respect, conditions for spatial open-loop and
feedback Nash equilibria along with conditions for the benchmark
cooperative solution are presented and compared. The objective
is not to provide closed-form or numerical solutions to these
problems but rather to provide a conceptual framework in which
to study forward-looking optimization problems under strategic
spatiotemporal interactions, to discuss and partially characterize
solution concepts, and, most importantly, to indicate paths for
further research in this area.

Modeling Stock Externalities in the
Spatiotemporal Domain

Environmental stock externalities are characterized by strategic
interdependence, since the actions of a forward-looking DM (or
economic agent/player such as an individual, firm, community,
region, or nation) affect their own welfare (benefit, payoff, utility)
but also, through the DM’s impact on the stock externality, affect
the other DMs’ welfare as it evolves in a spatiotemporal domain.

Differential games are suitable analytical tools to represent
time, space, strategic behavior, and interdependencies in models of
environmental and resource economics (4 –6). A differential game
is a state-space game that contains a set of state variables which
include stock externalities, or resource stocks that describe the
main features of a dynamic system at any instant of time during
the game. The state variables adequately summarize all relevant
consequences of the past history of the game, and their evolution is
affected by the actions of the DMs. The dynamics of a differential
game are described by ordinary or partial differential equations
(ODEs or PDEs, respectively), depending on whether the spatial
dimension of the problem is taken into account.

The study of competing DMs in a dynamic deterministic
setting over a long time period can be analyzed in the framework of
an infinite horizon differential game. This game is defined in terms
of states x (t , z ) which describe the state of the system (e.g., the
stock of pollutant, stock of biomass, or the surface temperature) at
time t ∈ [0,∞) and location z ∈ D, where D is a spatial domain
of appropriate dimensions, and controls ui(t , z ) which describe
the actions of the DMs (e.g., emissions or harvesting) at time t
and location z .

When the spatial dimension is not taken into account, the
externality dynamics are described by systems of ODEs,

ẋj (t) = fj (x1(t), . . . , xJ (t), u1(t), . . . , un(t)) , xj (0)

= xj0, j = 1, . . . , J , [1]

for J states and n controls. An example that uses nonlinear
dynamics as described by Eq. 1 can be found in the modeling of

*Although the accumulation of GHGs is uniform, the temperature anomaly has a clear
spatial structure due to albedo feedback and heat and moisture transport from the
equator to the poles which induces polar amplification (3).

lake pollution. Due to heavy use of fertilizers on surrounding land
and an increased inflow of wastewater from human settlements
and industries, lakes, at some point, tend to flip from a clear
oligotrophic state to a turbid eutrophic state with a greenish look
caused by a dominance of phytoplankton (7, 8). The essential
dynamics of the eutrophication process can be modeled, after an
appropriate transformation, by the differential equation

ẋ (t) =

n∑
i=1

ai(t)− bx (t) + f (x (t)) x (0) = x0, [2]

where ai(t) and x (t) represent phosphorous loadings by the
ith DM (e.g., farmer) and the phosphorous stock in the lake,
respectively; f (x (t)) = [x (t)2]/[1 + x (t)2] represents nonlinear
positive feedback; and b is an exponential natural pollution decay
rate. If the nonlinear term f (x (t)) is absent, then linear dynamics
emerge which have been used, for example, to study a dynamic
nonpoint source pollution problem (see ref. 9) or to study interna-
tional pollution control and climate policy issues with appropriate
interpretations of the state and control variables (see refs. 10–12).
In Eq. 1 or 2, the action of each DM reflects its strategy.†

To introduce space, consider a spatial domain z ∈ Z = [0,Z ]
along with the time domain t ∈ [0,∞). Let x (t , z ), u(t , z ) be
the state and the control, respectively, at time t and spatial point
z. The state could be the concentration of an environmental stock
(e.g., phosphorus in a lake, GHGs, fish biomass), while the control
could be emissions, harvesting, or abatement.

Assume that the stock located at point z moves to nearby
locations and that the direction of the movement is such that
stock from locations where it is abundant, that is, locations of high
concentration, moves toward locations of low concentration. This
is the assumption of Fickian diffusion, or Fick’s first law, and is
equivalent to stating that the flux of stock x (t , z ) is proportional
to the gradient of the biomass concentration, that is, the spa-
tial derivative of concentration or J (t , z ) =−D [∂x (t , z )]/[∂z ],
where D is the diffusion coefficient, or diffusivity, measuring how
fast the stock moves from locations of high concentration to
locations of low concentration.

Consider an abstract pollution management problem in which
a continuum of DMs that are potential polluters is distributed
evenly at each location in the space [0,Z ]. In this context, z de-
notes the DM that is located at z and generates emissions a(t , z ).
Let α (t , z ) =

∫ Z

0
γz (z

′)w(z − z ′)a(t ; z ′)dz ′ represent the
aggregate emissions of a pollutant (e.g., aggregate air pollutants or
phosphorous loadings) at location z and time t. Aggregate emis-
sions at z are a weighted average of emissions generated at z and
emissions generated at other locations z ′ which travel to location
z due to weather conditions and the natural characteristics of the
landscape. This emission dispersal could be modeled by a dispersal
kernel w(z − z ′), indicating that the impact of emissions emitted
at z ′ on aggregate emissions at z is reduced as the distance between
z and z ′ increases. A common representation for such a kernel
is w(z − z ′) = exp

[
−δ(z − z ′)2

]
, δ > 0 and finite (14).‡ The

pollution stock accumulated at a location could diffuse in the
spatial domain, under Fick’s first law, to neighboring sites with
relatively less concentration of accumulated pollutants (15).

†Nonlinear dynamics are typical in renewable resource management (see, e.g., ref. 13).
‡
γz(z′) =

{
1, z′ = z
0, z′ �= z

}
when emissions do not spread once emitted and only the

stock diffuses, and γz(z′) = 1 for all z when emissions spread soon after genera-
tion or mobile sources emit away from their location and the accumulated stock in
locations such as “hot spots” further diffuse (e.g., traffic congestions). Furthermore,∫ Z

0 γz(z′)e−δ(z−z′)2
dz′ ≤ 1, to indicate that some emissions generated in [0, Z] could

travel outside the spatial domain.
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The spatiotemporal evolution of pollution dynamics can be
written as

∂x (t , z )

∂z
= α(t , z )− bx (t , z ) + f (x (t , z ))

+D
∂x 2(t , z )

∂z 2
x (0, z ) = x0(z ) given, [3]

where f (· ) represents nonlinear positive feedbacks as in Eq. 2.
In Eq. 3, spatial boundary conditions could take different forms
for all t: 1) a circle or x (t , 0) = x (t ,Z ), 2) hostile boundaries
or x (t , 0) = x (t ,Z ) = 0, or 3) zero flux at the boundaries or
[∂x (t , 0)]/[∂z ] = [∂x (t ,Z )]/[∂z ] = 0.

The spatiotemporal dynamics of Eq. 3 are quite general and
can be used to model renewable resource harvesting or temper-
ature evolution in a spatial domain. In harvesting models, the
term α(t , z ) should be interpreted as harvesting by all potential
appropriators at z, with the dispersal kernel indicating that the
efficiency of harvesting effort for an appropriator that is located
at z but harvests at z ′ is reduced as the distance between z
and z ′ increases, because of, for example, transportation costs.
Property rights structure can be modeled by γz (z ′), so γz (z ′) = 0
means that the appropriator at z ′ has no rights to harvest at
z , while γz (z

′) = 1 for all z implies an open access resource.
The feedback term f (x (t , z )) should be interpreted as biological
resource growth at z, while the diffusion term indicates that re-
source biomass moves from high- to low-concentration locations.
Eq. 3 can model temperature evolution at a specific geographical
location in the context of one-dimensional energy balance climate
models. The first three terms should be interpreted, with appropri-
ate modifications, as incoming solar radiation, outgoing infrared
radiation, and forcing due to global GHG emissions, respectively.
Heat transport from the equator to the poles is modeled by
the nonlinear diffusion termD∂/∂z

[(
1− z 2

)
[∂x (t , z )]/[∂z ]

]
,

where z is the sine of the latitude, and D is the heat transport
coefficient (16, 17).§

Forward-Looking Optimizing Behavior

Assume that emissions a(t , z ) generated per unit time at z pro-
duce benefits to the polluter represented by a strictly concave ben-
efit function B (a(t , z )) ,B ′ ≥ 0,B ′′ < 0, lima→0 B

′(a) =∞.
The stock of pollution accumulated at each point of the
spatial domain generates cost to each DM which is given by
a strictly increasing convex cost function C (x (t , z )). Then,
net benefits for a DM located at point z can be defined as
B (a(t , z ))− C (x (t , z )). The definition of net benefits for each
DM exhibits “spatial myopia,” since the DM takes into account
pollution costs associated with the stock of pollution accumulated
only in its location and ignores the impact of its actions on
the rest of the spatial domain. A social planner that seeks to
internalize the pollution externality would take into account the
aggregate pollution costs associated with the stock of pollution
accumulated in each location. Furthermore, pollution cost could
exhibit spatial dependence emerging from the fact that damages
at a location z do not depend on stock accumulation at z only
but on accumulation in nearby locations as well, with the impact
declining with distance. Thus the social damage function at z
can be defined as SD(t , z ) =

∫
Z ϕ(z − z ′)C (x (t , z ′) dz ′. The

kernel ϕ(z − z ′), defined by exp
[
−δSD(z − z ′)2

]
, δSD > 0,

§Here, z = 0 denotes the equator and z = ±1 denotes the North and the South Poles,
respectively.

for example, indicates the impact of pollution accumulated at z ′
on damages at z, while pollution dynamics are given by Eq. 3.

A social planner or a regulator seeks spatiotemporal emissions
paths for emissions generated at each point in time that will
maximize aggregate net benefits over the entire spatial domain.
Then the planner’s problem is to maximize aggregate payoff J
(17–19),

max
{a(t,z)}

J = max
{a(t,z)}

∫ ∞

0

e−ρt

∫
Z

[
B (a(t , z ))

−
∫
Z
ϕ(z − z ′)C (x (t , z ′) dz ′

]
dzdt , [4]

subject to Eq. 3 and appropriate spatial boundary conditions, with
ρ as the utility discount rate.

In a noncooperative solution, each DM acts myopically and
considers damages from pollution stock at its site. The DM will,
in general, follow an emission strategy which is a function of
the state of the system in the set of strategies for this DM. This
strategy indicates the emissions choice of a DM located at z
whose emissions could spread to the spatial domain and whose
damages could be affected by pollution accumulation in nearby
locations. Noncooperative solutions can be analyzed, therefore,
in the context of a differential game evolving in a spatiotemporal
domain.

A differential game is said to have an open-loop informa-
tional structure if the DMs follow open-loop strategies: a (t , z ) =
θ (x (0, z ), t , z ). The differential game is said to have a feedback
information structure if the DMs follow time and space stationary
feedback strategies: a (t , z ) = θ (x (t ,Z)) (20).

In the feedback information structure, it is assumed that an
individual DM’s emissions follow a feedback rule which depends
on the pollutant stock for the entire spatial domain. When
feedback rules are considered for similar problems without spatial
interactions, the underlying assumption is that θ′(x (t))< 0,
because each DM believes that, when aggregate stock increases,
the other DMs will reduce emissions to counterbalance increased
damages from aggregate pollution. This is an incentive for a given
DM to increase emissions, since it expects that others will reduce
theirs. Since all DMs behave in the same way, aggregate emissions
increase. In the spatial domain, a similar argument—based, this
time, on diffusion—can be used to justify a negative derivative.
The DM believes that an increased stock of pollutant at its site
will be reduced, because Fickian diffusion will move to locations
with lower pollutant concentrations. Since all DMs behave in the
same way, aggregate emissions will eventually increase.

A Nash equilibrium in the class of open-loop strategies is called
an open-loop Nash equilibrium (OLNE), while an equilibrium
in the class of feedback strategies is called a feedback or closed-
loop Nash equilibrium (FBNE).¶ OLNE and FBNE solutions
without spatial interactions have been analyzed in the literature for
a number of cases, such as international pollution control, the lake
problem, and resource harvesting (10, 23–27). The main results
indicate that steady-state pollutant accumulation under FBNE is
higher relative to OLNE, confirming the insight associated with
the negative derivative of the feedback rule (i.e., θ′(x (t))< 0),
and both are higher relative to the cooperative solution, while, in
terms of the welfare indicator used, FBNE is inferior relative to
OLNE, and both are inferior relative to the cooperative solution.

The comparison of solutions allows the characterization of the
optimal policy in terms of externality taxes that can attain the

¶Since the DMs are located in the interval Z that represents a continuum, the concept of
noncooperative Nash equilibrium is defined in the context of a continuum (21, 22).
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socially optimal solution when DMs follow open-loop or feedback
strategies. Results vary from closed form solutions for linear-
quadratic problems to numerical solutions for problems with non-
linearities, such as the lake problem. This conceptual framework is
extended to the spatiotemporal domain. Cooperative OLNE and
FBNE solution concepts are defined and characterized below.

In OLNE, each DM follows a spatially myopic strategy, takes
the actions of all other DMs located at z ′ ∈ Z \ z as exogenous,
and commits to an emission path that optimizes its own objective,
that is,

max
{a(t,z)}

JO = max
{a(t,z)}

∫ ∞

0

e−ρt

[
B (a(t , z ))

−
∫
Z
ϕ(z − z ′)C (x (t , z ′) dz ′

]
dt , subject to

[5]
∂x (t , z )

∂z
= a(x (t , z )) +

∫
Z\z

γz (z
′)w(z − z ′)ā(t , z ′)dz ′

− bx (t , z ) + f (x (t , z )) +D
∂x 2(t , z )

∂z 2
. [6]

The integral term in Eq. 6 reflects long-range effects of emis-
sions generated at z ′ by DMs other than the DM located at z, in
addition to the local diffusion effects of the stock on location z .
Interpreting the dynamics of Eq. 3 within a resource-harvesting
context, the integral term represents harvesting in z of appropria-
tors located in z ′, if this is possible by the property rights structure
(e.g., open access).||

In FBNE, each DM does not recall the previous history of the
system, and assumes that the other DMs’ emissions are condi-
tioned on the pollution accumulation in the spatial domain.** The
optimization problem, in this case, can be written as

max
{a(t,z)}

JF
i = max

{a(t,z)}

∫ ∞

0

e−ρt

[
B (a(t , z ))

−
∫
Z
ϕ(z − z ′)C (x (t , z ′) dz ′

]
dt , subject to

[7]

∂x (t , z )

∂z
= a(t , z )

+

[
θ0 + θ1

(
x (t , z )

∫
Z\z

γz (z
′)w(z − z ′)dz ′

)]

− bx (t , z ) + f (x (t , z )) +D
∂x 2(t , z )

∂z 2
, [8]

where the term in brackets on the right side of Eq. 8 repre-
sents a simplified linear feedback rule which implies that, under
symmetry, each emitter considers emissions as a linear function
of a stock of pollutant equal to the stock at its site and the
relevant dispersion parameters which affect its site. The value for
the parameters (θ0, θ1) should be derived along with the solution.
A linear equilibrium feedback rule is consistent with a linear-
quadratic problem in the spirit of temporal-only linear quadratic
differential games.

||A similar approach without the long-range effects has been developed by de Frutos and
Mart́ın-Herrán (28) and solved through discretization of space.
**In the economics literature, feedback strategies are also called Markov perfect strategies
(lack of memory).

Characterizing Cooperative and
Noncooperative Outcomes

The optimality conditions characterizing cooperative and unregu-
lated noncooperative outcomes can be obtained by an extension of
Pontryagin’s maximum principle to the case where the transition
equation includes linear diffusion in space and spatial kernels
(19, 29). We focus on characterizing the steady-state solutions
because they reveal the difference in the shadow cost of pollution
among the solution concepts, but, most importantly, because
these differences can be used to gain insights into the structure
of long-run spatially structured policies.#

The Social Planner. The current value Hamiltonian for the prob-
lem is

H=

∫
Z
[B (a(t , z ))− SD(t , z )] dz + λ (t , z )

∂x (t , z )

∂t
. [9]

The costate variable λ (t , z ) should be interpreted as the social
shadow cost of the accumulated pollutant stock at time t and
location z , and will be the basis for the formulation of an efficient
emission tax. Optimality conditions indicate that socially optimal
emissions at time t and location z should be chosen such that
marginal emission benefits equal the corresponding spatial shadow
cost of the pollution stock. Using the optimality conditions and
ignoring the feedback term to simplify the exposition, the steady
states for the planner’s problem are defined as

λ∞(z ) =
1

(ρ+ b)

[
−
∫
Z
ϕ(z − z ′)C ′ (x (t , z ) dz ′

+D
∂λ2(t , z )

∂z 2

]
[10]

x∞(z ) =
1

b

[
α∗(t , z ) +D

∂x 2(t , z )

∂z 2

]
. [11]

OLNE. Assuming symmetry among the DMs, the steady state is
defined as

λ∞
O (z ) =

1

(ρ+ b)

[
−C ′ (x (t , z ) +D

∂λ2(t , z )

∂z 2

]

x∞
O (z ) =

1

b

[
αO(t , z ) +D

∂x 2(t , z )

∂z 2

]
, [12]

with λ∞
O (z ) as the open-loop shadow cost for pollution for the

DM located at z .

FBNE. Assuming, again, symmetry among the DMs and disre-
garding feedbacks in dynamics, the steady state under the simple
feedback rule used in Eq. 8 is defined as

λ∞
F (z ) =

1

(ρ+ b)

[
− C ′ (x (t , z ) + θ1

∫
Z\z

γz (z
′)

× w(z − z ′)dz ′ +D
∂λ2

F (t , z )

∂z 2

]

x∞
F (z ) =

1

b

[
αF (t , z ) +D

∂x 2(t , z )

∂z 2

]
, [13]

with λ∞
F (z ) as the feedback shadow cost for pollution for the

DM located at z . Feedback solutions can be derived by applying

#Derivations for the social planner and DMs under OLNE and FBNE are presented in
SI Appendix.
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dynamic programing techniques involving the solution of the
Hamilton–Jacobi–Bellman (HJB) equation in the spirit of the
approach used for temporal-only differential games. Quadratic
or isoelastic value functions could be appropriate solutions of
the HJB equation for quadratic or isoelastic objective functions.
The study of feedback Nash equilibria with integrodifferental
dynamics stemming from the various interpretations of Eq. 3 is
an area for further research.##

Spatial Steady States and Optimal Spatial
Policies

Spatially differentiated policy instruments have been studied in
the literature in various models without explicit strategic inter-
actions. Goetz and Zilberman (30) derive spatially-dependent
tax policies to regulate phosphorous loadings when the run-off
is location dependent. Xabadia et al. (31) introduce spatially
differentiated land quality in a problem of maximizing discounted
net margin in agricultural production with pollution stock exter-
nality and technology choice; they derive spatially differentiated
dynamic input taxes and compare them to nondifferentiated
policies. Brock and Xepapadeas (18) derive spatially differentiated
taxes for the optimal regulation of semiarid systems when plant
biomass and soil water exhibit reaction–diffusion characteristics.
Brock et al. (19) provide examples of spatially differentiated
policies in pollution control and resource harvesting under linear
spatial diffusion, and—through an extension of the classic Turing
mechanism for pattern formation in optimizing systems—show
how, in an optimizing context, spatial diffusion could generate
optimal patterns and associated optimal spatially dependent poli-
cies. Spatially dependent optimal emission taxes in urban models
with interacting industrial and residential clusters are derived
in Kyriakopoulou and Xepapadeas (32), while spatial policies
are also relevant for congestion and air pollution regulation in
cities. Spatially dependent optimal policy schemes under strategic
interactions in spatiotemporal models are less frequent. In de
Frutos and Mart́ın-Herrán (28), spatially dependent policies in
the context of a discretized model of a differential game with
spatial diffusion are derived. Brock and Xepapadeas (33) and Cai
et al. (34) derive spatial climate policies with strategic interactions
among regions in the context of discrete spatial climate models
with heat transport toward the poles, while van der Ploeg and de
Zeeuw (12) also analyze geographically differentiated responses to
potential climate tipping points in a north–south model.

Some characteristics of spatially dependent emission taxes
emerging from the models described here can be explored by not-
ing that, at the socially optimal emission path, marginal emission
benefits are equal to the social shadow cost of the pollutant stock,
or B ′ (a(z , t)) =−λ (t , z ). At the unregulated noncooperative
solutions, marginal emission benefits should be equal to the
corresponding noncooperative shadow cost of the pollutant, or
B ′ (a(z , t)) =−λj (t , z ), j =OLNE ,FBNE . Fig. 1 provides
a simplified numerical simulation of the accumulated pollutant
stock and the corresponding shadow cost steady states defined
by Eq. 10–Eq. 13, along with the optimal emission tax and
the kernel function. A quadratic benefit function, a linear damage
function without dispersion for emissions (i.e.,α(t , z ) = a(t , z ))
but with a spatial externality for damages that is declining

##Solutions can also be obtained by discretization of the spatial component, which will
turn dynamics into a system of ODEs. The linear diffusion term can be discretized by a
discrete version of the second derivative or using the approach described in de Frutos and
Mart́ın-Herrán (28). Discretization or nonlinear diffusion in climate models can be obtained
by using even-numbered Legendre polynomials (17).

with distance, and low diffusion, and a linear feedback rule
were used.###

The social cost of the pollutant stock is higher relative to the
noncooperative cases and has a well-defined spatial structure as
shown in Fig. 1B, with the kernel function in Fig. 1D, and
λ∞
O (z )≤ λ∞

F (z ), z ∈ [0, 2] as expected under a negative-sloping
equilibrium feedback rule. This is because, at the social optimum,
aggregate damages are taken into account as shown in Eq. 10. The
shadow cost at the social optimum is high in the middle of the spa-
tial domain, which induces a pollution accumulation spatial pat-
tern with two modes (Fig. 1A). This is because, when the full cost
of emissions is internalized across space, then clustering around
the central site generates high social shadow cost, which makes
a single cluster undesirable from the social point of view. This
contrasts with the unregulated noncooperative outcome in which
the lower shadow cost generates a nearly flat high-accumulation
pattern in the middle and promotes single clustering.

Since the objective of an optimal emission tax is to induce DMs
to follow an emission path that coincides with the social optimum,
and emission paths are chosen such that marginal emission bene-
fits are equal to the shadow cost of the pollutant stock, the optimal
emission tax should be equal to the difference between the shadow
pollutant cost at the socially optimal and noncooperative solu-
tions, or τ∞l (z ) = λ∞

l (z )− λ∞(z )> 0 l =O ,F . In this case,
the regulated steady-state optimal emission paths will coincide
with the socially optimal path. The spatial pattern of optimal taxes
is depicted in Fig. 1C. The high tax in the middle of the spatial
domain will push the noncooperative accumulation patterns of
Fig. 1A toward the two-mode socially optimal pattern. It is clear
that a flat (nonspatially differentiated) tax will not attain the
social optimum. For example, with the numerical parametrization
used for Fig. 1, λ∞(z ) =−20 and λ∞

O (z ) =−4, implying a flat
emission tax τ∞O (z ) = 16 which is clearly suboptimal, and the
same applies to the FBNE emission tax.

Focusing on steady states allows us to compare equilibrium
spatial patterns but not to study issues related to the evolution
of spatial distributions from some initial state or the emergence of
optimal spatial patterns by extending the Turing mechanism (17,
19) in a spatial differential game context. Given the complexity of
the spatial forward–backward systems characterizing the evolution
of the states and the costates in the models discussed, this is an area
for further research.

Conclusions

In the management of stock externalities, strategic interactions
among DMs play an important role, due to public bad character-
istics of the externality. In a real world, DMs could be committed
to actions paths. In the implementation of the Paris Accord, for
example, countries commit voluntarily to carbon emission paths.
Since it is reasonable to assume that these paths are decided
on the basis of their own welfare given expected damages from
climate change, this commitment implies strategic interactions

###The choices are arbitrary for a linear space z ∈ [0, 2] with boundary conditions x(0) =

x(2) = 0. Similar boundary conditions for the shadow cost are used, since it is reasonable
to attach zero shadow cost to zero pollution stock at the boundary. Details are provided
in SI Appendix. The full solution of these models, including the nonlinear feedbacks in
dynamics, with potential nonlinearities in diffusion and long-range effects, is a very
interesting area for further research. A starting point could be the solution of the HJB
equation in infinite dimensional Hilbert space following the approach of Boucekkine et al.
(35) for a problem without strategic interactions, in which the solution for an isoelastic
utility function is obtained by looking for solutions of the HJB with an isoelastic value
function. A feedback solution to a spatial differential game with linear diffusion and
isoelastic objective is provided by de Frutos et al. (36) by considering affine functions as
a solution for the infinite-dimensional HJB equation.
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A B

C D

Fig. 1. (A) Stock of pollution. (B) Shadow cost of pollution stock. (C) Optimal emission tax. (D) The kernel function.

with possible feedback characteristics if revision of paths depends
on the evolution of temperature. This paper seeks to provide a
preliminary extension of the existing conceptual framework for
managing stock externalities in a temporal domain to a spa-
tiotemporal domain—since, realistically, stock externalities evolve
in time but also diffuse in space—by introducing spatial local
diffusion along with long-range spatial effects.

Results supported by the current literature suggest that
optimal management in the spatiotemporal domain implies
space-dependent policy instruments which internalize the spatial
externality which would otherwise have been ignored. The
structure of policy instruments depends on the type of local
diffusion (linear/nonlinear), long-range effects, and the degree
of commitment of the DMs. Areas for further research stemming
from this framework could be directed toward 1) technical aspects
of optimal control constrained by—potentially stochastic—PDEs
with nonlinear diffusion terms or integrodifferential equations;
2) policy design issues which could answer questions about the
efficiency and the desirability of spatially differentiated policy

instruments, such as issues related to geographical differentiation
of carbon taxes, or tradable permits; and 3) the interaction
of property rights and spatially dependent policies under local
diffusion and long-range effects.

Further extensions could involve spatially differentiated am-
biguity aversion and concerns for model misspecification in the
spirit of the recent robust control approach (37). In such an
extension, a differential game among the DMs could be combined
with a “max–min” problem where the DMs choose the best
course under the worst-case weighted family of models. Such a
model could extend results obtained for the “taxes vs quotas” for
a stock pollutant problem analyzed by Hoel and Karp (38) to
the case of “spatial taxes vs spatial quotas” for a diffusing stock
pollutant.

Data Availability. There are no data underlying this work.
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