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Abstract

We study optimal climate policy consistent with the constraint

that average global temperature remains below 1.5◦C relative to pre-

industrial levels. We consider a holistic representation of uncertainty

including traditional risk, deep uncertainty and stochastic arrivals of

climate-related disasters. Using robust control methods, we derive op-

timal emission and carbon tax paths and calculate when temperature

exceeds the target in the absence of the constraint. We show that pol-

icy under deep uncertainty requires strong action now relative to pure

risk but the policy stringency is reversed later. Preliminary estimates

suggest that the COVID-19 impact on attainment of the temperature

target is negligible.

JEL Classification: Q54, D8

Keywords: temperature target; damage volatility; deep uncertainty;

model misspecification; extreme events; robust control; emission schedul-

ing; carbon taxes.

1 Introduction

In the Paris Agreement, adopted on 12 December 2015, 195 parties agreed

to hold the increase in the global average temperature to well below 2◦C

above pre-industrial levels and to pursue efforts to limit the temperature

increase —the temperature anomaly —to 1.5◦C above pre-industrial levels,
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recognizing that this would significantly “ reduce the risks and impacts of

climate change” (Article 2 1.(a) of the Paris Agreement). Since then, sev-

eral approaches have been proposed to estimate carbon budgets that are

compatible with the specified temperature target. More research has been

dedicated to estimates of the 2◦C carbon budget (Wigley, 2004; Knutti et

al., 2005; Matthews et al., 2009; Meinshausen et al., 2009) than to the car-

bon budget associated with the more recently introduced 1.5◦C temperature

target (Matthews et al., 2017; Mengis et al., 2018). The 1.5◦C is also the

target of the European Green Deal (EGD), an initiative announced by the

European Commission (2019) in December 2019. The central objective of

the EGD is to attain a climate neutral EU by 2050, which means that the

EU will aim to reach net-zero greenhouse gas (GHG) emissions by that year.

Carbon neutrality by the EU is therefore in full alignment with the 1.5◦C

target.

However, the setting of a temperature target generates a number of issues

regarding the optimal way of attaining the target and the associated policy

instruments. Since there are substantial uncertainties in both climatic and

economic conditions (Heal and Millner, 2014), an important question is how
these uncertainties affect the attainment of the temperature target and the

associated optimal policies.

Significant uncertainties associated with fundamental parameters of the

climate, such as climate sensitivity, have been pointed out by Pindyck

(2017). Furthermore, although there has been significant progress in es-

timating historical damages from climate change (e.g., Burke et al., 2015),

we know very little about the damage function, which is one of the most

important building blocks of forward-looking optimizing climate-economy

models.1Anthoff and Tol (2013) and Gillingham et al. (2016) characterize

parameters of the climate—economy nexus, which embody considerable un-

certainties, while Lemoine (2010), Nordhaus and Moffat (2017) and Hassler

et al. (2018) discuss in detail the impacts of uncertainty on climate sensi-

tivity. Typically, in these works uncertainty takes the form of risk, where

objective or subjective probabilities are assigned to stochastic events. In

climate change, however, uncertainty seems to be “deeper” than just risk.

1There is substantial discussion and —perhaps more importantly —uncertainty about
the appropriate damage function, due to imperfect understanding of feedback effects,
among other things (IPCC, 2014). Discussion of our limited knowledge of the damage
function appears in Weitzman (2010) and Pindyck (2012, 2013, 2017).
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Meinshausen et al. (2009), for example, present a set of densities associated

with climate sensitivity which raises the issue of which one a planner or a

regulator will choose to incorporate into the coupled model of economy and

climate. Such a choice goes beyond choice under risk and enters the realm

of deep uncertainty (Barnett et al., 2020, 2021).

In a temperature-targeting model, it would be natural to associate "deep

uncertainty" with temperature dynamics, since these dynamics are gov-

erned by parameters such as climate sensitivity of transient carbon response

(TCRE), which characterize the link between GHG emissions, the evolution

of the temperature anomaly and the economic damages it generates. Rudik

(2020) develops a sophisticated economic model focusing on damage uncer-

tainty within a robust control version of a DICE model and analyzes how the

policy maker’s concern for misspecification affects policy. His model, how-

ever, is not a temperature-targeting model and his damage function does not

capture damages from the arrival of “ rare” climate-related disasters which

are caused by the increase in the temperature anomaly and might generate

spikes in the smooth trend of the damage function. The impacts of extreme

events have been emphasized by Pindyck (2012, 2013, 2017), and recent

research stressed their importance in understanding the effects of climate

change (e.g., Cai and Lontzek, 2019). Furthermore, since recent empirical

results show that the number of climate-related disasters increases with the

temperature anomaly (Karydas and Xepapadeas, 2019), their introduction

will undoubtedly increase the realism of the damage function.

The COVID-19 pandemic shock and the related recession have added

further types of uncertainty, which may influence the objective of carbon

neutrality. According to a very recent International Energy Agency report

(IEA, 2020), global CO2 emissions were expected to decline during 2020 to

30.6 GtCO2, which is 8.3% lower than in 2019 (36.8 GtCO2) (Le Quére et

al., 2020). Given the realization of this shock and the predictions about

the expected recovery of the world economy, a new question emerges: is

the COVID-19 shock going to affect the attainment and the timing of the

temperature target?

In this context, the contribution of our paper consists of: (i) exploring

the impact of concerns about deep uncertainty in conjunction with the ar-

rival of extreme events on the attainment of the temperature target and the

associated policy; and (ii) providing a preliminary comparison between the
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pre- and post-COVID-19 predictions regarding the attainment of the tem-

perature targets. Our paper provides, therefore, a conceptual framework and

suggests climate policy by deriving emission pathways and carbon tax paths

which attain a given temperature target optimally under conditions of deep

uncertainty regarding temperature dynamics and climate change damages,

arrival of rare climate disasters and exogenous shocks such as COVID-19.

Our conceptual framework is developed in the context of a robust con-

trol problem in the spirit of Hansen and Sargent (2001), where a welfare

objective which includes a stochastic damage function is optimized under

the temperature constraint that the change in global average temperature

will never exceed a target, e.g., 1.5◦C, relative to the pre-industrial period.

As discussed in Anderson et al. (2014), even though this approach is not the

only one for robustness analysis, it is convenient for analytical computations

and appropriate for incorporating uncertainties related to temperature and

damage dynamics. The temperature constraint formulation is based on the

climate literature developed over the last decade (Matthews et al., 2009,

2012) which links, through an approximately linear relationship, the tem-

perature anomaly with cumulative carbon emissions. The damage function

consists of a deterministic part, which is a quadratic function of past emis-

sions, and a stochastic part, which is modelled by an arithmetic Brownian

motion. The Brownian motion is distorted to introduce deep uncertainty and

misspecification concerns. Furthermore, climate disasters are introduced by

a jump process which follows a nonhomogeneous Poisson process, with the

arrival rate of the disaster being an increasing function of temperature.

Our paper is close in spirit to the so-called “analytical integrated as-

sessment models (IAMs)” (Traeger, 2015, 2018), which calculate welfare

maximizing carbon emissions and optimal carbon prices based on simpli-

fied low-dimensional models that often yield closed-form solutions. Notable

examples are Golosov et al. (2014), van den Bijgaart et al. (2016) and

Gerlagh and Liski (2018). However, they are dynamic general economic

equilibrium models, in contrast to our more parsimonious reduced-form ap-

proach. Our paper deals with temperature caps, as originally introduced by

Nordhaus (1982), Tol (2013) and more recently van der Ploeg (2018), even

though they are deterministic models. Temperature caps under uncertainty

are studied in Olijslagers et al (2021) and Fitzpatrick and Kelly (2007).

Olijslagers et al (2021) allow also for jump process risks with the intensity
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increasing in temperature, traditional risks for the growth of the economy

and damage and study the impact of temperature caps on carbon pricing.

Fitzpatrick and Kelly (2007) study a IAM with uncertainty about climate

sensitivity, random weather shocks and Bayesian learning. They calculate

the optimal emissions policy with and without probabilistic stabilization

targets and compute the welfare costs of uncertainty in both cases. None

of the papers listed above deal with “deep” uncertainty in the context of

robust control models. To the best of our knowledge, our paper is the first

to deal with deep uncertainty and temperature-targeting.

Our main contribution is that we provide a holistic representation of

uncertainty in climate change by using a relatively simple model for de-

riving optimal climate policy which satisfies a given temperature target.

Uncertainty is studied in the form of traditional risk, but also in the form

of misspecification concerns, which affect the evolution of temperature and

damages. Furthermore, we incorporate the arrival of environmental-related

disasters which, in line with empirical observations, arrive more often as

temperature increases. The optimal climate policy is obtained by the appli-

cation of robust control methods. When this policy is compared with one

that ignores concerns about deep uncertainty, a measure of the “ insurance”

that society should buy against worst case evolution of damages due to mis-

specification concerns or arrival of climate-related disasters emerges. We

provide a measure of the “welfare cost” of this insurance.

Our calibrations suggest that with optimal unconstrained policies the

estimated carbon budget consistent with the 1.5◦C target is likely to be

exhausted in less than 70 years, while optimal constrained paths attain the

target with higher carbon taxes relative to the unconstrained case. Under

deep uncertainty our results support the policy of "taking strong action

now". Precautionary policy in the context of robust control is costly in

terms of our welfare indicator. Finally, the COVID-19 shock seems to have

negligible effects on the evolution of the temperature anomaly.

The rest of the paper is organized as follows. Section 2 describes the

model. Section 3 presents the robust control problem, while Section 4 in-

troduces the possibility of “ rare” climate-related disasters. Section 5 in-

troduces the pandemic shock, and Section 6 develops numerical simulations

with calibrated data which allow us to evaluate when the 1.5◦C target can

be implemented and what the corresponding optimal carbon tax policy for
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the pre- and post-pandemic regimes is. Section 7 concludes. The proofs,

the calibration and the code for the solution of the optimization problems

appear in the Appendix.

2 The model

We consider the problem of a social planner/regulator who seeks to maxi-

mize global wellbeing within a fixed time horizon by choosing paths for GHG

emissions subject to the constraint that, within the time horizon, tempera-

ture will not exceed a given level relative to the pre-industrial period. The

social planner faces two sources of uncertainty: uncertainty about damages

from climate change and uncertainty about the evolution of temperature.

The social planner is also concerned about deep uncertainty and possible

misspecification of the damage function and temperature dynamics. We

solve the planner’s problem by adopting a dynamic optimization framework

which uses the methods of robust control developed by Hansen and Sargent

(e.g., Hansen et al., 2006, Hansen and Sargent, 2008).

A decision maker characterized by robust preferences takes into account

the possibility that the model used to design policy, call it benchmark or

approximating model P , may not be the correct one but only an approxima-

tion of the correct one. Other possible models different from the benchmark,

say Q1, ..., QJ , which surround P , should also be taken into account with

the relative differences or distance among these models measured by an en-

tropy measure. The benchmark model P and the approximate models can

be regarded contained in an entropy ball (Hansen and Sargent, 2008). The

radius of this ball determines the maximum misspecification that the de-

cision maker is willing to accept. Hansen and Sargent (2003) characterize

robust control as a theory "... [that] instructs decision makers to investigate

the fragility of decision rules by conducting worst-case analyses," and sug-

gest that this type of model uncertainty can be related to ambiguity or deep

uncertainty and interpreted as the decision maker’s response to "Knightian

uncertainty" and a recursive version of maxmin expected utility theory. The

models inside the entropy ball are close enough to the benchmark model so

that they are diffi cult to distinguish with finite data sets. Then robust de-

cisions rules are obtained by introducing a fictitious “ adversarial agent”

which we will refer to as "Nature". Nature promotes robust decision rules
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by forcing the regulator, who seeks to maximize (minimize) an objective,

to explore the fragility of decision rules with regard to departures from the

benchmark model. A robust policy means that lower bounds to the policy’s

performance are determined by Nature —the adversarial agent —which acts

as a minimizing (maximizing) agent when constructing these lower bounds.

In the context of our model the regulator is concerned about misspecfica-

tions in the damage function and temperature dynamics and is forced the

consider policies when he/she is concerned about misspecifications of the

benchmark models.

Robust preferences and the concept of a fictitious adversarial agent is

one approach to decision making under uncertainty. Cerreia-Vioglio et al.

(2011) introduced a general class of complete and transitive preferences that

are monotone and convex, which they call “uncertainty-averse”preferences.

These preferences include as special cases the seminal Gilboa-Schmeidler

minimax utility model (Gilboa and Schmeidler 1989) and its extension to

dynamic robust control by Hansen and Sargent; the variational preferences

model (Maccheroni et al. 2006); the smooth ambiguity model of Klibanoff

et al. (2005); and the Petrakou et al. (2021) ambiguity averse Frechet mean

preferences. These models do not include the concept of the adversarial

agent, but are less tractable, compared to the robust control models, in

the dynamic context which is necessary for a meaningful analysis of climate

policies.

2.1 The damage function and misspecification concerns

In this section we introduce the damage function. Our specification of the

damage function captures three main features, that is, the (deterministic)

dependence on cumulative emissions, its stochastic fluctuations and the con-

cerns of the regulator regarding possible misspecifications of the damage

function.

We adopt a discrete time schedule, where 1, 2, ..., N denote the times

at which the decisions on the production process are made by observing

the information available at the current time. In the sequel, expectations

conditional on the information available at time k will be denoted as Ek.

Let x1,...,xN denote the amount of GHG emissions at time 1, 2, ..., N as a

consequence of the production process.

The total damage due to GHG emissions is described by a stochastic
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process Dt. We assume that the benchmark model of damage consists of

two components. The first component, D0
t , which is related to the global

warming potential of GHGs, allows us to describe fluctuations in actual

economic damages around its deterministic component in a random way.

A simple model for these random fluctuations is an arithmetic Brownian

motion, i.e., dD0
t = σdWt, where Wt is a Wiener process with respect to

the fixed filtration that represents the information available to the decision

maker.2

The second component of damage is deterministic. We specify the dam-

age function as a function of emissions (as also in Nordhaus, 2007, and van

der Ploeg, 2014), whereas other models express damages as a function of a

climate indicator, such as global temperature (see, e.g., Weitzman, 2010).

In Section 2.3 we show that the deterministic part of our damage function

is consistent with a quadratic damage function specification when the evo-

lution of the temperature anomaly is a mapping from cumulative emissions

into changes in the global mean temperature, as outlined in Matthews et al

(2009).

We assume that the incremental damage, that is the extra damage from

an extra unit of emissions, is ∆Dk = εxk
∑k−1

j=1 e
−ρ(k−j)xj , ε > 0. There-

fore, we adopt a non-linear impact of the emissions on damages, which is

consistent with the literature showing strong carbon/climate feedbacks and

more persistent warming due to GHGs (see, e.g., Solomon et al., 2010). Fur-

thermore, damages from GHG emissions could be gradually dissipated and

thus their negative economic impact could become weaker with the passage

of time. This is because some of the damaging GHGs have shorter per-

manence time in the atmosphere than CO2. Methane (CH4) emissions, for

example, have a medium-term permanence of 12 years on average in the

atmosphere, and thus they will cease to create damages after the period of

permanence is exceeded. Here ρ ≥ 0 denotes the parameter governing this

weakening of damages associated with past emissions. In other words, when

ρ = 0, the negative effect of emissions persists forever, while for ρ > 0, neg-

2More generally, this assumption can be replaced by any martingale with respect to
the reference filtration. Here we adopt an arithmetic Brownian motion because it is the
easiest way to model randomness and allows us to obtain an explicit analytic solution.
The occurrence of negative damage due to the assumption of an arithmetic Brownian
motion is avoided by taking small values of the volatility σ. Questions of uncertainty with
non-Gaussian distributions on various variables have recently been explored in van den
Bremen and van der Ploeg (2018).
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ative effects weaken with passage of time and at the extreme case of ρ =∞,
there is immediate dissipation of damages.

Arguing recursively, the total cumulated damage, soon after time k, takes

the form:

k∑
j=1

xjD
0
j + ε

k∑
j=1

x2
j

2
+
∑
i<j

e−ρ(j−i)xixj

 (1)

where D0 is the stochastic component which follows an arithmetic Brownian

motion with zero drift and variance parameter σ2.

Therefore, the total cumulated damage is characterized by a non-linear

effect of past emissions and the interactions among past emissions emitted

at different points of time in the past. This non-linear feature captures the

exceptional persistence displayed by CO2, which renders its warming nearly

irreversible for more than 1,000 years, and also by other GHGs which —

although not irreversible — persist notably longer than the anthropogenic

changes in the GHGs’concentrations themselves (see Solomon et al., 2010).

Figure 1 plots a path for the total cumulated damage after two subse-

quent emissions. In panel (a) damages from past emissions are reduced with

the passage of time, ρ > 0, while in panel (b) the damage impact of past

emissions remains the same, ρ = 0.3

(a) Case ρ = 0.1 (b) Case ρ = 0
Figure 1. Cumulated damages with two subsequent emissions

3As shown in section 2.3 for ρ = 0 the deterministic part of (1) is consistent with
a quadratic damage function in the temperature anomaly, when the dynamics of tem-
perature dynamics are governed by the approximately linear relationship between the
temperature anomaly and cumulative carbon emissions.
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We assume that expression (1) represents a benchmark case for the dam-

age function for the regulator. The regulator, however, is concerned about

possible misspecification of the damage function. These concerns can be

introduced by allowing additive distortions in (1), which accumulate like
√
eσ0 (ηt + zt) , where σ0 is volatility, e is a small noise parameter, zt is i.i.d.

and η is the distortion in the damage function. The distortion reflects possi-

ble misspecifications relative to the benchmark model which corresponds

to η = 0. Misspecification could be responsible for additional damages,∑k
j=1

√
eσ0

(
ηj + zj

)
. If we consider a multiplier robust control problem

(e.g., Hansen et al., 2006), the penalty associated with the distortion rela-

tive to the benchmark model can be expressed as η2t
2θ(e) , where θ (e) is the

robustness parameter.

It has been shown (Campi and James, 1996) that if θ (e) = θ0e, then

as e → 0, the stochastic robust control problem is reduced to a simpler

“deterministic robust control problem”and in our case the distorted damage

function can be written as:

k∑
j=1

xjD
0
j + ε

k∑
j=1

x2
j

2
+
∑
i<j

e−ρ(j−i)xixj

+

k∑
j=1

σ0ηjxj . (2)

Therefore, the damage function (2) consists of three parts. The first is

a purely stochastic component, the second is a deterministic component,

while the third reflects potential distortions of the benchmark model which

consists of the first two components. These distortions are associated with

the fact that a regulator is concerned about misspecifications of the bench-

mark model which might imply additional damages. The regulator cannot,

however, resolve these concerns using existing data and should therefore ad-

dress them when designing climate policy. This is the reason for applying

robust control methods.

2.2 The regulator’s objective function

The objective of the regulator is to maximize wellbeing net of the expected

total damage over a time horizon N , given potential temperature targets.

Here we adopt robust control theory to capture the idea that the regulator

doubts his/her model. As Hansen et al. (2006) show, different alternative

mathematical formulations can be used, which have in common i) the idea of
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representing the decision-maker’s benchmark model with a cloud of models

that are diffi cult to distinguish with finite data - and are formed perturb-

ing the benchmark model; ii) adding a malevolent second agent that can

alter the stochastic process and plays a penalty game. Deviating from the

benchmark model is penalized since the regulator does not choose the ‘best

estimate’model. The size of the penalty represents the distance between an

alternative model and the reference model. In the multiplier robust control

setting, we get a zero-sum, two-player game, in which the maximizing player

(the social planner/regulator) chooses a best response to a adversriat agent

(“Nature”) that can alter the stochastic process within prescribed limits

by choosing a distortion η which will “harm” the planner’s objective. We

solve below for the optimal choices made by both the maximizing agent and

the minimizing agent.4 We will also study the case of a regulatory target

in terms of temperature, and thus cumulative emissions, which is set by

international agreements within the time horizon.

In this paper a quadratic utility will be adopted, that is, U(x) = ux −
1
2wx

2, which is common in the literature (e.g., Dockner and Van Long,

1993; Karp and Zhang, 2006; Manoussi et al., 2018). This function links

gross wellbeing with emissions and could be seen as a reduced form of a

problem where utility is a function of consumption, which itself depends on

economic output that, in turn, is a function of emissions.5 The parameter u

measures the effect on marginal benefits from emissions, while w the strength

4We refer to Hansen et al (2006) for the equivalence between the formulations in terms
of (i) risk-sensitive control problem; (ii) penalty robust control problem; (iii) constraint
robust control problem. Hansen et al. (2006) discuss different concepts of equilibrium used
in the robustness approach, because these types of zero-sum games may differ in various
dimensions (the protocols that govern the timing of players’decisions; the constraints on
the malevolent player’s choices; the mathematical spaces in terms of which the games are
posed). However, they showed that all the formulations give rise to identical decision
processes in linear quadratic settings.

5Picture a simple growth model with the utility function U(c) = ac − 1
2
bc2, where c

denotes consumption. Let us define the budget constraint for the economy with an Ak
production function such as ct = Akt − kt+1 + (1 − d)kt, where k is the capital stock
and d is the depreciation rate. If we define emissions as proportional to output, that is
xt = sAkt, where s is an exogenous parameter of emission intensities, then we get the
following expression for the the utility function: U(xt) = a(xt

s
− xt+1

sA
+ (1 − d) xt

sA
) −

1
2
b(xt

s
− xt+1

sA
+ (1 − d) xt

sA
)2, and therefore the sum of the utility functions over t is:∑

t U(xt) = a
∑

t(
xt
s
− xt+1

sA
+ (1− d) xt

sA
)− 1

2
b
∑

t(
xt
s
− xt+1

sA
+ (1− d) xt

sA
)2. If b = 0, then∑

t U(xt) =
a
s
(1− d

A
)
∑

t xt = u
∑

t xt. Therefore, if utility is also linear in consumption,
then it becomes a function of emissions too. This argument can be applied to the general
case of a quadratic utility function whenever w is small.
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of their diminishing returns. The choice of a quadratic utility function is also

motivated by the invariance result to timing protocols provided by Hansen

et al. (2006), which implies a form of dynamic consistency. We allow for

discounting, where the discount factor —reflecting the net benefit discount

rate — is set equal to δ, δ ∈ (0, 1). Thus, the objective function to be

extremized is of the form:

E0

[∑N
k=1 δ

k

(
uxk −

1

2
wx2

k − xkD0
k − ε

(
x2
k

2
+
∑
i<k

e−ρ(k−j)xixk

)
− σ0ηkxk +

η2
k

2θ

)]
,

(3)

where the minimizing agent (“Nature”) chooses {ηk, k = 1, ..., N} at date
0, committing to it until the end, and the maximizing agent (the social

planner/regulator) then chooses {xk, k = 1, ..., N}. Problem (3), in Hansen

and Sargent’s terminology is the multiplier robust control problem which is

associated with a constrained control problem in which the entropy distance

between the benchmark model and the approximate models does not exceed

an upper bound. The parameter θ is a preference-for-robustness parameter.6

When θ → 0 there are no concerns about model misspecification and the

benchmark model which describes that decision problem under risk is the

relevant problem for policy design. As θ increases misspecification concerns

are taken into account and robust policy rules should be formulated.

Note that the expectation of the cumulated effect of emissions can be

rewritten as:

E0

[
N∑
k=1

xkD
0
k + ε

N∑
k=1

(
x2
k

2
+
∑
i<k

e−ρ(k−i)xixk

)
+

N∑
k=1

σ0ηkxk

]
=

D0
∑N

k=1 xk + ε
∑N

k=1

(
xkVk−1 +

x2
k

2

)
+

N∑
k=1

σ0ηkxk,

where Vk =
∑k

j=1 e
−ρ(k+1−j)xj for k ≥ 1 (and V0 = 0) is the volume of

cumulated emissions (up to time k + 1).

If the regulator is also concerned about the risk of random fluctuations in

damage, then an additional term in the form of a variance should be added,

6 It can be shown (Hansen and Sargent 2001) that under certain conditions θ is the
Langrangean multiplier associated with the entropy constraint of the constrained control
problem.
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so the objective function to be extremized takes the form:

E0
∑N

k=1 δ
k

[
(u−D0)xk −

(
(ε+ w)x2

k

2
+ εxkVk−1

)
− σ0ηkxk +

η2
k

2θ

]
−γ

2
var0

[
N∑
k=1

δkxkD
0
k + ε

N∑
k=1

δk

(
x2
k

2
+
∑
i<k

e−ρ(k−i)xixk

)
+

N∑
k=1

δkσ0ηkxk

]
,

where γ denotes the risk aversion parameter. The parameter γ embodies

the concern of the regulator regarding the uncontrolled effect of the out-

standing volume of emissions, measured by the variance. Note that the

introduction of a variance term has not been widely explored in the liter-

ature, while it is relevant to study the effects of the variability of system

behavior changes.7 Our formulation can be justified in the framework of the

standard mean-variance approach, which has been employed extensively in

financial economics. It implies that if the regulator is also adverse to risk,

then he/she will solve a constrained maximization problem, that is maxi-

mize expected wellbeing net of total damage subject to the constraint that

risk (i.e., variance of the objective function) is not too big. Observe that

the variance term can be written as:

E0

σ2

(
N∑
k=1

xkWk

)2
 = σ2

N∑
k=1

[
x2
kk + 2xk

∑
i<k

xii

]
.

The variance term introduces risk as traditional risk (risk intrinsic to

damage). The robustness parameters introduce uncertainty as misspecifica-

tion of the benchmark model, that is, concerns of the social planner about

the “true”model. Therefore, they complement each other.

In the following, we confine ourselves to the case of equally-spaced time

intervals ∆t to simplify the exposition. Furthermore, we set e−ρ∆t = β

and γσ2∆t = Γ. Thus, the unconstrained extremization problem —and the

7See Brock and Carpenter (2006) who stress that increased variance may provide a
leading indicator of regime shifts that can be used in ecosystem management.
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corresponding robust control problem —can be defined as:

sup
{xk}

inf
{ηk}

N∑
k=1

δk

(u−D0)xk −

(ε+ w + Γk)
x2
k

2
+ εxk

k−1∑
j=1

βk−jxj +

Γxk
∑
i<k

ixi + σ0ηkxk

)
+
η2
k

2θ

]
.

2.3 The temperature constraint and misspecification con-
cerns

Our objective is to study how the optimal scheduling of emissions is affected

by temperature targets that have to be achieved at specified dates, as stated

in the monitoring procedures of the international climate change agreements.

The goal of avoiding more than 1.5◦C increase in warming relative to the

pre-industrial period was the agreed-upon target at the UN climate-change

meeting in Paris in 2015. This is consistent with the use of the cumulated

carbon budget which should not be exceeded for a given threshold tempera-

ture, as formulated by Matthews et al. (2009), Matthews et al. (2012) and,

more recently, in the IPCC (2018) special report.

Assume that we are at time k = 1 and the regulator sets an upper thresh-

old on temperature change (relative to pre-industrial time) which should

not exceed, say, α◦C (e.g., 1.5◦C) within the horizon [1, N ]. We know from

Matthews et al. (2009) that for the period [1, N ] the change in temperature

will be

∆ΥN = ΥN −Υ1 = Λ
∑N

k=1 xk, (4)

where Λ denotes the TCRE parameter.

Note that the deterministic part of the damage function (2) is consistent

with a quadratic damage function specification when the evolution of the

temperature anomaly is characterized by (4) for ρ = 0. In this case a

quadratic damage function in terms of the anomaly can be defined as

D(∆ΥN ) = ω (∆ΥN )2 = ω
(

Λ
∑N

k=1 xk

)2
, (5)

and the damage function (5) corresponds to the deterministic part of (2) for

ρ = 0 and appropriate readjustments of the parameters. In the numerical

simulations section of this paper we discuss the sensitivity of the solutions
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to ρ ≥ 0.

Since our temperature constraint is ∆ΥN ≤ α, we have

Λ
∑N

k=1 xk ≤ α. (6)

Assume that the social planner has misspecification concerns about tem-

perature dynamics (6) and the distortions associated with these concerns

accumulate as
√
eσm (ht + zt) where σm is volatility, e is a small noise pa-

rameter, zt is i.i.d. and h is the distortion in the TCRE parameter. The

distortion reflects possible misspecifications relative to the benchmark model

(4) which corresponds to h = 0. Note that in this case
√
eσmzt represents

traditional risk. Following the same argument as in the previous section,

and letting e → 0 where the penalty is of the form h2t
2v(e) , the temperature

constraint becomes:

Λ
∑N

k=1 xk +
∑N

k=1 σmhk ≤ α. (7)

3 The robust control problem

With misspecification concerns about damages and temperature dynamics,

the minimizing agent chooses distortions η and h to harm the planner’s

objective and the robust control problem becomes:

sup
{xk}

inf
{ηk,hk}

N∑
k=1

δk

(u−D0)xk −

(ε+ w + Γk)
x2
k

2
+ εxk

k−1∑
j=1

βk−jxj

+Γxk
∑
i<k

ixi + σ0ηkxk

]
+
η2
k

2θ
+
h2
k

2υ

}
, subject to (7). (8)

The higher θ and υ are, the more the regulator is concerned about mis-

specification regarding the damage function and the accuracy of the budget

constraint which reflects temperature dynamics. Thus the social planner

chooses xk and Nature, which is the adversarial agent, chooses ηk and hk,

with the robustness parameter υ having the same interpretation as θ. A sim-

ilar optimization applies to the unconstrained —regarding the temperature

target —problem.

The constrained optimization problem can be solved through the Kuhn-
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Tucker method,

L(x1, ..., xN , λ) = (9)
N∑
k=1

δk

(u−D0)xk −

(ε+ w + Γk)
x2
k

2
+ εxk

k−1∑
j=1

βk−jxj + Γxk
∑
i<k

ixi + σ0ηkxk


+
η2
k

2θ
+
h2
k

2υ

}
− λ

[
Λ
∑N

k=1 xk +
∑N

k=1 σmhk − α
]
,

where L is the Lagrangean and λ ≥ 0 is a Lagrangian multiplier. Then the

first-order conditions for the choices made by both the maximizing agent

and the minimizing agent are ∂L
∂xk

= 0, ∂L
∂ηk

= 0 and ∂L
∂hk

= 0, k = 1, ..., N .

The optimal emission policy is determined by solving a linear system of the

form:

M

 x1

...

xN

 =

 (u−D0)− λΛδ−1

...

(u−D0)− λΛδ−N

 (10)

M =


(ε+ w + Γ + σ2

oθ) (εβ + Γ) ... (εβN−1 + Γ)

(εβ + Γ) (ε+ w + 2Γ + σ2
oθ) ... (εβN−2 + 2Γ)

... ...

(εβN−1 + Γ) (εβN−2 + 2Γ) ... (ε+ w +NΓ + σ2
oθ)

 .

(11)

Proposition 1 provides the solution to our optimization problem.

Proposition 1 Assume that u > D0 and that an upper threshold, α◦C, is

set by the regulator on temperature change (relative to pre-industrial time).

Then the optimal policy is obtained as:

x∗ =

 x∗1
...

x∗N

 = M−1

 (u−D0)− λΛδ−1

...

(u−D0)− λΛδ−N

 ,

where the matrix M is defined in (11), and

λ =
(u−D0)Λ

∑
i,j m̃i,j − α

Λ2
∑

i,j m̃i,jδ
−j −A

with A = σ2
mv
∑

i δ
−i and M−1 = (m̃i,j).
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For the proof, see Appendix 1.

For a large time horizon, e.g. N = 100, the optimal path can be calcu-

lated through numerical methods which will be performed in Section 6. Ob-

serve that, by the envelope theorem, the Lagrangean multiplier λ in Propo-

sition 1 is λ = ∂V
∂αwhere V is the value function of the planner. Thus λ

expresses the change in the optimized net global wellbeing from a small

change in the temperature target.

3.1 The optimal carbon tax

Proposition 1 can be used to derive the optimal carbon tax both for the

case where the temperature constraint is binding and for the unconstrained

case. The optimal carbon tax can be computed solving for the tax rate at

which the representative firm’s profit-maximizing emissions equal the op-

timal emissions chosen by the regulator, as defined in Proposition 1. The

representative firm faces an exogenous tax τ on emissions and solves a static

problem

max
xk

uxk −
1

2
wx2

k − τkxk , k = 1, ...N,

which means that regulated emissions are:

x0
k =

u− τk
w

.

The optimal tax should be chosen so that the firm’s profit-maximizing

emissions are equal to the optimal emissions chosen by the regulator. This

means that

u− τk
w

= M−1

(u−D0)Ξ− λΛ

 δ−1

...

δ−N


 ,

where Ξ denotes an N × 1 vector with all entries equal to 1. Solving for τk,

we obtain

τk = u− wM−1

(u−D0)Ξ− λΛ

 δ−1

...

δ−N


 , or

τk = u− wx∗k , k = 1, ...N, (12)
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where x∗k are optimal emissions chosen by the regulator. Thus taxes are

increasing over time if the optimal emission schedule is declining.

Proposition 1 can also be used to explore the unconstrained problem in

which λ = 0 and optimal emissions are determined as:

x∗ =

 x∗1
...

x∗N

 = (u−D0)M−1Ξ. (13)

Then, it is easy to determine whether and when the cumulative emissions

of the optimal unconstrained schedule will lead to a temperature anomaly

violating the temperature target, by plugging the unconstrained emission

path into the temperature dynamics. Furthermore, the impact of changes

in misspecification concerns on the optimal emission paths can be obtained

through comparative analysis focusing on ∂x∗k/∂θ, and ∂x
∗
k/∂η.

3.2 The welfare cost of robust control

Introducing concerns for misspecification and non-zero robustness parame-

ters implies that there will be deviations between the optimal emission paths

with misspecification concerns (C) and without misspecification concerns

(NC), x∗kC , x
∗
kNC respectively. Thus the C paths correspond to decison

making under uncertainty, while the NC paths rorresponding to t decision

making under A question which arises in this case is whether, when a robust

climate policy is pursued, the policy generates additional welfare costs or

benefits relative to the case in which no misspecification concerns are in-

volved.8 To obtain an approximation of these additional welfare costs or

benefits, we consider the global welfare indicator:

V R =
N∑
k=1

δk

(u−D0)x∗kR −

(ε+ w + Γk)
(x∗kR)2

2
+ εx∗kR

k−1∑
j=1

βk−jx∗jR+

Γx∗kR
∑
i<k

ixi + σ0η
∗
kx
∗
kR

]}
, R = C,NC. (14)

8We use the welfare indicator as if we were treating our Pareto optimal planner as
a Pareto optimal Bayesian planner choosing an optimal solution under the worst case
distribution.
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Note that the welfare indicator does not include the penalty terms
(
η∗2k
2θ ,

h∗2k
2υ

)
imposed by the minimizing agent, since they are in a sense fictitious and are

used to determine the robust emission paths. The welfare indicator for the

C case includes, however, the robust emission paths since the comparison

is between the welfare corresponding to the NC and C states. Then the

impact of taking into account misspecification concerns on wellbeing can be

obtained by calculating

V NC − V C . (15)

Since robust control and its link with a worst case scenario can be regarded

as a precautionary policy, the difference V NC − V C , if positive, can be

interpreted as the cost of been precautious. An estimate of the cost of

robustness (or precaution) is presented in Section 6.1, where various penalty

parameters are considered.

4 Adding the risk of climate-related disasters

Our model can be extended to the case of climate-related disasters. These

are events that have possibly large negative impacts on the economy, occur

very rarely and take place abruptly. Since the nature of risk of climate

disasters is different from “normal” risk, as captured by a diffusion term,

we assume that rising global temperature exposes the economy to risks of

disasters which are modelled through jump processes. We explicitly take

into account that it is hard to estimate the probability of a disaster and its

expected impact by assuming that the regulator does not know the exact

probability distributions of the arrival rate and the size of climate shocks.

Earlier works studying disasters in a macroeconomic context (e.g., Barro,

2009) have been extended to include time-varying disaster probabilities and

multi-period (i.e., persistent) disasters (e.g., Wachter, 2013) and climate-

related disasters (Karydas and Xepapadeas, 2019). However, unlike this

literature, we study the impact of jump risks on the optimal constrained

emission paths.

In order to incorporate climate-induced disasters, we modify the stochas-

tic process and add a jump process Jt, with upward jumps following nonho-

mogeneous Poisson processes whose intensity depends on temperature and

thus on cumulated emissions. More specifically, we assume that the arrival
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rate q of an environmental disaster depends linearly on the temperature

anomaly ∆Υ. That is,

qk = q0 + ξ∆Υk−1 , k = 1, ..., N , (16)

which can be written as a function of cumulated emissions, as in Section

2.3, so that

qk = q0 + ξ
[
Λ
∑k−1

j=1 xj +
∑k−1

j=1 σmhj

]
, (17)

where Λ denotes the TCRE parameter. The size of jumps is related to the

expected disaster damages. They are assumed to be proportional to a lin-

earized representation of the benefit function, hence a function of emissions,

i.e., ζ(a+ bxk). We assume independence between the processes Wt and Jt.

Following the same procedure as before, we can obtain an extension of

Proposition 1 when the risk of extreme events is included. Thus, the optimal

emission policy is obtained as:

x∗ =


x∗1
x∗2
...

x∗N

 = M̂−1


(u−D0 − q0ζb− λΛδ−1)

(u−D0 − q0ζb− ξζbλvσ2
mδ
−1 − λΛδ−2)

...

(u−D0 − q0ζb− ξζbλvσ2
m

∑N−1
i=1 δ−i − λΛδ−N )

 .

Following the same argument as in Section 3.1, we can also compute the

optimal carbon tax in the case of extension to climate-related disasters, by

replacing the new optimal emissions x∗ chosen by the regulator in expression

(14). The analysis regarding the welfare cost or robust control can easily be

extended to include climate-related disasters.

5 The impact of the COVID-19 shock

The COVID-19 pandemic led to recession due to containment measures.

Predictions from the IMF (2020) — which of course carry a large degree

of uncertainty, or even “deep” uncertainty — indicate, for example, that

relative to October 2019 the proportional change in world output is -6.4%.

Furthermore, as recalled in our introduction, a sharp reduction in CO2 emis-

sions was reported during 2020. Here we are interested in incorporating the

shock into our modeling and comparing pre- and post-pandemic optimal
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paths and carbon taxes.

We model the shock induced by the COVID-19 pandemic as a pertur-

bation which shifts the utility function Uk =
(
uxk − 1

2wx
2
k

)
downwards

in the first i years of our planning horizon, assuming that this horizon

starts now. The shift of the utility function Uk is modelled by a term

Φi = 1 − (1 − Φ)
(

1
(1+H)i

)
in which Φ and H are calibrated such that the

drop in the first year of the benefit is equal to the IMF prediction and the

recovery takes place within R̄ years, that is, i = 1, 2, ..., R̄, while for k > R̄

the 1
(1+H)k

approaches zero to indicate that the COVID-19 initial shock

does not affect the economy anymore. Thus the within-pandemic gross ben-

efit function becomes ΦiUk. The shift of the benefit function induces, in

the context of the optimization model, an “optimal emission reduction” for

k = 1, 2, .... In order to start the optimization from the current level of

emissions, we incorporate an exogenous shock which will restrict the initial

optimal emission path at the current within-pandemic values. In our simula-

tions we compare the post-pandemic emission paths with the pre-pandemic

emission paths which corresponds to Φ = 1.

6 Numerical simulations

In this section we perform a numerical simulation with calibrated data. We

solve the optimization problem with the Langrangian function (21) for a

time horizon of 100 years. The calibration is described in Appendix 3.9 We

examine four possible scenarios coded 1,2,3,4 in Figures 2 and 3.

In scenario 1 there is no concern about model misspecification, that

is, θ = υ = 0, and no impact from climate-related disasters, i.e., ζ = 0.

There is only risk associated with the “ traditional” stochastic component

of the damage function dD0
t = σdWt, with σ > 0. Thus, scenario 1 can be

regarded as the benchmark model corresponding to decision making under

risk. In scenario 2 we allow for impacts from climate-related disasters in

the benchmark model, so ζ > 0. In scenario 3 we introduce misspecification

concerns in the damage function and the temperature dynamics, along with

the possibility of climate-related disasters. In this case, ((θ, υ)| scenario 3) >

(0, 0) . In scenario 4 we increase the misspecification parameters θ, υ relative

9Mathematica 12.0 was used for the solution of the optimization problem. The code is
presented in the supplementary material.

21



to scenario 3 in order to examine the impact of increasing ambiguity on

optimal paths. In this case, ((θ, υ)| scenario 4) > ((θ, υ)| scenario 3) .

The robustness parameters (θ, υ) are free parameters reflecting the mis-

specification concerns of the decision maker. Anderson et al. (2003), Hansen

and Sargent (2008)10 use detection error probabilities to quantify the robust-

ness parameters. The approach is to set the robustness parameter so that,

given the finite amount of data available, a decision maker would find it

diffi cult statistically to distinguish members of a set of alternative models

located inside the entropy ball. Detection-error probabilities can be calcu-

lated using likelihood ratio tests given a fixed sample of observations. Since

the damage function used in the climate models are basically calibrated

functions not estimated from actual date we did not calculate detection

probabilities. Instead we focused in calculating the impact on the paths of

the variables of interest, that is, emissions, cumulative emissions, tempera-

ture anomaly and carbon taxes from increasing the robustness parameters

relatively to the benchmark case.11

The four scenarios were run with and without an effective temperature

constraint. The unconstrained case results in temperature anomaly paths

which exceed the 1.5◦C threshold before the end of the 100 year time horizon,

while in the constrained case the anomaly paths never exceed the threshold.

In the simulations the threshold is set at 0.5◦C since the current anomaly

relative to the pre-industrial period is approximately 1◦C.

The constrained and unconstrained programs were solved for a pre- and

a post-pandemic scenario aiming at exploring the impact of the pandemic

on climate change (Figures 2-5). For the post-pandemic case we run an

optimistic and a pessimistic scenario. In the optimistic scenario we expect

the 99% recovery to require two years, while in the pessimistic scenario it

requires four years. Here we report the results of the pessimistic scenario

only, since the pessimistic pandemic is “optimistic” for climate change, in

the sense that emissions are reduced for a longer time and we want to explore

the impact of the pandemic on temperature under a scenario which is the

most “ favorable” for climate.

Each scenario produced as outputs: (i) the optimal path of CO2 emis-

10See also Hansen Sargent and Wang (2002) or Dennis et al. (2004).
11 In principle detection probabilities could have been calculated for the temperature

anomaly for which data exist. We choose to have a uniform approach for dealing with the
robustness parameters.
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sions, (ii) the corresponding cumulative CO2 emissions path, (iii) the path

for the temperature anomaly resulting under the temperature dynamics and

the cumulative emission paths, and (iv) the optimal path for the carbon tax.

Figure 2 shows the solutions of the unconstrained problem for the pre-

pandemic case. We observe that annual emissions decrease monotonically as

we shift from scenario 1 to scenario 4, that is, as new risk factors and larger

misspecification concerns add up. This result is consistent with Rudik’s

(2020) finding that “ the misspecification insurance channel” reduces emis-

sions. The 1.5◦C temperature target will be surpassed in approximately 65

years from now in scenario 1, in 70 years in scenario 2, in 75 years in scenario

3 and in 100 years in scenario 4. Thus misspecification concerns make the

attainment of the temperature target easier. Figure 3 shows the solutions

of the constrained problem for the pre-pandemic case. Annual emissions

have to be reduced more drastically relative to the unconstrained case over

the 100-year horizon if the constraint is to be satisfied. We observe that

higher misspecification concerns in damages require a higher reduction of

emissions at the beginning (compare scenarios 4 and 3), but the trajectories

of emissions show crossing effects around 45 years from now.
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Annual emissions Cumulative emissions

Temperature anomaly Carbon tax
Figure 2. Unconstrained pre-pandemic optimal paths

Annual emissions Cumulative emissions

Temperature anomaly Carbon tax
Figure 3. Constrained pre-pandemic optimal paths
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Annual emissions Cumulative emissions

Temperature anomaly Carbon tax

Figure 4. Post-pandemic unconstrained optimal paths

Annual emissions Cumulative emissions

Temperature anomaly Carbon tax
Figure 5. Post-pandemic constrained optimal paths

25



The intuition is that strong misspecification concerns lead to strong ac-

tion in terms of higher emission reduction relative to the risk cases (scenar-

ios 1 and 2). Once the concerns have been satisfied in the first half of the

horizon, the policy becomes more relaxed. This is more profound in the

constrained case (Figure 3) when strong action is taken so that once the

economy is “ locked” on a path which could satisfy the constraint under the

worst case scenario, emissions can be increased relative to the no concerns

case later on. In a sense deep uncertainty calls for strong actions now, how-

ever the strong action in terms of emission reductions now is compensated

by weaker action in the future. The addition of jumps does not change the

qualitative results significantly, although it decreases further emissions in

comparison to scenario 1.

We compute the optimal carbon taxes using expression (12). The paths

of the optimal carbon taxes, consistent with unconstrained emissions in Fig-

ure 2 and constrained emissions in Figure 3, are increasing in time. The

range of values of the carbon taxes we found is about $78-87/tC as ini-

tial taxes in the unconstrained case and about $82-87/tC in the constrained

case, up to $102/tC in 100 years for the former case and $100-104/tC for the

latter. Starting optimal taxes in these intervals seems to be in line with the

recommendations of the High-Level Commission on Carbon Prices (2017).

Our results — that optimal carbon taxes increase along the path, but at

a decreasing rate and, at the same time, constrained carbon emissions are

strictly decreasing over time, but at a decreasing rate —are consistent with

the results in Dietz and Venmans (2018), even though they develop a deter-

ministic model.12

Comparison of scenarios 3 and 4 in the constrained case shows that

a higher misspecification concern results in a higher carbon tax initially

($87/tC in scenario 4 and $84/tC in scenario 3) relative to the pure risk

case. Around 45 years from the initial time, path-crossing occurs and taxes

under the strongest concerns become the lowest even as compared to the

no-concerns cases (scenarios 1 and 2). Eventually, the carbon tax is ramped

up to $100/tC in scenario 4 and $103/tC in scenario 3. A policy of high

taxes caused by deep uncertainty early on is compensated by a lower tax

12They actually find that the optimal carbon price under a temperature constraint
equals the social cost of carbon plus a premium, which is a function of the cumulative
emissions constraint and increases at the discount rate. Rezai and van der Ploeg (2016)
and van der Ploeg (2018) obtain a similar result.
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policy later on. This result, that the optimal carbon tax trajectories can

cross when different uncertainty channels are considered, can also be found

in Rudik (2020), although he does not distinguish between constrained and

unconstrained cases.

The introduction of the pandemic shock in both the constrained and

the unconstrained problem causes emissions to decrease significantly at the

beginning as a result of the containment and lockdown measures (Figures 4

and 5), but the overall results are qualitatively similar to the pre-pandemic

case. The emission reduction is short-lived, with a post-crisis rebound that

restores emissions close to their original trajectory. This preliminary analysis

suggests that the COVID-19 pandemic will have negligible effects on the

evolution of the temperature anomaly.

Sensitivity analyses on the other parameters, for example, ρ, ε and Γ,

where the base case uses the parameter values of the scenarios above, is

possible. It shows (not reported here for brevity) that the optimal annual

emissions are larger if the parameter ρ is higher than zero; that is, if the

damage impact of emissions weakens with the passage of time, then more

emissions are allowed on the optimal path and the corresponding emission

tax is lower relative to the case ρ = 0, which corresponds to the case in

which past emissions have the same damage effects as current emissions.

The sensitivity of the solution is, however, very small, in the neighborhood of

ρ = 0.13 Furthermore, an increase in ε (the impact of emissions on damages),

in aversion to risk γ and/or volatility σ (which is embodied in parameter Γ),

will cause a monotonic reduction in the optimal amount of annual emissions.

In conclusion, concerns about risk and deep uncertainty lead to a more

restrained policy by reducing emissions and increasing carbon taxes. An

interesting policy result is that deep uncertainly calls for strong actions

earlier which can be significantly relaxed later on.

6.1 The risk-adjusted interest rate

Even though our model does not include asset markets, we can compute

the risk-adjusted interest rate in this context. It is expected that since the

economy would be indifferent between emitting and paying a carbon tax

13This suggests that the case of ρ = 0, which corresponds to a quadratic damage function
when the temperature anomaly is linear in cumulative emissions, could be regarded as a
reasonable approximation.
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the current period or the next period, carbon taxes should increase at the

risk-adjusted interest rate. Figure 6 presents the rate of change of carbon

taxes for scenario 3 under the effective temperature constraint.

Figure 6: Carbon tax rate of growth

Figure 6 shows that the carbon price that ensures that temperature stays

below the temperature cap grows first at a relatively high rate and then over

time the growth rate of the carbon price tapers off. Figure 6 shows that

the optimal carbon price growth rate decreases from 3% down to 0.5% in

about 10 years for scenario 3. The initial value of 3% is broadly consistent

with Olijslagers et al. (2021), which in a scenario with uncertainty, macro

disasters shocks and a temperature cap, calibrated a real risk-free interest

rate of 0.75% and a risk premium of 2.65%, implying that the optimal carbon

price grows in expectation at a rate equal to 3.4%.

The decreasing shape of Figure 6 is also in accord with Gollier (2020),

who found discount rates of about 4.14% for short horizons down to less

than 1.6% for very long horizons. Our Figure 6 could be interpreted as the

decreasing socially effi cient discount rate as a function of the time horizon

(Gollier, 2002).

Various theories have suggested a downward-sloping term structure for

the interest rate (Gollier, 2020). Here the declining growth rate of the carbon

price is mostly determined by misspecification concerns. We have computed

the optimal carbon price growth in the absence of misspecification concerns,

both for scenario 1 and scenario 2, and found that even though there is

a slight downward-sloping shape in both cases, the spread is almost zero

over time, confirming that this effect is mostly related to the robust control

approach.
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6.2 The cost of robustness

Using the same parametrization, we calculate the difference (15) for the

post-COVID-19 case for the constrained and unconstrained problems14 and

compare the loss in welfare —as it is defined in our model —from adopting

robust control methods, relative to the benchmark case of unconstrained

no-misspecification concerns which corresponds to scenario 1. Since the

benchmark model corresponds to the case of risk the results can be inter-

preted as the cost of precaution when temperature targets are introduced.

The results are shown in Figure 7 for increasing robustness parameters θ

and for three different values for the robustness parameter υ. The range

of values for the robustness parameters was chosen such that at the end of

the planned horizon the maximum misspecification concern will not lead to

a temperature path which will overshoot the target anomaly of 0.5◦C by

0.15◦C.15 This means that the regulator is not willing to accept misspec-

ification concerns that will lead to a reduction of emissions such that the

anomaly will be 0.35◦C, instead of 0.5◦C at the end of the planning horizon.

As shown in Figure 7 this discipline of the robustness parameters implies

that the regulator is not willing to accept losses in welfare relative to the

benchmark model due to precautionary behavior in the range of 90%.

14The Mathematica code for calculation of the sum (14) can be found in the supple-
mentary material.
15This implies the distance function

ρ0

(
0.5, Y R

k

)
= max

{∣∣∣0.5− Y R
k

∣∣∣ ; 1 ≤ k ≤ 100
}

with the constraint ρ0
(
0.5, Y R

k

)
≤ 0.15, for all k.
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Figure 7: Welfare losses (%) due to robustness relative to the benchmark

case.

Scenarios 3 and 4 correspond to (θ, υ) = {(100, 0.01) , (1000, 0.02)} re-
spectively and there is no overshooting of the target. Misspecification con-

cerns that lead to approximately 60% welfare losses overshoot the target by

0.09◦C. In Figure 7 the line corresponding to υ = 0 represents losses due to

robustness preferences for damages only. When robustness preferences for

temperature dynamics are added there a very small increase in losses. This

suggest the robustness preferences for damages dominates welfare losses.

7 Concluding remarks

We develop a low-dimension analytic IAM with a holistic representation of

uncertainty including traditional risk, described by a jump-diffusion process;

“deep” uncertainty or misspecification concerns (which affect the evolution

of temperature and of damages); and stochastic arrival of climate-related

disasters. We derive and compare the optimal emission paths and carbon

taxes between the constrained case where the global average temperature

will not exceed the 1.5◦C target and the unconstrained case. We provide

analytic solutions and numerical results for a time horizon of 100 years.

In the context of our calibration, the estimated carbon budget consis-

tent with the 1.5◦C target is likely to be exhausted in less than 70 years

with optimal —in the sense of the planner’s optimality —but unconstrained

emissions paths. Constrained emission paths are lower and carbon taxes

are higher relative to the unconstrained case. When concerns about model

misspecification and deep uncertainty increase, climate policy is more strin-

gent in terms of lower emissions and high taxes relative to traditional risk

in approximately the first half of the planning horizon, but the stringency

is reversed in the second half. This result, given the strong uncertainties

associated with climate change, supports the policy of “ take strong action

now”. Precautious and robust control policy under deep uncertainty and

misspecification concerns is costly in terms of our welfare indicator. Finally,

preliminary investigation of the COVID-19 shock shows that the sharp emis-

sion reduction in the first half of 2020 seems to have been short-lived and will

have a negligible effect on the evolution of the temperature anomaly. This
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suggests that green national programmes and international cooperation to

mitigate climate should not be sidetracked by the pandemic.

8 Appendix

8.1 Appendix 1. Proof of Proposition 1

From the first-order conditions of (9) with respect to xk, ηk and hk, we obtain

for k = 1, ..., N :

δk

u−D0 − [(ε+ w + Γk)xk + ε
k−1∑
j=1

βk−jxj + Γ
∑
i<k

ixi + σ0ηk]

−
λΛ = 0 (18)

δk
(
−σ0xk +

ηk
θ

)
= 0 (19)

δk
hk
v
− λσm = 0, (20)

where λ ≥ 0 is a Lagrange multiplier, yielding ηk = σ0θxk and hk =

λσmvδ
−k (from (19) and (20)). Notice that η = 0 if σ0 or θ = 0, and

hk = 0 if σm or v = 0. Plugging ηk and hk into (18), we get the optimal so-

lutions for xk. This amounts to solving a linear system as in (10) in the text.

Moreover, since the constraint can be written as ΛΞTx∗ = α − Aλ, where
Ξ is a vector with all entries equal to 1, and A = σ2

mv
∑

i δ
−i, i = 1, ..., N ,

after replacing hk from (20) we get:

ΛΞTx∗ = α−Aλ = ΞTM−1ΞΛ(u−D0)− λΛ2ΞTM−1

 δ−1

...

δ−N


λ =

(u−D0)Λ
∑

i,j m̃i,j − α
Λ2
∑

i,j m̃i,jδ
−j −A

, with M−1 = (m̃i,j).

For example, if N = 1, v = θ = 0, then λ = δ
Λ(u−D0)− αδ

Λ2
(ε+ w + Γ).

8.2 Appendix 2. Extension to climate-related disasters

Let us consider the case of climate-related disasters as described in Section 4.

Following the same procedure as in Section 3, we can write the Lagrangian
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associated with the corresponding robust control problem as:

N∑
k=1

δk
{

(u−D0)xk −
(
q0 + ξ

(
Λ
∑k−1

j=1 xj +
∑k−1

j=1 σmhj

))
ζ(a+ bxk)− [(ε+ w + Γk)

x2
k

2
+

εxk

k−1∑
j=1

βk−jxj + Γxk
∑
i<k

ixi + σ0ηkxk]−
γ

2

(
q0 + ξ

(
Λ
∑k−1

j=1 xj +
∑k−1

j=1 σmhj

))
ζ2(a+ bxk)

2 +

η2
k

2θ
+
h2
k

2υ

}
− λ

[
Λ
∑N

k=1 xk +
∑N

k=1 σmhk − α
]
, (21)

which differs from the expression obtained in Section 3 because of the

changes in the expectation of damage and of the variance term, which is:

E0[σ2(

N∑
k=1

xkWk)
2] + var0[JN ] =

σ2
N∑
k=1

[x2
kk + 2xk

∑
i<k

ixi] +

N∑
k=1

(q0 + ξ(Λ
∑k−1

j=1 xj +
∑k−1

j=1 σmhj))ζ
2(a+ bxk)

2.

Computing the first-order conditions with respect to xk, ηk and hk, we

get equations of the second order in x, which have to be solved numerically.

However, for small ζ we can neglect the term ζ2 and thus we can determine

the optimal emission policy by solving a linear system of the form:

M̂


x1

x2

...

xN

 =


(u−D0 − q0ζb− λΛδ−1)

(u−D0 − q0ζb− ξζbλvσ2
mδ
−1 − λΛδ−2)

...

(u−D0 − q0ζb− ξζbλvσ2
m

∑N−1
i=1 δ−i − λΛδ−N )

 ,

where the matrix M̂ is:

M̂ =


(ε+ w + Γ + σ2

oθ) (εβ + Γ + ξζbΛ) ... (εβN−1 + Γ + ξζbΛ)

(εβ + Γ + ξζbΛ) (ε+ w + 2Γ + σ2
oθ) ... (εβN−2 + 2Γ + ξζbΛ)

... ...

(εβN−1 + Γ + ξζbΛ) (εβN−2 + 2Γ + ξζbΛ) ... (ε+ w +NΓ + σ2
oθ)
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and

λ =
(u−D0)Λ

∑
i,j m̂i,j − α

Λ2
∑

i,j m̂i,jδ
−j −A

with A = σ2
mv
∑

i δ
−i and M̂−1 = (m̂i,j).

The above expressions lead to an extension of Proposition 1 when the

risk of extreme events is included. Thus, the optimal emission policy is

obtained as:

x∗ =


x∗1
x∗2
...

x∗N

 = M̂−1


(u−D0 − q0ζb− λΛδ−1)

(u−D0 − q0ζb− ξζbλvσ2
mδ
−1 − λΛδ−2)

...

(u−D0 − q0ζb− ξζbλvσ2
m

∑N−1
i=1 δ−i − λΛδ−N )

 .

8.3 Appendix 3. Calibration

The damage function
We use Nordhaus’s DICE 2016R calibration in which damage as a pro-

portion of gross GDP is given by

D = 0.00236 (∆T )2 ,

where ∆T is increase in temperature of the atmosphere (in degrees C from

1900). We calculate world GDP in year 2018 in 2011 US international $

at 119.530×1012 (in 2011 US international $), from world GDP per capita

at $15,914 and world population at 7.511 billion.16 By considering that

since the pre-industrial period, average global temperature has increased

by approximately 1◦C temperature (IPCC, 2018), then (2) implies for the

deterministic part of damages that:

0.00236× 119.530× 1012. = ε

 k∑
j=1

(
x2
j

2
+
∑
i<j

e−ρ(j−i)xixj)

 .
Using CO2 emissions in 1751 (initial period) and CO2 emissions in 2018 (i.e.,

k), we calculate the term in brackets (4.13578×1017(CO2)2) which results

16See World Bank https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
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in ε = 2.82× 10−6.

Damages from the stochastic arrival of climate disasters are assumed to

be proportional to a linear approximation of the quadratic benefit function at

the level of 36 GtCO2 which is regarded as the current pre-pandemic level of

annual emissions. The slope of the linear approximation is billion $/GtCO2.

The benefit function
We use a quadratic benefit function of the form

Uk = U0 + uxk −
1

2
wx2

k , k = 1, 2, ... .

In calibrating the parameters u and w, which are the relevant parameters

for the optimization, we follow the procedure in Karp and Wang (2006).

We revise the procedure so that the slopes of abatement cost are similar to

those used by Nordhaus in DICE-2016R (September 2016). The abatement

cost function was calibrated for the world GDP of 2018 as

A = 0.0943069v2.6 × 119.53, (22)

where v is the proportional reduction in CO2 emissions relative to a business

as usual scenario and 119.530×1012 is world GDP (in 2011 US international

$). Following Karp and Wang (2006), the quadratic benefit-of-emission func-

tion is equivalent to a quadratic abatement cost function

A =
w

2
(x̄− xk)2 =

w

2
vx̄.

As in Karp and Wang (2006), we draw 1,000 realizations of u from a uni-

form distribution with support [0, 1], to allow for a carbon free world, and

calculate A using (22); we treat the pairs (u,A) as psuedo-observations for

a regression. The estimated w = 2.95 with R2 = 0.988. The intercept is

set at u = 107.9 which corresponds to zero abatement at the level of 36.572

GtCO2.

In order to calibrate β, we follow the argument in Golosov et al. (2014)

for the parameter describing the total fraction of a unit emitted at time

0 that is left in the atmosphere at time s. Such calibration is used by

Rezai and van der Ploeg (2016). Their representation of the carbon cycle

specifies the following parameters: (i) a share, ϕL, of carbon emitted into the

atmosphere stays there forever; (ii) another share, 1− ϕ0, of the remainder
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exits the atmosphere into the biosphere and the surface oceans; and (iii) a

remaining part, (1−ϕL)ϕ0, decays (slowly) at a geometric rate ϕ. Thus, the

total fraction of a unit emitted at time 0 that is left in the atmosphere at

time s equals zs = ϕL+(1−ϕL)ϕ0(1−ϕ)s. We employ an annual time grid as

in Rezai and van der Ploeg (2016) and suppose, as in Golosov et al. (2014),

that after three decades half of the carbon has left the atmosphere, so that

z30 = 0.5, a fifth of carbon stays up in the atmosphere forever (ϕL = 0.2),

and the excess carbon that does not stay in the atmosphere “forever”has a

mean lifetime of about 300 years ((1 − ϕ)300 = 0.5 , yielding ϕ = .0.0231).

Therefore, z30 = 0.5 = 0.2 + 0.8ϕ0(1− 0.0231)30 yielding ϕ0 = 0.402. Thus,

the value of β that minimizes the least square error between Golosov et al.’s

(2014) formula and βs is β = 0.9546.

As for the risk aversion parameter, we take γ = 2, which is consistent

with the literature that usually takes values between 1 and 3 (see Pindyck,

2013). Finally, Φ and H are calibrated as already explained in Section 5.

The relevant parameter values are shown in Table A1.
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Table A1. Parameter values
ε 2.82× 10−6 θ 0, 100, 1000∗

u 107.9 billion $/GtCO2 v 0, 0.001, 0.0001∗

w 2.95 billion $/(GtCO2)2 ξ 0.0128∗∗

δ 1/ (1 + 0.01) ζ 0.01

γ 2 b 4.65 billion $/GtCO2

σ 0.03 Φ 0.9

Λ 0.00040905 ◦C/GtCO2 H 0.52

σ0 0.03 R̄ 4 Pessimistic recovery

σm 0.01
∗ For scenarios 1(benchmark), 3 and 4.
∗∗ Karydas and Xepapadeas (2020).

36



References
Anderson, E. W., Brock, W., Hansen, L. P., and Sanstad, A. H. (2014),

Robust analytical and computational explorations of coupled economic-climate

models with carbon-climate response, RDCEP WP 13-05.

Anderson, E.w., Hansen, L.P. and Sargent, T.J. (2003), “A quartet of

semigroups for model specification, robustness, prices of risk, and model

detection,”Journal of the European Economic Association 1 (1), 68—123.

Anderson, E. W., Hansen, L. P., and Sargent, T. J. (2012), Small noise

methods for risk sensitive/robust economies, Journal of Economic Dynamics

and Control 36, 468—500.

Anthoff, D. and Tol, R. (2013), The uncertainty about the social cost of

carbon: A decomposition analysis using fund, Climate Change 117, 515—530.

Barnett, M., Brock. W. A., and Hansen, L. P. (2020), Pricing uncer-

tainty induced by climate change, The Review of Financial Studies 33, 1024—

1066.

Barnett, M., Brock. W. A., and Hansen, L. P. (2021) Climate Change

Uncertainty Spillover in the Macroeconomy, Available at:

https://larspeterhansen.org/research/papers/

Barro, R. (2009), Rare disasters, asset prices, and welfare costs, Ameri-

can Economic Review 99, 243—64.

Brock, W. A. and Carpenter S. R. (2006), Rising variance: A leading

indicator of ecological transition, Ecology Letters 9, 311—318.

Burke, M., Hsiang, S. M., and Miguel, E. (2015), Global non-linear effect

of temperature on economic production, Nature 527, 235—239.

Cai, Y. and Lontzek, T. S. (2019), The Social Cost of Carbon with

Economic and Climate Risk, Journal of Political Economy 127, 2684—2734.

Campi, M. C. and James, R. M. (1996),Non-linear discrete time risk-

sensitive optimal control, International Journal of Robust and nonlinear

Control 6, 1-19.

Cerreia-Vioglio S, Maccheroni F, Marinacci M, Montrucchio L (2011)

Uncertainty averse preferences. Journal of Economic Theory 146(4):

1275—1330.

Dennis, R., Leitemo, K, and U. Söderström, (2004), Methods for Robust

Control, CEPR, Discussion Paper No. 5638

Dietz, S., Bowen, A., Doda, B., Gambhir, A., and Warren, R. (2018),

The economics of 1.5◦C climate change, Annual Review of Environment and

37



Resources, 43, 455—480.

Dietz, S. and Venmans, F. (2019), Cumulative carbon emissions and

economic policy: In search of general principles, Journal of Environmental

Economics and Management 96, 108—129.

Dockner, E. J. and Van Long, N. (1993), International pollution con-

trol: Cooperative versus noncooperative strategies, Journal of Environmen-

tal Economics and Management 25, 13—29.

European Commission (2019), The European Green Deal, Communi-

cation COM(2019) 640 final, available at https://eur-lex.europa.eu/legal-

content/EN/ALL/?uri=CELEX:52019DC0640

Fitzpatrick, L.G. and Kelly, D.L. (2017) Probabilistic Stabilization Tar-

gets, Journal of the Association of Environmental and Resource Econo-

mists,4, 611-657

Gerlagh, R. and Liski, M. (2016) Carbon prices for the next hundred

years, The Economic Journal 128, 728—757.

Gilboa I, Schmeidler D (1989) Maxmin expected utility with nonunique

prior. Journal of Mathematical Economics 18(2):141—153.

Gillingham, K., Nordhaus, W., Anthoff, D., Bosetti, V., McJeon, H.,

Blanford, G. J., Christense, P., Reilly, J. M, and Sztorc, P. (2016), Modeling

uncertainty in climate change: a multi-model comparison, FEEM, WP013-

2016.

Gollier, C (2002), Discounting an uncertain future, Journal of Public

Economics, 85, 149-166

Gollier, C (2020), The cost effi ciency carbon pricing puzzle, Toulouse

University

Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014), Optimal

taxes on fossil fuel in general equilibrium, Econometrica 82, 41—88.

Hansen, L. P. and Sargent, T. J. (2001), Robust control and model

uncertainty, The American Economic Review 91, 60—66.

Hansen, L. P., Sargent, T. J., and N. Wang (2002), Robust permanent

income and pricing with filtering, Macroeconomic Dynamics 6 (1), 40—84.

Hansen, L. P. and Sargent, T. J. (2003), Robust control of forward-

looking models, Journal of Monetary Economics 50, 581—604

Hansen, L. P., Sargent, T. J., Turmuhambetova, G. and Williams, N.

(2006), Robust control and model misspecification, Journal of Economic

Theory 128, 45—90.

38



Hansen, L. P. and Sargent, T. J. (2008), Robustness, Princeton Univer-

sity Press.

Hassler, J., Krusell, P., and Olovsson, C. (2018), The consequences of un-

certainty climate sensitivity and economic sensitivity to the climate, Annual

Review of Economics 10, 189—205.

Heal, G. and Millner, A. (2014), Uncertainty and decision-making in

climate change economics, Review of Environmental Economics and Policy

8, 1, 120—137.

High-Level Commission on Carbon Prices (2017) Report of the High-

Level Commission on Carbon Prices. World Bank, Washington, DC.

IEA (2020), Global Energy Review 2020, International Energy Agency,

Paris.

IMF (2020), World Economic Outlook: A Long and Diffi cult Ascent,

International Monetary Fund, Washington, DC.

IPCC (2014), Climate Change 2014. Synthesis Report, Summary for

Policymakers, Contribution of Working Groups I, II and III to the Fifth As-

sessment Report of the Intergovernmental Panel on Climate Change, Core

Writing Team, Pachauri R.K. and L.A. Meyer (eds), IPCC, Geneva, Switzer-

land.

IPCC (2018) Special Report, Global Warming of 1.5 ◦C, available at

https://www.ipcc.ch/report/sr15/.

Karp, L. S. and Zhang, J. (2006), Regulation with anticipated learning

about environmental damages, Journal of Environmental Economics and

Management 51, 259—279.

Karydas, C. and Xepapadeas, A. (2019), Pricing climate change risks:

CAPM with rare disasters and stochastic probabilities, Mimeo.

Klibanoff P, Marinacci M, Mukerji S (2005) A smooth model of decision

making under ambiguity. Econometrica 73(6):1849—1892

Knutti, R., Joos, F., Muller, S. A., Plattner, G.-K., and Stocker, T.

F. (2005), Probabilistic climate change projections for CO2 stabilization

profiles, Geophysical Research Letters 32, doi:10.1029/2005GL023294.

Lemoine, D. (2010), Paleoclimatic warming increased carbon dioxide

concentrations, Journal of Geophysical Research 115, D22122.

Le Quere, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy,

S. et al. (2020), Temporary reduction in daily global CO2 emissions during

the COVID-19 forced confinement, Nature Climate Change 10, 647—653.

39



Maccheroni F, Marinacci M, Rustichini A (2006) Ambiguity aversion,

robustness, and the variational representation of preferences. Econometrica

74(6):1447—1498.

Manoussi, V., Xepapadeas, A., and Emmerling, J. (2018), Climate emgi-

neering under deep uncertainty, Journal of Economic Dynamics and Control

94, 207—224.

Matthews, H. D., Gillett, N. P., Stott, P.A., and Zickfeld, Z. (2009), The

proportionality of global warming to cumulative carbon emissions, Nature

459, 829—833.

Matthews, H. D., Landry, J.-S., Partanen, A.-I., Allen, M., Eby, M.,

Forster, P. M., Friedlingstein, P., and Zickfield, K. (2017), Estimating carbon

budgets for ambitious climate targets, Current Climate Change Reports 3,

69—77.

Matthews, H. D., Solomon, S., and Pierrehumbert, R. (2012), Cumula-

tive carbon as a policy framework for achieving climate stabilization, Philo-

sophical Transactions of the Royal Society of London A 370, 4365—4379.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler,

K., Knutti, R., and Allen, M. (2009), Greenhouse gas emission targets for

limiting global warming to 2◦C, Nature 458, 1158—1163.

Mengis, N., Partanen, A.-I., Jalbert, J., and Matthews, H. D. (2018),

1.5◦C carbon budget dependent on carbon cycle uncertainty and future non-

CO2 forcing, Scientific Reports 8, article 5831, DOI:10.1038/s41598-018-

24241-1.

Nordhaus, W. D. (1982) How Fast Should We Graze the Global Com-

mons? American Economic Review, 72, 2, 242-46

Nordhaus, W. D. (2007), To tax or not to tax: the case for a carbon tax,

Review of Environmental Economics and Policy, 1, 26-44

Nordhaus, W. D. and Moffat, A. (2017), A survey of global impacts

of climate change: replication, survey methods and a statistical analysis.

NBER WP. 23646, http://www.nber.org/papers/w23646.

Olijslager, S, van der Ploeg, F. and van Wijnbergen, S (2021), On current

and future carbon prices in a risky world, Tinbergen Institute Paper No 21-

045/VI

Petracou, E.V., Xepapadeas, A., Yannacopoulos, A.N. (2021) Decision

making under model uncertainty: Fréchet—Wasserstein mean preferences.

Management Science, https://doi.org/10.1287/mnsc.2021.3961

40



Pindyck, R. (2012), Uncertain outcomes and climate change policy, Jour-

nal of Environmental Economics and Management, 63, 289—303.

Pindyck, R. (2013), Climate change policy: What do the models tell us?,

Journal of Economic Literature, 51, 3, 860—872.

Pindyck, R. (2017), The use and misuse of models of climate policy,

Review of Environmental Economics and Policy, 11, 100-114

Rezai, A. and van der Ploeg, F. (2016), Intergenerational inequality aver-

sion, growth and the role of damages: Occan’s rule for the global carbon

tax, Journal of the Association of Environmental and Resource Economists,

3, 2, 493—522.

Rudik, I. (2020), Optimal Climate Policy When Damages are Unknown,

American Economic Journal: Economic Policy, 12, 2, 340-73

Solomon, S., Daniel, J. S., Sanford, T. J., Murphy, D. M., Plattner, G.-

K., Knutti, R., and Friedlingstein, P. (2010), Persistence of climate changes

due to a range of GHGs, PNAS 107, 18354—18359.

Tol, R.S.J (2013) Targets for Global Climate Policy, Journal of Economic

Dynamics and Control,37, 911-928

Traeger, C. (2015), Analytic integrated assessment and uncertainty, Mimeo,

UC Berkeley, Available at http://www.lse.ac.uk/GranthamInstitute/wp-con-

tent/uploads/2015/04/Traeger_AnalyticIAM.pdf.

Traeger, C. (2018) ACE- Analytic Climatic Economy (with Temperature

and Uncertainty), Available at https://papers.ssrn.com/abstract=3307622

van den Bijgaart, I., Gerlagh, R., and Liski, M. (2016), A simple for-

mula for the social cost of carbon, Journal of Environmental Economics

and Management 77, 75—94.

van den Bremer, T. and van der Ploeg, F. (2018), Pricing carbon under

economic and climatic risk: Leading-order results from asymptotic analysis,

OxCarre WP 203.

van der Ploeg, F. (2014), Abrupt positive feedback and the social cost

of carbon, European Economic Review 67, 28—41.

van der Ploeg, F. (2018), The safe carbon budget, Climatic Change 147,

47—59.

Wachter, J. A. (2013), Can time-varying risk of rare disasters explain

aggregate stock market volatility?, The Journal of Finance 68, 987—1035.

Weitzman, M. L. (2010), What is the “damages function” for global

warming —and what difference might it make?, Climate Change Economics

41



1, 57—69.

Wigley, T. M. L. (2004), Choosing a stabilization target for CO2, Climate

Change 67, 1—11.

42



Supplementary Material
The Mathematica Code17

17The code was prepared by Petros Xepapadeas, Athens University of Economics and
Business, p.xepapad@gmail.com.

43


	COPP.pdf
	2nd revision AX2021(21Feb2022).pdf

