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The probability of multidimensional poverty:  

A new approach and an empirical application to EU-SILC data 

 

Paolo Liberati, Roma Tre University 

Giuliano Resce, University of Molise  

Francesca Tosi, Alma Mater Studiorum – University of Bologna 

 

Abstract This paper proposes a novel method to analyse multidimensional poverty by 

using a large set of feasible weights to summarise the information about the poor, which 

allows to remain agnostic about the relative importance given to different poverty 

dimensions. This method allows to calculate the individual probability of being poor in a 

multidimensional perspective. The distribution of individual probabilities can then be 

combined with Generalised Lorenz dominance techniques to derive unanimous consent 

for a wide class of social welfare functions with a minimum load of value judgments. The 

innovations proposed here allow to move from a dual definition of poverty, where poor 

and non-poor individuals are classified in a mutually exclusive context, to a continuous 

measure of deprivation capturing both the extensive and intensive margin of 

multidimensional poverty. The empirical application of the method consists of measuring 

multidimensional poverty in ten selected countries using four waves of EU-SILC data 

(2008-2014).  
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1. Introduction  

 

There is widespread agreement on the need to conceptualise poverty as a 

multidimensional phenomenon. Low consumption or income is surely at the heart of the 

notion of poverty but several other domains are systematically concerned by inadequate 

living standards (Ferreira and Lugo, 2013). Since the pioneering works of Tsui (2002) 

and Bourguignon and Chakravarty (2003), a wealth of approaches were developed to 

measure deprivation in multiple dimensions (see among others Alkire and Foster, 2011; 

Chakravarty et al., 1998; Cheli and Lemmi, 1995; Chiappero-Martinetti, 1994; Deutsch 

and Silber, 2005; Maasoumi and Lugo, 2008). 

However, multidimensional poverty measures are far from being universally 

welcomed. To begin with, which dimensions matter and who should be selecting them 

are questions that repeatedly raise issues of ethics and legitimacy.1 Retrieving information 

on shared societal values and priorities is not straightforward, especially when the 

analysis is carried out at international or even at the global level (Alkire, 2007). Selecting 

deprivation indicators and poverty thresholds – both within and across indicators – 

requires further sensitive decisions, although they end up being data-driven in most cases, 

especially when the poverty analysis is based on the counting of deprivations framework 

(Alkire et al., 2015). 

Relative weights attached to attributes of different nature are also a matter of concern. 

In the income-centred framework, prices are commonly used to aggregate components of 

consumption expenditure (or the incomes used to finance such consumption). They are 

then used to compose an index of aggregate consumption to be compared with an 

aggregate poverty line defined in the same space. Even though there exist different 

reasons why prices might not be ideal welfare weights (Ferreira and Lugo, 2013), they 

provide a clear understanding of the effects of the weighting scheme (Maasoumi and 

Lugo, 2008), as they explicitly address the trade-offs between different goods and 

services, or the rate at which consumers are willing to trade one unit of an expenditure 

component for another (i.e. the marginal rate of substitution (MRS) between two goods).2 

 
1 See for instance the Sustainable Development Goals experience (Fukuda-Parr, 2016). 
2  In this case, the MRS between two dimensions 𝑗! and 𝑗" can be defined as the amount of 
dimension 2 an individual is willing to give up for an extra unit of dimension 1, while maintaining 
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Similarly, in a multidimensional setting relative weights play the central role of 

determining trade-offs between dimensions. They reflect value judgments and possibly 

the very structure of social preferences. For these reasons, the setting of a weighting 

system is inevitably affected by the formulation of strong normative assumptions and 

ethical considerations on what a ‘good life’ is, and it should be made as explicitly as 

possible. 

The literature provides an array of methods to set relative weights in a 

multidimensional context (Decancq and Lugo, 2013), although in practice equal weights 

are often assumed among dimensions, i.e. equally important from an ethical point of view, 

as in the case of the Human Development Index (UNDP, 1990). Moreover, quantifying 

how many units of, say, education an individual would give up to compensate an extra 

year of life is a rather complicated task. In the first place, such an evaluation would require 

an amount of information that might be uneasy or even impossible to retrieve. Second, 

the MRS between any two dimensions could vary from an individual to another based on 

the actual levels of the achievements. This has relevant implications, as assuming one 

specific vector of weights may heavily affect interpersonal comparisons (Foster et al., 

2013) and social outcomes, leading to ambiguous results. 

In this paper, we choose to focus on the specific issue of weights with the aim of 

minimising the degree of arbitrariness that is often embodied in their use. Our aim is not 

that of defining an alternative poverty index, but rather that of estimating the individual 

probabilities of being multidimensionally poor and the average probability of 

experiencing multidimensional poverty after testing it for a large set of vectors of weights. 

In this perspective, our method is a complementary way to understand the characteristics 

of multidimensional poverty. 

To show the relevance of our approach, we compare selected European Union (EU) 

countries by estimating the probability to be multidimensional poor for a wide set of 

feasible vectors of weights. To this purpose, we address the issue of weighting indicators 

by applying Stochastic Multicriteria Acceptability Analysis (SMAA) (Lahdelma and 

Salminen, 2001), which allows to embody unknown preferences on the weights assigned 

to each poverty indicator or dimension. Such method was previously used in economics 

 
the same level of well-being: 𝑀𝑅𝑆#!,#" =

%&(()
%(#!

/	%&(()
%(#"

, where 𝐼(𝑥) is the well-being index and 𝑥 

is the vector of achievements for all 𝑗 dimensions. 
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to empirically investigate well-being at the country level both in Italy and the US, by 

analysing regional data (Greco et al. 2018; Lagravinese et al., 2019, 2020). In this article, 

we show that the same approach can be adapted to multidimensional poverty analysis, 

and we apply it for the first time to individual-level data, specifically to Eurostat’s Survey 

on Income and Living Conditions (EU-SILC). We also show that the proposed method 

can be used to robustly assess if a specific population sub-group in a given country is 

more likely to be considered multidimensionally deprived than the same sub-group in 

other countries. 

The article is organised as follows: Section 2 illustrates the logic behind counting 

approaches to multidimensional poverty measurement and discusses the issue of relative 

weights and the most popular methods to assign them. Section 3 introduces a new method 

for measuring multidimensional poverty and Section 4 presents its empirical application 

to the EU-SILC data, discussing the results from both a cross-country and a diachronic 

perspective. Finally, in Section 5 the Generalised Lorenz dominance technique is used to 

perform pairwise country comparisons of the distribution of probabilities to rank them 

from a social perspective with the minimum load of value judgments. Section 6 

concludes. 

 

 

2. Assessing multidimensional poverty 

 

2.1 Counting methods for identifying the multidimensionally poor 

Poverty measurement implies the accomplishment of two fundamental tasks: the first 

is to identify the poor among the total population; the second is to aggregate the 

information on the poor to give an aggregate measurement of poverty, either through a 

poverty index (Sen, 1976) or by using dominance ordering (see Deaton, 1997).  

When performed in a multidimensional setting, the identification step requires to make 

several choices, including defining suitable dimensions and indicators, setting the 

corresponding poverty cut-offs, and defining a system of weights to be applied to each 

dimension or indicator. If multidimensional poverty is conceived as the occurrence of 

multiple simultaneous deprivations, one could study their cumulative distribution across 
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the population by looking at the multiple achievements in which individuals fall short at 

once.  

Empirically, this method translates into aggregating the information about the poor 

first across dimensions, and then – to obtain a single population-wide multidimensional 

poverty measure – across individuals, as for instance in the case of the Global MPI (Alkire 

and Santos, 2014). In this perspective, two specific problems may arise: the first is related 

to imposing a restricted choice of the usable data, which must come from the same source 

as of the studied population and which might not cover all the domains that could be of 

interest for a multidimensional poverty analysis. When such data are available, the 

cumulative distribution of deprivations can be assessed by simply counting the 

dimensions in which individuals are deprived and by assigning scores correspondingly 

(Atkinson, 2003), which requires to define a set of relevant indicators and their 

corresponding cut-offs, and then to create binary deprivation scores for each 

observational unit. To that aim, although not explicitly promoted by any specific 

development or welfare economics theory, the counting approach has become 

widespread, especially in the empirical literature (see Nolan and Whelan, 1996, 2011). 

Starting from the resulting deprivation matrix, a second and even more relevant issue 

remains, i.e. that of assigning a weight to each poverty dimension. Then, the weighted 

sum of deprivations is computed to produce an overall poverty score and, finally, to 

identify the multidimensionally poor by setting a poverty cut-off. Such a framework 

underpins a much-used approach to multidimensional poverty measurement, exemplified 

by the Alkire-Foster method (Alkire and Foster, 2011), also known as the dual cut-off 

approach.  

It is on this second specific issue that the paper will focus, which means that not all 

the shortcomings of a multidimensional approach to poverty measurement will be 

addressed in this context. Yet – as a first step in the analysis of multidimensional poverty 

– the herein proposed method for minimising arbitrariness in choosing weights will 

contribute to significantly reduce the overall degree of arbitrariness in its use. 
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2.2 The issue of relative weights 

One relevant critique to multidimensional poverty indices concerns how to set the 

weights attached to attributes of different nature, as they implicitly reveal how small 

changes in the achievements of different well-being dimensions can or cannot 

compensate each other. Decancq and Lugo (2013) categorize existing weighting methods 

into three main classes: data-driven, normative, and hybrid.  

Data-driven approaches – like frequency-based weights, statistical weights, and most-

favourable weights – are a function of the distribution of the achievements in the society 

and are not based on value judgements about trade-offs between different life domains. 

Frequency-based weights often assign an inverse relation between the frequency of 

deprivation in a dimension and the weight of that dimension (e.g., Deutsch and Silber, 

2005), motivated by the idea that less frequent deprivations should have a higher weight 

because individuals would attach a higher importance to shortfalls in dimensions where 

the majority in their society do not fall short (Desai and Shah, 1988). Statistical weights 

(Krishnakumar and Nadar, 2008), on the other hand, are often classified into two broad 

sets: multivariate statistical methods – of which the most commonly used one is the 

Principal Component Analysis (Klasen, 2000; Noorbakhsh, 1998) – and explanatory 

models based on the idea of the latent variable, like Factor Analysis (Noble et al., 2006), 

the Rasch model (Fusco and Dickens, 2008), multiple indicator and multiple causes 

models (MIMIC) (Di Tommaso, 2007), and structural equation models (Krishnakumar, 

2007; Krishnakumar and Ballon, 2008). Finally, the most-favourable weights technique, 

widely used to set weights in well-being indices (see Despotis, 2005a, 2005b; Mahlberg 

and Obersteiner, 2001; Zaim et al., 2001), is a particular case of the data envelopment 

analysis proposed by Melyn and Moesen (1991) and considers weights as individual-

specific and endogenously determined – i.e., the highest relative weights are given to 

dimensions in which the person performs best. 

Normative approaches depend instead on value judgements about the MRSs. Weights 

can either be set in an equal or unequal way, although they are always assigned according 

to considerations about specific trade-offs among dimensions. The degree of arbitrariness 

involved in this assignment could be overcome by following an ‘expert opinion 
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approach’, that is by letting well-informed persons decide which weighting scheme to 

adopt (see e.g., Chiappero-Martinetti and von Jacobi, 2012). The latter method includes 

the Budget Allocation Technique (Moldan and Billharz, 1997; Chowdury and Squire, 

2006; Mascherini and Hoskins, 2008), where experts are asked to distribute a budget of 

points to the different attributes, and the Analytic Hierarchy Process (Saaty, 1987), which 

compares dimensions pairwise and assigns for each round a score of importance. 

However, to some extent, the arbitrariness of this approach is only raised at an upper 

level, considering the opinion of experts, but leaving unsolved how experts can be 

selected. 

Lastly, hybrid approaches – like stated preference weights (Mack and Lansley, 1985; 

Halleröd, 1995a, 1995b; de Kruijk and Rutten, 2007; Guio et al., 2016; Bossert et al., 

2013) and hedonic weights (Schokkaert, 2007; Ferrer-i-Carbonell and Freijters, 2004; 

Nardo et al., 2008; Fleurbaey, 2009) – are a mix of the former two. 

As we will see in the next section, this paper tries to overcome the arbitrary choice 

involved in the weighting step by introducing a new method to measure multidimensional 

poverty. It is worth stressing that the aim will not be that of defining a specific poverty 

index, but rather that of estimating the individual probabilities of being 

multidimensionally poor and the average probability of experiencing multidimensional 

poverty after testing it for a large set of vectors of weights. 

 

 

3. Measuring the probability of multidimensional poverty 

 

Consider poverty in 𝑑 dimensions across a population of 𝑛 individuals. In each 

dimension, there is a variable number of indicators, for a total number of indicators 𝑝. Let 

𝒚 = &𝑦!"( denote the 𝑛 x 𝑝 matrix of achievements. Each row of the matrix 𝑦! =

)𝑦!#, … , 𝑦!",… , 𝑦!%, gives the achievements of the 𝑘-th individual in each indicator. 

Each column of the matrix 𝑦" = )𝑦#" , … , 𝑦!",… , 𝑦&", gives the distribution of 

achievements in the 𝑗-th indicator across individuals. 

For each indicator, a cut-off 𝑧 is defined. This gives rise to a vector of cut-offs 𝑧 =

)𝑧#, … , 𝑧",… , 𝑧%,. In our analysis, the cut-offs are related to the presence of a given 

qualitative characteristic, except for monetary income. Thus, starting from the matrix 𝒚 
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of achievements, one can get a matrix of deprivations 𝒈 = &𝑔!"(, where the generic 

element 𝑔!" = 1 when 𝑦!" = 𝑧" and 𝑔!" = 0 when 𝑦!" ≠ 𝑧". For monetary income and 

ordinal variables where the outcomes are ordered from the worst to the best, one has 

𝑔!" = 1 when 𝑦!" ≤ 𝑧" and 𝑔!" = 0 when 𝑦!" > 𝑧". Each row of the matrix 𝑔! =

)𝑔!#, … , 𝑔!",… , 𝑔!%, shows in which indicator the 𝑘-th individual is deprived. Each 

column of the matrix 𝑔" = )𝑔#" , … , 𝑔!",… , 𝑔&", gives the number of individuals who are 

deprived in the 𝑗-th indicator. 

From the matrix of deprivation, one can build a vector of, say, deprivation scores by 

calculating – for each individual – the weighted sum of deprivations. Let 𝐶 =

)𝐶#, … , 𝐶!,… , 𝐶&, denote the vector of deprivation scores and 𝑣 = )𝑣#, … , 𝑣",… , 𝑣%, the 

vector of weights, where ∑ 𝑣" = 1%
"'#  and 0 ≤ 𝑣" ≤ 1, for 𝑗 = 1,… , 𝑝. Thus, a unique set 

of weights would be required to calculate 𝐶, and this choice has some arbitrary content. 

By maintaining this assumption for the moment, it will be that 𝐶! = ∑ 𝑔!"𝑣"
%
"'# , where 

either 𝑔!"𝑣" = 𝑣" when the individual is deprived in the 𝑗-th indicator or 𝑔!"𝑣" = 0 when 

the individual is not deprived in the 𝑗-th indicator. Thus, for an individual who is not 

deprived in any indicator, 𝐶! = 0, while for an individual that is deprived in all indicators 

𝐶! = ∑ 𝑣" = 1%
"'# . In the general case, 0 ≤ 𝐶! ≤ 1. 

At this stage, the standard approach to counting and multidimensional poverty 

measurement also known as the dual cut-off method (Alkire and Foster, 2011) requires to 

define a further cut-off 𝑓, where 0 < 𝑓 ≤ 1, to identify individuals who are 

multidimensionally poor, i.e. those for which 𝐶! ≥ 𝑓. This means that the deprivations 

of those individuals for which 𝐶! < 𝑓 will be disregarded. Obviously, this choice has also 

an arbitrary content, as it introduces a discrete absolute cut-off to identify the poor. 

Our approach removes both the need to make recourse to a unique set of weights to 

calculate the individual level of deprivation and the need to identify an absolute cut-off 

of the weighted sum of deprivations to identify the poor while providing a new method 

to deal with multidimensional poverty.3 With regard to the first issue, instead of setting a 

 
3 At this stage, the proposed method is still fully consistent with the standard framework for 
multidimensional poverty measurement (Alkire and Foster, 2011) as it allows to proceed on to 
compute all partial indices needed to build the poverty measure 𝑀* derived through the Alkire-
Foster dual cut-off method. 
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unique vector of weights 𝑣, we use a large set of randomized vectors of weights from a 

uniform distribution which allows to have an approximation of the whole space of 

feasible weights (see Tervonen and Ladhelma, 2007). Thus, we will have a matrix 𝒗 =

&𝑣("( of size 𝑚 x 𝑝, where 𝑚 is the number of vectors used. Each row of this matrix 𝑣( =

)𝑣(#, … , 𝑣(",… , 𝑣(%, gives the specific vector of weights by which the indicators are 

weighted. Each column of the matrix 𝑣" = )𝑣#" , … , 𝑣(",… , 𝑣)", gives instead the set of 

different weights by which each indicator is weighted in each replication.  

It is worth noting that by applying a uniform distribution we are in fact assuming an 

unrestricted domain of the vectors of weights. Even though the fact that a poverty 

dimension is included in a multidimensional list would imply that a non-zero weight 

should be assigned to it, and that not all weighting schemes may be equally likely in a 

given society, we prefer to be neutral with respect to the distribution of social values in 

the population. This is done by admitting all possible views including the possibility that 

– even among collectively shared dimensions – different political and social attitudes 

might lead to totally neglect some dimensions of poverty, implicitly giving them a zero 

weight.  

By this way, we avoid restricting the domain of admissible preferences to judge about 

multidimensional poverty, obtaining results in a “no matter one’s view” environment. It 

is worth stressing that by dealing with weights we are not removing all element of 

arbitrariness that characterise the analysis of multidimensional poverty; yet, we contribute 

to remove a fundamental element of arbitrariness, consisting in the implicit (and hidden) 

social preferences that are conveyed by the choice of a unique set of weights.4 

At this stage, for any vector of weights, one has the corresponding vector 𝐶( =

)𝐶#(, … , 𝐶!(,… , 𝐶&(,, i.e., the deprivation score of each individual measured by the use 

of the vector 𝑣(. The final outcome is a matrix 𝒉 = &ℎ*"( where each row ℎ! =

)ℎ!#, … , ℎ!(,… , ℎ!), gives 𝑚 deprivation scores for the 𝑘-th individual depending on 

the changes in weighting vectors, while each column ℎ( = )ℎ#(, … , ℎ!(,… , ℎ&(, gives the 

distribution of the deprivation scores across individuals for each weighting vector 𝑠. 

 
4 Considering the economic applications of SMAA, uniform distribution of weights has been 
used, among others, by Greco et al. (2018); Coco et al. (2020); Resce and Shiltz (2021). 
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According to this framework, a new indicator of poverty at an individual level is 

introduced, which is based on a ranking function. We first define: 

 

(1)  𝑟(𝑘, 𝑣() = 1 + ∑ 𝜌[𝐶(𝑖, 𝑣() > 𝐶(𝑘, 𝑣()]*+!     for 𝑠 = 1,… ,𝑚 

 

where 𝑟 defines the rank, 𝜌 = 1 when the condition in square brackets is true and 𝜌 = 0 

when the same condition is false. Thus, the rank of individual 𝑘, for each vector of 

weights 𝑣(, is one plus how many times the weighted average of multidimensional 

poverty of 𝑘 (𝐶(𝑘, 𝑣()) is below the weighted average of multidimensional poverty of the 

other individuals (𝐶(𝑖, 𝑣()).  

Thus, the value assumed by the variable 𝑟(𝑘, 𝑣() is one plus the number of individuals 

that are more multidimensionally poor than the individual 𝑘. Therefore, the higher the 

value of 𝑟(𝑘, 𝑣(), the lower the poverty of the individual 𝑘. Note that 𝑚𝑖𝑛)𝑟(𝑘, 𝑣(), = 1 

when 𝐶(𝑘, 𝑣() is always above 𝐶(𝑖, 𝑣(), i.e. the 𝑘-th individual is more 

multidimensionally poor than any other individual. On the other side, 𝑚𝑎𝑥)𝑟(𝑘, 𝑣(), =

𝑛 where the 𝑘-th individual is less multidimensionally poor than any other individual. 

The final outcome of this step is a matrix of ranks 𝒓 = [𝑟!(], in which each row 𝑟! =

)𝑟!#, … , 𝑟!(,… , 𝑟!), is – for the 𝑘-th individual – the ranks occupied for the 𝑚 possible 

set of weights considered, while each column 𝑟( = )𝑟#(, … , 𝑟!(,… , 𝑟&(, is the distribution 

of ranks across individuals for a specific vector of weights. 

As a second step, we compute the total number of the vectors of weights 𝑉, for which 

the 𝑘-th individual assumes precisely rank 𝑟: 

 

(2)    𝑉!, = ∑ 𝜙[𝑟!( = 𝑟](  

 

in which 𝜙 = 1 anytime the use of the vector 𝑣( gives 𝑟!( = 𝑟, and 𝜙 = 0 otherwise. 

Note that, by construction, in the case where two or more individuals have the same 

achievement, they also have the same rank. The main outcome of our analysis is a 

measure of the deprivation score of each individual given by the probability of occupying 

a given rank 𝑟 in the distribution: 
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(3)     𝑏!, =
-!"
)

 

 

where 𝑏!, is the probability that the 𝑘-th individual gets the 𝑟-th position in the ranking, 

given by the ratio of the number of weighting vector for which the individual assumes 

rank 𝑟 and the total number of vectors 𝑚. It is worth clarifying at this stage that the 

probability of equation (3) should not be understood as a measure of poverty in the 

traditional sense, as it collapses into a single probability the outcomes that can be obtained 

when applying different set of weights to a given set of poverty indicators. In this 

perspective, the probability is neither an absolute nor a relative measure, as it can embody 

both absolute and relative indicators of poverty giving information on how likely is that 

different set of weights may define any individual as multidimensional poor. 

The final outcome is a matrix of probabilities 𝒃 = [𝑏!,] in which each row 𝑏! =

)𝑏!#, … , 𝑏!,,… , 𝑏!&, gives – for the 𝑘-th individual – the set of probabilities of occupying 

a rank from 1 to 𝑛, i.e. to be multidimensional poor with either a higher or lower 

probability with respect to other individuals. Each column 𝑏, = )𝑏#, , … , 𝑏!,,… , 𝑏&,,, 

instead, gives the probabilities of all individuals of occupying a specific rank 𝑟.5 

At this stage, the problem faced by the standard approach of setting a further cut-off 𝑓 

to compute a synthetic measure of multidimensional poverty would translate into defining 

until which rank 𝑙 the analyst wants to consider the overall probability of being 

multidimensionally poor. It is worth noting that in this case the choice is about a threshold 

represented by a rank, and not about the number of deprivations above which the 

individual can be considered multidimensionally poor. This means that the use of the rank 

𝑙 is qualitatively different from the dual cut-off approach; indeed, while in our approach 

the individual probabilities of occupying any given rank are independent of the choice of 

𝑙, in the dual cut-off approach falling into multidimensional poverty depends on the cut-

off setting the number of deprivations. 

To better explain this point, it is worth noting that the threshold 𝑙 simply corresponds 

to the preferred percentile of the distribution of probabilities one wants to focus on. It is 

worth recalling that )𝑟(𝑘, 𝑣(), = 1 indicates the position occupied by the poorest 

individual (equation (1)). Thus, a given threshold 𝑙 simply corresponds to a subset of 𝑛 

 
5 A simple example of the way in which the method works is provided in Annex 1. 
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possible ranks, i.e. 𝑙 = 𝛾𝑛, where 0 < 𝛾 ≤ 1 is the fractional rank of the total population 

included in the analysis.6  

Once the threshold 𝑙 has been chosen, equation (3) allows to measure the individual 

cumulative probability of being below the rank 𝑙, which – for the 𝑘-th individual – is 

given by the sum of the probabilities of occupying any rank from 1 to 𝑙. This probability 

is given by: 

 

(4)     𝑏!. = ∑ 𝑏!,.
,'# ≤ 1 

 

To some extent, it must be recognised that the choice of γ involves some degree of 

arbitrariness, and this may be interpreted as a shortcoming of the approach; yet, it is worth 

stressing that this choice does not affect the estimated individual probabilities of 

occupying any given rank (equation (3)), but only the cumulative individual probabilities 

of being below a given rank (equation (4)). As it can be observed, the individual 

cumulative probabilities of being multidimensionally poor below a given rank increases 

when moving 𝛾 toward 1, i.e. when considering increasing fractions of the ranking 

distribution. Thus, the threshold-percentile 𝛾 does not correspond to a given (weighted) 

sum of deprivations above which the individual can be considered multidimensionally 

poor as in standard poverty analysis, but rather to the subset of the distribution the analyst 

may consider meaningful to focus on in order to estimate the overall probability of being 

multidimensionally poor. It follows that, unlike any poverty cut-off, 𝛾 does not bear a 

normative weight and can be modified according to the aim of the analysis. It follows, in 

our view, that the degree of arbitrariness involved in the choice of the threshold is less 

conditioning than that involved in parameters that, when changed, may alter the estimated 

amount of poverty, as in the case of changing a poverty line in the traditional context of 

poverty measurement.7 

 
6 For example, if the total population is 𝑛 = 100, one may be interested to investigate the 
probability of any individual of being multidimensional poor until rank 20. In symbols, this means 
that 𝑙 = 20 and the fractional rank 𝛾 = 0.2 (or 20% of the population). 
7 It is worth stressing that under no circumstances the choice of γ should be considered 
prescriptive in a methodological sense; in our perspective, it neither embodies a policy advice nor 
it represents a constraint. Instead, it highlights the flexibility of our approach and emphasizes its 
distance, rather than resemblance, to any approach based on the setting of a poverty cut-off 
(including, but not limited to, the dual cut-off method by Alkire and Foster, 2011). 
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Thus, unlike in standard approaches, according to our method there is no need to define 

a censored matrix including the individuals who have been identified as poor while at the 

same time excluding the deprivations of the non-poor according to the absolute cut-off 

chosen. Rather, we work with a reduced matrix with 𝑙 < 𝑛 columns, where 𝑙 identifies 

the rank associated to a specific subset of the population the analyst wants to focus on.  

By applying equation (4), the outcome is a vector 𝐵. = )𝑏#. , … , 𝑏!. , … , 𝑏&. , that for each 

individual gives the cumulative probability of having a rank below 𝑙. It is worth recalling 

once again that the individual probabilities of occupying any given rank are independent 

of 𝑙, while the individual cumulative probabilities of occupying a rank below 𝑙 are not, as 

they obviously depend on 𝑙, with the trivial outcome that the cumulative probability of 

occupying a rank below 𝑛 is equal to 1. According to this framework, by definition, the 

following will be true: 

 

(5)     #
&
∑ 𝑏!.&
!'# = 𝛾 

 

i.e. the overall average probability of being below 𝑙 is equal to the fractional rank.8 

Equation (5) simply states that the overall probability of occupying a rank below 𝛾, i.e. 

below a given fraction of the population, is equal to 𝛾. This is implicit in our approach, 

as we are measuring the probability of any individual of occupying any given rank; thus, 

the sum of the probabilities of all individuals of being below γ, is equal to γ. Of course, 

when splitting individuals by groups – as in the case of our empirical application – or 

over time, the average probabilities among groups or across time may differ, allowing to 

assess multidimensional poverty either cross-sectionally or dynamically (or both). In 

principle, the calculation of individual probabilities could potentially be extended to 

identify a range of continuous ranks, i.e., a continuous probability of being 

 
8 For instance, consider the case of two individuals A and B and two dimensions, where A is 
deprived in both dimensions while B is not. For 𝛾 = 1 they both have 𝑏+, = 1, thus !-∑ 𝑏+,-

+.! =

1. For 𝛾 = 0.5, A has 𝑏+, = 1, B has b/0 = 0, by which !-∑ 𝑏+,-
+.! = 0.5. For 𝛾 = 0, they both 

have b/0 = 0, and !-∑ 𝑏+,-
+.! = 0. 
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multidimensionally poor, as opposed to a dichotomous measure distinguishing the poor 

from the non-poor.9 

Starting from the estimated individual cumulative probabilities, one can obtain 

average probabilities of multidimensional poverty, which is our way of reducing the 

distribution of individual probabilities to a synthetic and comparable parameter. In 

particular, one may study the average probability of multidimensional poverty of one 

specific group over time or the same average can be used for comparisons across different 

groups, either in a single point in time or diachronically, as in proper panel analyses.  

As an empirical application of the proposed approach, in this paper average 

probabilities are calculated considering groups of individuals from different countries. 

The average probability of individuals belonging to group 𝑞 to be below rank 𝑙 can be 

easily obtained by calculating: 

 

(6)     𝑏/ =
#
&#
∑ 𝑏!/.
&#
!'#  

 

where 𝑛/ is the population of group 𝑞.10 In this case, one can compare the average 

probability of each group to have individuals below rank 𝑙. Just to make the point clearer, 

if in a group all individuals occupy a rank greater than 𝑙, then 𝑏!/. = 0 for all 𝑘, and thus 

𝑏/ = 0. On the other side, if in a group all individuals have a rank lower than 𝑙, then 

𝑏!/. = 1 for all 𝑘, and thus	𝑏/ = 1. In general, different groups will have different average 

probabilities and the size of these probabilities will help to compare the distribution of 

multidimensional poverty across groups. 

Furthermore, the contribution of each group to the average probability of equation (5) 

can be obtained by the following: 

 

(7)     𝑏/
0 = #

&
∑ 𝑏!/.
&#
!'#  

 
9 To this regard, the proposed approach provides a basis to combine two approaches of 
multidimensional poverty measurement: that of counting methods and the fuzzy sets approach 
(Cerioli and Zani, 1990; Cheli and Lemmi, 1995; Chiappero-Martinetti, 1994). We thank an 
anonymous referee for suggesting such an analogy, which would deserve further theoretical 
analysis that goes beyond the scope of the present paper. 
10 Equation (6) is given for a cross-section analysis that is repeated over time. But the same 
equation could be used for one country over time if 𝑞 is interpreted as the time parameter. 
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where now the contribution of each group 𝑞 to the average probability is measured over 

the total population 𝑛 instead than 𝑛/. By this way, one can say that below the fractional 

rank 𝛾, for example, a fraction 𝛼𝛾 comes from group 𝐴 and a fraction 𝛽𝛾 comes from 

group 𝐵, with 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛽 ≤ 1. It follows from (7) that ∑ 𝑏/
0

/ = 𝛾. It is worth 

noting that, while the value 𝑏/
0 depends also on the size of the groups, 𝑏/ is independent 

from it. In the special case where (6) is equal for all groups, the relative contribution of 

each group to (7) would only reflect the population size 𝑛/. 

At this stage, it is worth observing how the average probability of equation (6) behaves 

with regard to the axiomatic structure. In particular, it satisfies the following: 

a) Symmetry: the average probability is not affected by the exchange of deprivation 

scores among individuals; 

b) Population-replication invariance: when the existing population is replicated, the 

possible ranks go from 1 to 𝜆𝑛, where 𝜆 is the number of times the population is replicated 

(e.g. for doubling 𝜆=2). By maintaining the same fractional rank 𝛾, equation (6) would 

give the same outcome. However, it is worth noting that the same 𝛾 is not the same 

absolute rank 𝑙; in the replicated population, indeed, it will be that 𝑙∗ = 𝛾(𝜆𝑛) > 𝑙; 

c) Poverty focus: the individual probabilities of occupying any given rank do not 

depend on 𝑙. However, when changing the rank 𝑙, the cumulative individual probabilities 

will change, and the average probability will also change. In the same vein, if the 

probability of an individual of occupying ranks above 𝑙 will change, the average 

probability of being below 𝑙 will not change; 

d) Monotonicity: the average probability decreases when the probabilities of 

occupying ranks below 𝑙 decrease; it increases when the same probabilities increase. 

Furthermore, if the achievements of any individual were to improve in a way that the 

individual is not anymore deprived in either dimension, their probability of being 

multidimensional poor will decrease, which means that the average probability also 

decreases. Obviously, if the achievements of any individual will improve without moving 

them out of deprivation in that specific dimension, the probability of being 

multidimensional poor will not change. To some extent, monotonicity does not occur if 

all individuals were to exit the same deprivation at once, as it would be equivalent to 

measure the probability of multidimensional poverty on a narrower set of dimensions. 
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e) Distribution sensitivity: in general, this axiom would require that a measure of 

poverty decreases more when an improvement occurs among the poorest of the poor 

population. As calculated in equation (6), our measure does not satisfy this axiom, as the 

same reduction of the probability gives the same outcome regardless of which individuals 

below the fractional rank are involved in this reduction. This feature, however, is shared 

by common poverty measures, as the standard poverty gap, and it is not necessary a 

shortcoming of our approach. To satisfy this axiom, our measure could be transformed as 

the standard poverty gap is transformed in the Foster-Greer-Thorbecke measures of 

poverty; for example, by raising equation (3) at a power 𝜀 > 1, more relevance will be 

given to the highest individual probabilities of being poor when calculating the average 

probability. 

f) Additive decomposability by subgroups: this is implicit in equation (7). 

 

From a computational perspective, in this paper we select 𝑚 = 10,000 since, 

according to Tervonen and Ladhelma (2007), 𝑚 ≥ 9,604 allows to consider a large set 

of feasible weights for estimating 𝑏!,, with an error limit ≤ 0.01 that can be accomplished 

with a confidence interval ≥ 95%.11  

In this approach, as said above, any of these vectors of weights is considered equally 

important irrespective of how it deviates from the popular benchmark of equal weights, 

usually adopted to reflect either the lack of information about individual preferences or 

an agnostic attitude of the analyst (Aaberge and Brandolini, 2015). Thus, one might get 

empirical results that are affected by a subfamily of controversial weight vectors that 

some groups or individuals could not agree upon. For instance, the space of feasible 

weights will certainly include a number of vectors of weights in which only one indicator 

has a weight equal to 1, and all of the remaining indicators have a zero-weight, a feature 

that some might not deem appropriate to assess multidimensional poverty (Marlier and 

Atkinson, 2010). Yet, such a situation recalls one of the most used criteria to identify the 

 
11 As the Monte Carlo simulation should have about 10,000 repetitions to be robust (Tervonen 
and Ladhelma 2007), it is worth noting that the method proposed in this paper is highly 
demanding from a computational perspective, as the model here used has a memory complexity 
of 68,093 Mb. With 12 indicators it would reach a memory complexity of 359,328 Mb. The 
complexity of the algorithm is estimated using the GuessCompx R package developed by Agenis-
Nevers et al. (2019). To some extent, the growth of complexity may be thought of as the price of 
having more general conclusions. 
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poor in a multidimensional framework, called the union method of identification 

(Atkinson, 2003), according to which it is sufficient to experience deprivation in just one 

indicator among many to be identified as multidimensionally poor. The union method is 

often contrasted with the intersection method (Atkinson et al., 2002; Duclos et al., 2006), 

which identifies the poor as those individuals whose achievements fall short in all the 

considered indicators. This latter approach has also serious ethical implications, as it 

identifies as non-poor individuals who might suffer from extensive deprivation in 

multiple indicators, though not in all of them. By the same token, any intermediate 

approach could be easily seen just as arbitrary and not yielding to robust empirical results. 

In conclusion, there is no reason for a union-like weighting scheme to be judged unethical 

compared to the others. The representation of all possible individual preferences and 

shared social values that is embedded in the large set of feasible weights used in this paper 

is precisely the strength of our approach, rather than its weakness. 

From an operational point of view, it is worth recalling that our analysis is performed 

considering a variable number of indicators into 𝑑 = 3 dimensions (decent work, income, 

human development) in which there is a variable number of indicators. In order to avoid 

that the relative importance of each dimension in the calculation of 𝐶 depends on the 

number of indicators available for each dimension, the randomized set of weights is here 

obtained by implementing a two-step procedure: first we bound the generation of weights 

such that ∑ 𝑣(" ≤ 1/3%$
"'# ; ∑ 𝑣(" ≤ 1/3%%

"'# ; ∑ 𝑣(" ≤ 1/3%&
"'# , where 𝑝#, 𝑝2, and 𝑝3 are the 

total numbers of indicators in each dimension 𝑑 and 𝑝# + 𝑝2 + 𝑝3 = 𝑝. Since the number 

of indicators varies across dimensions (2, 1, and 9, respectively), we will have that each 

𝑣(" ≤ 1/6 in 𝑑#, each 𝑣(" ≤ 1/3 in 𝑑2, and each 𝑣(" ≤ 1/27 in 𝑑3 in accordance with 

the nested weighting principle (Alkire and Santos, 2014). As a second step, we 

normalized all weights to have ∑ 𝑣(" = 1%
"'#  in all cases. Equations (6) and (7) will be 

computed with 𝑞 indicating countries.12  

It is worth noting that the choice of the previous bounding is a mere operational choice 

that is mostly data-driven, as we work with a different number of indicators within each 

dimension. Without such an upper bound, it would follow that the dimensions containing 

a greater number of indicators would end up weighing more than the rest, by this way 

 
12 The assignment of weights in the first step could also be avoided and replaced using different 
vectors of weights as for the calculation of individual probabilities. 
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affecting the results of the analysis. While the choice of imposing an upper bound to the 

weighting scheme can bear consequences in terms of results, we want to stress that the 

method per se does not require to impose this or any other restriction in terms of the 

weighting structure – hence, the generality of the proposed method is preserved also in 

the presence of bounds. Furthermore, it is worth recalling that even by operating such an 

initial restriction in terms of weighting structure it is still possible to have one or more 

dimensions valued as zero – i.e. the upper bound works as a constraint in the first step, 

but its effect can still be offset through the final normalization. 

 

4. Empirical application 

 

4.1. Data  
In the European context, the most suitable statistical source to investigate 

multidimensional poverty while aggregating the information about the poor first across 

dimensions and then across individuals is represented by the European Union Statistics 

on Income and Living Conditions (EU-SILC). EU-SILC was launched in 2003 on the 

basis of an agreement between Eurostat and a number of Member States with the aim of 

providing timely and comparable annual data on variables such as income, social 

exclusion, material deprivation, health, education and labour at both household and 

individual level.  

Thus, the database is wide enough to assess deprivations over multiple facets of life. 

Moreover, since 2010 it is used for monitoring poverty and social exclusion in the EU in 

accordance with the Europe 2020 Strategy, and it has been used by previous literature in 

some empirical studies (see Biegert, Ebbinghaus, 2020; Paulus, Tasseva, 2020; Pohlig 

2021). For all these reasons, it appears to be an appropriate and sound basis of information 

to measure multidimensional poverty in the EU. 
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4.2. Choice of dimensions and indicators 

To produce reliable statistics, procedures for selecting life domains in a 

multidimensional setting should also minimize the degree of arbitrariness. However, 

retrieving information on shared societal values can be troublesome, especially when the 

evaluation concerns different countries or supranational entities like the EU.   

For the empirical application, we select three dimensions of well-being to evaluate in 

what spheres of life individuals fall short: (i) Decent work, (ii) Income, and (iii) Human 

development. Such dimensions reflect three important domains covered by European 

social policies (Atkinson et al., 2002). Moreover, they represent publicly agreed values 

by the European people, as testified by written public documents about common values 

and social development objectives, like the Charter of Fundamental Rights of the EU 

(European Parliament, Council of the European Union and European Commission, 2000). 

Such agreement was established through some consensus-building process at one point 

in time and remained relatively stable thereafter.13 Finally, suitable indicators for all these 

dimensions can be easily found in the EU-SILC. Although relying on existing data might 

not always be the most convenient strategy to select dimensions, it is usually sufficient to 

carry out a methodological exercise (see e.g., Bourguignon and Chakravarty, 2003 as 

cited by Alkire, 2007), or to test a newly proposed measurement method, as in the case 

of this paper. 

The Decent work concept refers to the right to employment opportunities for 

productive work and the possibility to deliver a fair income in conditions of freedom, 

equity, security and human dignity (ILO, 1999). From the available data in the EU-SILC, 

we select two relevant indicators: Activity status and Low work intensity, respectively 

accounting for employment conditions and (quasi-) joblessness – that is, living in 

households where working age members worked less than 20% of their total potential 

during the previous 12 months – as conceived by Eurostat as part of the composite 

indicator At Risk of Poverty and Social Exclusion rate (AROPE). 

As regards to the Income dimension, different indicators in the EU-SILC allow to 

capture the level of social protection offered to European citizens, e.g., through the 

 
13 National Constitutions and laws have been exploited to retrieve information on publicly agreed 
values to be used in multidimensional poverty assessments – see for instance the National Council 
for Evaluation of Social Development Policy experience in Mexico (CONEVAL, 2010) and some 
scholarly initiatives (Burchi et al., 2014). 
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variables Family/Children related allowances, Social exclusion not elsewhere classified, 

and Housing allowances. Because all the policies just mentioned sustain people’s 

standard of living by integrating their income through the channel of monetary transfers, 

it appears reasonable to choose an income poverty indicator as a general proxy for this 

dimension. The variable Monetary poverty (after transfers) is thus used to account for 

deprivations in the Income domain. 

Finally, Human development includes all those conditions that protect the right to the 

human flourishing of individuals in a just and protected environment– e.g., through the 

right of education and the protection of human health and the environment. Different 

indicators from EU-SILC can be used to construct deprivation indicators in this 

dimension: some of them relate to human health, while some others refer to the 

educational attainment or to the quality of the living environment. The nine selected 

variables and the corresponding modalities are outlined, along with all other chosen 

indicators, in Table 1. 

 

(Table 1) 

 

 

4.3. The probability of being multidimensionally poor 
For the empirical analysis, we selected four waves of the EU-SILC (2008, 2010, 2012, 

2014) including 10 countries: Austria (AT), Belgium (BE), France (FR), Germany (DE), 

Greece (EL), Italy (IT), Luxemburg (LU), Portugal (PT), Spain (ES), and the United 

Kingdom (UK). The whole sample size is of 182,912 individual observations in 2014; 

181,864 in 2012; 178,914 in 2010; and 176,518 in 2008. The average sample size by 

country is 11,065 individuals in Austria, 10,793 in Belgium, 22,306 in Germany, 14,177 

in Greece, 27,127 in Spain, 20,618 in France, 39,520 in Italy, 9,429 in Luxembourg, 

11,096 in Portugal, and 13,919 in the UK. Yearly sample sizes for each country are 

reported in Table 2, which shows the descriptive statistics by country and year of the 

individual probabilities of being below the fractional rank 𝛾=0.2 – i.e. of being among 

the poorest 20% of the overall population. 

In six out of nine countries, the median probability of being multidimensionally poor 

(column 𝐷) is equal to zero; exceptions are Greece, Spain, Portugal, and Italy, even 
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though for not all years considered. This evidence is consistent both with the endeavour 

to provide a robust estimation of multidimensional poverty in the selected European 

countries, where living conditions are on average among the highest in the world, and 

with the indicators chosen for the analysis, that aim at reflecting situations of acute 

poverty. Obviously, where the median probability is not zero, the percentage of 

individuals involved in multidimensional poverty is above 50% (column 𝐹), with the 

peaks being in Greece and Portugal. 

The calculation of equation (6) is reported in column 𝐴. There are two analytical 

perspectives that can be exploited to interpret the results. The first one is to observe what 

happens within a given country over time. To this purpose, one can distinguish those 

countries where the average probability of multidimensional poverty has reduced (AT, 

DE, FR, LU) from those countries where it has increased (EL, ES, PT). Finally, there are 

also countries where the same probability has changed across the years without a clear 

pattern (BE, IT, UK). The second perspective is to compare the levels of the probabilities 

across countries.  

In Austria, Germany, France, and Luxembourg, individuals have the lowest 

probability of being below the fractional rank 𝛾=0.2. The highest average probability is 

instead recorded in Greece, Spain, and Portugal, with Belgium, Italy, and UK positioned 

halfway between these two extremes. From this outcome, the geographical distribution 

of the probability of being multidimensionally poor appears rather clear, opposing 

countries of the continental Europe on the one hand and countries of the Mediterranean 

area on the other. 

 

(Table 2) 

 

The interpretation of these results becomes even clearer by observing the highly 

skewed shape of the probability distributions for each country shown in the box plots 

(Figure 1). Due to the large outliers, country mean probabilities lie outside the 

interquartile range in most cases. However, for some Southern European countries – 

Greece, Spain, and Portugal – probability distributions are extremely sparse: even though 

country means are included in the interquartile range, extreme values attain the value of 
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1, as visually described by the overlapping of the maximum of the box plot and the upper 

bound of the probability distribution.  

That means that, in these countries, there are some individuals who have a 100% 

probability of being among the poorest 20% of the population regardless of the weighting 

scheme applied to the set of multidimensional poverty indicators. Belgium and Italy also 

feature quite sparse distributions, with an average maximum probability exceeding 50% 

(Belgium in 2010 and 2012) and 90% (Italy in 2012) of being among the poorest 20%. 

Conversely, in Austria, France, Germany, Luxembourg and the UK, probability 

distributions are narrower and close to zero, suggesting a greater robustness of the 

individual probabilities to changes of the weighting scheme attached to different poverty 

dimensions. 

 

(Figure 1) 

 

It is also worth noting that – in some cases – yearly changes appear to be more 

meaningful when even small variations of the means are associated to a substantial 

increase (or decrease) of the interquartile range. This is the case of Belgium, where the 

probability of being poor durably increases after 2008 due to the sparsity of individual 

probabilities in the range between 0 and 𝑝25. Greece and Italy, on the other hand, show 

a larger variability in the probability of falling into the poorest 20% in 2012 compared to 

the previous years, while Portugal see its probability distribution becoming even sparser 

in 2014.  

In all these cases, the discontinuity is also driven by an enlargement of the proportion 

of individuals who have non-zero probability to be in the lowest quintile of the 

distribution: it increases by almost 7 percentage points in Greece and by 4 percentage 

points in Italy between 2010 and 2012; and it grows by 62 to 65% in Portugal between 

2012 and 2014 (see column 𝐹, Table 2). 
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5. Dominance conditions 

 

5.1 Extending dominance criteria to the probabilities of being non-poor 
In this section, a step further is done to investigate multidimensional poverty by 

considering the whole distribution of probabilities below rank 𝑙 by country. This means 

using all the information provided by vector 𝐵., without collapsing the information into 

the calculation of equation (6). To build this process, it is convenient to order individuals 

in each country from the lowest to the highest probability of being non-poor, which means 

to use the complement of 𝑏!.  as an indicator of the position in the poverty distribution.14 

This means that instead of using 𝑏!. , in this section individuals will be ordered by 

𝑥!. = 1 − 𝑏!. , where 𝑥!.  is the probability of being non-poor. By this way, the 

multidimensionally poorest individuals will have 𝑥!. = 0, while individuals that are not 

multidimensionally poor will have 𝑥!. = 1, i.e. the certainty of being non-poor. In other 

terms, by ordering individuals according to 𝑥!. , we build a distribution of probabilities of 

being non-poor, which can be used to investigate second-order dominance (SD) 

conditions through generalised Lorenz curves. 

The advantage of using SD is twofold, and it may be linked to the analysis of 

multidimensional poverty. First, SD allows to formulate social norms according to which 

a given outcome may be socially preferred for a wide class of social value judgements.15 

The basis of this approach can be traced back to Atkinson (1970), who was the first to 

give terms under which a Lorenz inequality comparison has normative significance. As 

shown by Lambert (1993), the Atkinson theorem tells us that for increasing and strictly 

concave utility functions, the distribution with the dominating Lorenz curves is preferred. 

When the distributions have different means, the result is extended to generalised Lorenz 

dominance, given by the product of Lorenz curves and the mean of the distributions. 

In the specific case, conditions will be derived under which a distribution of 

probabilities in a given country would be socially preferred to an alternative distribution 

of probabilities in another country under mild conditions. Second, SD conditions possibly 

obtained at a given fractional rank 𝛾 would hold for all fractional ranks below 𝛾; thus, 

 
14 This process is analogous to the ranking of individuals from the poorest to the richest in terms 
of incomes when analysing a typical income distribution. 
15 See for all Lambert (1993) and Deaton (1997). 
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this outcome would avoid replicating the analysis to understand whether the outcome is 

robust to alternative hypotheses about the value of 𝛾. In other terms, if the dominance 

condition holds from 0 to 𝛾, it will hold for any fractional rank 𝜃 < 𝛾, which is a more 

general result than computing equation (6) and (7) for a given fractional rank. 

Furthermore, using SD on the overall distribution of probabilities would make irrelevant 

the choice of 𝛾, in the same way as SD makes irrelevant the choice of the poverty line 

(Deaton, 1997). 

For our purposes, to investigate multidimensional poverty, we still focus on the 

probability of being non-poor truncated at 𝛾=0.2. The normative properties of this 

distribution can be analysed by using the Generalised Lorenz (GL) dominance of the 

probabilities 𝑥!. . As in the standard theory of Lorenz dominance, if the GL curve of the 

cumulated 𝑥!.  in country 𝐴 dominates the GL curve of 𝑥!.  in country 𝐵, it would mean 

that in country 𝐴 there will be a lower cumulated probability of having individuals below 

the fractional rank 𝛾 (and thus below any fractional rank 𝜃 < 𝛾). 

This outcome, by analogy with the theory of dominance, can be linked to a social 

welfare function truncated at 𝛾=0.2. To this purpose, one can define a class of social 

norms 𝑊(𝑥) – depending on the vector of probabilities of being non-poor – that satisfies 

𝑊4(𝑥) > 0 and 𝑊44(𝑥) < 0, i.e. an increasing and concave social welfare function. 

These two conditions only require, respectively, that the social preference increases both 

when the probability of being non-poor increases and after a “transfer” of the probability 

of being non-poor from a higher to a lower probability.16 

The case of GL dominance, however, may not occur; rather, GL curves may cross. 

When this happens, unanimous conclusions about a social preference are prevented. Yet, 

some conclusions may be achieved with the additional requirement that 𝑊444(𝑥) > 0. 

This feature corresponds to the principle of diminishing transfer, which embodies – in the 

specific case – the assumption that an increase of the probability of the poorest of being 

less poor increases the social preference more than an increase of the same probability of 

the least poor.  

 
16 This second condition is simply a restatement of the principle of transfers that holds when 
income is the argument of a social welfare function, and that fundamentally embodies aversion 
to inequality. In the specific case, it can be translated into a generic social norm of aversion to 
poverty. 



 25 

Intuitively, and considering two individuals 𝑗 and 𝑘 for which 𝑥". < 𝑥!. , this condition 

means that an increase of 𝑥". will be more socially preferred than an equivalent increase 

of 𝑥!. . It also implies that the focus is now shifted to dominance in the part of the 

distribution of probabilities before the crossing, and that unanimous social preferences 

can be drawn only until that point. This means that a social preference is potentially 

restricted to a narrower class of social welfare functions; indeed, unanimous conclusions 

about social welfare cannot be drawn on the whole distribution, as the outcome might 

change when changing the poverty line (Lambert, 1993).  

To this regard, assume two countries 𝑠 and 𝑟; if 𝐺𝐿( >5 𝐺𝐿,, where the symbol >5 

means that the distribution of country 𝑠 intersects the distribution of country 𝑟 from above 

until a given point, the distribution 𝑠 will be socially preferred if the two following 

conditions are met (mean-variance condition): 

 

(17) 𝜇( < 𝜇, 

 

(18) 𝜎(2 < 𝜎,2 − (𝜇, − 𝜇()(2𝑡 − 𝜇, − 𝜇() 

 

where 𝑡 is the maximum probability of being non-poor, which is equal to 1. Condition 

(17) simply states that the mean of the distribution 𝑠 (𝜇() must be lower than the mean of 

the distribution 𝑟 (𝜇,). Condition (18) requires that the variance of the distribution 𝑠 (𝜎(2) 

must be sufficiently lower than the variance of the distribution 𝑟 (𝜎,2). It is also worth 

noting that if the mean level of the two distributions were equal, the only relevant 

condition would be 𝜎(2 < 𝜎,2, i.e. that the variance of 𝑠 is lower than the variance of 𝑟. 

When either of the two conditions does not hold, no general conclusions in terms of 

social preference would be possible. Contrarily, when both hold one can go a step further 

to measure the robustness of the social ranking to the degree of poverty aversion. This 

can be done by calculating a lower limit of that aversion below which social unanimous 

prescriptions obtained by GL no longer hold. This lower bound is given by: 

 

(19) 𝐿𝑜𝑤 =
𝑡(𝜇, − 𝜇()

(𝜎,2 − 𝜎(2) − (𝜇, − 𝜇()(2𝑡 − 𝜇, − 𝜇()
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The calculation of 𝐿𝑜𝑤 is potentially important to understand the robustness of 

dominance in terms of consensus across different decision makers with different (and 

unknown) degrees of poverty aversion. To this purpose, the larger the difference 

[(𝜎,2 − 𝜎(2) − (𝜇, − 𝜇()(2𝑡 − 𝜇, − 𝜇()], the nearer to zero will be the lower bound of 

equation (19). Since 𝐿𝑜𝑤 = 0 would connote poverty neutrality, the larger the gap, the 

greater is the class of 𝑊(𝑥) for which the result will hold. 

This method represents a novel approach to combine poverty analysis and dominance 

criteria, as it combines a weight-free method of estimating the probabilities of being non-

poor with a value-free way of determining social preferences that directly connect poverty 

levels and their distributions until a given fractional rank. It is worth noting that 

dominance over the probability distribution does not imply dominance across any 

dimension composing the probability. In our approach, SD is used to translate a problem 

of multidimensional poverty into a unidimensional space through the use of the 

cumulated probability. Thus, in a comparative perspective, our conclusions must be 

interpreted as indicating those cases where there is always less cumulated probability of 

multidimensional poverty. 

Except for recent contributions by Aaberge et al. (2019) and Azpitarte et al. (2020), 

this is also one of the first attempt to apply dominance criteria to the issue of 

multidimensional poverty. Our contribution, however, differs from that by Aaberge et al. 

(2019), as in that case the analysis is based on a deprivation count distribution where no 

attempt is made to aggregate the count into a synthetic multidimensional poverty index 

at individual level. In our analysis, instead, the deprivation count distribution is the 

baseline to calculate the probability of each individual to be below a given fractional rank. 

This difference allows us to apply dominance criteria directly considering the whole 

distribution of probabilities obtained by aggregating the dimensions of poverty; while in 

Aaberge et al. (2019), the dominance is sequentially applied (either downward or upward) 

by progressively adding fractions of populations with a different number of deprivations.  

This same difference applies with respect to Aztiparte et al. (2018), where necessary 

and sufficient conditions of dominance for classes of counting poverty measures are 

derived, still within a logic of sequential dominance, i.e. involving all potential poverty 

sets expressed as a union of subsets of multidimensional poverty. To some extent, as 

reported by the authors, this may involve a greater number of statistics, as the number of 
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elements in the sets of multidimensionality increases exponentially with the number of 

dimensions involved in poverty comparisons.17 Furthermore, when dominance conditions 

are not verified, the main conclusion is that multidimensional poverty may be sensitive 

to the choice of dimensional weights and poverty cut-offs, which is only a partial response 

to the issue of multidimensional poverty.  

In our paper, instead, we elaborate a different process, as the issue of dimensional 

weights is condensed in a particular poverty measure, i.e. the probability of being below 

a given fractional rank after experimenting with a large set of feasible weights. Thus, by 

construction, these individual probabilities take into account the issue of multiple vectors 

of weights at the stage of building the index, while at the same time providing a 

distribution of poverty levels that can be directly dealt with the standard dominance 

theory. The next section illustrates the empirical outcome. 

 

 

5.2 GL dominance and GL crossings in some European countries 
The outcome of the GL dominance is reported in Table 3 for all years. Each panel can 

be easily read by rows. For example, in 2008, Austrian individuals have always a lower 

probability (“Lower”) than individuals from other countries of being below the fractional 

rank 𝛾=0.2, except for France. For Italian individuals, instead, this probability is lower 

only compared to Portugal, while crossings occur with Belgium, Greece, Spain, and 

Luxembourg. At the same time, individuals from Greece and Portugal have the highest 

probability of being below the fractional rank, as “Lower” does not appear in any 

comparison. 

The analysis is replicated in each year and gives evidence of the changes occurred in 

the ranking of probabilities among countries. In the panel of year 2014, changes with 

respect to 2008 are highlighted. Changes occur in each country, with a slight 

improvement of the relative position only in Italy, Luxembourg, and Portugal. A slightly 

worse comparative outcome can instead be traced in Austria, Belgium, Germany, Greece, 

Spain, and France. Finally, in the UK, a relative improvement occurs with respect to 

Austria, while the relative position worsens with respect to Luxembourg. 

 
17 The authors report that with five dimensions, the number of statistics involved in dominance 
conditions would be more than 7,000. 
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In terms of social preferences, the conclusions are readily obtained. By considering 

the last year of the analysis, 2014, since “Lower” corresponds to all cases where the GL 

curve of the probabilities of being non-poor in the country in row dominates the GL curve 

of the same probabilities in the country in column, the social preference as measured by 

any member of the class 𝑊 = {𝑊:𝑊4(𝑥) > 0;𝑊44(𝑥) < 0} is always for the distribution 

of probabilities in the country in row. It is worth noting that the dominance also implies 

that the social preference will be higher for any specific fractional rank 𝜃 < 𝛾. The 

opposite holds in the case where the matrix is filled by “Higher”. 

Uncertain outcomes, instead, occur when GL curves cross (“Crossing”). To solve this 

uncertainty, we first identify the comparisons between countries where the dominance 

occurs in the lowest part of the distribution (i.e. before the intersection, from above). This 

happens in the following cases: 𝐺𝐿67 >5 𝐺𝐿89; 𝐺𝐿67 >5 𝐺𝐿:9; 𝐺𝐿67 >5 𝐺𝐿;<; 

𝐺𝐿=> >5 𝐺𝐿57; 𝐺𝐿=> >5 𝐺𝐿:9; 𝐺𝐿=> >5 𝐺𝐿;<; 𝐺𝐿?7 >5 𝐺𝐿89; 𝐺𝐿?7 >5 𝐺𝐿:9; 

𝐺𝐿?7 >5 𝐺𝐿9=; 𝐺𝐿?7 >5 𝐺𝐿9@; 𝐺𝐿>A >5 𝐺𝐿57; 𝐺𝐿>A >5 𝐺𝐿89; 𝐺𝐿>A >5 𝐺𝐿:9; 

𝐺𝐿>A >5 𝐺𝐿;<. 

In all comparisons, both conditions (17) and (18) are satisfied, which means that the 

dominating distribution is socially preferred for any member of the restricted class 𝑊 =

{𝑊:𝑊4(𝑥) > 0;𝑊44(𝑥) < 0;𝑊444(𝑥) > 0}. More importantly, as shown in Table 4, the 

values of 𝐿𝑜𝑤, as in equation (19), are calculated. For example, the dominance of Italy 

over France will embody a social preference for degrees of poverty aversion higher than 

0.779. As can be easily seen, some crossings correspond to a higher social preference 

only for degrees of poverty aversion greater than 1, as in the cases of Portugal vs. Greece, 

Portugal vs. Spain, and Greece vs. Spain. 

It is worth stressing, at this point, that this outcome is particularly important in the 

analysis of poverty, as it allows a double stronger conclusion with respect to the existing 

literature. The first derives from the fact that the probabilities of being multidimensionally 

poor are estimated without making recourse to a specific set of weights; the second 

derives from the fact that social welfare implications are derived from dominance theory 

by making use of mild assumptions about social norms. In other terms, the comparison 

of the probabilities of poverty among countries that is here obtained is loaded by the 

minimum set of arbitrary choices, in terms both of weighting the various dimensions of 

poverty and of linking individual probabilities to social preferences. 
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(Table 3) 

(Table 4) 

 

6. Conclusions 

 

This paper proposes a novel method to analyse multidimensional poverty: instead of 

relying on one specific set of weights to calculate the deprivation scores, a large set of 

feasible (positive) weights is used to summarise the information about the poor in a 

distribution of probabilities of being multidimensionally poor. This method allows to 

remain agnostic about the importance given to the different dimensions by producing 

indexes that capture the individual probability of being multidimensionally poor 

regardless of the weighting scheme applied.  

The concept of individual probability allows to move from a dual definition of poverty, 

where poor and non-poor individuals are classified in a mutually exclusive context, to a 

continuous measure of deprivation capturing both the extensive and the intensive margin 

of multidimensional poverty. Individual probabilities can then be combined with the 

generalised Lorenz dominance techniques to derive socially preferred distributions with 

the minimum load of value judgments. 

This novel method has been used for measuring multidimensional poverty in ten 

selected countries (Austria, Belgium, France, Germany, Greece, Italy, Luxemburg, 

Portugal, Spain, and United Kingdom) using data from four waves of EU-SILC (2008, 

2010, 2012, 2014). Results show that the probability distributions of being among the 

poorest 20% have median zero for all countries with the exceptions of Greece, Spain, 

Portugal, and Italy. At the same time, in Greece, Spain, and Portugal, there is a significant 

number of individuals who have 100% probability of being among the poorest 20% of 

the population regardless of the weighting scheme applied to the set of multidimensional 

deprivation indicators. On the contrary, in Austria, France, Germany, Luxembourg, and 

the UK the probability distributions of being among the poorest 20% are smaller, and the 

presence of large outliers means that the weights attached to the deprivation indicators 

can significantly change the probability of being considered multidimensionally poor. 
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Evidence from the pairwise GL dominance analysis shows that in 2008 Austrian 

individuals have always a lower probability of being among the poorest 20% of the 

population than any other country, except for France. Conversely, in the same year, the 

distribution of probabilities in Greece and Portugal never dominates other countries. 

Overall, the method we propose and apply in this paper sheds new light on 

multidimensional poverty as a concept and is able to provide new tools for 

multidimensional poverty assessment that are applicable in any setting where either count 

or continuous data are available.  

From a policy perspective, the information conveyed by our approach can facilitate 

the operationalization of multidimensional assessments in public policy. To begin with, 

the observation of the probability distribution below 𝛾 may indicate the potential urgency 

of policy action to fight multidimensional poverty. When individual probabilities of being 

below 𝛾 are high, it implies that the risk of being multidimensionally poor is high as well, 

regardless the political and social attitudes that might be embodied in the vector of 

weights – i.e., that specific probability is robust to virtually any set of admissible 

preferences. Conversely, the opposite holds true when the estimated probabilities are low.  

Our approach can also positively contribute to inform the development of appropriate 

policy tools to fight poverty, like income support schemes. Such policies are often 

challenged by the intrinsic multidimensionality of poverty, especially in the targeting 

phase, where the poorest individuals need to be correctly identified. Standard approaches 

to poverty measurement, often based on the setting of a poverty cut-off, typically require 

ranking potential recipients of anti-poverty interventions according to their level of need, 

aggregating multiple dimensions into a summary (scalar) index and then dichotomizing 

the examined population into poor and non-poor. 

In contrast, SMAA can be used to estimate how different weighting scheme would 

affect the targeting step of an income support policy, at the same time ensuring that 

beneficiaries are selected with the minimum degree of arbitrariness in the choice of 

weights. More generally, moving from a dual to a continuous targeting based on the 

intensive margins of multidimensional poverty (i.e., the probability to be poor) allows to 

go beyond the ‘cut-off problem’, which is particularly meaningful when, for instance, 

decisions on the volume of individual cash transfer are made. In theory, as the probability 

defines multidimensional poverty in the continuum, the same probability can be adopted 
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as a criterion for cash transfers – i.e., greater multidimensional poverty requires more 

significant cash transfers and decisions on the volume of cash transfer requires a 

continuous measure of poverty. 
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Annex 1 – An example of the method 
 

Here we provide a toy example to describe the different steps illustrated in section 3. 

Consider four individuals (A, B, C, and D) and three deprivation dimensions (X, Y, and 

Z). Let us suppose that A is only deprived in the dimension X, B is deprived in both X 

and Y, C is only deprived in Z, and D does not have any deprivation, yielding the 

following matrix of deprivations 𝒈: 

𝒈 = s
1 0 0
1 1 0
0 0 1
0 0 0

t 

 

Let us now consider a matrix of weights 𝒗 where each row represents a different set 

of weights (𝑚 = 3): 

 

𝒗 = u
0.39 0.27 0.34
0.18 0.33 0.49
0.61 0.10 0.29

x 

 

Each weighting scheme in 𝒗 sums up to 1 as, by construction, weights are normalised 

so that ∑ 𝑣(" = 1%
"'# . In the example, weight sets are quite heterogeneous – the first set 

of weights is quite balanced (i.e. all deprivation dimensions are given a weight close to 

0.3) while the last set is the most imbalanced one as it assigns a 0.61 importance to 

dimension X and only 0.10 to dimension Y.  

For each set of weights (rows) in 𝒗 we can estimate a different deprivation score for 

each individual and report them in the matrix 𝒉: 

 

𝒉 = s
0.39 0.18 0.61
0.66 0.51 0.71
0.34 0.49 0.29
0.00 0.00 0.00

t 

 

Each row contains three different deprivation scores by individual. Also in this case a 

certain heterogeneity can be noted: deprivation scores for individuals A, B, and C strongly 

depend on the set of weights used, while deprivation scores for individual D do not as 

they have no deprivations. From 𝒉 we can obtain a matrix of ranks 𝒓: 
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𝒓 = s
2 3 2
1 1 1
3 2 3
4 4 4

t 

 

Each row contains three ranks achieved by each individual in the three repetitions. It 

can be observed that individual B is always the first, individual D is always the last, while 

the rankings of individuals A and C depend on the set of weights used. By dividing the 

number of times each individual occupies each ranking by the number of repetitions (3), 

we obtain the matrix of estimated probabilities 𝒃: 

 

𝒃 = s
0.00 0.67 0.33
1.00 0.00 0.00
0.00 0.33 0.67

0.00
0.00
0.00

0.00 0.00 0.00 1.00

t 

 

Each row of 𝒃 contains the estimated probability that each individual has to reach each 

ranking (from 1 to 4 by column). At this stage, to have a synthetic measure of poverty, 

the analyst can define until which rank 𝑙 they want to consider the probabilities of being 

multidimensionally poor. For example, one can use 𝑙 = 1 and have an individual 

probability for A=0, for B=1, for C=0, and for D=0. Using 𝑙 = 2 one has the individual 

probability for A=0.67, for B=1, for C=0.33, and for D=0. Using 𝑙 = 3 one has an 

individual probability for A=1 (0.67+0.33), for B=1, for C=1 (0.33+0.67), and for D=0. 

Obviously, the probabilities will be equal to 1 for all individuals if 𝑙 = 4. 



 42 

Table 1 – Identification strategy for an empirical multidimensional poverty 

assessment 

DIMENSIONS INDICATORS VARIABLES CUT-OFFS 

DECENT WORK Unemployment  Activity status (PX050) 2=Employee 

3=Employed persons except employees 

4=Other employed 

5=Unemployed 

6=Retired 

7=Inactive 

8=Other 

Low work intensity Low work intensity (RX050) 0=No low work intensity 

1=Low work intensity 

2=Not applicable 

INCOME Income poverty Monetary poverty (HX080) 0=when HX090 >= 60% of median HX090 

1=when HX090 < 60% of median HX090 

HUMAN 

DEVELOPMENT 

Low educational 

attainment 

Highest ISCED level attained (PE040) 0=Pre-primary education 

1=Primary education 

2=Lower secondary education 

3=Upper secondary education 

4=Post-secondary education 

5=First stage of tertiary education (not leading 

directly to an advanced research qualification) 

6=Second stage of tertiary education (leading to an 

advanced research qualification) 

Bad self-reported 

health  

General health (PH010) 1=Very good 

2=Good 

3=Fair 

4=Bad 

5=Very Bad 

Chronic illness  Suffers from chronic illness or 

condition (PH020) 

1=Yes 

2=No 

Unmet medical 

needs 

Unmet medical need for medical 

examination or treatment (PH040) 

 

 

 

+ 

Main reason for unmet medical need 

(PH050) 

1=Yes, there was at least one occasion when the 

person really needed examination or treatment 

but did not 

2=No, there was no occasion when the person 

really needed examination or treatment but did not 

 

1=Could not afford to (too expensive) 

2=Waiting list 

3=Could not take time because of work, care for 

children or for others 
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4=Too far to travel/no means of transportation 

5=Fear of doctor/hospital examination/treatment 

6=Wanted to wait and see if problem got better on 

its own 

7=Did not know any good doctor or specialist 

8=Other 

Poor quality of 

dwelling 

Leaking roof, damp 

walls/floor/foundation or rot in 

window frames/floor (HH040) 

1=Yes 

2=No 

Inadequate 

sanitation facilities 

 

Bath/shower in dwelling 

(HH080/HH081) 

 

+ 

Indoor flushing toilet for sole use of 

the household (HH090/HH091) 

1=Yes, for sole use of the household 

2=Yes, shared 

3=No 

 

1=Yes, for sole use of the household 

2=Yes, shared 

3=No 

Noise Noise from the neighbours or from 

the street (HS170) 

1=Yes 

2=No 

Pollution Pollution, grime or other 

environmental problems (HS180) 

1=Yes 

2=No 

Crime Crime, violence or vandalism in the 

area (HS190) 

1=Yes 

2=No 

 

Source: Authors’ elaborations 

Note: Modalities indicating deprivation in each specific indicator are highlighted in bold. 
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Table 2 – Probabilities of being among the poorest 20% of the population by country 

and year 

Year Obs mean sd p25 p50 p75 % 
population  

Average 
number of 

deprivations 
 Austria 

2008 10846 0.157 0.32 0 0 0.011 40.4 7 
2010 11389 0.164 0.32 0 0 0.071 39.7 7 
2012 11376 0.153 0.32 0 0 0.009 40.3 6 
2014 10651 0.135 0.30 0 0 0.007 37.3 6 

 Belgium 
2008 10073 0.191 0.35 0 0 0.083 46.3 6 
2010 11331 0.204 0.36 0 0 0.261 44.3 6 
2012 10534 0.207 0.36 0 0 0.242 46.7 7 
2014 11236 0.186 0.35 0 0 0.184 44.0 7 

 Germany 
2008 22834 0.161 0.32 0 0 0.076 44.8 6 
2010 22542 0.160 0.32 0 0 0.071 42.9 6 
2012 22388 0.155 0.32 0 0 0.065 43.4 6 
2014 21462 0.158 0.32 0 0 0.056 42.4 7 

 Greece 
2008 13486 0.251 0.38 0 0.006 0.544 56.7 7 
2010 14178 0.266 0.38 0 0.006 0.568 57.0 6 
2012 11277 0.310 0.40 0 0.009 0.764 63.7 6 
2014 17768 0.262 0.38 0 0.005 0.532 58.7 6 

 Spain 
2008 27784 0.230 0.37 0 0.005 0.424 53.6 6 
2010 28439 0.241 0.37 0 0.004 0.543 52.3 6 
2012 26237 0.243 0.38 0 0 0.532 50.8 6 
2014 26049 0.251 0.38 0 0.003 0.521 52.5 6 

 France 
2008 19493 0.162 0.32 0 0 0.078 46.7 7 
2010 20412 0.158 0.32 0 0 0.074 45.2 7 
2012 21908 0.155 0.32 0 0 0.065 44.6 6 
2014 20659 0.146 0.31 0 0 0.055 41.3 7 

 Italy 
2008 42532 0.218 0.36 0 0.004 0.273 52.6 7 
2010 38999 0.207 0.35 0 0 0.266 48.7 7 
2012 37944 0.217 0.36 0 0 0.395 52.2 6 
2014 38604 0.212 0.34 0 0.004 0.310 53.1 7 

 Luxembourg 
2008 7486 0.213 0.36 0 0 0.259 47.9 7 
2010 9996 0.187 0.34 0 0 0.079 43.1 6 
2012 12343 0.167 0.32 0 0 0.074 43.4 6 
2014 7891 0.160 0.31 0 0 0.062 42.0 6 

 Portugal 
2008 8505 0.236 0.37 0 0.006 0.413 58.9 7 
2010 9757 0.249 0.37 0 0.007 0.543 58.3 7 
2012 11544 0.256 0.38 0 0.007 0.490 62.1 6 
2014 14579 0.269 0.37 0 0.007 0.683 65.0 7 

 UK 
2008 13479 0.195 0.35 0 0 0.080 49.4 6 
2010 11871 0.188 0.35 0 0 0.075 43.1 6 
2012 16313 0.182 0.34 0 0 0.071 44.6 6 
2014 14013 0.206 0.34 0 0 0.310 47.6 7 

 

Source: Authors’ elaborations on EU-SILC data (2008–2014) 
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Table 3 – GL dominance of the probability of being among the poorest 20% 
2008 AT BE DE EL ES FR IT LU PT UK 

AT  Lower Lower Lower Lower Crossing Lower Lower Lower Lower 
BE Higher  Higher Crossing Crossing Higher Crossing Crossing Lower Crossing 
DE Higher Lower  Crossing Crossing Crossing Lower Crossing Lower Crossing 
EL Higher Crossing Crossing  Higher Higher Crossing Higher Crossing Higher 
ES Higher Crossing Crossing Lower  Higher Crossing Crossing Crossing Higher 
FR Crossing Lower Crossing Lower Lower  Lower Lower Lower Crossing 
IT Higher Crossing Higher Crossing Crossing Higher  Crossing Lower Higher 
LU Higher Crossing Crossing Lower Crossing Higher Crossing  Lower Higher 
PT Higher Higher Higher Crossing Crossing Higher Higher Higher  Higher 
UK Higher Crossing Crossing Lower Lower Crossing Lower Lower Lower  

2010 AT BE DE EL ES FR IT LU PT UK 
AT  Lower Crossing Lower Lower Crossing Lower Lower Lower Lower 
BE Higher  Higher Crossing Crossing Higher Crossing Higher Lower Higher 
DE Crossing Lower  Crossing Lower Higher Crossing Crossing Lower Crossing 
EL Higher Crossing Crossing  Crossing Higher Higher Higher Crossing Higher 
ES Higher Crossing Higher Crossing  Higher Higher Higher Lower Higher 
FR Crossing Lower Lower Lower Lower  Lower Lower Lower Lower 
IT Higher Crossing Crossing Lower Lower Higher  Higher Lower Higher 
LU Higher Lower Crossing Lower Lower Higher Lower  Lower Crossing 
PT Higher Higher Higher Crossing Higher Higher Higher Higher  Higher 
UK Higher Lower Crossing Lower Lower Higher Lower Crossing Lower  

2012 AT BE DE EL ES FR IT LU PT UK 
AT  Lower Crossing Lower Lower Lower Lower Lower Lower Lower 
BE Higher  Higher Lower Lower Higher Crossing Higher Lower Higher 
DE Crossing Lower  Lower Lower Crossing Lower Crossing Lower Crossing 
EL Higher Higher Higher  Higher Higher Higher Higher Higher Higher 
ES Higher Higher Higher Lower  Higher Higher Higher Lower Higher 
FR Higher Lower Crossing Lower Lower  Lower Crossing Lower Lower 
IT Higher Crossing Higher Lower Lower Higher  Higher Lower Higher 
LU Higher Lower Crossing Lower Lower Crossing Lower  Lower Lower 
PT Higher Higher Higher Lower Higher Higher Higher Higher  Higher 
UK Higher Lower Crossing Lower Lower Higher Lower Higher Lower  

2014 AT BE DE EL ES FR IT LU PT UK 
AT  Lower Lower Lower Lower Lower Lower Crossing Lower Crossing 
BE Higher  Higher Crossing Lower Higher Crossing Higher Crossing Crossing 
DE Higher Lower  Lower Lower Higher Crossing Crossing Crossing Crossing 
EL Higher Crossing Higher  Crossing Higher Higher Higher Crossing Higher 
ES Higher Higher Higher Crossing  Higher Higher Higher Crossing Higher 
FR Higher Lower Lower Lower Lower  Crossing Crossing Lower Crossing 
IT Higher Crossing Crossing Lower Lower Crossing  Higher Lower Higher 
LU Crossing Lower Crossing Lower Lower Crossing Lower  Lower Lower 
PT Higher Crossing Crossing Crossing Crossing Higher Higher Higher  Higher 
UK Crossing Crossing Crossing Lower Lower Crossing Lower Higher Lower  

 

Source: Authors’ elaborations on EU-SILC data (2008–2014) 
Note: The tables show pairwise comparisons of the GL dominance and should be read by row: individuals 
in countries by row can either have a “Higher”, “Crossing”, or “Lower” average probability of being below 
the fractional rank 𝛾 = 0.2 than individuals from each country by column 
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Table 4 – The lower bound of inequality aversion 
2014 AT BE DE EL ES FR IT LU PT UK 

AT            
BE            
DE            
EL      1,026      
ES            
FR            
IT  0,830 0,793   0,779      
LU 0,709  0,733   0,721      
PT  0,919 0,873 1,066 1,041       
UK 0,758 0,822 0,786   0,772      

 

Source: Authors’ elaborations on EU-SILC data (2008–2014) 
Note: The table shows pairwise comparisons of Low calculated as per equation (19) and should be read by 
row: when present, values in cells measure Low of countries by row compared with that of each country 
by column. 
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Figure 1 – Distributions of the probability of being among the poorest 20% of the 

population by country and year (box plots) 
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Source: Authors’ elaborations on EU-SILC data (2008–2014) 

Note: The boxplots show the distribution (median, 25th Percentile, 75th Percentile, and the 
interquartile range - IQR) of individual probabilities of being among the poorest 20% of the 
population by country and year. The points indicate outliers, i.e. values that fall out of the IQR. 
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