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via Energy Quadratisation
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Edinburgh, UK

Abstract

String vibration represents an active field of research in acoustics. Small-
amplitude vibration is often assumed, leading to simplified physical models
that can be simulated efficiently. However, the inclusion of nonlinear phe-
nomena due to larger string stretchings is necessary to capture important fea-
tures, and efficient numerical algorithms are currently lacking in this context.
Of the available techniques, many lead to schemes which may only be solved
iteratively, resulting in high computational cost, and the additional concerns
of existence and uniqueness of solutions. Slow and fast waves are present
concurrently in the transverse and longitudinal directions of motion, adding
further complications concerning numerical dispersion. This work presents
a linearly-implicit scheme for the simulation of the geometrically exact non-
linear string model. The scheme conserves a numerical energy, expressed as
the sum of quadratic terms only, and including an auxiliary state variable
yielding the nonlinear effects. This scheme allows to treat the transverse and
longitudinal waves separately, using a mixed finite difference/modal scheme
for the two directions of motion. A matrix decomposition algorithm is pre-
sented, so to treat the sparse and full parts of the update matrix separately.
Numerical experiments are presented throughout.

Keywords: Energy Methods, Nonlinear Dynamics, Musical Acoustics,
String Vibration, Invariant Energy Quadratisation

1. Introduction

The vibration of a musical string, to a first approximation, can be con-
sidered linear. From a numerical standpoint, the problem of linear string
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vibration was explored in many works, see e.g., Ruiz [1, 2], Bacon and Bow-
sher [3], Chaigne and Askenfelt [4], Bensa et. al [5], Ducasse [6], and others.

Nonlinear behaviour results for moderate and high amplitudes of motion,
and various physical models are available. One of the simplest such models
includes tension-modulation effects, as per the Kirchhoff-Carrier model [7].
Numerically, this was approached using finite difference schemes [8] (Chapter
8) as well as Volterra series [9]. Longitudinal motion is neglected in this
model, which was shown to be inaccurate, since an energy transfer always
exists from the transverse to the longitudinal waves [10, 11].

Finer models, comprising longitudinal motion, can be obtained via ge-
ometric arguments. Here, one considers the strain of of a stretched string,
and applies Hooke’s law. Approximating the energy in a power series results
in a model as per Morse and Ingard’s [12] (Section 14.3). Numerically, this
approximate model was solved via finite difference schemes [13, 8, 14], as
well as modal methods, though with further simplifications on the coupling
mechanism [15].

In the Morse and Ingard model, the hypothesis of weak linear degen-
erancy, as explained in [16], is not fulfilled, and this has lead researchers
to study the the geometrically exact model. The finite element method, in
particular, is preeminent here, see e.g. [17, 18, 19]. In [17, 18], the conserva-
tion of a non-negative numerical energy allows to derive a stability condition
involving the mesh size and the time step. Since these methods are fully-
implicit, they require the solution of a large nonlinear algebraic system at
each time step, for which existence and uniqueness of the solution must be
proven, and which are only approachable using iterative routines such as
Newton-Raphson [20]. Further complications arise in the choice of the toler-
ance thresholds and maximum number of iterations of the routine.

For these reasons, in this work, a method is presented, such that the
resulting numerical scheme is linearly-implicit in character, thus sidestepping
the machinery of iterative methods. Here, existence and uniqueneness of the
numerical update are proven by simple inspection of the update matrix, and
efficiency is also greatly improved, since the update requires the solution of a
single linear system. This particular form is obtained after quadratisation of
the nonlinear potential, in a way that is analogous to the Invariant Energy
Quadratisation method, proposed orginally for parabolic phase-field models
[21, 22, 23].

Furthermore, wideband numerical dispersion reduction is achieved using
a free parameter. Rather than increasing the formal order of accuracy, the
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free parameter is used to increase the spectral accuracy across the whole
frequency axis.

The article is structured as follows. In Section 2 the geometrically nonlin-
ear string is discussed, including stiffness effects. A semi-discrete formulation
is given in Section 3. The fully-discrete numerical scheme is detailed in Sec-
tion 4, including a proof of conservation of the numerical energy. Section 5
details the LU factorisation employed to solve the associated linear system,
and includes a computational test highlighting the speedups of the current
formulation against previously available schemes. Section 6 details a method
to reduce numerical dispersion in the transverse direction across a wideband
portion of the frequency axis, using a free parameter for which an analytic
expression is given. In Section 7, an application comprising the nonlinear
string with source and loss terms is illustrated, highligting the passage from
linear to fully nonlinear regimes. It is shown that very good results can be
obtained using small oversampling factors compared to audio rate.

2. Nonlinear Wave Equation

The case of a nonlinear wave equation describing geometric nonlinearities
in stiff strings will be considered here. The geometrically exact nonlinear
potential has been used in previous works to simulate the behaviour of musi-
cal strings undergoing large amplitude vibration, and comprising a coupling
between the longitudinal and transverse components of motion [17, 24, 19].
In the lossless, zero-input case, the system considered here is(

ρA∂2
t − T0∂

2
x + EI∂4

x

)
u(t, x) = ∂x

(
∂φ

∂(∂xu)

)
, (1a)

(
ρA∂2

t − T0∂
2
x

)
v(t, x) = ∂x

(
∂φ

∂(∂xv)

)
, (1b)

where

φ = φ(∂xu, ∂xv) =
EA− T0

2

(√
(1 + ∂xv)2 + (∂xu)2 − 1

)2

. (2)

First, in (1) and in the following, the symbol ∂ij denotes a partial derivative
along j of order i. The displacements are u(t, x) : R+

0 × [0, L] → R in
the vertical or flexural direction (perpendicular to the string length), and
v(t, x) : R+

0 × [0, L] → R in the longitudinal direction (parallel to the string
length).
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Constants appear as: volume density ρ, area of the cross section A (=
πr2 for a circular cross section of radius r), Young’s modulus E, applied
tension T0, string length L, area moment of inertia I (= πr4/4 for a circular
cross section). Model (1) is geometrically exact [12, 17], and includes a
stiffness term as per the Euler-Bernoulli beam model [25, 26]. Equations (1)
must be completed by suitable initial conditions, assumed here differentiable,
expressed as

u(0, x) = u0(x), v(0, x) = v0(x), ∂tu(0, x) = p0(x), ∂tv(0, x) = q0(x). (3)

The nonlinear potential φ, as per (2), is non-negative when EA ≥ T0

(a condition that is always satisfied for musical strings). This condition
will be assumed valid in the remainder. It is noted that the equations of
motion for the geometrically exact nonlinear string are usually expressed in
a different form (see e.g. [17, 19]), employing an expression of the potential
energy which is non-negative in all cases, though yielding equations identical
to (1). The form proposed here, in contrast to the usual form, allows to
isolate linear terms proportional to T0, as can be seen in both (1a) and (1b).
This design choice is justified in a musical context, where strings operate in
a regime driven by the flexural tension term. Here, the linear part of (1a)
is unaffected by φ. Ultimately, this allows to achieve full audio bandwidth
using reference sample rates, as will be shown in Section 6.

2.1. Energy Identities

For two square-integrable functions f , g : [0, L] → R one may define an
inner product and associated norm as

〈f, g〉 =

∫ L

0

fg dx, ‖f‖ =
√
〈f, f〉. (4)

These definitions can be used to derive suitable energy identities for the
nonlinear wave equation. Here, one takes an inner product of (1a) with ∂tu,
and of (1b) with ∂tv, to get

ρA
〈
∂tu, ∂

2
t u
〉

= T0

〈
∂tu, ∂

2
xu
〉
− EI

〈
∂tu, ∂

4
xu
〉

+

〈
∂tu, ∂x

(
∂φ

∂(∂xu)

)〉
,

(5a)

ρA
〈
∂tv, ∂

2
t v
〉

= T0

〈
∂tv, ∂

2
xv
〉

+

〈
∂tv, ∂x

(
∂φ

∂(∂xv)

)〉
. (5b)
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Summing the two equations, after appropriate integration by parts, and using
the fact that

dφ

dt
= ∂t∂xu

(
∂φ

∂(∂xu)

)
+ ∂t∂xv

(
∂φ

∂(∂xv)

)
, (6)

one gets the following energy balance

dH

dt
= (〈∂tu, Fu〉 − 〈∂t∂xu,Mu〉+ 〈∂tv, Fv〉)

∣∣L
0
, (7)

where the boundary forces and moment, due to linear and nonlinear effects,
are expressed as

Fu = T0∂xu− EI∂3
xu+

∂φ

∂(∂xu)
, Fv = T0∂xv +

∂φ

∂(∂xv)
, Mu = −EI∂2

xu.

The total energy is the sum of kinetic, linear and nonlinear potential energies,
as

H(t) = Ek(t) + Epl(t) + Epnl(t), (8)

where

Ek =
ρA

2

(
‖∂tu‖2 + ‖∂tv‖2) , (9a)

Epl =
T0

2

(
‖∂xu‖2 + ‖∂xv‖2)+

EI

2

∥∥∂2
xu
∥∥2
, (9b)

Epnl =
∥∥∥√φ

∥∥∥2

. (9c)

which is non-negative. The right hand side of (7) consists of boundary terms.
In order for the system to be conservative, it is sufficient to impose conditions
such that the boundary terms vanish. Various combinations are possible, and
one must be wary of the nonlinear terms when imposing the vanishing of the
forces at the boundary. Here, the string is assumed to be simply-supported
flexurally, and fixed longitudinally, i.e.

u = ∂2
xu = v = 0 at x = 0, L (10)

When these conditions are enforced, energy conservation holds, and thus

H(t) = H(0) , H0. (11)
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An expression for H0 is derived by direct subsitution of (3) (plus appropriate
derivatives) into (9). Bounds on solution growth may be expressed easily
from such conserved energy, as

0 ≤ ‖∂tu‖ ≤
√

2H0/ρA, 0 ≤ ‖∂xu‖ ≤
√

2H0/T0, (12)

with analogous bounds holding for the longitudinal term. Since the string is
fixed at both ends, bounds on u, rather than its derivatives, may be obtained
here, see e.g. [8] (Chapter 6) and [17].

2.2. Quadratisation

In view of the numerical application presented below, the nonlinear po-
tential energy is now quadratised by means of the function ψ : R2 → R+

0

defined as
ψ(∂xu, ∂xv) =

√
2φ(∂xu, ∂xv). (13)

Under such transformation, the total energy is

H(t) = Ek(t) + Epl(t) + Epnl(t), (14)

where Ek, Epl are the same as (9), but where

Epnl =
‖ψ‖2

2
, (15)

The total energy here includes only quadratic terms, and the equations of
motion read (

ρA∂2
t − T0∂

2
x + EI∂4

x

)
u(t, x) = ∂x (guψ) , (16a)(

ρA∂2
t − T0∂

2
x

)
v(t, x) = ∂x (gvψ) , (16b)

dψ

dt
= gu∂t∂xu+ gv∂t∂xv. (16c)

These are completed by the identities

gu =
∂ψ

∂(∂xu)
, gv =

∂ψ

∂(∂xv)
. (17)

The transformation (13) forms the core of the Invariant Energy Quadrati-
sation method (IEQ), proposed by Yang and associates in the context of non-
linear parabolic phase-field models [21, 22, 23], and allowing for a linearly-
implicit formulation of the associated numerical schemes. In parallel, a
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different kind of quadratisation was proposed by Hélie, Lopes and Falaize
within the context of Port-Hamiltonian systems [27, 28, 29, 30]. The former
method, IEQ, may be applied to any non-negative multivariate potential φ.
For the latter method, further requirements on convexity must be met by
the function φ [30], precluding the possibility of treating various cases such
as e.g. non-invertible potentials. Furthermore, for the associated numerical
schemes, second-order accuracy is achieved via a two-step procedure in the
latter method, involving the solution of two linear systems per time step, as
opposed to one single step for IEQ. A check of the order of accuracy, in the
case of a scalar nonlinear ODE, is offered in Appendix A.

IEQ for the cases of nonlinear hyperbolic wave equations were proposed
in [31] for the sine-Gordon equation, and in [32] for the geometrically exact
string, and the results therein are extended here. Other examples of the
application of IEQ, of interest in musical acoustics, are given in [33].

3. Semi-discrete formulation

The quadratised equations (16) are now discretised in space, using a
mixed formulation including a finite difference discretisation of the trans-
verse waves, and a spectral discretisation of the longitudinal waves. The
reason for this design choice resides in the difficulty of resolving a system
that comprises two different wave speeds (here, transverse and longitudinal),
and whose expressions are obtained after linearisation of (1). The two speeds
are, respectively, cu =

√
T0/ρA (valid at low frequencies), and cv =

√
E/ρ,

where typically cv � cu for musical strings. Since the grid spacing in a fi-
nite difference scheme is directly related to the wave speed via a stability
condition, one should consider that adapting the grid spacing to match the
velocity in either direction of motion will result in severe frequency warp-
ing effects in the other direction, at reference sample rates. One possible
solution, proposed e.g. in [8] (Chapter 8) and [34], is to make use of two
separate grids, one for the longitudinal and one for the transverse waves, and
to perform interpolation in order to couple them. Another choice, explored
here, is to make use of a mixed approach: the transverse waves may still be
resolved via finite difference schemes; the longitudinal waves may be instead
approximated by a suitable modal or spectral discretisation [35, 36].
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3.1. Spatial Finite Difference Operators

For the transverse direction, the length L is divided into N subintervals,
yielding N + 1 grid points including the end points. The subintervals are
of length h = L/N , the grid spacing. Boundary conditions are of fixed
type, as per (10), therefore the two end points need not be computed and
stored. The physical displacement u(t, x = mh) is approximated by (u(t))m,
1 ≤ m ≤ N − 1. The spatial difference operator, for fixed conditions, can be
expressed as a N ×N − 1 matrix of the following form

D−u =
1

h
([uᵀ, 0]ᵀ − [0,uᵀ]ᵀ) . (18)

The forward and backward spatial difference matrices are related by a trans-
pose operation, i.e.

D+ = −
(
D−)ᵀ . (19)

Furthermore, one has

D2 = D+D−, D4 = D2D2. (20)

i.e. the non-commutative composition of the backward and forward differen-
tiation yields the second spatial difference, and the composition of the second
spatial difference with itself gives the fourth spatial difference. Both these
matrices are of size N − 1×N − 1. Using Taylor-expansion arguments, one
has (

D(+,−)u
)
m

=
du(x)

dx

∣∣
x=mh

+O(h), (21)(
D2u

)
m

=
d2u(x)

dx2

∣∣
x=mh

+O(h2), (22)(
D4u

)
m

=
d4u(x)

dx4

∣∣
x=mh

+O(h2). (23)

3.2. Spectral Discretisation of the Longitudinal Waves

For the longitudinal component, one may approximate the continuous
function v(t, x) by a grid function v(t) : R+

0 → RN−1. Then, a spectral
operator is applied. This is

v(t) = Zs(t). (24)
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Explicitly, this is given as

vm(t) =

√
2h

L

Ns∑
ν=1

sin

(
mνhπ

L

)
sν(t) , 1 ≤ m ≤ N − 1, (25)

Thus, Zm,ν =
√

2h/L sin(mνhπ/L), and the matrix is of size (N − 1)×Ns.
Here, the upper bound in the sum, Ns, represents the number of eigenfunc-
tions in the longitudinal direction, to be specified later. Note that such basis
functions are consistent with the fixed conditions at the string’s ends, as per
(10). The square root factor multiplying the basis functions is here only a
useful normalisation. Here, Z satisfies the following identities

ZᵀZ = I, Zᵀ D2 Z = −Λ, (26)

where Λ is an Ns×Ns diagonal matrix with [Λ]ν,ν = ν2π2

L2 +O(h2). The first
property is a statement of the orthogonality of sine functions; the second
property is a consequence of the spectral decomposition of the D2 operator.
These properties can be used to represent the scheme for the longitudinal
wave equation in a modal form, as shown below.

3.3. Auxiliary State Variable

The continuous function ψ(∂xu, ∂xv) in (16) will be approximated here as
an extra, independent state variable, defined on an interleaved spatial grid,
i.e. ψ(t) : R+

0 → RN . Explicit realisations for (17) must also be supplied.
These are given via the vectors gu, gv:

gu =

√
EA− T0 D−u√

(1 + D−v)2 + (D−u)2
, gv =

√
EA− T0 (1 + D−v)√

(1 + D−v)2 + (D−u)2
, (27)

where the division of vectors, and exponentiation, are intended elementwise.
Both these vectors are of length N . From these, the square N ×N matrices
Gu and Gv are given as

Gu = diag(gu), Gv = diag(gv). (28)
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3.4. Semi-discrete Equations of Motion

Using the proposed notation, a semi-discrete realisation of (16) is given
as (

ρA
d2

dt2
− T0D

2 + EID4

)
u(t) = D+Guψ(t), (29a)(

ρA
d2

dt2
− T0D

2

)
Zs(t) = D+Gvψ(t), (29b)

dψ(t)

dt
= Gu

(
d

dt
D−u(t)

)
+ Gv

(
d

dt
D−Zs(t)

)
. (29c)

Explicit expressions for Gu, Gv are given in (28). The longitudinal displace-
ment is expressed as a superposition of modes, as per (24), and diagonalisa-
tion of (29b) can be obtained by multiplying on the left by Zᵀ, to give(

ρA
d2

dt2
+ T0Λ

)
s(t) = Zᵀ D+Gvψ(t). (30)

3.5. Semi-discrete Energy Identities

A discrete version of (4) (inner product and associated norm) for two
vectors f ,g : R+

0 → RN−1 can be given as

〈f ,g〉 = h fᵀ g, ‖f‖ =
√
〈f , f〉. (31)

Thus, taking an inner product of (29a) with du
dt

, of (29b) with dv
dt

, and sum-
ming, yields a semi-discrete energy balance of the kind

dh(t)

dt
= 0 where h(t) = Ek(t) + Epl(t) + Epnl(t). (32)

The semi-discrete kinetic, linear and nonlinear potential energies are

Ek =
ρA

2

(∥∥∥∥dudt
∥∥∥∥2

+

∥∥∥∥dvdt
∥∥∥∥2
)
, (33a)

Epl =
T0

2

(∥∥D−u
∥∥2

+
∥∥D−v

∥∥2
)

+
EI

2

∥∥D2u
∥∥2
, (33b)

Epnl =
‖ψ‖2

2
. (33c)

which is a non-negative, semi-discrete counterpart of (14). In order to obtain
this expression for the energy, the transposition and symmetry properties
(19), (20) of the difference matrices were used, along with the rate of change
of the auxiliary state variable ψ, as per (29c).
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4. Time discretisation

A numerical scheme arises after an appropriate time discretisation of (29).
Thus, the grid functions u(t),v(t) are approximated at the time nk by the
time series un,vn, where n ∈ N0, and where k is the time step (the multi-
plicative inverse of the sample rate). Similarly, the auxiliary state variable
ψ(t) is approximated by an interleaved time series ψn−1/2.

4.1. Time Difference Operators

The basic operators in discrete time are the identity and shift operators,
defined as

1un = un, et+un = un+1, et−un = un−1. (34)

From these, one may define the time difference operators, all approximating
the first time derivative, as

δt+un =
(et+ − 1)un

k
=
du(t)

dt

∣∣
t=kn

+O(k), (35a)

δt−un =
(1− et−)un

k
=
du(t)

dt

∣∣
t=kn

+O(k), (35b)

δt·u
n =

(et+ − et−)un

2k
=
du(t)

dt

∣∣
t=kn

+O(k2). (35c)

An approximation to the second time derivative is constructed from the above
as

δttu
n = (δt+δt−)un =

d2u(t)

dt2
∣∣
t=kn

+O(k2). (36)

Averaging operators are also used throughout the text, and are

µt+un =
(et+ + 1)un

2
= u(kn) +O(k), (37a)

µt−un =
(1 + et−)un

2
= u(kn) +O(k), (37b)

µt·u
n =

(et+ + et−)un

2
= u(kn) +O(k2). (37c)

For the interleaved function ψn−1/2, the same definitions apply formally, but
the order of the approximation changes. Thus

1ψn−1/2 = ψn−1/2, et+ψ
n−1/2 = ψn+1/2. (38)
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The time difference is

δt+ψ
n−1/2 =

(et+ − 1)ψn−1/2

k
=
dψ(t)

dt

∣∣
t=kn

+O(k2), (39)

and the averaging operator gives

µt+ψ
n−1/2 =

(et+ + 1)ψn−1/2

2
= ψ(kn) +O(k2). (40)

and note that the following identity, used throughout the text, holds

µt+ψ
n−1/2 =

k

2
δt+ψ

n−1/2 +ψn−1/2 (41)

Three useful identities are given here. Considering the inner product and
norm given in (31), one has

〈δt·u, δttu〉 = δt+
‖δt−u‖2

2
, (42a)

〈u, δt·u〉 = δt+
〈u, et−u〉

2
, (42b)

〈δt+ψ, µt+ψ〉 = δt+
‖ψ‖2

2
. (42c)

4.2. Fully-discrete Equations of Motion

Given the above definitions, a fully-discrete system of equations can now
be given. These are(

ρAδtt − T0D
2 + (1 + η(µt· − 1))EID4

)
un = D+Gn

u µt+ψ
n−1/2, (43a)

(ρAδtt + T0Λ) sn = ZᵀD+Gn
v µt+ψ

n−1/2, (43b)

δt+ψ
n−1/2 = Gn

u

(
δt·D

−un
)

+ Gn
v

(
δt·D

−Zsn
)
. (43c)

which discretises (29). Note that Gn
u, Gn

v are given by (28), after substituting
u(t) → un, v(t) → vn. In (43a) , η ∈ {0, 1}: when η = 0, the fourth-order
spatial operator is discretised explicitly. As will be seen shortly, this has
consequences on the stability, efficiency and convergence properties of the
scheme, as well as on its wideband behaviour in the frequency domain. All
these aspects will be investigated thoroughly in the following sections.

Furthermore, it is remarked that this scheme is a three-step scheme, in
that not only does one need to solve for the displacement u, and modal
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coordinates s, but also for ψ, which is treated here as an auxiliary state
variable. Thus, the numerical system is here completed by a set of initial
conditions on u,v discretising (3), (from which one may get s = Zᵀv ), as
well as a suitable initial condition for ψ, which can be given as

ψ1/2 =
√
EA− T0

(√
(1 + D−Zµt+s0)2 + (D−µt+u0)2 − 1

)
. (44)

Note that the averaging operators are here used so to yield a second-order
accurate discretisation of the continuous function ψ, at the initial interleaved
time step t1/2 = k/2.

The time discretisation was chosen here such that (43) conserves a nu-
merical energy. This is easily shown after taking an inner product (as per
(31)) of (43a) with δt·u, of (43b) with δt·v, summing, and making use of
(43c) plus the identities given in (42), as well as definition (25) and identities
(26). The result is

δt+h
n−1/2 = 0, where h = Ek + Epl + Epnl. (45)

The kinetic, linear and nonlinear potential energies are given as

E
n−1/2
k =

ρA

2

(
‖δt−un‖2 + ‖δt−vn‖2)+

ηEIk2

4
‖D2δt−un‖2, (46a)

E
n−1/2
pl =

T0

2

(〈
D−un,D−et−un

〉
+
〈
D−vn,D−et−vn

〉)
+
EI

2

〈
D2un,D2et−un

〉
,

(46b)

E
n−1/2
pnl =

∥∥∥ψn−1/2
∥∥∥2

2
. (46c)

This expression approximates the total energy of the system. As opposed to
the continuous and the semi-discrete cases (14) and (33), the fully-discrete
expression for the energy may be negative in some cases. Non-negativity is
achieved here only when the grid spacing h and the time step k satisfy a
suitable condition, arising as a consequence of the discretisation of the linear
part (since the nonlinear energy, from (46c), is non-negative by definition).
When k is selected as input parameter, lower bounds on h are given as (see
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e.g. [8, 37])

h ≥



√
T0k2 +

√
(T0k2)2 + 16ρAEIk2

2ρA
, h0, if η = 0, (47a)√

T0

ρA
k , hCFL, if η = 1. (47b)

It is remarked that the stability condition for η = 0 is not a pure CFL condi-
tion, since the time step is not directly proportional to the grid spacing. This
is a consequence of the explicit discretisation of the fourth spatial derivative,
i.e. ∂4

xu(t, x) → D4 un. This discretisation has the benefit of reducing the
number of grid points, at the stability limit, when the time step is chosen as
input parameter.

When conditions (47) are enforced, the energy is non-negative, and hence
the grid functions remain bounded over time, with bounds holding here as
discrete versions of (12):

0 ≤ ‖δt−un‖ ≤
√

2h1/2/ρA, 0 ≤
∥∥µt−D−un

∥∥ ≤√2h1/2/T0, (48)

with similar bounds holding for the longitudinal grid function v. It is re-
marked that the auxiliary state variable ψ remain itself bounded, as

0 ≤
∥∥∥ψn−1/2

∥∥∥ ≤√2h1/2. (49)

4.3. Number of Numerical Longitudinal Eigenfunctions

A bound on the number of longitudinal eigenfunctions, determining the
size of Z in (24), can be derived by imposing non-negativity of the longitudi-
nal linear discrete energy, i.e. Ns ≤ (2L/πk)

√
ρA/T0 [8] (Chapter 6). It will

be convenient, however, to use a much lower number of modes, such that

Ns ≤
2L

πk

√
ρ

E
. (50)

This is the natural bound on the number of modes associated with the CFL
condition on the longitudinal wave speed cv =

√
E/ρ. This choice has the

benefit of efficiency, since the system is much smaller in size (typically cv �
cv).
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4.4. Solvability, Local Truncation Error and Convergence

Solving system (43) is accomplished by first using identity (41) in both
(43a) and (43b), and then using (43c) to express the δt+ψ in terms of u, s.
The resulting system is written as

T

[
un+1

sn+1

]
=

[
bnu
bns

]
, (51)

where T = T0 − T̃n, and

T0 =

[
ρA
k2

I + ηEI
2

D4 0

0 ρA
k2

I

]
(52a)

T̃n =
1

4

[
D+Gn

uG
n
uD

− D+Gn
uG

n
vD

−Z
ZᵀD+Gn

uG
n
vD

− ZᵀD+Gn
vG

n
vD

−Z

]
. (52b)

Here, bnu, bns are vectors of known coefficients from previous time steps, of
length N − 1 and Ns respectively. The update matrix is the sum of a time-
independent matrix T0, accounting for the linear part of the system, minus a
time-dependent matrix T̃n, accounting for the nonlinearities (and which must
be recomputed at each time step). Note that T is a non-singular, symmetric
matrix, and therefore un+1, sn+1 are uniquely determined. These values can
then be used to compute vn+1 via (24), and ψn+1/2 via (43c). The top left
square block in T is sparse, and it contains the most elements in the matrix.
The bottom right square block is the smallest, and is full. The off-diagonal
rectangular blocks are also full. It is convenient to approach the solution of
the linear system by decomposing the matrix T using the Schur complement,
as detailed below in Section 5.

The local truncation error τnm of scheme (43) at time tn = nk and at
the grid point xm = mh is obtained when the scheme is applied to the true
solutions u(t, x), v(t, x) of (16), and Taylor-expanding, see e.g. [38]. Using
the Taylor expansions given above for the spatial and temporal operators, it
can be shown that

τnm = O(h2) +O(k2), (53)

When k and h are chosen along the path dictated by the stability condition
(47), one has k = O(h2) when η = 0, making the scheme formally first-order
convergent in the time step k. For η = 1, the scheme is second-order accurate
in both k and h. Space-time convergence curves for both η = 0, 1, in the linear
case, are given in Appendix B. One may go further and prove convergence of
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the nonlinear system as a consequence of stability and consistency, showing
that the scheme converges to the true solution as h, k tend to zero, and that
the global error preserves the same order accuracy when h, k are decreased
along the path given by the stability condition. This is a delicate point: one
should be wary that theoretical error estimate blow-ups have been predicted,
even for linear wave equations, see e.g. [39, 40]. In [39], it is shown that a
post-processing of the error time series leads indeed to an estimate that does
not blow up, in accordance with empirical observations. Here, a formal proof
for the proposed scheme, while necessary, is out-of-scope. A proof of order-
accuracy in the case of a hyperbolic wave equation as per the sine-Gordon
model, using IEQ, is given in [31]. Other formal proofs of applications of
IEQ are included in e.g. [21].

5. Computational Testing

A mentioned above, a suitable matrix decomposition may be employed
to speed up the solution of the linear system (51). First, write

T =

[
T11 T12

Tᵀ
12 T22

]
. (54)

Here, T11 is an N − 1×N − 1 sparse block, T12 is an N − 1×Ns full block,
and T22 is a Ns×Ns full block. For typical strings, when one chooses the grid
spacing according to (47), one has Ns � N and it results therefore natural
to decompose the matrix so to take advantage of the sparsity of the largest
block T11. Block LDU factorisation [41] is one such matrix decomposition
algorithm. This is

T =

[
I 0

Tᵀ
12T

−1
11 I

] [
T11 0
0 κ

] [
I T−1

11 T12

0 I

]
(55)

where
κ = T22 −Tᵀ

12T
−1
11 T12 (56)

is called the Schur complement, and is here a Ns ×Ns full matrix. Remem-
bering the definitions of bnu, bns from (51), an efficient algorithm may be
extracted from the decomposition above as follows. First, define

y = T−1
11 bnu, (57a)

z = bns −Tᵀ
12y. (57b)
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Then, the solution to (51) is obtained as

sn+1 = κ−1z, (58a)

un+1 = y −T−1
11 T12 sn+1. (58b)

This algorithm requires the solution of three linear systems: two are sparse
(one in (57a), one in (58b)), and one is full (in (58a)), though of very small
size. A sparse matrix inversion is also required to compute κ in (56).

The proposed algorithm (denoted LU NIT) is now compared against the
two schemes presented in [32]. These are: 1. a non-iterative scheme (de-
noted ICA NIT) obtained from the same quadratisation proposed here, but
where both the transverse and the longitudinal waves are simulated using
finite differences in both space and time; 2. an iterative finite difference
scheme (denoted ICA IT) obtained using a fully-implicit discretisation of the
gradient, in a way that is analogous to that employed in numerous works,
see e.g. [42, 29, 17, 43]. Since in [32] stiffness is not considered, in this test
I is set to zero, and the choice of η in (43a) has no influence. Note as well
that both LU NIT and ICA NIT are in the form of “quadratised” schemes, the
only differences being in the discretisation of the longitudinal component,
as well as in the linear system solver employed. For the iterative scheme
ICA IT, the number of iterations is set using a tolerance threshold τ = 10−13

on the computed iteration, and the maximum number of iterations is capped
at 100. The test is run on a 2016 Macbook Pro equipped with a 2.9GHz Intel
Core i7 processor. The algorithms are implemented and run in Matlab2020.
Unless otherwise specified, all the linear systems and the matrix inversions
are implemented using Matlab’s backslash (\). Source code is available on
the companion webpage1. A summary of the string’s parameters employed
here is given in Table 1.

Two tests are run, summarised in Tables 2 and 3. The string is initialised
with a centered raised cosine, with an initial maximum amplitude of 2 mm,
(as in Figure 1 below). The amplitude is chosen so that nonlinear effects
are clearly audible. In the first test, the sample rate is chosen as input
parameter, and the grid spacing is chosen as h = 1.05hCFL, where hCFL
is given in (47b) (slightly away from the limit of stability of the transverse
waves). In the second test, the grid spacing is chosen at the limit of stability
of the longitudinal waves, i.e. h =

√
E/ρ k, that is, the same as in [32] (note

1https://mdphys.org/JSV_2022.html
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units value

ρ kg/m3 8000
E Pa 2 · 1011

T0 N 40
L m 1
r mm 0.29

Table 1: String parameters, obtained from typical values for musical strings.

that this is a much larger spacing than in the previous test). Compared
to the ICA IT scheme, both non-iterative schemes give consistent speedups,
particularly when the grid spacing is smaller. In this respect, note that the
computational speedup of the LU decomposition is less pronounced as the
ratio N/Ns becomes smaller (i.e., the grid spacing becomes larger), since
sparsity of the matrix T is reduced. Furthermore, in this test LU NIT is also
faster than the previously availble ICA NIT, though here the compute time
ratio is almost constant ascross all tests.

OF N Ns LU NIT (s) ICA NIT (s) ICA IT (s) ICA IT
LU NIT

ICA IT
ICA NIT

ICA NIT
LU NIT

1 332 7 0.35 0.48 1.29 3.7 2.7 1.4
2 664 13 1.67 2.37 7.58 4.5 3.2 1.4
4 1329 25 14.6 22.3 83.2 5.7 3.7 1.5

Table 2: Compute times for 0.01 seconds of output. The string parameters are as in Table
1 and initial conditions considered here are the same as Figure 1. The oversampling factors
(OF) are given for a base sample rate fs = 48 · 103 Hz. The grid spacing is chosen as
h = 1.05

√
T0/ρAk. The iterative scheme is run with a tolerance threshold 10−13, and

100 maximum iterations per step. The compute times reported are an average over 5
consecutive tests.

5.1. Experiments

The performance of scheme (43) is now assessed in a numerical experi-
ment. In Figure 1, one can see the snapshots of the time evolution of the
simulation, at successive times. The string is initialised in the transverse
direction with a raised cosine distribution centered around the midpoint of
the problem domain. In this example, the moment of inertia I is set to
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OF N Ns LU NIT (s) ICA NIT (s) ICA IT (s) ICA IT
LU NIT

ICA IT
ICA NIT

ICA NIT
LU NIT

1 9 7 0.04 0.06 0.11 2.7 1.8 1.5
2 19 13 0.09 0.12 0.23 2.6 1.9 1.3
4 38 25 0.23 0.30 0.52 2.3 1.7 1.3

Table 3: Same as Table 2, but here the grid spacing is chosen as h =
√
E/ρ k.

zero, so to compare LU NIT against both the linear one-dimensional wave
equation, and to the iterative finite-difference scheme ICA IT presented in
[32]. The key features of nonlinear wave propagation relative to linear are
increased wave speed, as well as a progressive flattening of the peaks with
time. Notice that both schemes (43) and the iterative scheme from [32] yield
consistent solutions. The same observations can be drawn from results shown
in Figure 2. The top panel is a representation of the same solutions for the
transverse displacement, but plotted against time. The second panel instead
shows the longitudinal displacement: the two models yield again consistent
results, though differences are noticeable. Energy remains conserved for both
schemes, with an error of the order of machine accuracy. However, the it-
erative scheme can only achieve this through a large number of iterations,
highlighting the advantage of the linearly-implicit formulation (51).

Note that, in the simulation, the grid spacing is chosen to be slightly larger
than bound (47b) satisfied with equality. This is to avoid possible erratic
behaviour near Nyquist. In practice, some spurious noise is generated by the
schemes, and propagated through the spectrum by the nonlinear coupling.
This is not a blow-up, rather, it is a polluted solution. This effect has been
observed for other nonlinear systems, see for example the Kirchhoff-Carrier
string in [8] (Chapter 8).

6. Wideband Numerical Dispersion Reduction

Numerical dispersion introduces artefacts in the computed solution. In
the linear case, modified-equation techniques can be employed to increase the
formal order of accuracy of the numerical schemes, see e.g. [44, 45, 46, 47, 48].
Dispersion is a frequency-dependent effect, and higher frequencies are usually
more affected by it. Order-accuracy holds in the low-frequency limit, and it
was observed that lower-order accurate schemes may yield better wideband
behaviour, see e.g. [49, 50]. For this reason, it may be preferable to reduce
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Figure 1: Snapshots of the time evolution of solutions to the nonlinear wave equation,
at successive times. For all panels, the circles represent the solution to the linear wave
equation, the thick black line is the iterative finite difference scheme ICA IT presented in
[32], and the dashed grey line is LU NIT (43). Note that stiffness was not considered in
this example, so I = 0. The string has the parameters listed in Table 1. The solutions are
initialised with a raised cosine distribution with compact support of the form u(0, x) =
U0

2

(
1 + cos

(
2π(x−L/2)

2σL

))
for L/2−σL ≤ x ≤ L/2 +σL, and u(0, x) = 0 elsewhere. Here,

U0 = 2 mm and σ = 0.1. The sample rate used is fs = 48 kHz, and the grid spacing is
h = 1.05hCFL, where hCFL is as per (47b).

dispersion over the entire range of frequencies [51, 37], rather than increasing
the formal order of accuracy. As an example, consider Figure 3. There, the
numerical dispersion relations of the linear part of (43a) are compared against
the continuous dispersion relation of the linear part of (1a). Remember that,
from the discussion in Section 4.4, the error of the scheme with η = 1 is
second-order in both k and h. For η = 0, the error is second-order in h
and first-order in k. (These estimates are true when the stability conditions
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Figure 2: Waveforms and energy error. The circles represent the solution to the linear wave
equation, the thick black line is the iterative finite difference scheme ICA IT from [32], and
the dashed grey line is the non-iterative scheme LU NIT (43). (a): transverse displacement,
output is taken at xo = 0.72L; (b): longitudinal displacement, output is taken at xo =
0.72L; (c): energy error for both schemes, defined as εn−1/2 = 1−hn−1/2/h1/2; (d): number
of iterations for the transverse Newton-Raphson, with a tolerance threshold τ = 10−13,
and escape condition iter ≤ 20.

(47) are satisfied near equality, see also Appendix B). While the scheme
with η = 1 is higher-accurate in k, its wideband dispersion properties are
somewhat worse, as seen in Figure 3. In other words, when both schemes
are run with the same sample rate, and the grid spacings are chosen close to
bounds (47), the increased accuracy of scheme with η = 1 at lower frequencies
quickly deteriorates at higher frequencies. For audio, it may be preferable to
mantain low numerical dispersion across a wideband portion of the spectrum,
rather than higher order-accuracy, since numerical dispersion in the mid-high
range results in a detuning of higher partials [8] (Chapter 7). For this reason,
in the remainder, the scheme with η = 1 will be dismissed. The idea is to now
employ a parametrised version of (43a), with η = 0, so to reduce numerical
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Figure 3: Continuous and numerical dispersion relations. The numerical dispersion re-
lations are obtained from the linear part of (43a) (left-hand side), using η = 0 and
η = 1, and by transforming the difference operators in the frequency domain, as
D2 → −4/h2 sin2(γh/2), D4 → 16/h4 sin4(γh/2), δtt → −4/k2 sin2(ωk/2), and using

µt· = 1 + k2

2 δtt. Here, γ is the wavenumber, and ω is the radian frequency (though the
linear frequency f = ω/2π is plotted), and h0, hCFL are given in (47). Panels (a) and (b)
plot the dispersion relation and the absolute value of the error Q(f) (i.e. the difference
between the continuous and numerical dispersion relations) for the schemes with η = 0
and η = 1, when they are both run at their respective limits of stability given in (47).
The sample rate is fs = 48 · 103, and the string parameters are given in Table 1. Panels
(c) and (d) repeat the same experiments, except that the scheme with η = 1 is run at the
limit of stability of the scheme with η = 0. Note that, in both cases, η = 0 yields lower
wideband numerical dispersion.

dispersion across a large portion of the frequency axis. To that end, consider
the following modification of the linear part of (43a):(

ρAR(θu)δtt − T0D
2 + EID4

)
un = 0, (59)

where the parameterised operator R (θu) has the form

R(θu) = I +
(1− θu)h2

2
D2. (60)
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One can select θu so that the number of grid intervals matches the number of
eigenfunctions whose eigenfrequency is found below the Nyquist limit 1/2k,
resulting in wideband dispersion reduction, see e.g. [8] (Chapter 7), and
[37]. Let such number of eigenfunctions be Nu. Under simply-supported
conditions,

Nu =
L

π

√√√√−T0 +
√
T 2

0 + 4π2

k2
ρEAI

2EI
(61)

Then, one selects (see [37])

θu = θ̄u ,
1

2
+
T0k

2h̄2 + 4EIk2

2ρAh̄4
, with h̄ =

L

Nu

. (62)

The numerical transverse eigenfrequencies ωm, 1 ≤ m ≤ N −1 of the param-
eterised scheme can be determined through use of the ansatz un = ejωnkû,
for a constant vector û, and angular frequency ω, as

{ωm} =
2

k
arcsin

(
k

2
eig

[
R(θu)

−1

(
− T0

ρA
D2 +

EI

ρA
D4

)]1/2
)
. (63)

Figure 4 shows the numerical dispersion relations and the modal frequencies
for various choices of the parameter θu. It can be seen that, under the choice
(62), the warping effects are minimised across the spectrum, though order-
accuracy is not formally decreased (since the correction factor is itself O(h2)),
when the stability condition is fulfilled close to the stability limit (though one
must be wary of theoretical error-estimates blow-ups, as explained in e.g. [39]
for the case of linear wave equations; see also comment in the last paragraph
of Section 4.4). The same figure shows the results obtained when one chooses
h as per the natural longitudinal grid spacing hv =

√
E/ρ k: frequency

warping effects are evident, and one is not able to resolve frequencies above
a few hundred Hz, at audio rate. This highlights the benefits of the choice
of the nonlinear potential function φ in (2), which leaves the linear part of
the transverse waves unaffected. Convergence of the eigenfrequencies (63),
as well as space-time convergence curves for the parameterised linear scheme
(59) are given in Appendix C.

The discrete energy is modified by the introduction of the operator R(θu).
A correction of the order O(h2) appears in the kinetic term (46a), which now
reads

Ek =
ρA

2

(
‖δt−u‖2 + ‖δt−v‖2 +

(θu − 1)h2

2

∥∥D−δt−u
∥∥2
)
.
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Figure 4: Numerical dispersion relation and error on modal frequencies of the linear trans-
verse displacement. The string parameters are as per Table 1. The sample rate is fs = 48
kHz. (a): Dispersion relations. Black solid line is the continuous dispersion relation; black
dashed line is obtained using the stability condition (64) using θu = θ̄u given in (62); grey
solid line is obtained with θu = 1; grey dashed lines are obtained under various other
choices for θu. The choice of the longitudinal grid spacing h = hv =

√
E/ρ k is also

given in the inset. (b): error on modal frequencies. Black dashed line is obtained using
the stability condition (64) using θu = θ̄u given in (62); grey solid line is obtained with
θu = 1; grey dashed lines are obtained under various other choices for θu. The numerical
frequencies ω are as per (63). The analytic frequencies Ω are given in (B.3).

This imposes a modification of the stability condition (47a), which now is

h ≥ h0(θu) ,

√
T0k2 +

√
(T0k2)2 + 16(2θu − 1)ρAEIk2

2ρA(2θu − 1)
, (64)

where it is assumed that θu > 1/2. Though the value for θu was selected in
the lossless case, losses are small for musical strings, and hence the wideband
dispersion properties are mostly unaffected by it.
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7. Application: the nonlinear struck, damped string

The stiff string model detailed in Section 2 is here extended to include
simple loss and source terms, for illustrative purposes. The equations of
motion of such system, an extension of (16), are(
ρA∂2

t − T0∂
2
x + EI∂4

x + 2ρAσ0
u∂t − 2ρAσ1

u∂t∂
2
x

)
u(t, x) = ∂x (guψ) + J f(t),

(65a)(
ρA∂2

t − T0∂
2
x + 2ρAσ0

v∂t
)
v(t, x) = ∂x (gvψ) . (65b)

(16c) and (17) hold here as well. This simplified loss model depends on three
parameters σ0

u, σ
0
v , σ

1
u, the latter of which controls a frequency dependent

decay. The left-hand side of (65a) is a model of the linear stiff string with
loss, used in many previous works, see e.g. [8] (Chapter 7). Here, J describes
the spatial distribution of the source term. For simplicity, one can choose

J = δ(x− xf ), (66)

where δ represents a Dirac delta function, and where 0 < xf < L is the point
of contact along the string where the source acts (not including the end
points). The function f = f(t) is the time evolution of the source term. A
simple model for striking/plucking may be obtained by means of raised/half
raised cosine [8], as

f(t) =
Fs
2

(1− cos(ζπ(t− t0))/ts) , t0 ≤ t ≤ t0 + ts, (67)

and f(t) = 0 elsewhere. The parameters Fs (in Newtons), ts (in seconds)
and ζ ∈ {1, 2} control, respectively, the maximum exerted force, the contact
duration, and the source type (1 for pluck, 2 for strike).

System (65) maintains a notion of passivity, in that it is possible to obtain
an energy balance of the kind

dH

dt
= −2ρAP(t) + ∂tu(t, xf )f(t), (68)

where the energy H(t) has the form (14), and where

P(t) = σ0
u ‖∂tu‖

2 + σ0
v ‖∂tv‖

2 + σ1
u ‖∂t∂xu‖

2 ≥ 0. (69)

The time evolution of the energy (68) expresses the power balance of the
string with loss and source. In particular, there is no autonomous production
of energy within the system: power is dissipated according to 2ρAP(t), and
injected according to ∂tu(t, xf )f(t).
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7.1. Discretisation

The Dirac delta function can be approximated here by a vector J = Jm,
1 ≤ m ≤ N − 1, i.e. [8] (Chapter 5)

J = δ(x− xf )→ J, (70)

where

Jmf
= (1− α)/h, Jmf+1 = α/h, (71a)

Here α = xf/h−mf , mf = floor(xf/h). J is zero elsewhere. The loss terms
are discretised simply as

σ0
u∂t − σ1

u∂t∂
2
x → σ0

uδt· − σ1
uδt·D

2, σ0
v∂t → σ0

vδt·. (72)

The source is simply approximated as f(t)→ fn, though one should be aware
that formal order of accuracy may not be preserved under such choice [40].
This particular discretisation leads to passivity in the numerical setting. Via
the same steps leading to (45) in the conservative case, one gets

δt+h
n−1/2 = −2ρApn + 〈J, δt·un〉 fn, (73)

where
p = σ0

u ‖δt·u‖
2 + σ0

v ‖δt·v‖
2 + σ1

u

∥∥D−δt·u
∥∥2 ≥ 0. (74)

Notice that stability condition (64) must be enforced here too.

7.2. Experiments

The performance of the discrete system is now checked in a number of
numerical experiments. For those, the string’s loss and source parameters
are selected as in Table 4, while the other string parameters are the same as
in Table 1.

Notice that three possible values for Fs can be selected from Table 4.
Moreover, output is extracted at xo = 0.32 m. For the simulations, a base
sample rate fs = 48·103 Hz is used, and oversampling factors are indicated in
the caption of the figures. For all the simulations, the grid spacing is chosen
as h = 1.05h0, where h0 is the limit of stability defined in (64): selecting
the grid spacing slightly away from the limit of stability results in better
numerical behaviour overall, as explained in the last paragraph of Section
5.1. Note that, in order to set θu in (62), one should employ a modified value
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units value

σ0
u 1/s 0.1
σ0
v 1/s 0.2
σ1
u m2/s 4 · 10−4

t0 ms 1
ts ms 0.8
xf m 0.72
µ - 2
Fs N [0.5,1,2]

Table 4: Loss and forcing parameters used for the time domain simulations, completing
the parameters given in Table 1.

Figure 5: Transverse displacement. (a): Fs = 0.5 N; (b): Fs = 1 N; (c): Fs = 2 N.
Oversampling factors: 1 (grey); 5 (solid black); 10 (dotted black); 15 (dashed black).
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for h̄, i.e. h̄ = L/1.05Nu. The number of longitudinal modes Ns is selected
as per bound (50). A first experiment is presented in Figure 5. Here, the
panels show the time evolution of the transverse waves for the three forcing
values. The waveforms show that the wave velocity (and thus the frequency)
increases with the forcing amplitude, a behaviour that is typical of nonlinear
waves. In Figure 5(a), the dynamics is mostly linear, and one sees that

Figure 6: Longitudinal displacement. (a): Fs = 0.5 N; (b): Fs = 1 N; (c): Fs = 2 N.
Oversampling factors: 1 (grey); 5 (solid black); 10 (dotted black); 15 (dashed black).

the solution computed at audio rate is virtually undistinguishable from the
others. Indeed, in Figure 6(a) the solution computed at audio rate clearly
drifts away from the others, but such effect is unperceivable when listening
to the transverse component, see also the audio examples on the companion
webpage2. As the forcing amplitude increases, as in panels (b) and (c) of
Figure 5, the reference solution at audio rate diverges from the others, and
higher oversampling factors may be needed (here, an oversampling factor of 5
seems to yield reasonable waveforms in all cases). The same conclusions can
be drawn observing the longitudinal waves in Figure 6. While the solutions at
audio rate appear to not have converged at higher input forcings, they yield

2https://mdphys.org/JSV_2022.html
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Figure 7: Velocity spectrograms for the three case studies. Input forcing amplitudes as
indicated. The sample rate used is 48 kHz.

a perceptually reasonable sounding output, including pitch glides, phantom
partials and modal couplings. These festures are visible in the spectrograms
of Figure 7, highlighting the change from linear to nonlinear regimes. Sound
examples, comparing the solutions obtained at audio rate with oversampled
solutions, are available on the article’s companion webpage3.

8. Conclusions

String vibration is a subject of interest in many engineering disciplines.
For the purpose of sound synthesis by physical modelling, as well as for ad-
vanced musical acoustics investigation, one must include nonlinear effects.
These are distributed across the string, and arise as a consequence of the
string’s large stretching. In this work, an application of quadratisation meth-
ods was offered. This allows to solve for the nonlinearities using one single
matrix inversion, thus bypassing the machinery of iterative methods. Longi-
tudinal and transverse waves were solved using a mixed approach. The use
of a free theta parameter allows to implement wideband numerical dispersion
reduction in the transverse direction. Stability of the numerical scheme was
approached via energy conservation, and illustrated numerically. Extension
of these techniques to other nonlinearities in acoustics, such as collision dy-
namics [52, 53, 43, 33], von Kármán plates [8, 54], and others, is possible.
Important aspects, worthy of future investigations, include a formal proof of

3https://mdphys.org/JSV_2022.html
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convergence and accuracy, an analysis of structure of the scheme’s matrices
for improved performance, as well as the design of schemes with reduced
dispersion in the longitudinal component.
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Appendix A. Error curves for the quadratised scheme

The simple case of a scalar nonlinear ODE is considered here, to check
the order of accuracy of the proposed quadratised scheme. The scalar ODE
reads

d2u

dt2
= −u− γu3. (A.1)

This is a type of lossless Duffing equation, with zero input. For this equation,
an analytic solution exisits as

u(t) = u0 cn

(√
1 + γu2

0 t;
γu2

0

2γu2
0 + 2

)
, (A.2)

where cn(a; b) is the Jacobi elliptic function with argument a and parameter

b. Here, it is assumed that u(t = 0) = u0, du(t=0)
dt

= 0. Numerical integration
of (A.1) using the quadratised energy proceeds as follows. First, define the
auxiliary variable

ψ =

√
γ

2
u4 =

√
γ

2
u2. (A.3)

The scheme is constructed as

δttu
n = −un − gnµt+ψn−1/2, δt+ψ

n−1/2 = gnδt·u
n, gn =

dψ

du

∣∣
u=un

. (A.4)

Numerical initial conditions are specified as

u0 = u0, u
1 = u0 − k2

2
(u0 + γ(u0)3), ψ1/2 =

√
γ

2
(u0)2. (A.5)
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Figure A.8: Error curves of the quadratised scheme (A.4). Here, + is γ = 0.6, ◦ is γ = 0.8,
· is γ = 1. The initial displacement is selected as u0 = 3.7, and the error is computed at
the time t = 0.4 s. The dashed line has a slope of 2.

These are second-order accurate. Note, in particular, that u1 was obtained
implementing d

dt
= δt+−k

2
δtt+O(k2). The error at the time te = round(0.4/k)k

is then computed as
Q = u(te)− ute/k, (A.6)

that is, the difference between the analytic solution (A.2) and the output of
the finite difference scheme at the corresponding time step. The error curves,
under various choices of the nonlinear parameter γ, are plotted in Fig. A.8,
and are second-order.

Appendix B. Error curves for the linear wave equation with stiff-
ness

The linear part of (43a) is parametrised in terms of the switch η ∈ {0, 1}.
When η = 0, the fourth-order differential operator is discretised explicitly.
As seen in Section 4.2, this leads to two different stability conditions for
the two schemes. When the time step is selected as input parameter, and
the schemes are run near the stability limits, the scheme with η = 0 is more
efficient, since the corresponding grid spacing is larger. In terms of numerical
dispersion, the scheme with η = 0 has better wideband behaviour, as seen
in Figure 3. However, the scheme with η = 0 is only first-order convergent
in time, since k = O(h2). The question that is addressed here is how formal
first-order accuracy affects the space-time convergence. First, the space-time
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error is defined as
Q = u(te, xe)− ute/kxe/h

, (B.1)

where te = kn is measured in seconds, xe = mh in meters, and n , te/k,
m , xe/h are intergers. Furthermore, u(t, x) denotes the true solution which,
under simply-supported boundary conditions, reads

u(t, x) =
M∑
m=1

(
Cme

jΩmt + C?
me

−jΩmt
)

sin
mπx

L
. (B.2)

Here, Cm ∈ C is a complex constant, with complex conjugate C?
m, to be

determined from the initial conditions. M is, in theory, infinite, but for all
practical puroposes it must be truncated to an integer (for the tests here,
M = 106 is selected). The resonant frequencies are given by

Ωm =

√
T0

ρA

(mπ
L

)2

+
EI

ρA

(mπ
L

)4

. (B.3)

The initial displacement is selected as a raised cosine with compact support:

u(t = 0) , u0(x) =

{
1− cos

(
2π(x−L/4)

L/2

)
if L/4 ≤ x ≤ 3L/4,

0 elsewhere.
(B.4)

The initial velocity is selected as du(t=0)
dt

= 0. Under such initial conditions,
the solution is

u(t, x) =
M∑
m=1

2Cm cos(Ωmt) sin
mπx

L
, (B.5)

with

Cm =

〈
u0, sin

mπx
L

〉
L

, (B.6)

where the inner product is defined in (4). These integrals can be computed
analytically, ultimately yielding an analytic expression for u(t, x) for all times.
The numerical schemes are initialised using

u0
m = u0(x = mh), (B.7a)

u1 = u0 +
k2

2

(
T0

ρA
D2 − EI

ρA
D4

)
u0. (B.7b)
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These expressions for the initial conditions are second-order accurate. In
particular, (B.7b) is obtained using the fact that d

dt
= δt+ − k

2
δtt + O(k2).

Then, a number N of subintervals is selected, with N even. The correspond-
ing grid spacing h is obtained as h = L/N , and the time step is then selected
by inverting (47) at the limit of stability, i.e.

k =


h2

√
ρA

T0h2 + 4EI
, if η = 0, (B.8a)√

ρA

T0

h, if η = 1. (B.8b)

The error is computed at xe = L/2, te = round(10−3/k)k. Figure B.9 reports
the error curves for a typical string, displaying the expected trends. Note
that, when plotted against h, the errors are basically equal for both schemes:
when η = 0, the corresponding time step k is much smaller at the limit of
stability, allowing to compensate for the lower order of accuracy.

Appendix C. Error curves for the θ-schemes of the linear wave
equation with stiffness

The order of accuracy of the parameterised scheme (59) is checked. From
the stability condition (64), it is clear that the grid spacing h is not simply
proportional to the time step k, as would be in a pure CFL condition. For
this reason, the specification of the order of accuracy may be done in terms
a new variable that parametrises uniquely the level curve h − h0(k, θu) ≈ 0
in the (h, k) plane, where h0 is as per (64). First, note that level curve can
be expressed as

k = h2

√
ρA(2θu − 1)

T0h2 + 4EI
. (C.1)

This curve is naturally parametrised by the arclength s, defined as

s =

∫ h

0

√
1 +

(
dk

dh

)2

dh = h+
ρA(2θu − 1)

6EI
h3 +O(h5). (C.2)

In Figure C.10, a check on the convergence of the numerical eigenfrequencies
is performed. It is seen that clearly the errors are O(s2), for small enough
s, and irrespective of the choice of θu (so long, of course, that θu > 1/2,
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Figure B.9: Space-time errors of the schemes with η = 0 and η = 1, plotted against k and
h. Here, the grid spacing is chosen as input parameter for the simulations, and the time
step is selected at the corresponding limits of stability for the two schemes. A string with
ρ = 8000 kg/m3, E = 2 · 1011 Pa, r = 0.2 mm, L = 1 m, T0 = 50 N was used for the
simulations. The error is computed as per (B.1).

as specified at the end of Section 6). A second check is performed in the
time domain. Here, the value of the numerical solution (at a given location
along the grid, and at a given time) is compared against the analytic solution
given in (B.5). The error has the same form as (B.1), and is computed at
xe = L/2, te = round(10−3/k)k. Again, the error curves display the expected
error trends.
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Figure C.10: Numerical errors of the first four eigenfrequencies of scheme (59), under
various choices of θu, plotted against the arclength s. Here, the numerical eigenfrequencies
ωm are given by (63). The analytic eigefrequencies Ωm are as per (B.3). For all panels, +
is m = 1, ◦ is m = 2, * is m = 3, and · is m = 4. The superimposed dashed lines have a
slope of 2. A string with ρ = 8000 kg/m3, E = 2 · 1011 Pa, r = 0.2 mm, L = 1 m, T0 = 50
N was used for the simulations.
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formulation Hamiltonienne À Ports. (Modeling, Simulation, code gener-
ation and correction of multiphysics audio systems: Component network
approach and Port-Hamiltonian formulation), Ph.D. thesis, Université
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