
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Explanations for Negative Query Answers under Inconsistency-Tolerant Semantics

Published:
DOI: http://doi.org/10.24963/ijcai.2022/375

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/888067 since: 2022-11-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.24963/ijcai.2022/375
https://hdl.handle.net/11585/888067

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Thomas Lukasiewicz, Enrico Malizia, Cristian Molinaro, "Explanations for Negative

Query Answers under Inconsistency-Tolerant Semantics," 2022, Proceedings of the

Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, 2022,

pp. 2705-2711

The final published version is available online at

https://dx.doi.org/10.24963/ijcai.2022/375

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.24963/ijcai.2022/375

Explanations for Negative Query Answers under
Inconsistency-Tolerant Semantics

Thomas Lukasiewicz1,2 , Enrico Malizia3 and Cristian Molinaro4

1Institute of Logic and Computation, TU Wien, Austria
2Department of Computer Science, University of Oxford, UK

3DISI, University of Bologna, Italy
4DIMES, University of Calabria, Italy

thomas.lukasiewicz@cs.ox.ac.uk, enrico.malizia@unibo.it, cmolinaro@dimes.unical.it

Abstract

Inconsistency-tolerant semantics have been pro-
posed to provide meaningful query answers even
in the presence of inconsistent knowledge. Recently,
explainability has also become a prominent prob-
lem in different areas of AI. While the complexity
of inconsistency-tolerant semantics is rather well-
understood, not much attention has been paid yet
to the problem of explaining query answers when
inconsistencies may exist. Recent work on existen-
tial rules in the inconsistent setting has focused only
on understanding why a query is entailed. In this
paper, we address another important problem, which
is explaining why a query is not entailed under an
inconsistency-tolerant semantics. In particular, we
consider three popular semantics, namely, the ABox
repair, the intersection of repairs, and the intersec-
tion of closed repairs. We provide a thorough com-
plexity analysis for a wide range of existential rule
languages and for several complexity measures.

1 Introduction

In real ontology-based applications involving large amounts of
data, possibly from different sources, inconsistency might nat-
urally arise. To provide meaningful answers to users’ queries
even in such circumstances, different inconsistency-tolerant
semantics of query answering have been proposed, mainly in
the context of existential rules and description logics (DLs).

The ABox repair (AR) semantics is one of the most pop-
ular inconsistency-tolerant semantics; it was developed for
relational databases [Arenas et al., 1999] and generalized
for several DLs [Lembo et al., 2010]. Two other popular
semantics introduced later on are the intersection of repairs
(IAR) [Lembo et al., 2010] and the intersection of closed re-
pairs (ICR) [Bienvenu, 2012] semantics. Besides being AR
semantics’ natural under-approximations, they are relevant
in practice as they are amenable to preprocessing, since the
intersection of the (closed) repairs can be computed offline,
and then standard query answering can be employed online. In
fact, the latter approach has been used to implement the IAR
semantics [Lembo et al., 2015], while for the ICR semantics,
it has been observed in [Bienvenu and Bourgaux, 2016].

The above semantics’ complexity is rather well-understood
in the literature (see, e.g., [Lembo et al., 2010; Bienvenu, 2012;
Bienvenu and Rosati, 2013; Bienvenu et al., 2014; Lembo et
al., 2015; Bienvenu and Bourgaux, 2016] for inconsistency-
tolerant query answering in DLs, and, e.g., [Eiter et al., 2016;
Lukasiewicz et al., 2018; 2019; 2022] for inconsistency-
tolerant query answering under existential rules).

Explainability has recently started to play a prominent role
in different areas of AI. Explaining ontological query answers
allows users to understand not only what is or is not entailed
by a knowledge base under a particular semantics, but also
why. It has recently been investigated under both DLs and exis-
tential rules [Arioua et al., 2015; Bienvenu et al., 2015; 2016;
2019; Hecham et al., 2017; Ceylan et al., 2019; 2020a; 2020b;
2021; Lukasiewicz et al., 2020]. Bienvenu et al. [2015; 2016;
2019] considered the description logic DL-LiteR and defined
explanations for positive and negative answers under the brave,
AR, and IAR semantics, providing a data complexity analy-
sis of different related problems. Lukasiewicz et al. [2020]

considered explanations of positive query answers in the in-
consistent setting under existential rules. Although DLs are
popular ontology formalisms, rule-based ones are well-suited
for data intensive applications, as they admit higher-arity rela-
tions, naturally occurring in standard relational databases.

Explaining query answers under inconsistency-tolerant
semantics includes the problem of explaining query non-
entailment. Despite the importance of this problem, however,
its complexity has received less attention in the literature so
far. The only existing work focusing on this problem is [Bi-
envenu et al., 2019]. In this paper, we continue this line of
research. Rather than showing which facts inside the database
are in conflict with the entailment of the query, as in [Bien-
venu et al., 2019], our notions of explanation are based on
showing how fact removals, needed to restore consistency,
cause the query non-entailment. Besides the AR and IAR
semantics, we consider the ICR semantics as well. We carry
out a thorough complexity analysis for a wide spectrum of
Datalog± languages under the data, fixed-program-combined,
bounded-arity-combined, and combined complexity measures.

2 Preliminaries

In this section, we briefly recall some basics on existential
rules from the context of Datalog± [Calì et al., 2012a].

General. We assume a set C of constants, a set N of labeled
nulls, and a set V of variables. A term t is a constant, null, or
variable. We also assume a set of predicates, each associated
with an arity, i.e., a non-negative integer. An atom has the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. An atom containing only constants is also called
a fact. Conjunctions of atoms are often identified with the
sets of their atoms. An instance I is a (possibly infinite) set
of atoms p(t), where t is a tuple of constants and nulls. A
database D is a finite instance that contains only constants. A
homomorphism is a substitution h : C∪N∪V → C∪N∪V

that is the identity on C and maps N to C ∪ N. With a
slight abuse of notation, homomorphisms are applied also to
(sets/conjunctions of) atoms. A conjunctive query (CQ) q
has the form ∃Yφ(X,Y), where φ(X,Y) is a conjunction
of atoms without nulls. The answer to q over an instance I ,
denoted q(I), is the set of all tuples t over C for which there is
a homomorphism h such that h(φ(X,Y)) ⊆ I and h(X)= t.
A Boolean CQ (BCQ) q is a CQ ∃Yφ(Y), i.e., all variables are
existentially quantified; for BCQs, the only possible answer
is the empty tuple. A BCQ q is true over I , denoted I |= q, if
q(I) ̸= ∅, i.e., there is a homomorphism h with h(φ(Y)) ⊆ I .

Dependencies. A tuple-generating dependency (TGD) σ is a
first-order formula ∀X∀Y (ϕ(X,Y) → ∃Z p(X,Z)), where
X, Y, and Z are pairwise disjoint sets of variables, ϕ(X,Y)
is a conjunction of atoms, and p(X,Z) is an atom, all with-
out nulls; ϕ(X,Y) is the body of σ, denoted body(σ), while
p(X,Z) is the head of σ, denoted head(σ). For clarity, we
consider single-atom-head TGDs; however, our results extend
to TGDs with a conjunction of atoms in the head. An instance
I satisfies σ, written I |= σ, if the following holds: whenever
there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I ,
then there exists h′ ⊇ h|X, where h|X is the restriction of h
on X, such that h′(p(X,Z)) ∈ I . A negative constraint (NC)
ν is a first-order formula ∀X (ϕ(X) → ⊥), where X ⊆ V,
ϕ(X) is a conjunction of atoms without nulls, called the body
of ν and denoted body(ν), and ⊥ denotes the truth constant
false. An instance I satisfies ν, written I |= ν, if there is no
homomorphism h such that h(ϕ(X)) ⊆ I . Given a set Σ of
TGDs and NCs, I satisfies Σ, written I |= Σ, if I satisfies
each TGD and NC of Σ. For brevity, we omit the universal
quantifiers in front of TGDs and NCs, and use the comma
(instead of ∧) for conjoining atoms. Given a class of TGDs
C, we denote by C⊥ the formalism obtained by combining
C with arbitrary NCs. Finite sets of TGDs and NCs are also
called programs, and TGDs are also called existential rules.

The Datalog± languages that we consider to guarantee de-
cidability are among the most frequently analyzed in the liter-
ature, namely, linear (L) [Calì et al., 2012a], guarded (G) [Calì
et al., 2013], sticky (S) [Calì et al., 2012b], and acyclic
TGDs (A), along with the “weak” (proper) generalizations
weakly sticky (WS) [Calì et al., 2012b] and weakly acyclic
TGDs (WA) [Fagin et al., 2005], as well as their “full” (i.e.,
existential-free) proper restrictions linear full (LF), guarded
full (GF), sticky full (SF), and acyclic full TGDs (AF), re-
spectively, and full TGDs (F) in general. We also recall the
following further inclusions: L⊂G and F⊂WA⊂WS. We re-
fer to [Lukasiewicz et al., 2022] for a more detailed overview.

Knowledge Bases. A knowledge base is a pair (D,Σ),
where D is a database, and Σ is a program. For a pro-
gram Σ, ΣT and ΣNC denote the subsets of Σ containing
the TGDs and NCs of Σ, respectively. The set of models
of KB = (D,Σ), denoted mods(KB), is the set of instances
{I | I ⊇ D ∧ I |= Σ}. We say that KB is consistent if
mods(KB) ̸= ∅, otherwise KB is inconsistent. The answer
to a CQ q relative to KB is the set of tuples ans(q,KB) =⋂
{q(I) | I ∈ mods(KB)}. The answer to a BCQ q is true,

denoted KB |= q, if ans(q,KB) ̸= ∅. A different, how-
ever equivalent, way to define ontological query answering
is via the concept of the Chase (see, e.g., [Calì et al., 2013;
Tsamoura et al., 2021], and references therein). The deci-
sion version of CQ answering is: given a knowledge base
KB , a CQ q, and a tuple of constants t, decide whether
t ∈ ans(q,KB). Since CQ answering can be reduced in
LOGSPACE to BCQ answering, we focus on BCQs. We denote
by BCQ(L) the problem of BCQ answering when restricted
over programs belonging to L.

Following Vardi (1982), the combined complexity of BCQ
answering considers the database, the set of dependencies, and
the query as part of the input. The bounded-arity-combined
(or ba-combined) complexity assumes that the arity of the
underlying schema is bounded by an integer constant. The
fixed-program-combined (or fp-combined) complexity consid-
ers the sets of TGDs and NCs as fixed; the data complexity
also assumes the query fixed.

Table 1 recalls complexity results of BCQ answering for the
languages considered in this paper [Lukasiewicz et al., 2022].

Computational Complexity. For space reasons, we do not
include preliminaries on computational complexity, which
we assume the reader to be familiar with; we just recall that
D

P
2
= ΣP

2
∧ΠP

2
is the class of problems that are a conjunction

of a problem in ΣP
2

and one in ΠP
2
.

Inconsistency-Tolerant Semantics. Three prominent incon-
sistency-tolerant semantics for ontology-based query answer-
ing under existential rules are the ABox repair (AR) semantics,
its approximation by the intersection of repairs (IAR), and
the intersection of closed repairs (ICR) semantics [Lembo et
al., 2010; Bienvenu, 2012]; all three are based on the notion of
repair, which is a maximal consistent subset of the database.

Let KB = (D,Σ) be a knowledge base. A repair of KB is
an inclusion-maximal subset R of D such that mods(R,Σ) ̸=
∅; Rep(KB) denotes the set of all repairs of KB . In general,
there might be inconsistent KBs not admitting any repair. This
is the case when Σ itself is “incoherent”, that is, there is no
database B such that mods(B,Σ) ̸= ∅—observe that, by
monotonicity, this is equivalent to mods(∅,Σ) = ∅. In such a
case, even deleting the entire database would not be enough to
gain back consistency. In the rest of the paper, we assume that
the program of an inconsistent KB is never “incoherent”. The
closure Cl(KB) of KB , which we denote also as Cl(D,Σ),
is the set of all facts built from constants in D and Σ, entailed
by D and the TGDs of Σ. Let q be a BCQ:

• KB entails q under the ABox repair (AR) semantics, de-
noted KB |=AR q, if (R,Σ) |= q for all R ∈ Rep(KB).

• KB entails q under the intersection of repairs (IAR) se-
mantics, denoted KB |=IAR q, if (DI ,Σ) |= q, where

Data fp-comb. ba-comb. Comb.

L, LF, AF in AC
0

NP NP PSPACE

S, SF in AC
0

NP NP EXP

A in AC
0

NP NEXP NEXP

G P NP EXP 2EXP

F, GF P NP NP EXP

WS, WA P NP 2EXP 2EXP

Table 1: Complexity of BCQ answering. All non-“in” entries are
completeness results. [Lukasiewicz et al., 2022]

DI =
⋂
{R | R ∈ Rep(KB)}.

• KB entails q under the intersection of closed repairs (ICR)
semantics, denoted KB |=ICR q, if (DC ,Σ) |= q, where
DC =

⋂
{Cl(R,Σ) | R ∈ Rep(KB)}.

We refer to [Lukasiewicz et al., 2018; 2022] for more on
the complexity of AR-/IAR-/ICR-query answering.

3 Explanations for Negative Query Answers

In the rest of this section, KB = (D,Σ) is a KB and q a BCQ.
The next definition recalls and extends the one of (minimal)

explanation for query entailment by a KB [Ceylan et al., 2019].

Definition 3.1. An explanation for q w.r.t. KB is a subset E
of D such that (E,Σ) is consistent and (E,ΣT) |= q.

A minimal explanation E, or MinEx, for q w.r.t. KB is
an explanation for q w.r.t. KB that is inclusion-minimal, i.e.,
there is no E′ ⊊ E that is an explanation for q w.r.t. KB .

Unlike the definition of (minimal) explanations in [Ceylan
et al., 2019], we require consistency, as in our setting KBs can
be inconsistent. The above concept of minimal explanations
is equivalent to that of causes in [Bienvenu et al. 2016; 2019].

Definition 3.2. A repair deletion of KB is a subset C of D
such that (D \ C,Σ) is consistent and, for every proper sub-
set C ′ of C, (D \ C ′,Σ) is inconsistent.

Note that minimality is included in the definition of repair
deletion, which hence is a repair’s complement; when the KB
is consistent, the empty set is the only repair deletion.

Example 3.3. Consider the database

D = {Prof (p),Reader(p),Chair(p),Dean(p),PVC (p)},

asserting that p is a professor, a reader, chair (of some de-
partment), dean, and pro vice-chancellor. Consider also the
program Σ consisting of the following TGDs ΣT :

ΣT = {Prof (X) → CanBeElectedFor(X, 1),

Prof (X),Chair(X),→ CanBeElectedFor(X, 3),

Reader(X),PVC (X) → CanBeElectedFor(X, 3),

CanBeElectedFor(X,Y) → CanBeElected(X)}

and the following NCs ΣNC :

ΣNC = {Prof (X),Reader(X) → ⊥,

Dean(X),Chair(X) → ⊥,

Dean(X),Reader(X) → ⊥}.

The TGDs assert that a professor can be elected for 1 year; a
professor who is also chair, or a reader who is also pro vice-
chancellor, can be elected for 3 years; and finally someone
who can be elected for Y years can be elected. The NCs assert
that one cannot be a professor and a reader at the same time,
or dean and chair, and a reader cannot be dean.

The knowledge base KB = (D,Σ) is inconsistent and ad-
mits the three repairsR1,R2,R3, below, whose corresponding
repair deletions are the sets C1, C2, C3, respectively.

R1 = {PVC (p),Chair(p),Prof (p)}

R2 = {PVC (p),Chair(p),Reader(p)}

R3 = {PVC (p),Dean(p),Prof (p)}

C1 = {Reader(p),Dean(p)}

C2 = {Prof (p),Dean(p)}

C3 = {Reader(p),Chair(p)} .

We now define the explanations for query non-entailment
by a knowledge base under the AR, IAR, and ICR semantics.

Our explanation definitions aim at showing what happens
in the reparation process, in terms of fact deletions, causing
the query non-entailment under the considered inconsistency-
tolerant semantics; to this aim, these explanations are given
only in terms of pieces of MinExes for the query (lost during
the reparation). From this perspective, our definitions and the
ones by Bienvenu et al. [2019] are conceptually complemen-
tary, as the latter propose explanations in terms of database
facts left untouched by the reparation process and that are in-
consistent with the MinExes for the query; these explanations
might not include pieces of the query MinExes at all. To give
an example, to explain AR non-entailment, both explanation
notions witness the presence of a repair R not entailing the
query: Bienvenu et al. [2019] explanations provide facts F
left in the repair R that are inconsistent with every MinEx
for the query, whereas we provide facts E outside the repair
R (deleted during the reparation) that intersect every MinEx
for the query—here, F is a subset of a repair obtained by a
deletion that is a superset of E.

In this respect, our notions of explanation for non-entail-
ment under inconsistency-tolerant semantics are akin to the
one defined for non-entailment of a query by a consistent
knowledge base, as they both focus on “missing” facts needed
to entail the query: in the consistent case, the missing facts
were never in the database; in the inconsistent case, the missing
facts become missing due to the reparation process’ deletions.

The two perspectives can be thought to emerge from two
symmetrical scenarios. In a first scenario, the query is not
entailed when instead it was expected to be. In this case,
knowing the facts left in the repair that are inconsistent with
the MinExes, and hence preventing the query entailment, can
be useful to “restore” the expected behavior of the KB (e.g.,
removing some of those facts might yield query entailment).

Symmetrically, there is the scenario in which the query is
not entailed and this was expected/desired. In this context,
knowing the facts discarded by the reparation process (whose
deletion yields the desired non-entailment), as provided by our
explanations, can be helpful.

Examples illustrating our notions of explanation are pro-
vided after their the formal definitions, which are now given.

Intuitively, a query q is entailed by a knowledge base under
the AR semantics if every repair has a MinEx for q. An expla-
nation for KB ̸|=AR q provides a set C of facts witnessing the
non-entailment of q by some repair: a minimal way to restore
consistency needs to delete C fromD, which leaves no MinEx
for q in the repair yielded by the removal of (a superset of) C.

Definition 3.4. An explanation for KB ̸|=AR q is a set E =
{C}, where C is a subset of a repair deletion of KB such that,
for every MinEx E for q w.r.t. KB , E ∩ C ̸= ∅.

Example 3.5. Consider the knowledge base KB of Exam-
ple 3.3 and the query q1 = CanBeElectedFor(p, 3), asking
whether p can be elected for 3 years. It is easy to see that q1
is not entailed by KB under the AR semantics. An explana-
tion for KB ̸|=AR q1 is E1 = {C}, where C = {Reader(p),
Chair(p)}. This explanation says that deleting (at least) C
fromD is one way to restore consistency that leaves no MinEx
for q1 (i.e., there is a repair not entailing q1).

Intuitively, a query q is entailed by a knowledge base under
the IAR semantics if the repairs have a MinEx for q in com-
mon. An explanation for KB ̸|=IAR q provides sets of facts
C1, . . . , Cn explaining why no such common MinEx exists.
In particular, whatever MinEx E for q is considered among all
those in the database, a minimal way of restoring consistency
needs to delete from D some Ci intersecting E, which is then
lost in the repair yielded by the removal of (a superset of) Ci.

Definition 3.6. An explanation for KB ̸|=IAR q is a set E =
{C1, . . . , Cn}, with n ≥ 1, where the Cis are subsets of repair
deletions of KB such that, for every MinEx E for q w.r.t. KB ,
there exists a Ci such that E ∩ Ci ̸= ∅.

Example 3.7. Consider the knowledge base KB of Exam-
ple 3.3 and the query q2 = ∃X CanBeElected(X), asking
whether there is someone who can be elected. Query q2 is not
entailed by KB under the IAR semantics. An explanation for
KB ̸|=IAR q2 is E2 = {C1, C2}, where C1 = {Prof (p)} and
C2 = {Reader(p)}. This explanation says that deleting (at
least) C1 or C2 from D are two ways to restore consistency;
however, each MinEx for q2 is lost either when deleting C1 or
C2 (and thus there is no MinEx for q2 common to all repairs).

Intuitively, a query q is entailed by a knowledge base under
the ICR semantics if the closures of the repairs have a MinEx
for q in common. An explanation for KB ̸|=ICR q provides
sets of facts C1, . . . , Cn explaining why no such common
MinEx exists. In particular, whatever MinEx E for q is con-
sidered among all those in the closure of the database, there
is a minimal way of restoring consistency that needs to delete
some Ci from D, and by doing so every way of deriving E is
lost in the repair yielded by the removal of (a superset of) Ci.

Given a finite set of facts E, qE denotes the BCQ
∧

f∈E f .

Definition 3.8. An explanation for KB ̸|=ICR q is a set E =
{C1, . . . , Cn}, with n ≥ 1, where the Cis are subsets of repair
deletions of KB such that, for every MinEx E for q w.r.t.
(Cl(KB),Σ), there exists a Ci such that, for every MinEx X
for qE w.r.t. KB , X ∩ Ci ̸= ∅.

Note here that (Cl(KB),Σ) might be inconsistent, however
every MinEx E for q w.r.t. (Cl(KB),Σ), as well as every
MinEx X for qE w.r.t. KB , must be consistent (by definition

of MinEx). Nonetheless, there might be MinExes E for q w.r.t.
(Cl(KB),Σ) that do not admit any (consistent) MinEx for qE ;
such a MinEx E, however, cannot belong to the intersection of
the repairs’ closures, because if there is no (consistent) MinEx
for qE , then E cannot appear in the closure of any repair.

Example 3.9. Consider Example 3.3’s knowledge base KB
and the query q3 = ∃X,Y CanBeElectedFor(X,Y), asking
if there is someone who can be elected for some years, is not
entailed by KB under the ICR semantics. The MinExes for
q3 in the closure of the database are E1 = {Prof (p)}, E2 =
{Reader(p),PVC (p)}, E3 = {CanBeElectedFor(p, 1)},
and E4 = {CanBeElectedFor(p, 3)}. An explanation for
KB ̸|=ICR q3 is E3 = {C1, C2}, where C1 = {Prof (p)} and
C2 = {Reader(p),Chair(p)}. This explanation says that
deleting (at least) C1 or C2 from D are two ways of restor-
ing consistency; however, each Ei above cannot be derived
anymore when deleting C1 or C2 (thus, there is no MinEx for
q3 common to all repair closures). In fact, E1 and E3 cannot
be derived when C1 is deleted, while E2 and E4 cannot be
derived when C2 is deleted. It is particularly interesting to
note why E4 is not derived when C2 is deleted from D: the
two (minimal) ways of deriving E4, namely X1 = {Prof (p),
Chair(p)} and X2 = {Reader(p),PVC (p)}, are lost, and
while the former is a MinEx for E4, and hence an explanation
for q3, it is only a non-minimal explanation for q3.

Definition 3.10. For each S ∈ {AR, IAR, ICR}, an explana-
tion E = {C1, . . . , Cn} for KB ̸|=S q is minimal iff there is
no explanation for KB ̸|=S q that can be derived from E by
deleting facts from some Ci or by replacing a pair of distinct
Ci and Cj with Ci ∪ Cj .

The two conditions in the previous definition aims at making
“minimal” both the facts in each Ci and the overall number of
Cis in E . Notice that if an explanation E contains a “redundant”
Ci, that is, E \ {Ci} is an explanation, then E is not minimal
according to the definition above, as we can delete all facts
from Ci and still get an explanation, that is, E ′ = E \ {Ci} ∪
{∅} is an explanation. In fact, even E ′ is not minimal, as the
empty set can be merged with any other Cj in E ′, yielding the
(possibly minimal) explanation E \ {Ci}.

The next proposition states that explanations for query non-
entailment by a KB under an inconsistency-tolerant semantics
exist iff the query is not entailed under that semantics.

Proposition 3.11. For each S ∈ {AR, IAR, ICR}, an expla-
nation for KB ̸|=S q exists iff KB ̸|=S q.

A natural decision counterpart of the problem of computing
minimal explanations for KB ̸|=S q, where S ∈ {AR, IAR,
ICR}, is deciding the existence of a minimal explanation for
KB ̸|=S q. In light of Proposition 3.11, the complexity of the
latter problem equals the complexity of inconsistency-tolerant
reasoning, which has already been investigated in the litera-
ture. Thus, in this paper, we focus on the following decision
problems: deciding whether a set of sets of facts is a minimal
explanation for KB ̸|=S q, for each S ∈ {AR, IAR, ICR}.

Problem: S-MINEX
̸|=(L), with S ∈ {AR, IAR, ICR}.

Input: A knowledge base KB = (D,Σ) with Σ ∈ L, a BCQ
q, and E ⊆ P(D), with P(D) being the powerset of D.
Question: Is E a minimal explanation for KB ̸|=S q?

Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ in P D
P

D
P
2

PSPACE

S⊥, SF⊥ in P D
P

D
P
2

EXP

A⊥ in P D
P

P
NEXP

P
NEXP

G⊥ D
P

D
P

EXP 2EXP

F⊥, GF⊥ D
P

D
P

D
P
2

EXP

WS⊥, WA⊥ D
P

D
P 2EXP 2EXP

Table 2: Complexity of AR-/IAR-/ICR-MINEX
̸|=. All entries with-

out “in” are completeness results. All these results hold also for
deciding whether a set is a (not necessarily minimal) explanation.

In the following, for a knowledge base KB = (D,Σ) and a
query q, we assume that (a) KB ̸|=S q and (b) D contains a
MinEx for q, which is equivalent to require that there is at least
one repair entailing the query—in the literature, this is the so-
called brave semantics. Assumption (a) ensures that, if a set E
is recognized as not being a minimal explanation for KB ̸|=S

q, then this cannot be due to KB |=S q. Assumption (b)
rules out that KB ̸|=S q holds simply because there is no
way for the repairs (resp., their intersection, the intersection
of their closure) to entail the query. It can be shown that the
knowledge base does not contain any MinEx for q if and only
if our minimal explanations are E = {∅}, for all semantics AR,
IAR, and ICR. This is in line with our explanation definitions’
spirit, as we want to explain how deletions cause the query
non-entailment under the considered inconsistency-tolerant
semantics; if the query is not entailed due to the absence of
MinExes for it, then the inconsistency-tolerant semantics are
not directly involved in the query non-entailment. However,
all the results in the paper hold even if we remove either of the
aforementioned assumptions or both.

4 Complexity Analysis

Our complexity results are summarized in Table 2. We first
discuss membership, and then hardness results.

In the theorem statements, L is any of the languages con-
sidered in this paper, unless otherwise specified.

4.1 Membership Results

The following theorem provides upper bounds for the AR and
IAR semantics. For each semantics, we employ a general
procedure using an oracle for BCQ answering that applies
to all languages and complexity measures considered here.
The resulting upper bounds are always tight except for the fp-
combined complexity of all languages and the data complexity
of FO-rewritable languages (namely, L⊥, A⊥, S⊥, and their
specializations), for which we need more refined statements.

Theorem 4.1. If BCQ(L) is in the complexity class C in the
combined (resp., ba-combined, fp-combined, data) complexity,
then AR-/IAR-MINEX

̸|=(L) can be answered in the com-
bined (resp., ba-combined, fp-combined, data) complexity by
the following set of checks:
(a) an NP

C check, and
(b) a co-(NP

C) check.

In the previous theorem, to decide whether a set E =
{C1, . . . , Cn} is a minimal explanation for KB ̸|=IAR q, an

NP
C check is needed to verify that each Ci is a subset of a

repair deletion and no fact can be removed from any Ci (this
ensures the minimality of each Ci by exploiting the concept
of critical vertex in minimal hitting sets [Gottlob and Mali-
zia, 2018], as a repair deletion is a minimal hitting set of all
the culprits, which are minimal inconsistent subsets of the
database), while a co-(NP

C) check is needed to verify that
every MinEx for q intersects some Ci and no two distinct
Ci and Cj can be merged into a single set. The procedure

to answer AR-MINEX
̸|=(L) is a special case where E is first

checked to be a singleton, and then simpler conditions need
to be verified (because of the presence of only one element in
E), which nonetheless yield the same upper bounds of IAR-

MINEX
̸|=(L). Membership in P

NEXP for A⊥ in the combined
and ba-combined complexity (for both AR and IAR) follows
from the collapse of the strong exponential hierarchy, i.e., for
any k ≥ 0, (ΣP

k)
NEXP

= P
NEXP [Hemachandra, 1989]—this

will also apply to the ICR semantics in Theorems 4.2 and 4.3.

Focusing on the ICR semantics, we employ, again, a gen-
eral procedure that applies to all languages considered here.
In contrast to the AR and IAR semantics, this procedure uses
an oracle for BCQ answering under the ICR semantics and
applies only to the combined complexity. For the other com-
plexity measures, we devise different procedures. We denote
by ICR(L) the problem of BCQ answering under the ICR
semantics when restricted over programs belonging to L. The
combined complexity of ICR(L) is the same as the one re-
ported in the last column of Table 2 [Lukasiewicz et al., 2022].

Theorem 4.2. If ICR(L) is in the complexity class D in

the combined complexity, then ICR-MINEX
̸|=(L) can be an-

swered in the combined complexity by the following set of
checks:

(a) an NP
D check, and

(b) a co-(NP
D) check.

In the previous theorem, to decide whether a set E =
{C1, . . . , Cn} is a minimal explanation for KB ̸|=ICR q, we
can verify that each Ci is a subset of a repair deletion and
no two distinct Ci and Cj can be merged into a single set

in the same way as done for AR-/IAR-MINEX
̸|=(L). The

crucial difference is when we need to verify that (a) no fact
can be removed from any Ci, which requires an NP

D check,
and (b) for every MinEx E for q w.r.t. (Cl(KB),Σ), there
exists a Ci such that, for every MinEx X for qE w.r.t. KB ,
X ∩ Ci ̸= ∅, which requires a co-(NP

D) check. A (naïve)
procedure to verify the first condition (resp., the complement
of the second one), would require guessing a MinEx for q w.r.t.
(Cl(KB),Σ), which can have exponential size, and such an
approach would not yield tight upper bounds. To obtain upper
bounds matching the lower ones, we reduce verifying such
conditions to ICR reasoning over a suitable knowledge base.

In contrast, in the ba-combined (resp., fp-combined, data)
complexity, a MinEx for q w.r.t. (Cl(KB),Σ) can be guessed
in NP, as Cl(KB) is of polynomial size, since predicates’
arities are bounded (resp., the program is fixed), which yields
the following upper bounds for all languages considered.

Theorem 4.3. If BCQ(L) is in the complexity class C in
the ba-combined (resp., fp-combined, data) complexity, then

ICR-MINEX
̸|=(L) can be answered in the ba-combined (resp.,

fp-combined, data) complexity by the following set of checks:
(a) an NP

C check, and
(b) a co-(NP

C) check.

The results presented so far provide tight upper bounds for
all languages we consider in the combined and ba-combined
complexity. In the fp-combined complexity, for all languages
and inconsistency-tolerant semantics, we need the following
theorem to obtain tight upper bounds.

Theorem 4.4. For S ∈ {AR, IAR, ICR}, S-MINEX
̸|=(L) is

in D
P in the fp-combined complexity.

The membership results in the previous theorem derive from
the same procedures used in the combined and ba-combined
complexity with additional observations. First, consistency
checking is in P in the fp-combined complexity. Second, to
check query entailment, the certificate witnessing query en-
tailment can be guessed by the Turing machine solving the

original problem. Finally, for the ICR-MINEX
̸|=(L) prob-

lem, a MinEx for q w.r.t. (Cl(KB),Σ) can be guessed in NP

because Cl(KB) has polynomial size.
The previous theorem provides tight upper bounds also in

the data complexity for all languages but L⊥, A⊥, S⊥, and
their specializations. For such languages, leveraging their FO-
rewritability, we obtain the following tighter upper bound for
all inconsistency-tolerant semantics.

Theorem 4.5. For S ∈ {AR, IAR, ICR}, for L ∈ {L⊥,A⊥,

S⊥}, S-MINEX
̸|=(L) is in P in the data complexity.

4.2 Hardness Results

Hardness results are stated for the most specific languages
they apply to (and then hold for all generalizations, of course).

The following theorem establishes all D
P-hardness results

in Table 2 in the data and fp-combined complexity for GF⊥

and its generalizations. We use a reduction from the classical
D

P-complete problem SAT-UNSAT, that is, given two Boolean
formulas φ and ψ in 3CNF, decide whether φ is satisfiable
and ψ is unsatisfiable. For all inconsistency-tolerant seman-
tics, from an instance of SAT-UNSAT, we derive a suitable
knowledge base, a query, and a candidate minimal explana-
tion E = {C}. Roughly speaking, deciding satisfiability of
φ is encoded into deciding whether C is a subset of a repair
deletion, while deciding unsatisfiability of ψ is encoded into
deciding whether C intersects all MinExes for the query.

Theorem 4.6. For S ∈ {AR, IAR, ICR}, S-MINEX
̸|=(GF⊥)

is D
P-hard in the data complexity.

The remaining D
P-hardness results in the fp-combined com-

plexity are established by the following theorem, which holds
by another (more involved) reduction from SAT-UNSAT.

Theorem 4.7. For S ∈ {AR, IAR, ICR}, for L ∈ {LF⊥,

AF⊥, SF⊥}, S-MINEX
̸|=(L) is D

P-hard in the fp-combined
complexity.

The D
P
2
-hardness results in Table 2 in the ba-combined com-

plexity are established by the following theorem via a reduc-
tion from the prototypical D

P
2
-hard problem: given two inde-

pendent quantified Boolean formulas Φ = ∃X∀Y ¬φ(X,Y)
and Ψ = ∀X∃Y ψ(X,Y), decide whether Φ and Ψ are both

valid—here, φ and ψ are 3CNF formulas, and, to simplify the
reduction even more, φ and ψ can also be assumed to have
the same variables X and Y and the same number of clauses
[Lukasiewicz and Malizia, 2017, Theorem 3.9].

Theorem 4.8. For S ∈ {AR, IAR, ICR}, for L ∈ {LF⊥,

AF⊥, SF⊥}, S-MINEX
̸|=(L) is D

P
2
-hard in the ba-combined

complexity.

The hardness results for A⊥ in the ba-combined and com-
bined complexity require a dedicated analysis. We give a
reduction from the following P

NEXP-complete problem [Luka-
siewicz et al., 2022]: given a triple (m,TP1,TP2), where m
is a number in unary, and TP1 and TP2 are two instances of
the tiling problem for the exponential square 2n × 2n, decide
whether for every initial tiling condition w of length m, TP1

has no solution with w or TP2 has solution with w.

Theorem 4.9. For S ∈ {AR, IAR, ICR}, S-MINEX
̸|=(A⊥)

is P
NEXP-hard in the ba-combined complexity.

Finally, the remaining lower bounds in Table 2 in the ba-
combined and combined complexity are established by reduc-
ing standard BCQ answering to our problems.

Theorem 4.10. For S ∈ {AR, IAR, ICR}, for any language
L without NCs considered in this paper, BCQ(L) is reducible
in polynomial time to S-MINEX

̸|=(L⊥) in the ba-combined,
and combined complexity.

5 Summary and Outlook

Explaining AI decisions and dealing with inconsistent knowl-
edge have both garnered a lot of attention. In this paper, we
have analyzed the problem of explaining query non-entailment
by a knowledge base, providing a thorough complexity analy-
sis for three popular inconsistency-tolerant semantics, a wide
range of existential rules, and different complexity measures.

A direction for future work is analyzing the complexity
of other related problems, such as deciding whether a fact is
necessary (i.e., belonging to every minimal explanation) or
relevant (i.e., belonging to at least one minimal explanation),
as done by Bienvenu et al. [2016; 2019] for DL-LiteR. Also,
it would be interesting to investigate other notions of explana-
tions for query (non-)entailment, e.g., explanations providing
facts together with NCs, or more general explanation notions
encompassing the consistent and the inconsistent settings.

Acknowledgments

This work was supported by the Alan Turing Institute under the
EPSRC grant EP/N510129/1, by the AXA Research Fund, and
by the EPSRC grant EP/R013667/1. We thank the anonymous
reviewers for their insightful and helpful comments.

References

[Arenas et al., 1999] Marcelo Arenas, Leopoldo E. Bertossi,
and Jan Chomicki. Consistent query answers in inconsistent
databases. In Proc. PODS, pages 68–79, 1999.

[Arioua et al., 2015] Abdallah Arioua, Nouredine Tamani,
and Madalina Croitoru. Query answering explanation in
inconsistent Datalog+/– knowledge bases. In Proc. DEXA,
pages 203–219, 2015.

[Bienvenu and Bourgaux, 2016] Meghyn Bienvenu and Ca-
mille Bourgaux. Inconsistency-tolerant querying of de-
scription logic knowledge bases. In Reasoning Web, pages
156–202, 2016.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Riccar-
do Rosati. Tractable approximations of consistent query
answering for robust ontology-based data access. In Proc.
IJCAI, pages 775–781, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Querying inconsistent de-
scription logic knowledge bases under preferred repair se-
mantics. In Proc. AAAI, pages 996–1002, 2014.

[Bienvenu et al., 2015] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Explaining query answers
under inconsistency-tolerant semantics over description
logic knowledge bases. In Proc. DL, 2015.

[Bienvenu et al., 2016] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Explaining inconsistency-
tolerant query answering over description logic knowledge
bases. In Proc. AAAI, pages 900–906, 2016.

[Bienvenu et al., 2019] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Computing and explaining
query answers over inconsistent DL-Lite knowledge bases.
J. Artif. Intell. Res., 64:563–644, 2019.

[Bienvenu, 2012] Meghyn Bienvenu. On the complexity of
consistent query answering in the presence of simple on-
tologies. In Proc. AAAI, pages 705–711, 2012.

[Calì et al., 2012a] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem.,
14:57–83, 2012.

[Calì et al., 2012b] Andrea Calì, Georg Gottlob, and Andreas
Pieris. Towards more expressive ontology languages: The
query answering problem. Artif. Intell., 193:87–128, 2012.

[Calì et al., 2013] Andrea Calì, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering un-
der expressive relational constraints. J. Artif. Intell. Res.,
48:115–174, 2013.

[Ceylan et al., 2019] İsmail İlkan Ceylan, Thomas Lukasie-
wicz, Enrico Malizia, and Andrius Vaicenavičius. Expla-
nations for query answers under existential rules. In Proc.
IJCAI, pages 1639–1646, 2019.

[Ceylan et al., 2020a] İsmail İlkan Ceylan, Thomas Lukasi-
ewicz, Enrico Malizia, Cristian Molinaro, and Andrius
Vaicenavicius. Explanations for negative query answers
under existential rules. In Proc. KR, pages 223–232, 2020.

[Ceylan et al., 2020b] İsmail İlkan Ceylan, Thomas Lukasie-
wicz, Enrico Malizia, and Andrius Vaicenavicius. Explana-
tions for ontology-mediated query answering in description
logics. In Proc. ECAI, pages 672–679, 2020.

[Ceylan et al., 2021] İsmail İlkan Ceylan, Thomas Lukasi-
ewicz, Enrico Malizia, Cristian Molinaro, and Andrius
Vaicenavicius. Preferred explanations for ontology-media-
ted queries under existential rules. In Proc. AAAI, pages
6262–6270, 2021.

[Eiter et al., 2016] Thomas Eiter, Thomas Lukasiewicz, and
Livia Predoiu. Generalized consistent query answering
under existential rules. In Proc. KR, pages 359–368, 2016.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis, Re-
née J. Miller, and Lucian Popa. Data exchange: semantics
and query answering. Theor. Comput. Sci., 336(1):89–124,
2005.

[Gottlob and Malizia, 2018] Georg Gottlob and Enrico Mali-
zia. Achieving new upper bounds for the hypergraph duality
problem through logic. SIAM J. Comput., 47(2):456–492,
2018.

[Hecham et al., 2017] Abdelraouf Hecham, Abdallah Arioua,
Gem Stapleton, and Madalina Croitoru. An empirical evalu-
ation of argumentation in explaining inconsistency-tolerant
query answering. In Proc. DL, 2017.

[Hemachandra, 1989] Lane A. Hemachandra. The strong
exponential hierarchy collapses. J. Comput. Syst. Sci.,
39(3):299–322, 1989.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logics. In
Proc. RR, pages 103–117, 2010.

[Lembo et al., 2015] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant query answering in ontology-based
data access. J. Web Sem., 33:3–29, 2015.

[Lukasiewicz and Malizia, 2017] Thomas Lukasiewicz and
Enrico Malizia. A novel characterization of the complex-
ity class ΘP

k based on counting and comparison. Theor.
Comput. Sci., 694:21–33, 2017.

[Lukasiewicz et al., 2018] Thomas Lukasiewicz, Enrico Ma-
lizia, and Cristian Molinaro. Complexity of approximate
query answering under inconsistency in Datalog+/–. In
Proc. IJCAI, pages 1921–1927, 2018.

[Lukasiewicz et al., 2019] Thomas Lukasiewicz, Enrico Ma-
lizia, and Andrius Vaicenavičius. Complexity of incon-
sistency-tolerant query answering in Datalog+/– under
cardinality-based repairs. In Proc. AAAI, pages 2962–2969,
2019.

[Lukasiewicz et al., 2020] Thomas Lukasiewicz, Enrico Ma-
lizia, and Cristian Molinaro. Explanations for inconsist-
ency-tolerant query answering under existential rules. In
Proc. AAAI, pages 2909–2916, 2020.

[Lukasiewicz et al., 2022] Thomas Lukasiewicz, Enrico Ma-
lizia, Maria Vanina Martinez, Cristian Molinaro, Andreas
Pieris, and Gerardo I. Simari. Inconsistency-tolerant query
answering for existential rules. Artif. Intell., 307:103685,
2022.

[Tsamoura et al., 2021] Efthymia Tsamoura, David Carral,
Enrico Malizia, and Jacopo Urbani. Materializing knowl-
edge bases via trigger graphs. Proc. VLDB Endow.,
14(6):943–956, 2021.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational
query languages. In Proc. STOC, pages 137–146, 1982.

