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A model for space-time threshold exceedances
with an application to extreme rainfall

Paola Bortot1 and Carlo Gaetan2

1Dipartimento di Scienze Statistiche, Università di Bologna, Italy
2Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari,
Venezia, Italy

Abstract: In extreme value studies, models for observations exceeding a fixed high threshold have the
advantage of exploiting the available extremal information while avoiding bias from low values. In the
context of space-time data, the challenge is to develop models for threshold exceedances that account
for both spatial and temporal dependence. We address this issue through a modelling approach that
embeds spatial dependence within a time series formulation. The model allows for different forms of
limiting dependence in the spatial and temporal domains as the threshold level increases. In particular,
temporal asymptotic independence is assumed, as this is often supported by empirical evidence, espe-
cially in environmental applications, while both asymptotic dependence and asymptotic independence
are considered for the spatial domain. Inference from the observed exceedances is carried out through
a combination of pairwise likelihood and a censoring mechanism. For those model specifications for
which direct maximization of the censored pairwise likelihood is unfeasible, we propose an indirect
inference procedure which leads to satisfactory results in a simulation study. The approach is applied
to a dataset of rainfall amounts recorded over a set of weather stations in the North Brabant province
of the Netherlands. The application shows that the range of extremal patterns that the model can cover
is wide and that it has a competitive performance with respect to an alternative existing model for
space-time threshold exceedances.

Key words: asymptotic dependence, asymptotic independence, Gaussian spatial process, indirect in-
ference, max-stable process, Student’s t-spatial process
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1 Introduction

Extreme value analyses of environmental phenomena are typically hindered by a
scarcity of data, but if time series of observations are available at different sites in a
region, there is the potential to alleviate this difficulty by aggregating information,
both spatially and temporally. Furthermore, the exchange of spatial information can
be exploited to study the extremal features of the phenomenon at unobserved lo-
cations. We will focus on observations above a fixed high level as they allow the
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2 Paola Bortot and Carlo Gaetan

study of both the spatial pattern and temporal evolution of extremes, while avoiding
potential bias from the inclusion of low values. The challenge is to develop a model
for threshold exceedances that accounts for their spatial and temporal dependence.
We address this issue for a data structure commonly encountered in practice, char-
acterized by recordings at regular times over a set of sites that are close enough in
space to induce a non-negligible spatial dependence.

A first step when studying dependence of threshold exceedances is to distinguish
between asymptotic dependence and asymptotic independence (Coles et al., 1999).
Broadly speaking, these two limiting forms are characterized, respectively, by persis-
tence of dependence or convergence to independence among observations exceeding
asymptotically increasing thresholds. More formally, let Y1 and Y2 be continuous ran-
dom variables with cumulative distribution functions (CDFs) F1 and F2, respectively,
and let

χ (p) := Pr(F2(Y2) > p|F1(Y1) > p), 0 ≤ p < 1. (1.1)

Then, Y1 and Y2 are said to be asymptotically independent if the limit χ :=
limp→1− χ (p) is zero and asymptotically dependent if χ > 0, respectively. As many
authors have pointed out (Ledford and Tawn, 1997; Heffernan and Tawn, 2004;
Wadsworth and Tawn, 2012; Huser and Wadsworth, 2019, 2020; Simpson and
Wadsworth, 2021) correct identification of the limiting dependence is a fundamental
requirement, but it is not enough to guarantee reliable predictions of joint upcross-
ings, as the rate of convergence to the asymptotic form is also important. While the
value of χ is used to discriminate between the two limiting classes, the function χ (p)
is a natural choice to assess the speed of convergence to the limit (see, for instance,
Wadsworth and Tawn, 2012, Sec. 5.4).

In the context of space-time data, different forms of asymptotic dependence could
arise in the spatial and temporal domains. The limiting class could itself change with
the temporal and/or spatial lag. For some environmental phenomena, the assumption
of asymptotic dependence in space is realistic when working within relatively small
regions (Davison and Gholamrezaee, 2012; Davison et al., 2013; Bacro et al., 2016).
On the other hand, for the time domain, empirical evidence in many studies supports
asymptotic independence even at short time lags (Bortot and Tawn, 1998; Bortot
and Gaetan, 2014; Simpson and Wadsworth, 2021). As an illustrative example, we
consider a dataset of daily rainfall recorded from 1 October 1999 to 28 February
2019 at 28 meteorological stations located over the North Brabant province in the
south of the Netherlands, as shown in Figure 1 (Klein Tank et al., 2002). A detailed
description of this dataset will be given in Section 4. Here, we focus attention on the
behaviour of the empirical estimates of χ (p) for pairs of sites at increasing spatial
distances, averaging across all times, and for pairs of measurement times at increasing
temporal lags, averaging across all sites. The two sets of estimates for the months
from October to February are displayed in Figures 2(a) and 2(b), respectively. To
study the convergence to the limiting value χ , p varies, taking values 0.90, 0.95
and 0.99. The shaded area around each curve represents 95% pointwise confidence
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Figure 1 Map of the 28 manual weather stations analysed in the North Brabant province
Note: Longitude and latitude are in decimal degrees.
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Figure 2 For the North Brabant rainfall data, empirical estimates of χ (p), p = 0.90,0.95,0.99, for pairs of
observations at increasing spatial distances (in km) in (a) and temporal lags (in days) in (b), respectively
Notes: The shaded areas represent approximate 95% confidence regions based on a stationary bootstrap
procedure. In (a), estimates and bounds are smoothed. For colour figures please refer to the online version.

Statistical Modelling xxxx; xx(x): 1–25
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intervals obtained by 200 replications of a block bootstrap of the original series with
average block length of 300 days. The empirical estimates decrease with both spatial
and temporal distances, that is, a weakening of dependence occurs as one moves far-
ther out in space and time, as expected. As p increases, corresponding to increasing
threshold levels, both figures display a downward trend, but in Figure 2(b) the esti-
mates approach the 0 lower bound quickly at all time lags, whereas in Figure 2(a) the
estimates remain well above 0, even accounting for sample variability. These findings
point strongly towards asymptotic independence in the temporal domain, while, for
the spatial domain, the large empirical value of χ (0.99) indicates that asymptotic de-
pendence cannot be ruled out. Therefore, a model for the extremal behaviour of the
rainfall process in the North Brabant province should be asymptotically independent
in time and allow for asymptotic dependence in space.

Four main frameworks for modelling spatio-temporal extremes can be identified
in the literature. A max-stable approach which employs max-stable processes (de
Haan, 1984; Schlather, 2002; Kabluchko et al., 2009) to represent space and time
interactions, with time treated as a third continuous dimension added to the two
dimensions of space (Davis et al., 2013; Huser and Davison, 2014); a hierarchical
approach where spatio-temporal dependence is built in by including a stochastic
component in the model parameters (Sang and Gelfand, 2009; Turkman et al., 2010;
Economou et al., 2014; Nieto-Barajas and Huerta, 2017; Morris et al., 2017; Bacro
et al., 2020); a time series approach, where spatial dependence is embedded within
a time series model (Davis and Mikosch, 2008; Meinguet, 2012; Embrechts et al.,
2016); and a conditional approach based on an asymptotic approximation of the
conditional distribution of the space-time process given one single site and time
point (Wadsworth and Tawn, 2019; Simpson et al., 2020; Simpson and Wadsworth,
2021). All models developed within the max-stable approach imply spatial and tem-
poral asymptotic dependence or exact independence at all distances and time lags,
by a fundamental property of max-stable processes (Wadsworth and Tawn, 2012;
Huser and Davison, 2014). The hierarchical approach covers a wider range of limit-
ing patterns, with asymptotic dependent models (e.g., Turkman et al., 2010; Morris
et al., 2017) as well as asymptotic independent models (e.g., Sang and Gelfand, 2009;
Nieto-Barajas and Huerta, 2017; Bacro et al., 2020) being proposed in the literature.
However, in the aforementioned references, the models maintain the same limiting
dependence in both space and time. Within the conditional approach, Simpson et al.
(2020) and Simpson and Wadsworth (2021) provide examples of formulations for
threshold exceedances that enable different forms of asymptotic dependence in the
two domains. In this article, we follow a time series approach, as it lends itself
naturally to deal with the discreteness and ordering of time. In addition, it gives
a flexible framework to construct a model for threshold exceedances that are seri-
ally asymptotically independent and spatially either asymptotically independent or
asymptotically dependent. One of the advantages of the proposed model is the ease
of simulation which facilitates extrapolation of extremal functionals of interest. Es-
timation of model parameters is carried out by combining composite likelihood, a
censoring scheme and an indirect inference algorithm.
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The article is structured as follows. In Section 2, the model is motivated and devel-
oped. Inferential issues are discussed in Section 3. In Section 4, the entire approach
is applied to the North Brabant rainfall data and compared with an existing alterna-
tive method for space-time exceedances. Finally, Section 5 contains some concluding
remarks and proposals for extensions.

2 Model specification

Let Zt = {Zt(s), s ∈ S}, t = 1, 2, . . ., be a stationary spatio-temporal process on the
geographical space S ⊂ R

2 with marginal univariate CDF FZ. Let also

χ (d)(p; t1, . . . , td, s1, . . . , sd) := Pr(FZ(Zt2(s2))>p, . . . , FZ(Ztd(sd))>p|FZ(Zt1(s1))>p)

and χ (d)(t1, . . . , td, s1, . . . , sd) := limp→1− χ (d)(p; t1, . . . , td, s1, . . . , sd), for
d = 2,3, . . . and any t1, . . . , td ∈ {1, 2, . . .} and s1, . . . , sd ∈ S. Extending the
definitions in Huser and Wadsworth (2019) from the spatial to the spatio-temporal
framework, we will term Zt asymptotically dependent or asymptotically independent
in time if χ (d)(t1, . . . , td, s, . . . , s) > 0 or χ (d)(t1, . . . , td, s, . . . , s) = 0, respectively,
for all d = 2,3, . . ., all s and all t1, . . . , td (with at least one time different from the
others). Similarly, the process is termed asymptotically dependent or asymptotically
independent in space if χ (d)(t, . . . , t, s1, . . . , sd) > 0 or χ (d)(t, . . . , t, s1, . . . , sd) = 0,
respectively, for all d = 2, 3, . . ., all t and all s1, . . . , sd (with at least one site
different from the others). The above definitions do not cover all the possible
limiting forms. Intermediate forms of asymptotic dependence could also occur, for
example, χ (d)(t1, . . . , td, s, . . . , s) = 0 for some d and some t1, . . . , td, but, as Huser
and Wadsworth (2019) point out, these are unrealistic over relatively small ranges
and will not be considered here.

The starting point in developing a model for threshold exceedances with the
desired asymptotic properties is a parsimonious, yet flexible, specification that falls
within the time series approach described in Section 1. First, we assume that the
temporal dynamics on an arbitrary site s ∈ S are driven by a Gaussian first-order
autoregressive model, namely Zt(s) = αZt−1(s) + εt(s), with |α| < 1 and εt(s), t =
1, 2, . . ., a sequence of independent and identically distributed random variables
with N (0, 1 − α2) distribution. For fixed s, all finite-dimensional distributions of
the process are multivariate Gaussian with standard margins. As the multivariate
Gaussian distribution is asymptotically independent (Resnick, 2013, Corollary 5.8),
at any location asymptotic independence in time is guaranteed. The second step is
to incorporate spatial dependence by assuming that the innovations are spatially
related. Formally, we consider the stationary space-time process Zt = {Zt(s), s ∈ S},
t = 1,2, . . ., given by

Zt(s) = αZt−1(s) + εt(s), s ∈ S, t = 1, 2, . . ., (2.1)

Statistical Modelling xxxx; xx(x): 1–25



6 Paola Bortot and Carlo Gaetan

where |α| < 1 and εt = {εt(s), s ∈ S}, t = 1, 2, . . ., is a sequence of independent copies
of a stationary random field ε on S with N (0,1 − α2) univariate margins. A valuable
aspect of model (2.1) is its simple interpretation. The autoregressive component
controls time dependence through α, while spatial dependence is determined by εt.
On the other hand, interpretability comes at the expense of space-time interactions,
that (2.1) precludes. An extension of this formulation to accommodate interactions
is discussed in Section 5.

2.1 Spatial dependence
While the autoregressive structure of (2.1) and the marginal Gaussianity of the in-
novations constrain Zt to generate asymptotically independent exceedances in time,
both asymptotic dependence and asymptotic independence are possible for the spatial
domain, according to the formulation selected for ε. In particular, we will focus on
two cases: ε is either a Gaussian random field or a marginally transformed asymp-
totically dependent random field.

If the innovations are Gaussian random fields, then Zt is a special case of a
stochastic integro-difference equation model (Wikle and Cressie, 1999; Brown et al.,
2000). Under this specification, all finite-dimensional distributions of Zt are multi-
variate Gaussian with standard margins, and the process is asymptotically indepen-
dent in both time and space. By contrast, if ε is a marginal transformation of an
asymptotically dependent random field, then Zt is itself asymptotically dependent
in space. To clarify the latter point, let e be a stationary random field on S, with
Fe(x) = Pr(e(s) ≤ x), satisfying the asymptotic dependence requirement

lim
p→1−

Pr(Fe(e(s2)) > p, . . . , Fe(e(sd)) > p|Fe(e(s1)) > p) > 0 (2.2)

for all s1, . . . , sd and d = 2, 3, . . .. By letting ε in equation (2.1) be

ε(s) =
√

1 − α2 ·�−1 {Fe(e(s))} (2.3)

with �−1 denoting the quantile function of the standard Normal random vari-
able, we derive a space-time process Zt which is asymptotically dependent
in space. It can also be shown that χ (d)(t1, . . . , td, s1, . . . , sd) = 0 if at least
one of t1, . . . , td is different from the others, for all s1, . . . , sd, and all d =
2, 3, . . .: that is, non-simultaneous exceedances are asymptotically independent.
Proofs of both properties are given in the supplementary material, available at
http://www.statmod.org/smij/archive.html. Specification (2.3) of model (2.1)
is a special case of the family of processes studied in Davis and Mikosch (2008,
Equation 1.1), but with innovations transformed to have Gaussian univariate mar-
gins, as opposed to regularly varying univariate margins. The transformation of the
errors to the Normal scale is an essential component of the proposed modelling
procedure: working with regularly varying margins as in Davis and Mikosch (2008)

Statistical Modelling xxxx; xx(x): 1–25
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would yield a process that is not asymptotically independent in time (Chernick et al.,
1991, Proposition 2.1), thus failing to meet one of the objectives of this work.

2.2 Specification of e
To complete the model, a formulation for the random field e in (2.3) is required. In
the sequel, we will restrict attention to two families of processes: Student’s t-random
fields (Røislien and Omre, 2006) and max-stable random fields (de Haan, 1984;
Smith, 1990b). Each constitutes a class of asymptotically dependent spatial processes
for which flexible parametric forms are available. At the same time, they can exhibit
quite different extremal behaviours so together they cover a wide range of spatial
patterns of threshold exceedances (Demarta and Mcneil, 2005).

A Student’s t-random field, with ν > 0 degrees of freedom is defined by

e(s) =
√

UW(s), (2.4)

where W is a stationary Gaussian random field on S with standard margins and U is
an Inverse Gamma random variable with scale parameter ν/2 and shape parameter
ν/2, independent of W(s). All finite-dimensional distributions of process (2.4) are
multivariate t with ν degrees of freedom, which are known to be asymptotically
dependent (Chan and Li, 2008). Hence, process (2.4) satisfies condition (2.2). To
specify a family of models for ε, transformation (2.3) should be applied with Fe
given by the CDF of the Student’s t-random variable with ν degrees of freedom.
As ν → ∞, e converges to a Gaussian random field. Therefore, as ν increases, ε will
increasingly resemble a Gaussian field, approaching spatial asymptotic independence.

Max-stable random fields were introduced by de Haan (1984) as an extension
of max-stable distributions. Asymptotic dependence of max-stable random fields
follows from Lemma 3.1 of Davis and Mikosch (2008). One of the most frequently
used sub-classes of the max-stable family is the Brown-Resnick process (Brown and
Resnick, 1977; Kabluchko et al., 2009) whose representation is

e(s) = max
i≥1

{
Ri exp (Wi (s) − γ (s))

}
, (2.5)

where 0 < R1 < R2 < · · · are the points of a Poisson process on the positive half-
line with intensity r−2dr and Wi , i = 1,2, . . ., are independent copies of a Gaussian
random field W on S with stationary increments, semi-variogram γ (s) = E(W(s) −
W(0))2/2 and W(0) = 0 almost surely. Random field (2.5) has unit Fréchet univariate
margins, that is, Fe(x) = exp(−1/x), for x > 0 and Fe(x) = 0, elsewhere. Hence,
transformation (2.3) becomes

ε(s) :=
√

1 − α2 ·�−1
{

exp
(

− 1
e(s)

)}
. (2.6)

Statistical Modelling xxxx; xx(x): 1–25



8 Paola Bortot and Carlo Gaetan

An illustration of the different types of extremal patterns attainable under the pro-
posed specifications is given in the application presented in Section 4.

3 Inferential aspects

To prevent non-extreme observations from introducing bias in the analysis, our
proposal is to represent the extremal behaviour of the observed process through the
tail of model (2.1). Let Yt = {Yt(s), s ∈ S}, t = 1, 2, . . ., be the spatio-temporal process
generating the data, which is assumed time-stationary and with Pr(Yt(s) ≤ y) = Fs(y).
The process Yt can be marginally transformed to have standard Gaussian univariate
margins through

Zt(s) = �−1 {Fs(Yt(s))} . (3.1)

Equation (2.1) is then assumed to hold for the transformed process when its entire
space-time trajectory is above a fixed high threshold uz on the standard Gaussian
scale.

When inferring model (2.1) from the transformed threshold exceedances, some
issues arise, stemming mainly from the intractability of the likelihood function and
the need to censor observations below the threshold. In the following sections, we
describe a solution based on a combination of composite likelihood and indirect
inference.

3.1 Estimation
Let yt(si) be the original observation at time t, t = 1, . . . ,T, and site si , i = 1, . . . , n,
and zt(si ) be the corresponding transformed observation on the N (0, 1) scale. Trans-
formation (3.1) from yt(si ) to zt(si ) requires knowledge of Fs . In general, Fs is un-
known and should be estimated from data, but, to simplify the description of the
inference for the dependence structure, throughout this section, it will be treated as
known. Estimation methods for Fs will be discussed in Section 4.

We assume that a parametric model εθ has been selected for ε in (2.1), where the
parameter vector θ = (α,ψ) comprises the autoregressive parameter α and the vector
ψ of spatial parameters. Evaluation of the likelihood function for θ is impractical,
even with a moderate number of observed locations, as the overall dimensionality of
the problem is determined by both space and time. We resort to a composite likeli-
hood approach (Lindsay, 1988; Varin et al., 2011) based on the bivariate marginal
distributions of the process. In addition, to account for model (2.1) being assumed
valid only above a fixed threshold uz, a censoring scheme similar to that originally
proposed by Smith et al. (1997), and later employed by Ledford and Tawn (1997),
Huser and Davison (2014) and Bacro et al. (2020) among others, is embedded within
the composite likelihood. The resulting estimating function for θ is given by the

Statistical Modelling xxxx; xx(x): 1–25



A model for space-time threshold exceedances 9

following pairwise weighted log-likelihood (PL)

PL(θ ; z) =
T∑

t=1

CT∑
k=0

n∑
i=1

n∑
j=i+1−k

log hsi ,s j ,k(zt(si ), zt+k(s j ); θ )w(si ,s j ) (3.2)

where z is the set of available observations on the standard Gaussian scale, wsi ,s j

is a weight such that wsi ,s j = 1 if ||si − s j || ≤ CS and wsi ,s j = 0 otherwise (Davis
et al., 2013; Huser and Davison, 2014), and CS > 0 and CT ∈ {1, 2, . . .} are the
spatial and temporal cut-off points, respectively. The PL contributions are obtained
as logarithmic transformations of

hsi ,s j ,k(z1, z2; θ ) =

⎧⎪⎪⎨
⎪⎪⎩

fsi ,s j ,k(z1, z2; θ ) if min{z1, z2} > uz
∂
∂z1

Fsi ,s j ,k(z1, uz; θ ) if z1 > uz, z2 ≤ uz
∂
∂z2

Fsi ,s j ,k(uz, z2; θ ) if z1 ≤ uz, z2 > uz

Fsi ,s j ,k(uz, uz; θ ) if max{z1, z2} ≤ uz

(3.3)

with fsi ,s j ,k and Fsi ,s j ,k being the density function and CDF of
(Zt(si ), Zt+k(s j )), respectively. When εθ is a Gaussian random field, the associated
PL, which will be denoted by PLG(θ ; z), can be easily computed and θ estimated
by maximization of (3.2). If either a marginally transformed Student’s t or max-
stable random field is chosen for εθ , no analytical expression is available for either
the marginal distribution of Zt or the joint distribution of Zt and Zt+k for any
k = 1,2, . . .. Evaluation of the terms in (3.3), therefore, entails complicated numerical
integration. To avoid this computational burden, we propose the indirect inference
procedure described below.

3.2 Indirect inference
Indirect inference, introduced by Smith (1990a) and later extended by Gourieroux
et al. (1993) and Gallant and Tauchen (1996), is a simulation-based approach to clas-
sical estimation pre-dating the main developments of Approximate Bayesian Com-
putation (ABC), with which it shares similar goals. For details on the connections
between ABC and indirect inference see, for example, Drovandi (2019). Indirect in-
ference proves to be particularly effective in situations where the likelihood function,
or any other criterion function that forms the basis of estimation, is too difficult to
evaluate, but simulation from the model is feasible. Model (2.1) with innovations
that are either a marginally transformed Student’s t-process or max-stable process
satisfies both conditions, as it can be sampled but its PL is intractable.

Equation (6) of Heggland and Frigessi (2004) summarizes the indirect inference
approach advocated here. An auxiliary model depending on a set of parameters β
is identified and used to construct an auxiliary estimating function Q(β; z) whose

Statistical Modelling xxxx; xx(x): 1–25



10 Paola Bortot and Carlo Gaetan

analytical expression is available. Let θ be the set of parameters of the model we
wish to infer, hereafter termed the target model, and zobs be the original sample.
For fixed θ , M independent samples, z(m,θ), m = 1, . . . ,M, of the same size as zobs

are simulated from the target model. The auxiliary estimating function is maximized
with respect to β over the set of simulated samples, yielding the estimate β̂(θ ) =
argmaxβ

∑M
m=1 Q(β; z(m,θ)). Finally, θ is estimated through

θ̂I = argmax
θ

[
Q(β̂(θ ); zobs)

]
. (3.4)

By results in Gourieroux and Monfort (2018), if the target model is stationary and
satisfies suitable mixing conditions, as the size of the observed sample diverges β̂(θ )
converges almost surely and uniformly to a deterministic limit b(θ ), often referred
to as the binding function. If the function b(θ ) is one-to-one, θ̂I is a consistent and
asymptotically Gaussian estimator of θ .

In applying the above procedure, we selected process (2.1) with Gaussian inno-
vations as the auxiliary model, and let ε = εβ and Q(β; z) = PLG(β; z). This choice is
based on two arguments. First, PLG is readily computed and the auxiliary parameter
β can be estimated directly. Second, the tail of a Gaussian random field provides
a reasonable approximation of a wide range of exceedance patterns. The auxiliary
model is, therefore, likely to be close enough to the target model for the algorithm
to perform well. Equation (3.4) involves the solution of two nested maximization
problems, an outer maximization with respect to θ and an inner maximization with
respect to β, whose steps are outlined below.

Indirect Inference Algorithm (IIA)

Step 1.1: For given θ, simulate M independent samples

z(m,θ) = {z(m,θ)
t (si ), i = 1, . . . ,n, t = 1, . . . ,T}, m = 1, . . . ,M,

from model (2.1) with ε = εθ .
Step 1.2: Maximize

∑M
m=1 PLG(β; z(m,θ)) with respect to β to obtain

β̂(θ ).
Step 1.3: Evaluate PLG(β̂(θ ); zobs).

Repeat Steps 1.1 to 1.3 till maximization of PLG(β̂(θ ); zobs) to obtain

θ̂I.
For |α| < 1, process (2.1) is time-stationary and α-mixing, which guarantees al-

most sure convergence of β̂(θ ) to the binding function b(θ ) as T → ∞. The limit b(θ )
is unknown; however, it is reasonable to assume that it satisfies the one-to-one prop-
erty required for consistency of θ̂I, as θ and β have the same number of components
with similar interpretations.

Statistical Modelling xxxx; xx(x): 1–25



A model for space-time threshold exceedances 11

In the implementation of IIA, we used the Nelder-Mead routine for the inner
maximization and a simulated annealing routine for the outer maximization. Sim-
ulated annealing typically requires more iterations than the Nelder-Mead routine,
but is more robust and suited especially for irregular surfaces like PLG(β̂(θ ); zobs).
The performance of IIA has been assessed through a simulation study whose details
are available as supplementary material. We have found that in all the scenarios
considered, it leads to entirely satisfactory results.

3.3 Approximation of the estimator distribution
In this section, the issue of quantifying the variability of the proposed estimators is
addressed.

When εθ is a Gaussian random field, θ is estimated directly from PLG without
resorting to indirect inference and a parametric bootstrap is a viable way to approx-
imate the estimator distribution. This consists of repeatedly simulating a sample of
the same size as zobs from the fitted Gaussian model and re-estimating θ on each
simulated sample. The resulting estimates are treated as realizations of the estimator.

When εθ is either a spatial t or a max-stable process marginally transformed to
the Gaussian scale, that is, when estimation is carried out via the indirect inference
approach, we approximate the estimator distribution by exploiting the output from
the iterations of IIA. We assume that the binding function b(θ ) is bijective and denote
its inverse by t(β). Let β̂ be the estimate of β obtained by maximizing Qon the orig-
inal sample: β̂ = argmaxβ Q(β; zobs). The rationale behind the proposed procedure
is that for large T, the distribution of θ̂I can be approximated by the distribution of
t(β̂). The distribution of β̂ can be estimated via a parametric bootstrap similar to the
one described above: samples are simulated from the target model with θ = θ̂I and
β is estimated on each sample by direct maximization of PLG. A simulation-based
estimate of t can be obtained as follows. Suppose that N iterations of IIA have been
run before convergence. The N repetitions of Steps 1.1 and 1.2 output the set of
pairs {(θ j , β̂(θ j )), j = 1, . . . ,N} from which a semiparametric estimate t̂ of t can be
derived. Note that the choice of a simulated annealing routine for the outer maxi-
mization of IIA yields a relatively high number of iterations which allows an accurate
reconstruction of t.

Standard Error Algorithm

Step 2.1: Compute a semiparametric estimate t̂(β) of t(β) from the

intermediate output {(θ j , β̂(θ j )), j = 1, . . . ,N} of IIA.

Step 2.1: Simulate L samples of the same size as zobs from model
(2.1)
with ε = εθ̂I and obtain the bootstrap estimates β̂1 . . . , β̂L by
maximizing Q on each sample.
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Step 2.3: Calculate t̂(β̂1), . . . , t̂(β̂L) as approximate realizations

from the distribution of θ̂I.

4 Application

The approach described in Sections 2 and 3 was applied to recordings of daily rainfalls
from 1 October 1999 to 28 February 2019 over the North Brabant province in the
south of the Netherlands. The dataset was downloaded from the European Climate
Assessment (ECA) and Dataset website (https://www.ecad.eu), which provides a
zipped file containing a separate ASCII file for each station. In the reference region,
40 stations are installed, but 10 of them were discarded for having more than 10%
missing values. Of the 30 remaining stations, 28 are manual rainfall stations, and
two, corresponding to Eindhoven and Gilze Rijen weather stations, are automatic.
We noticed non-negligible differences in the magnitude of the recordings between
the automatic stations and the nearby manual ones. This is a known phenomenon
(Brandsma, 2014) which led us to exclude from the analysis the two automatic
stations. Figure 1 shows a map of the 28 manual stations analysed.

Flood events are mainly determined by aggregations in space and/or time of ex-
treme rainfalls (Richards et al., 2021). A spatio-temporal study of threshold ex-
ceedances of the rainfall process, therefore, has important practical implications in
evaluating flood risk. Figure 2 suggests that the exceedances of the rainfall process
are spatially and temporally related, though in ways that change between the two
domains. Dependence weakens rapidly with threshold level in the temporal domain
and slowly in the spatial domain where it retains a significant strength even at the
most extreme quantiles. These patterns are compatible with asymptotic indepen-
dence in time but leave ambiguity about the type of asymptotic dependence in space.
We investigate these features by fitting model (2.1) with Gaussian innovations and
asymptotically dependent innovations.

An exploratory analysis of the dataset was carried out in order to evaluate pos-
sible departures from the model assumptions. No evidence of an annual trend was
found over the 21-year period, but a seasonal variation was detected. Deseasonal-
izing each series would only partially address this issue as it would not account for
seasonal changes in the spatial dependence. A separate-season modelling is, there-
fore, a safer approach. In the following, we will focus on the period from October to
February within which approximate time-stationarity appears to hold. Anisotropy at
extreme levels was also assessed. The assessment, whose details are reported in the
supplementary material, revealed no significant differences across directions for the
summary statistics considered. To investigate presence of interactions between space
and time, Figure 3 shows site-specific estimates and 95% confidence intervals for the
autoregressive parameter α, computed from observations above the 0.90 quantile.
Also included in Figure 3 is a vertical line representing the estimate of α obtained
by combining all the series into a single one and assuming a common autoregressive
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Figure 3 Sitewise estimates and 95% confidence intervals for α computed from observations above the 0.90
quantile
Note: The vertical line corresponds to the estimate of α obtained from all the exceedances of the 0.90 marginal
quantile without distinction of location.

coefficient over the region. The horizontal line intersects all of the sitewise confidence
intervals, supporting the hypothesis of a constant α for the North Brabant data.

4.1 Marginal and dependence modelling
Fitting model (2.1) requires the original data to be transformed to the Gaussian
scale through equation (3.1) which, in turn, requires specification and estimation of
Fs(y) = Pr(Yt(s) ≤ y). As the inferential procedure of Section 3 involves only thresh-
old exceedances, the problem can be simplified to estimating the tail of Fs . It is com-
mon practice in studies of spatial exceedances (Eastoe and Tawn, 2009; Northrop
and Jonathan, 2011) to model the marginal tails via the Generalized Pareto (GP)
distribution whose parameters vary spatially, namely

Fs(y) =
{
ζ (s) + (1 − ζ (s))

(
1 + ξ (s) (y−u(s))

σ (s)

)−1/ξ(s)

+
y > u(s),

ζ (s) y ≤ u(s)
(4.1)

where (a)+ = max(0, a) and, for all s ∈ S, ζ (s) = Pr(Yt(s) ≤ u(s)), u(s) is the threshold
level, σ (s) is a positive scale parameter and ξ (s) is a real shape parameter, respectively.
In principle, estimation of marginal and dependence parameters could be carried
out simultaneously, by explicitly including the transformation from the GP scale to
the Gaussian scale in expression (3.3). However, simultaneous estimation increases
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substantially the computational burden, especially when implementing IIA. For this
reason, we resort to a two-step procedure, whereby model (4.1) is first estimated and
the dependence model is then fitted to the transformed exceedances.

For the first step, a preliminary analysis showed that the GP model provides a good
fit above the 0.90 quantile at all sites. We, therefore, set ζ (s) = 0.90 for all s ∈ S.
The threshold level u(s) was then estimated by quantile regression, as proposed by
Northrop and Jonathan (2011). The shape and scale parameters were modelled via
the semi-parametric approach advocated by Youngman (2019) and implemented in
the companion R package evgam. In particular, we considered

logσ (s) = λσ0 + λσ1 (lon(s), lat(s)) and ξ (s) = λ
ξ

0 + λ
ξ

1(lon(s), lat(s)), (4.2)

where λσ0 and λξ0 are real constants, and each of λσ1 and λξ1 is a thin plate regres-
sion spline (Wood, 2003) with lon(s) and lat(s) denoting longitude and latitude,
respectively. By fitting model (4.1)–(4.2) through the evgam package, we infer that
the following simplifications hold for the North Brabant data: logσ (s) = λσ0 and
ξ (s) = λ

ξ

0. Working with this reduced form, the observed threshold exceedances,
yt(si) with yt(si ) > u(si ), i = 1, . . . ,28, were transformed to the standard Gaussian
scale through zt(si ) = �−1(F̂si (yt(si))), where F̂si denotes the estimated GP distribu-
tion.

In the second step of the procedure, process (2.1) was fitted to the transformed ex-
ceedances. For the innovation process ε, in light of the findings from the exploratory
analysis, we considered four isotropic parametric specifications εθ , each characterized
by a three-dimensional vector of parameters θ = (α,ψ), with ψ = (ψ1, ψ2). These are
as follows:

� Model 1: A spatial Gaussian model with N (0,1 − α2) univariate margins and
powered exponential correlation function

ρ(h;ψ) = exp
(−(h/ψ1)ψ2

)
, h ≥ 0, ψ1 > 0,0 < ψ2 < 2, (4.3)

� Model 2: A spatial t process as in (2.4) with ν = 5 degrees of freedom and W
having correlation function (4.3), marginally transformed to the N (0, 1 − α2)
scale through equation (2.3).

� Model 3: A spatial t process as in (2.4) with ν = 2 degrees of freedom and W
having correlation function (4.3), marginally transformed to the N (0, 1 − α2)
scale through equation (2.3).

� Model 4: A spatial Brown-Resnick process as in (2.5) with W having a power-
law semi-variogram (Chilès and Delfiner, 2002, p. 266) γ (h;ψ) = (h/ψ1)ψ2 , h ≥
0, ψ1 > 0, 0 < ψ2 < 2,marginally transformed to the N (0, 1 − α2) scale through
equation (2.6).
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Table 1 Estimates and standard errors (in parentheses) of model
parameters

Model α ψ1 ψ2

Model 1 0.33 (0.035) 887.1 (109.9) 0.74 (0.020)
Model 2 0.33 (0.039) 719.2 (75.4) 0.73 (0.019)
Model 3 0.33 (0.039) 458.7 (73.42) 0.78 (0.028)
Model 4 0.32 (0.038) 148.0 (15.60) 0.72 (0.022)

The degrees of freedom of the spatial t process cannot be estimated by the proposed
indirect inference algorithm. If ν itself were treated as an unknown dependence pa-
rameter, the parametric space of the auxiliary model would have smaller dimension
than that of the target model, failing to meet the identifiability condition of Gourier-
oux and Monfort (2018). We, therefore, profiled over a grid of reasonable integer
values for ν which comprises ν = 2, 5 and 10. Results for ν = 10 are omitted in the
sequel as we found only slight differences with respect to the Gaussian specification.

The interpretation of θ remains the same across all four formulations: ψ1 is
a spatial range parameter, ψ2 a spatial smoothness parameter and α the temporal
autoregressive parameter. The numbering of the models reflects the strength of spatial
asymptotic dependence, with Model 1 being asymptotically independent and Models
2–4 having increasing degree of asymptotic dependence for a common value of θ .

Model 1 was estimated by direct maximization of PLG, while Models 2–4 were
estimated via IIA, using Model 1 as the auxiliary model and selecting M = 10, as
in the simulation study described in the supplementary material. For all models,
the temporal cut-off point CT in (3.2) was set at 1 on account of the first-order
Markov nature of the generating process and efficiency results obtained by Davis and
Yau (2011). The spatial cut-off point CS was set at the maximum distance between
observed sites, so that all pairs of sites were included in the evaluation of PL. Estimates
of θ for all four models are reported in Table 1, with standard errors in parentheses.
For Model 1, standard errors were computed by the parametric bootstrap procedure
described in Section 3.3 with 200 bootstrapped samples. For Models 2–4 standard
errors were computed by the standard error algorithm, with L = 200 in Step 2.2
and estimating t in Step 2.1 by a second-order polynomial regression with trivariate
response. Estimates of α are essentially constant across all four models, as would
be expected given their common autoregressive construction. Estimates of ψ2 are
also stable, denoting a similar smoothness in the spatial dependence decay with
distance. The greatest variation is shown by the estimates of ψ1, which decrease with
model number, thus counterbalancing the increasing strength of asymptotic spatial
dependence. An example of code for estimating the previous models is given in the
supplementary material.

An alternative model for space-time exceedances proposed by Simpson and
Wadsworth (2021), hereafter referred to as the SW model, was also fitted to the
data. Simpson and Wadsworth (2021) extend to the space-time setting the condi-
tional approach developed by Wadsworth and Tawn (2019) for spatial extremes.
As the SW model enables different forms of limiting dependence in space and time,
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it provides a benchmark to assess the performance of Models 1–4. The parametric
specification selected for the SW model is given by equations (2)–(4) and (7) of Simp-
son and Wadsworth (2021). It involves, among others, the parameters �S and �T,
determining the asymptotic dependence class of the spatial and temporal domains,
respectively. On the basis of the same diagnostic tools as those used for Models
1–4 and described in the next section, we found that the best fitting formulation
within the SW class has�S equal to the maximum spatial distance between observed
sites, corresponding to asymptotic dependence in space, and �T = 0, corresponding
to asymptotic independence in time, respectively. Model parameters were estimated
by composite likelihood (see Simpson and Wadsworth, 2021, for details), with the
threshold fixed at the 0.90 marginal quantile as for Models 1–4.

4.2 Diagnostics and results
As a tool to assess and compare the quality of fit of the estimated models, we analysed
the behaviour of

χ (p; l, ‖h‖) = Pr(Fs(Yt+l(s)) > p|Fs+h(Yt(s + h)) > p) (4.4)

= Pr
(
Zt+l(s) > �−1(p)|Zt(s + h) > �−1(p)

)
as ‖h‖, l and p vary. The function χ (p; l, ‖h‖), which gives the conditional probability
of observing an exceedance at time t + l at one site given that an exceedance has oc-
curred at time t at an inter-location distance ‖h‖, is used as a summary measure of the
bivariate dependence of the process. Figures 4 and 5 compare estimates of χ (p; l, ‖h‖)
from Models 1, 2, 4 and SW with empirical estimates. Results for Model 3 are not
shown, since they are very close to those of Model 4. For Models 2–4, χ (p; l, ‖h‖)
was evaluated by simulation, as no closed-form expression is available; analytical
calculations are possible for Model 1 and the SW model. To investigate space-time
patterns, χ (p; l, ‖h‖)) is plotted as a function of ‖h‖, for different choices of l, with
l = 0 in Figure 4 and l = 1 in Figure 5, respectively. To verify the goodness-of-fit at
the selected threshold, as well as the quality of extrapolations to higher levels, within
each plot different values of p are considered, with p ∈ {0.90, 0.95, 0.99, 0.995}. For
l = 0, Model 4 and the SW model fail to capture the decay of dependence at increasing
distances for fixed p and for increasing p at fixed distances. Under both formula-
tions, extrapolations to higher values of p exhibit a stability that causes departures
from the empirical estimates. This is not surprising, given that, for �S equal to the
maximum observed distance, the spatial dependence of the SW model is driven by a
Brown-Resnick process (Wadsworth and Tawn, 2019) as for Model 4. Models 1 and
2 provide a better overall fit, but for p = 0.99 and p = 0.995 Model 2 outperforms
Model 1, which shows an increasing tendency to underestimate dependence between
simultaneous exceedances. For l = 1, the empirical estimates decay rapidly with p.
Models 1, 2 and 4 follow this behaviour closely; SW model estimates also decrease
with p for fixed ‖h‖, as a consequence of the temporal asymptotic independence, but
exhibit positive bias for p = 0.90 and p = 0.95. The case l = 2 was also considered.
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Figure 4 Estimates of χ (p; 0, ‖h‖) as a function of ‖h‖, for p ∈ {0.90,0.95,0.99,0.995}
Notes: In each plot, the dashed line corresponds to smoothed empirical estimates. In (a) the continuous line
corresponds to Model 1 estimates, in (b) to Model 2 estimates, in (c) to Model 4 estimates and in (d) to SW
model estimates, respectively. For colour figures please refer to the online version.
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Figure 5 Estimates of χ (p; 1, ‖h‖) as a function of ‖h‖, for p ∈ {0.90,0.95,0.99,0.995}
Notes: In each plot, the dashed line corresponds to smoothed empirical estimates.In (a) the continuous line
corresponds to Model 1 estimates, in (b) to Model 2 estimates, in (c) to Model 4 estimates and in (d) to SW
model estimates, respectively. For colour figures please refer to the online version.
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Figure 6 Estimates of χ (p; l, 0) as a function of l, for p ∈ {0.90,0.95,0.99,0.995}
Notes: In each plot, triangles correspond to empirical estimates. In (a) circles correspond to Model 1 estimates,
in (b) to Model 2 estimates, in (c) to Model 4 estimates and in (d) to SW model estimates, respectively. For
colour figures please refer to the online version.
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Figure 7 Simulations from the estimated Model 2
Notes: Highlighted are the exceedances over the 0.90 marginal quantile. Dots denote the observed stations.
For colour figures please refer to the online version.

All four formulations perform satisfactorily in this case, as shown by the results sum-
marized in the supplementary material. Figure 6 focuses on the temporal dynamics
by displaying empirical estimates and model-based estimates from Models 1, 2, 4
and the SW model of χ (p; l, ‖h‖) as a function of l, for p ∈ {0.90, 0.95, 0.99, 0.995}
and ‖h‖ = 0, that is, on a single site. Unlike process (2.1), the SW model is non-
Markovian in time. The lag-1 dependence is slightly overestimated by all models, but
otherwise Models 1, 2 and 4 approximate the empirical pattern well; by contrast, the
SW model yields too fast a decline for both p = 0.90 and p = 0.95. The first-order
Markov assumption, therefore, seems adequate for the North Brabant data.
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All five models were also fitted at a higher threshold level, corresponding to
the 0.95, marginal quantile. Qualitatively, no changes occurred in the fitting and
extrapolations for Models 1 and 2. A net improvement was found in the performance
of Models 3 and 4 and SW model for p = 0.95, but for p > 0.95 we observed
the same limitations as above. Diagnostics therefore point to Models 1 and 2 as
providing the best formulations for this application, with a preference for Model 2
when inferring dependence between pairs of simultaneous exceedances of extremely
high thresholds. These findings give additional support to asymptotic dependence in
the spatial domain.

Model 2 is now used to further investigate extremal features of the rainfall phe-
nomenon in the North Brabant region. Under this formulation, analytical compu-
tations are generally unfeasible, but simulation is simple and fast. As an example,
Figure 7 displays the temporal evolution of a simulated realization of Model 2 over
the entire North Brabant area. Dots represent the observed stations. At time t − 1
(top-left panel), no upcrossings of the 0.90 marginal quantiles occur on the whole
region: as the model governs only the exceedances, the map shows the thresholds
u(s) obtained by quantile regression, as described in Section 4.1. At time t (top-right
panel), an extreme event takes place, affecting a subregion, and subsequently evolves
to produce the map at time t + 1 (bottom-left panel). At time t + 2 (bottom-right
panel) the extreme event dies out and again only the thresholds u(s) are displayed in
the map. Stochastic properties of functionals of space-time trajectories lying above
0.90 marginal quantiles, for example, rainfall aggregates over areas involved in an
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Figure 8 For the North Brabant data, in (a), the continuous line corresponds to Model 2 estimates of
E(Nt(p,0)|Nt(p,0) > 0), and, in (b), of E(Nt(p,1)|Nt(p,0) > 0), plotted against p, for p ∈ [0.90,0.99]
Note: The dashed line and the filled region represent smoothed empirical estimates and approximate 95%
confidence bands on the empirical estimates, respectively. For colour figures please refer to the online version.
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extreme event, can be studied by repeated simulations. This approach was applied to
analyse the number of observed stations exceeding a high threshold in a single day
Nt(p,0) = ∑n

i=1 I(F̂si (Yt(si )) > p), where I(A) is the indicator function of the event
A, and in two consecutive days Nt(p,1) = ∑n

i=1

∏1
l=0 I(F̂si (Yt+l(si )) > p). Condition-

ing upon Nt(p,0) > 0, that is, on having at least one exceedance in a day, Nt(p,0)
and Nt(p,1) can be seen as measures of spatial clustering of extreme rainfalls on a
single day and over a two-day period, respectively. In Figure 8, Model 2 estimates
of E(Nt(p,0)|Nt(p,0) > 0) and E(Nt(p,1)|Nt(p,0) > 0) are plotted against p. For
the empirical estimates, p ranges from 0.90 to 0.975, whereas model-based estimates
extrapolate up to p = 0.99. Also shown on each figure are 95% confidence bands for
the empirical estimates obtained by block bootstrapping the original data. As p → 1,
estimates in Figure 8(b) converge to 0, by the asymptotic independence in time, and
to a strictly positive value in Figure 8(a), by the asymptotic dependence in space.

5 Conclusions

Motivated by extremal features that can be observed in some environmental studies,
we developed a model for space-time exceedances which comprises serial asymp-
totic independence and either asymptotic dependence or asymptotic independence
in space. The proposed model has the advantages of exploiting all the information
above a fixed high threshold, possessing an easy-to-interpret structure and respect-
ing the ordered and discrete nature of the measurement times. In the application
to a dataset of rainfall amounts over the North Brabant province, it was found to
cover a wide range of extremal patterns. In particular, among the four parametric
specifications considered, two appear to provide the best fit to the data: the one with
Gaussian errors and the one with Student t5 errors, with a superiority of the latter
when focusing on extrapolations to higher threshold levels. These findings support
the conjecture that rainfall amounts in the North Brabant province are asymptotically
independent in time, but asymptotically dependent in space.

The model can be extended to include cases that fall outside the studied frame-
work. For example, an extension that accommodates more complex forms of space-
time interactions consists in letting the autoregressive parameter α depend on space.
Model (2.1) would then become Zt(s) = α(s)Zt−1(s) + εt(s),where α(s) is formulated
according to the pattern of spatial variations observed in the temporal dynamics. As
an example, we could specify a logistic-type function α(s) = 1 − 2 exp{α0 + α1x +
α2y}/ {

1 + exp{α0 + α1x + α2y}}, with α0, α1, α2 ∈ R and s = (x, y) ∈ R
2, which en-

sures that the condition |α(s)| < 1 for time-stationarity at each location is satisfied.
An extension of the model that would enlarge its range of applicability would be
to avoid an a priori choice of the limiting dependence class for the temporal dimen-
sion. One way is to replace the Gaussian autoregressive component in (2.1) with a
Markov chain whose transitions encompass both asymptotic dependence and asymp-
totic independence. In this setting, the data itself would drive the selection between
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the two dependence classes. The Ledford and Tawn (1997) procedure or the condi-
tional extreme value approach of Heffernan and Tawn (2004) could be used for the
specification of the chain transitions. We are currently exploring these possibilities.

Supplementary materials

Supplementary materials for this article including R codes and data are available at
http://www.statmod.org/smij/archive.html.
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