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BACKGROUND
Although hypomethylating agents are currently used to treat patients with 
cancer, whether they can also reactivate and up-regulate oncogenes is not well 
elucidated.

METHODS
We examined the effect of hypomethylating agents on SALL4, a known oncogene 
that plays an important role in myelodysplastic syndrome and other cancers. 
Paired bone marrow samples that were obtained from two cohorts of patients with 
myelodysplastic syndrome before and after treatment with a hypomethylating 
agent were used to explore the relationships among changes in SALL4 expression, 
treatment response, and clinical outcome. Leukemic cell lines with low or un-
detectable SALL4 expression were used to study the relationship between SALL4 
methylation and expression. A locus-specific demethylation technology, CRISPR–
DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that 
is critical for SALL4 expression.

RESULTS
SALL4 up-regulation after treatment with hypomethylating agents was observed in 
10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and 
was associated with a worse outcome. Using CRISPR-DiR, we discovered that de-
methylation of a CpG island within the 5′ untranslated region was critical for 
SALL4 expression. In cell lines and patients, we confirmed that treatment with a 
hypomethylating agent led to demethylation of the same CpG region and up-reg-
ulation of SALL4 expression.

CONCLUSIONS
By combining analysis of patient samples with CRISPR-DiR technology, we found 
that demethylation and up-regulation of an oncogene after treatment with a hypo-
methylating agent can indeed occur and should be further studied. (Funded by 
Associazione Italiana per la Ricerca sul Cancro and others.)
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Interest in epigenetic targeting in 
cancer treatment is increasing. One example 
is the use of DNA hypomethylating agents. 

Two hypomethylating agents, 5-aza-2′-deoxycyti-
dine (decitabine) and 5-azacytidine, are being 
used clinically. There are many mechanisms of 
action of these drugs, including irreversibly bind-
ing to and inhibiting DNA methyltransferases,1-4 
which result in hypomethylation and up-regula-
tion of genes such as tumor suppressors.5 Other 
major mechanisms of action include incorporation 
of the hypomethylating agent into newly synthe-
sized DNA, which triggers a DNA-damage response 
and leads to cytotoxic effects in cancer cells,6,7 
as well as alteration of immune responses.8-10

We hypothesized that the global effect of treat-
ment with hypomethylating agents would not 
only contribute to the demethylation of tumor-
suppressor genes but may also induce demethyl-
ation of oncogenes. To test this theory, we fo-
cused on candidate genes with the following 
features: they are aberrantly expressed in human 
cancers; they are functionally proved to be onco-
genes with the use of methods such as murine 
models; and DNA methylation may be important 
for the expression of these genes. This led to our 
current study, in which we examined how hypo-
methylating agents could activate the known 
oncofetal protein, spalt-like transcription factor 
4 (SALL4), in patients with myelodysplastic syn-
drome, as a model to examine the effects of hypo-
methylating agents on up-regulation of oncogenes.

SALL4 plays an essential role in myelodys-
plastic syndrome and acute myeloid leukemia 
leukemogenesis11 and tumorigenesis in several 
solid tumors, including germ-cell tumors, hepa-
tocellular carcinoma, breast cancer, and lung 
cancer.12-14 During development, SALL4 maintains 
the self-renewal and pluripotency of embryonic 
stem cells,15 but it is normally repressed in most 
adult organs with the exception of germ cells 
and CD34+ hematopoietic stem cells.16 SALL4 is 
reactivated or aberrantly expressed in a multi-
tude of cancers and has been identified by meta-
analysis as a poor prognostic factor. Mecha-
nistically, up-regulation of SALL4 promotes 
proliferation, metastasis, and drug resistance of 
cancer cells,17,18 through a number of mecha-
nisms, such as repression of tumor-suppressor 
genes19 and activation of other oncogenes.20 In 
hematologic cancers, SALL4 is aberrantly expressed 

in high-risk myelodysplastic syndrome,21 acute 
myeloid leukemia,11,20 the blast phase of chronic 
myeloid leukemia,22 and precursor B-cell lym-
phoblastic leukemia or lymphoma.23 In a murine 
model with constitutive SALL4 expression, mice 
had myelodysplastic syndrome–like features and 
subsequently leukemic transformation through 
activation of the Wnt–beta-catenin pathway.24 
Methylation is known to regulate SALL4 expres-
sion and reactivation in solid tumors.25,26 The 
expression of SALL4 in hematologic cancers may 
also be related to its DNA methylation status. 
The effect of hypomethylating agents on SALL4 
expression and its clinical implications are un-
known.

Hypomethylating agents are now being used 
to treat blood cancers as well as solid tumors. 
Because they were first approved by the Food 
and Drug Administration (FDA) to treat patients 
with myelodysplastic syndrome more than a 
decade ago, we therefore retrospectively analyzed 
SALL4 expression and clinical survival among 68 
patients with myelodysplastic syndrome in two 
cohorts (25 patients in cohort 1 and 43 patients 
in cohort 2) with bone marrow samples ob-
tained before and after treatment with a hypo-
methylating agent. Myelodysplastic syndrome 
comprises heterogeneous myeloid disorders char-
acterized by cytopenias and dysplasia in periph-
eral blood and bone marrow, with ineffective 
hematopoiesis and a variable risk of leukemic 
transformation.27,28 To define the mechanisms of 
altered expression of SALL4 in response to treat-
ment with a hypomethylating agent, we used a 
CRISPR-DiR (clustered regularly interspaced short 
palindromic repeats–DNA methyltransferase 1 
[DNMT1]–interacting RNA) approach. First, we 
identified and demethylated the CpG island that 
is critical for SALL4 expression. We then evalu-
ated the effects of treatment with a hypomethyl-
ating agent on the methylation status of SALL4 
in samples obtained from patients with myelo-
dysplastic syndrome.

Me thods

Patients and Sample Collection

Bone marrow samples in cohort 1 were obtained 
from 37 patients with newly diagnosed myelo-
dysplastic syndrome who were enrolled in the 
BMT-AZA trial.29,30 The current study was over-
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seen and approved by the University of Rome Tor 
Vergata. Written informed consent was obtained 
from the patients before inclusion in the study. 
CD34− bone marrow mononuclear cells obtained 
from 10 healthy donors and CD34+ cells ob-
tained from 5 healthy donors were used as con-
trol cohorts. Of the 37 patients with myelodys-
plastic syndrome, 25 had paired bone marrow 
samples collected before and after four cycles of 
azacytidine. In cohort 2, a total of 43 bone mar-
row samples were obtained from the Institute of 
Hematology and Blood Diseases Hospital in 
Tianjin, China, before or after three to five cy-
cles of treatment with a hypomethylating agent. 
Patient samples were obtained with written in-
formed consent in accordance with the Decla-
ration of Helsinki and approval of the human 
research ethics committee at the Institute of 
Hematology and Blood Disease Hospital, Chinese 
Academy of Medical Sciences. Bone marrow 
mononuclear cells were isolated by Ficoll gradi-
ent centrifugation with the use of Lympholyte-H 
(Cedarlane), in accordance with the instructions 
of the manufacturer. Myelodysplastic syndrome 
was diagnosed in accordance with the 2016 World 
Health Organization (WHO) classification.31 Other 
clinical characteristics, including age at diagno-
sis, sex, Revised International Prognostic Scor-
ing System risk status, WHO Classification-based 
Prognostic Scoring System risk status, response 
after treatment with a hypomethylating agent, 
peripheral-blood counts, bone marrow blast 
counts, and cytogenetic features, were also re-
viewed. The definition of first response follows 
the International Working Group criteria.32 Pa-
tients who had a response included those having 
complete remission, partial remission, or hema-
tologic improvement, whereas patients who did 
not have a response included those with stable 
disease or progressive disease.

Statistical Analysis

Clinical characteristics and mutational profiling 
are presented as the number and percentage of 
patients. Data are presented as medians and in-
terquartile ranges for skewed data. Categorical 
variables were compared with the use of Fisher’s 
exact test or the chi-square test, as appropriate, 
and continuous variables were compared with 
the use of the Wilcoxon rank-sum test. We also 
used the Wilcoxon rank-sum test for paired ob-
servations and factor change in SALL4 messenger 

RNA (mRNA) levels in patients who had a re-
sponse as compared with those who did not 
have a response.

Progression-free survival was defined as the 
time from treatment with a hypomethylating 
agent to disease progression or death from the 
treatment, and overall survival was defined as 
time from treatment with a hypomethylating 
agent to death. Overall and progression-free sur-
vival were analyzed with the use of the Kaplan–
Meier product-limit method with censoring for 
patients who did not have disease progression 
or who did not die during the treatment period. 
A log-rank test was used to compare survival 
curves for statistical significance. Hazard ratios 
and 95% confidence intervals were calculated 
with the use of a Cox proportional-hazards 
model. All prognostic factors with a P value of 
less than 0.1 in the univariate model were fur-
ther entered into the multivariate analysis.

All statistical testing was performed with the 
use of two-tailed tests; a P value of less than 0.05 
was considered to indicate statistical signifi-
cance. All analyses were performed with the use 
of SPSS statistical software, version 22 (SPSS). A 
droplet digital polymerase-chain-reaction (ddPCR) 
experiment was repeated three times for each 
group of experiments, and Student’s t-test was 
used. Additional materials are described in the 
Supplementary Appendix, available with the full 
text of this article at NEJM.org.

R esult s

Hypomethylating Agents and Up-Regulation 
of SALL4

To evaluate the effect of hypomethylating agents 
on SALL4 expression after treatment, we first 
measured the baseline SALL4 expression at diag-
nosis in bone marrow mononuclear cells ob-
tained from patients with myelodysplastic syn-
drome before azacytidine treatment in cohort 1. 
Levels of SALL4 mRNA were significantly higher 
in 37 patients with myelodysplastic syndrome 
than in healthy donors (P = 0.002) (Fig. S1A in 
the Supplementary Appendix), a finding similar 
to what has been reported previously.21 In cohort 
1, a total of 25 patients had available paired 
bone marrow samples at diagnosis and after 
four cycles of azacytidine. Of these 25 patients, 
12 (48%) were classified as having had a re-
sponse: 9 (36%) had a complete response, 2 (8%) 
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had a partial response, and 1 (4%) had hemato-
logic improvement. The remaining 13 patients 
(52%) were classified as not having had a re-
sponse: 10 (40%) had stable disease, and 3 (12%) 
had progressive disease. Baseline SALL4 expres-
sion at diagnosis did not differ substantially 
among these groups. In cohort 2, of the 43 pa-
tients, 20 (47%) were classified as having had 
response: 15 (35%) had a complete response, 
and 5 (12%) had hematologic improvement. The 
remaining 23 patients (53%) were classified as 
not having had a response: 18 (42%) had stable 
disease, and 5 (12%) had progressive disease.

These 68 patients were then stratified accord-
ing to the factor change in SALL4 mRNA expres-
sion before and after treatment with a hypo-
methylating agent. A waterfall plot depicting the 
factor changes in SALL4 mRNA levels showed 
that patients can be separated into two groups, 
one with SALL4 up-regulation and the other with 
SALL4 down-regulation. In cohort 1, a total of 
10 of the 25 patients (40%) had an increase in 
SALL4 expression and 15 patients (60%) had a 
decrease in SALL4 expression after four cycles of 
azacytidine treatment (Fig. 1A). The median log2 
factor change was 2.78 (interquartile range, 2.15 
to 5.65) in patients with SALL4 up-regulation and 
−2.25 (interquartile range, −1.26 to −4.45) in 
those with SALL4 down-regulation. In cohort 2, 
a total of 13 patients (30%) had SALL4 up-regu-
lation and 30 patients (70%) had SALL4 down-
regulation after three to five cycles of treatment 
with a hypomethylating agent (Fig. 1B). The 
median log2 factor change was 1.99 (interquar-
tile range, 0.70 to 3.05) in patients with SALL4 
up-regulation and −1.99 (interquartile range, 
−0.84 to −2.71) in those with SALL4 down-regu-
lation. No significant difference in the factor 
change in SALL4 mRNA was noted between pa-
tients who had a response and those who did 
not have a response in cohort 1 (Fig. S1B) and 
cohort 2 (Fig. S1C).

When overall survival was compared between 
the patients with SALL4 up-regulation and those 
with SALL4 down-regulation in both cohort 1 
and cohort 2, those with SALL4 up-regulation 
had poorer overall survival than those with 
SALL4 down-regulation (P = 0.03 in cohort 1 and 
P = 0.04 in cohort 2) (Fig. 1C and 1D). These 
findings indicate that SALL4 up-regulation may 
be associated with worse survival.

The demographic and clinical characteristics 

of the patients with SALL4 up-regulation and 
those with SALL4 down-regulation are shown in 
Tables 1 and 2. The median follow-up after the 
initiation of therapy was 14.1 months (interquar-
tile range, 9.0 to 20.4) in cohort 1 and 17.0 
months (interquartile range, 12.0 to 28.0) in 
cohort 2. We further conducted a Cox propor-
tional-hazards model analysis of prognostic fac-
tors for overall survival on the basis of patient 
characteristics at diagnosis, mutational profile,30 
and SALL4 expression changes. In a multivariate 
analysis, SALL4 up-regulation was a common in-
dependent negative predictor of overall survival 
(cohort 1: hazard ratio for death, 6.48; 95% 
confidence interval [CI], 1.06 to 39.67; cohort 2: 
hazard ratio, 2.74; 95% CI, 0.93 to 8.03) (Tables 
S1 and S2). In addition, the presence of a RUNX1 
mutation in cohort 1 and the lack of a treatment 
response in cohort 2 were also negative predic-
tors of overall survival in a multivariate analysis.

Because somatic mutations, including epigen-
etic factors such as DNMT3A, IDH1, IDH2, and 
TET2, are common in patients with myelodys-
plastic syndrome,33 we evaluated whether SALL4 
up-regulation or down-regulation in patients 
after treatment was related to their preexisting 
mutation status. Common somatic mutations in 
30 genes, known to be frequently mutated in 
patients with myelodysplastic syndrome, are re-
ported in Figure S3. At diagnosis, we identified 
at least one mutation in 22 of 25 patients (88%) 
in cohort 1 and in 32 of 41 patients (78%) in 
cohort 2. A total of 19 of 22 patients (86%) in 
cohort 1 and 16 of 32 patients (50%) in cohort 2 
had more than one gene mutation. From these 
observations, it appears that SALL4 up-regulation 
or down-regulation in patients after treatment 
with a hypomethylating agent was not related to 
their preexisting mutation status.

Demethylation of a Critical CpG Region  
and Up-Regulation of SALL4

We next investigated the mechanisms of SALL4 
up-regulation after treatment with a hypometh-
ylating agent. One possibility is that such treat-
ment can lead to demethylation of a CpG island 
that is critical for SALL4 expression. The differ-
ential methylation of the SALL4 locus has been 
observed in K562-induced pluripotency repro-
grammed cells.34 The major CpG island of SALL4 
is located across the 2000-bp locus, including 5′ 
untranslated region (5′UTR)–Exon 1–Intron 1. 
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Within this CpG island, methylation of 5′UTR–
Exon 1–Intron 1, a specific 500-bp DNA seg-
ment, was further observed to be negatively 
correlated with SALL4 expression in patients 

with hepatocellular carcinoma and in hepatocel-
lular-carcinoma cell lines25 (Fig. 2A). We hypoth-
esized that demethylation of this region could 
lead to up-regulation of SALL4.

C Overall Survival in Cohort 1

A Change in SALL4 Expression after Four Cycles of Azacytidine Treatment in Cohort 1 
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To localize the critical CpG region responsi-
ble for regulation of SALL4 expression and to test 
the causal relationship between DNA methyla-
tion of SALL4 and RNA expression, we applied 
the CRISPR-DiR technique.35 This approach uses 
induction of locus-specific demethylation by 
blocking DNMT1 activity36 in cell lines with un-
detectable or low SALL4 expression.

In the CRISPR-DiR method, two loops of the 
guide RNA that are not required for guide func-
tion have been replaced with sequences that 
specifically interact with and inhibit DNMT1.35,36 
This modified guide RNA can achieve site-
specific demethylation.35 We tested several site-
specific guide RNAs around the major CpG is-
land of SALL4, and only sgSALL4_1 (named as 
DiR_SALL4 here), targeting around the 5′UTR 
CpG 11 region, showed effective demethylation 
ability.25 We further monitored the methylation 
of the 5′UTR CpG region in HL-60 cells (with no 
or low SALL4 expression) after treatment with 
CRISPR-DiR (Fig. 2A). On transduction of HL-60 
cells with DiR_SALL4, substantial demethylation 
changes were observed after 8 days (Fig. 2B) 
as well as increased SALL4 transcript levels 
(Fig. 2C), as compared with a control scrambled 
guide RNA (DiR-NT). Similar demethylation re-
sults by DiR_SALL4 were observed in other 
SNU387 cells expressing low or no SALL4, 
whereas CRISPR-DiRs targeting neighboring re-
gions could not demethylate.25 These findings 
show that demethylation of this region by SALL4 
locus-specific CRISPR-DiR can lead to up-regu-
lation of SALL4.

Hypomethylating Agents and Demethylation 
of SALL4

We then tested whether SALL4 could be up-regu-
lated by hypomethylating agents. Using HL-60 
cells, we first evaluated the dynamics of SALL4 
mRNA levels through a cycle of decitabine, us-
ing a dosage range of 100 to 500 nmol per liter. 
The number of mRNA copies per cell (assessed 
by means of ddPCR assay) and protein level (as-
sessed by means of Western blot analysis) for 
SALL4 was measured at day 5. We noticed a 
dose-dependent up-regulation of SALL4 mRNA 
expression at day 5 (Fig. 3A and B).

We next examined the methylation status of 
the SALL4 5′UTR CpG island region after deci-
tabine treatment at a dose of 250 nmol per liter 
and found that this region was demethylated in 
HL-60 cells, in accordance with our CRISPR-DiR 
result (Fig. 3C). Similar results were also ob-
served in another SALL4-low leukemic cell line, 
K562 (Fig. S4A, S4B, and S4C).

We next examined the methylation changes 
in bone marrow samples from patients with 
myelodysplastic syndrome before and after treat-
ment with a hypomethylating agent. In six pa-
tients with SALL4 up-regulation, we noticed de-
creased methylation at the critical 5′UTR CpG 
region (Fig. 3D and 3E). Conversely, we did not 
observe changes in the methylation at the same 
CpG region in nine patients with SALL4 down-
regulation after treatment with a hypomethylat-
ing agent (Fig. 3D and 3E).

Discussion

Since its first approval by the FDA to treat myelo-
dysplastic syndrome in 2004, hypomethylating-
agent therapy has been used in patients with 
hematologic cancers and solid tumors. In this 
study, we were interested in investigating wheth-
er hypomethylating agents could activate onco-
genes as an unintended consequence. We used 
myelodysplastic syndrome as the disease model 
to test our hypothesis because of the long-stand-
ing use of hypomethylating-agent therapy in this 
patient population and because SALL4 has been 
shown to act as an oncogene in experimental 
animal models of myelodysplastic syndrome and 
acute myeloid leukemia. Although continuous 
hypomethylating-agent therapy in patients with 
myelodysplastic syndrome who had a response 
could improve their clinical characteristics, over-

Figure 1 (facing page). Increased SALL4 Expression  
in Patients with Myelodysplastic Syndrome after Treatment 
with a Hypomethylating Agent.

Panel A shows a waterfall plot of the log
2
 factor change 

in SALL4 expression in 25 patients after four cycles of 
azacytidine treatment in cohort 1. Panel B shows a water-
fall plot of the log

2
 factor change in SALL4 expression 

in 43 patients after three to five cycles of treatment 
with a hypomethylating agent in cohort 2. The term t0 
denotes before any cycles of treatment, and t4 after 
four cycles of treatment. Panel C shows overall survival 
among patients with SALL4 up-regulation and those 
with SALL4 down-regulation in cohort 1, and Panel D 
shows the corresponding data in cohort 2. In Panels C 
and D, tick marks indicate censored data. A log-rank 
test was used to compare survival curves for statistical 
significance in Panels C and D.
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Table 1. Baseline Characteristics of 25 Patients Treated with a Hypomethylating Agent in Cohort 1.*

Characteristic
SALL4 Up-Regulation 

(N = 10)
SALL4 Down-Regulation 

(N = 15)

Median age (IQR) — yr 59.6 (46.2–61) 59.5 (45–61.5)

Sex — no. (%)

Male 9 (90) 8 (53)

Female 1 (10) 7 (47)

IPSS risk status — no. (%)

Low or intermediate-1 1 (10) 1 (7)

Intermediate-2 or high 9 (90) 13 (87)

WPSS risk status — no. (%)

Very low or low 1 (10) 0

Intermediate 1 (10) 2 (13)

High or very high 8 (80) 10 (67)

IPSS-R risk status — no./total no. (%)

Very low 0/9 1/13 (8)

Low 0/9 1/13 (8)

Intermediate 2/9 (22) 2/13 (15)

High 3/9 (33) 2/13 (15)

Very high 4/9 (44) 7/13 (54)

Treatment response — no. (%)

Yes 5 (50) 7 (47)

No 5 (50) 8 (53)

Median white-cell count (IQR) — per mm3 2450 (1900–4015) 3320 (2280–10,410)

Median absolute neutrophil count (IQR) — per mm3 400 (215–1490) 700 (400–2000)

Median hemoglobin level (IQR) — g/dl 9.9 (8.6–10.6) 9.4 (8.7–11.5)

Median platelet count (IQR) — per mm3 49,500 (26,750–164,250) 77,000 (49,000–129,000)

Median percentage of blasts in bone marrow  
aspirate (IQR)

13 (11–15) 12 (3.8–17.8)

Cytogenetic features of MDS — no. (%)†

Good karyotype 4 (40) 5 (33)

Intermediate karyotype 2 (20) 2 (13)

Poor karyotype 3 (30) 6 (40)

Mutational profiling — no. (%)‡

TET2 mutation 1 (10) 6 (40)

ASXL1 mutation 3 (30) 6 (40)

RUNX1 mutation 2 (20) 4 (27)

SETBP1 mutation 2 (20) 4 (27)

TP53 mutation 3 (30) 2 (13)

ZRSF2 mutation 4 (40) 1 (7)

DNMT3A mutation 1 (10) 3 (20)

SRSF2 mutation 1 (10) 3 (20)

SF3B1 mutation 1 (10) 2 (13)

U2AF1 mutation 3 (30) 0

CEBPA mutation 0 3 (20)
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all survival after such therapy in a “real-world” 
evaluation of patients with high-risk myelodys-
plastic syndrome or low-blast-count acute my-
eloid leukemia was lower than that expected in 
clinical trials,37 and the average prognosis after 
failure of a hypomethylating agent was less than 
6 months.38 The mechanisms for primary and 
secondary drug resistance to hypomethylating 
agents and associated prognostic factors are still 
under active investigation.

In our two cohorts of patients with myelodys-
plastic syndrome from distinct ethnic back-
grounds, we observed that after treatment with 
a hypomethylating agent, 23 of 68 patients 
(34%) had SALL4 up-regulation and 45 (66%) had 
SALL4 down-regulation. We observed that a poor 
long-term outcome correlates with SALL4 up-reg-
ulation. The important role of SALL4 in myelo-
dysplastic syndrome and acute myeloid leukemia 
has been shown in previous studies.11 In SALL4 
transgenic (Tg) mice, ineffective hematopoiesis 
and myelodysplastic syndrome–like features were 
observed: increased apoptosis with decreased 
complete blood-cell counts and abnormal mor-
phologic features of blood cells. Impairment of 
DNA-damage repair was also noted in these Tg 
mice. Therefore, we hypothesize that up-regula-
tion of SALL4 can lead to defective hematopoi-
esis, accumulation of mutations, and progres-
sion to acute myeloid leukemia, which may in 
part explain the poorer prognosis in patients 
with myelodysplastic syndrome and SALL4 up-
regulation. Identifying other oncogenes that are 
similarly activated by hypomethylating-agent ther-

apy and evaluation of these and SALL4 expres-
sion in larger prospective trial samples in the 
future will be necessary to validate this notion.

Another unique aspect of SALL4 is that its 
expression is associated with DNA methylation 
status. Previously, a major challenge in the field 
of DNA methylation was to show a causal rela-
tionship between the DNA methylation and gene 
expression at a locus-specific and cellular level. 
Recent advances in functional genomic approach-
es such as the use of the CRISPR–Cas9 nuclease 
system have provided us with additional tools to 
address this question. Using the locus-specific 
CRISPR-DiR approach, we have identified a criti-
cal CpG island responsible for SALL4 expression 
and, more importantly, shown that treatment 
with a hypomethylating agent leads to demethyl-
ation of this region and up-regulation of SALL4. 
Demethylation of this same region was observed 
in patients with myelodysplastic syndrome hav-
ing increased SALL4 expression after hypomethyl-
ating-agent therapy. These observations support 
our hypothesis that treatment with a hypometh-
ylating agent can up-regulate oncogenes such as 
SALL4.

It is unclear why only a subgroup of patients 
had up-regulation of SALL4 after treatment with 
a hypomethylating agent, and future studies will 
be necessary to fully understand the mechanism 
or mechanisms. It is possible that DNA demeth-
ylation is the first step for gene activation, and 
additional chromatin remodeling and interaction 
between enhancer and promoter are needed to 
maintain gene expression. For example, in a re-

Characteristic
SALL4 Up-Regulation 

(N = 10)
SALL4 Down-Regulation 

(N = 15)

CBL mutation 1 (10) 1 (7)

ETV6 mutation 0 2 (13)

IDH2 mutation 1 (10) 1 (7)

NRAS mutation 0 2 (13)

CSF3R mutation 1 (10) 0

JAK2 mutation 1 (10) 0

*  IPSS denotes International Prognostic Scoring System, IPSS-R Revised IPSS, IQR interquartile range, MDS myelodys-
plastic syndrome, and WPSS World Health Organization Classification-based Prognostic Scoring System.

†  Three patients (one with SALL4 up-regulation and two with SALL4 down-regulation) had no metaphase of cytogenetic 
analysis.

‡  No mutations in ABL1, BRAF, CALR, EZH2, FLT3, HRAS, IDH1, KIT, KRAS, MPL, NPM1, PTPN11, and WT1 were ob-
served in either group.

Table 1. (Continued.)
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Table 2. Baseline Characteristics of 43 Patients Treated with a Hypomethylating Agent in Cohort 2.

Characteristics
SALL4 Up-Regulation 

(N = 13)
SALL4 Down-Regulation 

(N = 30)

Median age (IQR) — yr 65 (60–69) 62.5 (59.8–67.5)

Sex — no. (%)

Male 11 (85) 17 (57)

Female 2 (15) 13 (43)

IPSS risk status — no./total no. (%)

Low or intermediate-1 8/11 (73) 17/26 (65)

Intermediate-2 or high 3/11 (27) 9/26 (35)

WPSS risk status — no./total no. (%)

Very low or low 1/11 (9) 2/26 (8)

Intermediate 2/11 (18) 9/26 (35)

High or very high 8/11 (73) 15/26 (58)

IPSS-R risk status — no./total no. (%)

Very low 0/13 1/26 (4)

Low 1/13 (8) 1/26 (4)

Intermediate 4/13 (31) 7/26 (27)

High 6/13 (46) 13/26 (50)

Very high 2/13 (15) 4/26 (15)

Treatment response — no. (%)

Yes 5 (38) 15 (50)

No 8 (62) 15 (50)

Median white-cell count (IQR) — per mm3 2220 (1310–4310) 2180 (1830–2750)

Median absolute neutrophil count (IQR) — per mm3 780 (330–2240) 900 (630–1370)

Median hemoglobin level (IQR) — g/dl 7.0 (6.2–10.2) 8.1 (7.0–9.6)

Median platelet count (IQR) — per mm3 47,000 (31,000–120,000) 70,000 (38,000–107,000)

Median percentage of blasts in bone marrow  
aspirate (IQR)

6 (5.5–10.8) 7.3 (5.4–11.1)

Cytogenetic features of MDS — no./total no. (%)*

Good karyotype 10/11 (91) 22/26 (85)

Intermediate karyotype 1/11 (9) 0/26

Poor karyotype 0/11 4/26 (15)

Mutational profiling — no./total no. (%)†

TET2 mutation 1/13 (8) 2/28 (7)

ASXL1 mutation 4/13 (31) 5/28 (18)

RUNX1 mutation 3/13 (23) 3/28 (11)

SETBP1 mutation 0/13 2/28 (7)

TP53 mutation 1/13 (8) 4/28 (14)

DNMT3A mutation 0/13 1/28 (4)

SRSF2 mutation 0/13 1/28 (4)

SF3B1 mutation 3/13 (23) 2/28 (7)

U2AF1 mutation 3/13 (23) 4/28 (14)

CEBPA mutation 0/13 1/28 (4)

IDH2 mutation 1/13 (8) 0/28
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Characteristics
SALL4 Up-Regulation

(N = 13)
SALL4 Down-Regulation

(N = 30)

NRAS mutation 0/13 3/28 (11)

JAK2 mutation 1/13 (8) 1/28 (4)

EZH2 mutation 1/13 (8) 1/28 (4)

FLT3 mutation 1/13 (8) 0/28

IDH1 mutation 1/13 (8) 2/28 (7)

KRAS mutation 1/13 (8) 0/28

NPM1 mutation 0/13 2/28 (7)

*  Two patients with SALL4 down-regulation had no metaphase of cytogenetic analysis. Inadequate Giemsa banding in 
cytogenetic analysis was seen for one patient with SALL4 up-regulation and two patients with SALL4 down-regulation.

†  No mutations in ABL1, BRAF, CALR, CBL, CSF3R, ETV6, KIT, MPL, PTPN11, WT1, and ZRSF2 were observed in either 
group. Two patients with SALL4 down-regulation did not undergo next-generation sequencing.

 Table 2. (Continued.)

Figure 2. Demethylation of a Critical 
CpG Island and SALL4 Expression 
in Leukemic Cells Treated 
with CRISPR-DiR.

Panel A shows the CpG region within 
SALL4 5′ untranslated region (5′UTR)–
Exon 1–Intron 1. Depicted at the top 
of the diagram are the 30 CpG resi-
dues; depicted below are the four 
SALL4 exons (in blue) and introns 
(in purple), with the location of the 
30 CpG residues in the Exon 1–Intron 
1 region. The location of the target 
of the guide RNA for CRISPR-DiR 
(clustered regularly interspaced short 
palindromic repeats–DNA methyl-
transferase 1 [DNMT1]–interacting 
RNA) is shown below, targeting CpG 
number 11. The term dCas9 denotes 
nuclease-dead Cas9, and sgDiR single-
guide DNMT1-interacting RNA. Pan-
el B shows bisulfite sequencing after 
CRISPR-DiR of HL-60 cells transduced 
with either a nontargeting negative 
control guide RNA (DiR_NT) or a 
targeting guide RNA (DiR_SALL4), 
leading to demethylation, with higher 
methylation indicated by redder shad-
ing. Panel C shows up-regulation of 
SALL4 transcript (copies per cell as-
sessed by droplet digital polymerase-
chain-reaction [ddPCR] assay) in HL-
60 cells treated with CRISPR-DiR 8 
days after transduction of the CRISPR-
DiR. A Wilcoxon rank-sum test was 
used to evaluate the statistical differ-
ence in copies per cell between NT 
(in three patients) and sgSALL4 (in 
three patients). Data are shown as 
means, and error bars indicate the 
standard deviation.
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Figure 3. Demethylation of a Critical CpG Island and SALL4 Expression in Leukemic Cells and Patients with Myelodysplastic 
Syndrome Treated with a Hypomethylating Agent.

Panel A shows SALL4 copies per cell assessed by ddPCR assay in HL-60 cells treated with decitabine. A Wilcoxon 
rank-sum test was used to evaluate the statistical difference in copies per cell between dimethylsulfoxide (DMSO) 
and decitabine treatments. Data are shown as means, and error bars indicate standard deviations of three biologic 
replicates. Panel B shows Western blot analysis of HL-60 cells treated with decitabine. Panel C shows methylation 
profiling in HL-60 cells treated with vehicle alone as compared with those treated with decitabine at a dose of 250 
nmol per liter. Treatment with a hypomethylating agent leads to demethylation of SALL4 in patients with myelodys-
plastic syndrome. Panel D shows average methylation across SALL4 5′UTR CpG loci (1 through 11) in patients with 
myelodysplastic syndrome before any cycles of azacytidine treatment (t0) and after four cycles of such treatment 
(t4). Red dots indicate patients with up-regulation of SALL4 expression after azacytidine treatments, and blue dots 
indicate patients with down-regulation of SALL4 after azacytidine treatments. Methylation values at t0 were compared 
with methylation values at t4 in each up- and down-regulated group separately. The average difference in methylation 
between the two time points was calculated with the use of a Wilcoxon matched-pairs signed-rank test (one-tailed) 
for each up- and down-regulated group separately. Panel E shows methylation changes in six patients with SALL4
up-regulation and nine patients with SALL4 down-regulation at t0 and t4.
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cent study, we found that demethylation and 
subsequent binding of methylation-sensitive reg-
ulators could lead to long-range interactions be-
tween gene locus and distal regulatory elements, 
resulting in sustained up-regulation of gene ex-
pression.35

Using patient samples and a targeted demeth-
ylation assay, we found that monotherapy with a 
hypomethylating agent can activate or up-regu-
late oncogenes such as SALL4. Up-regulation of 
SALL4 probably influences the clinical progression 
of the disease; similar biologic effects may ac-
company treatment with a hypomethylating agent 
in patients with cancers other than myelodys-
plastic syndrome. Although the up-regulation of 
SALL4 may be associated with a worse prognosis, 
it may also provide an additional treatment op-
tion on the basis of SALL4-mediated cancer vul-
nerability. We are currently exploring the con-
cept that if SALL4 expression is up-regulated, a 
concomitant targeted therapy that directly or 
indirectly mitigates SALL4 expression, function, 
or both could be added to the treatment plan.39
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