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Simple Summary: Cancer-associated glycosylation changes are widely used as biomarkers and
strongly impact malignancy. However, the clinical significance of the deranged expression of gly-
cosyltransferases observed in specimens is not always consistent with their role in experimental
systems. We analyzed the overall survival curves of patients expressing high or low mRNA levels
of 114 glycosyltransferases from the 21 cohorts of The Cancer Genome Atlas (TCGA). We identified
17 glycosyltransferases associated with poor prognosis and 4 associated with good prognosis in a
large number of cohorts. In addition, we identified several glycosyltransferases with a very high
prognostic value in only one or a few cohorts. Comparisons with published experimental works
reveal partial consistency with TCGA clinical data. These data pave the way for the use of glycosyl-
transferases as prognostic markers and potential therapeutic targets and place experimental studies
in an appropriate clinical context.

Abstract: Background: Glycosylation changes are a main feature of cancer. Some carbohydrate
epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic
markers, while many experimental works have investigated the role of glycosyltransferases in
malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level
of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website,
we determined the Kaplan–Meier survival curves for the patients falling in the 15% upper or lower
percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases
involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension
and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four
glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an
extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and
B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with
published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5
and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified
several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.

Keywords: glycosyltransferases; glycosylation; Kaplan–Meier survival curves; TCGA; transcrip-
tomic analysis

1. Introduction

Glycosylation is a widely occurring modification of proteins and lipids that plays a
crucial role in the modulation of cellular and molecular interactions [1]. Glycosylation is
profoundly altered in cancer [2,3] and a huge number of clinical and experimental studies
support the role of specific carbohydrate structures in determining cancer malignancy.
However, studies performed in different experimental systems do not always provide
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consistent and reliable conclusions about the role of sugar chains and their cognate glyco-
syltransferases in cancer. On the other hand, clinical studies are often performed on small
cohorts, which do not allow us to reach reliable conclusions on the impact of the overexpres-
sion of a glycosyltransferase on patient survival. The cancer genome atlas (TCGA) contains
transcriptomic and clinical data from hundreds of patients affected by 21 malignancies. In
this study, we determined the association between the level of expression of 114 glycosyl-
transferases in the 21 TCGA cohorts with patients’ overall survival. We identified a few
glycosyltransferases whose high expression was unambiguously associated with a better
or poorer prognosis in different cohorts. In addition, we identified glycosyltransferase with
a very high prognostic value in one or a few cohorts. The role of the glycosyltransferases
emerging from TCGA data analysis was compared with data obtained from experimental
studies through an extensive literature review.

2. Glycosyltransferase Genes Associated with Prognosis in TCGA Cohorts

We first determined the association with the prognosis of 114 glycosyltransferases
in all 21 TCGA cohorts. Table S1 reports the p value for the association with overall
survival of the 15% upper percentile vs. the 15% lower percentile of glycosyltransferase
mRNA expression, as obtained from the Oncolnc website. A dark red code label or a dark
blue code label was assigned to significant (p ≤ 0.05) associations with a bad (red) or a
good (blue) prognosis. A light red or light blue code label was assigned to strong but not
significant associations (0.1 ≥ p ≥ 0.05). The percentage of glycosyltransferases significantly
associated with overall survival was strikingly different in the different cohorts (Table S1,
penultimate row). Obviously, a low number of patients in a cohort would make it harder
to reach statistical significance. However, this was not the reason for the discrepancy. In
fact, in the BRCA cohort, which is the most numerous (1006 cases Table S1, third row),
only 16 glycosyltransferases displayed an association with prognosis (14%) (Table S1),
while in the LGG cohort, which contains about half of the BRCA patients (510 cases),
69 glycosyltransferases were associated with prognosis (60%) (Table S1). For each cohort,
one or more enzymes showing the lowest p value were identified as “best predictors” of bad
(red) or good (blue) prognosis. Notably, MGAT4A and B4GALNT1 were best predictors of
bad prognosis in 3 (ESCA, UCEC and LUSC) and 2 (HNSC and KIRP) cohorts, respectively.

3. Glycosyltransferase Genes Playing a Consistent Association in a Large Number
of Cohorts

Several glycosyltransferase genes presented a prevalent association with a bad progno-
sis in a large number of cohorts, while a few displayed a prevalent association with a good
prognosis. The former are referred to hereafter as “Bad Prognosis-associated”, (BPA) genes,
while the latter as “Good Prognosis-associated”, (GPA) glycosyltransferases. Inclusion in
either category was based on the difference between the number of cohorts in which it
was associated with a bad prognosis and the number of cohorts in which it was related
with a good prognosis. When this “score” reached a value ≥ 5, the glycosyltransferase was
referred to as BPA, while GPA was referred to a glycosyltransferase with a score value ≤−5.
For example, ALG3 was associated with a bad prognosis in 11 cohorts and with a good
prognosis in 2. Consequently, its BPA score was 9. According to this analysis, we identified
17 BPA and 4 GPA enzymes (Table 1).

Glycosyltransferases can be grouped as: initiating glycosyltransferases elaborating
core structures of N- and O-linked chains and glycolipids; extending glycosyltransferases
elongating sugar chains, which can be in common among N- and O-linked chains and
glycolipids; and capping glycosyltransferases terminating sugar chains [4]. Table 2 reports
the role of the 17 BPA and of the 4 GPA glycosyltransferases from Table 1 in glycan
biosynthesis, as well as their score.
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Table 1. Prognostic value in TCGA cohorts of BPA and GPA glycosyltransferases.
A

LG
3

A
LG

8

B
3G

A
LT

4

B
3G

N
T

4

B
3G

N
T

5

B
3G

N
T

7

B
3G

N
T

9

B
4G

A
LN

T
1

B
4G

A
LT

3

B
4G

A
LT

5

FU
T

7

G
A

LN
T

2

G
A

LN
T

10

G
A

LN
T

16

LA
R

G
E

M
G

A
T

4B

PO
FU

T
1

ST
3G

A
L2

ST
3G

A
L4

ST
6G

A
LN

A
C

3

ST
6G

A
LN

A
C

4

BRCA

HNSC

ESCA

STAD

COAD

READ

LIHC

PAAD

KIRC

KIRP

BLCA

CESC

UCEC

OV

LUAD

LUSC

GBM

LGG

SKCM

SARC

LAML

Association with overall survival of the 15% upper percentile vs. the 15% lower percentile of glycosyltransferase
mRNA expression, as obtained from the Oncolnc website. The dark red code label or a dark blue code label
indicates a significant (p ≤ 0.05) associations with a bad (red) or a good (blue) prognosis. A light red or blue code
label indicates a strong tendency but not significant associations (0.1 ≥ p ≥ 0.05). BPA is marked in red, while
GPA is marked in blue.

Table 2. Glycosyltransferases show an association with prognosis in a large number of cohorts.

Pathway Enzyme Activity Product Score

Core N-glycosylation
ALG3 α1,3-mannosyltransferase Mannosylated precursor 9
ALG8 α1,3-glucosyltransferase Glucosylated precursor 7

MGAT4B β1,4 GlcNAc transferase B β1,4-branched N-glycans 6

Core O-glycosylation
(mucin type)

GALNT2 Protein:O-GalNAC transferase 2 Tn-antigen 8
GALNT10 Protein:O-GalNAC transferase 10 Tn-antigen 5
GALNT16 Protein:O-GalNAC transferase 16 Tn-antigen −6

O-fucosylation POFUT1 Protein O-fucosyltransferase 1 O-fucosylated NOTCH 7

Core of Glycolipids B4GALT5 β1,4-Galactosyltransferase 5 Lactosylceramide 8
B4GALNT1 β1,4-GalNAc transferase 1 Ganglioside GM2, asialo GM2 8

Chain extension

B3GNT4 β1,3-GlcNAc transferase 4 Type 2 polylactosaminic chains 5
B3GNT5 β1,3-GlcNAc transferase 5 Lactotriaosylceramide 7
B3GNT7 β1,3-GlcNAc transferase 7 Type 2 polylactosaminic chains 6
B3GNT9 β1,3-GlcNAc transferase 9 Polylactosamines O-linked 5
B4GALT3 β1,4-Galactosyltransferase 3 Type 2 lactosaminic chains 7
B3GALT4 β1,3-Galactosyltransferase 4 Type 1 lactosaminic chains −5
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Table 2. Cont.

Pathway Enzyme Activity Product Score

O-mannosylation LARGE Xylosyltransferase and
β1,3-glucuronyltransferase Elongated O-mannosyl glycans −6

Capping

ST3GAL2 α2,3 to Gal sialyltransferase 2 Sialyl-T; Gangliosides GD1a,
GM1b, GT1b 6

ST3GAL4 α2,3 to Gal sialyltransferase 4 Sialyl-T; N-glycans; Gangliosides
GD1a, GM1b 6

ST6GALNAC3 α2,6 to GalNAc sialyltransferase 3 Di-sialyl T; Gangliosides
GD1α, GM1b 6

ST6GALNAC4 α2,6 to GalNAc sialyltransferase 4 Di-sialyl T; Ganglioside GD1α 5
FUT7 α1,3/6 fucosyltransferase 7 Sialyl Lewis X −6

BPA and GPA have positive or negative score values, respectively. Scores marked in bold refer to those enzymes
that were associated with bad or good prognosis in all the cohorts with predictive value.

4. Glycosyltransferases with Very High Prognostic Value (VHPV)

In the context of poor or good prognosis, several glycosyltransferases displayed a
very high prognostic value (p ≤ 1 × 10−3) in a limited number of cohorts (Figure 1). These
enzymes, which will be referred to as VHPV afterwards, were strikingly numerous in some
cohorts. The cohort with the highest number of VHPV was LGG, followed by KIRC. Among
the top 4 VHPV enzymes (p < 1 × 10−8), 3 were in LGG (GALNT3, ALG6 and B3GNT7), and
1 (POFUT2) was in KIRC (Figure 2). In LGG, a group of enzymes initiating N-glycosylation
(ALG1 -2, -3, -6, -10, 12) or O-glycosylation (GALNT2, -3, -4, -7) displayed very strong
association with poor prognosis. On the other hand, another group of GALNTs (9, 13, 14, 17,
18) showed a strong association with a good prognosis. Many VHPV glycosyltransferases
displayed prognostic potential in only one cohort.
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Figure 1. VHPV in TCGA cohorts. Histograms represent the −Log of the p value for the comparison
between the overall survival curves of the 15% higher expressers of each glycosyltransferase gene
and the 15% lower expressers. Color labels indicate the association with a bad (red) or good (blue)
prognosis. p < 1 × 10−3 was arbitrarily set as the threshold limit for inclusion. Cohorts not present in
the figure did not contain any VHPV enzymes.
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5. Role of Glycosyltransferases in Experimental Systems

The role of relevant glycosyltransferases, including BPA and GPA, in experimental
systems was assessed through an extensive literature search.

5.1. Initiating Glycosyltransferases
5.1.1. Glycosyltransferases Initiating N-Glycosylation

Glycosyltransferases ALG3, ALG8 and MGAT4B involved in the first steps of N-
glycosylation behaved as BPA (Figure 3A).

Cancers 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

prognosis. p < 1 × 10−3 was arbitrarily set as the threshold limit for inclusion. Cohorts not present in 
the figure did not contain any VHPV enzymes. 

 
Figure 2. Kaplan–Meier of overall survival curves of the top four VHPV glycosyltransferases. 
Curves were determined by the Oncolnc website for the 15% higher (red) and 15% lower (blue) 
expressers of the four glycosyltransferases. LGG and KIRC refer to brain lower grade glioma and 
kidney clear cell carcinoma, respectively. 

5. Role of Glycosyltransferases in Experimental Systems 
The role of relevant glycosyltransferases, including BPA and GPA, in experimental 

systems was assessed through an extensive literature search. 

5.1. Initiating Glycosyltransferases 
5.1.1. Glycosyltransferases Initiating N-Glycosylation 

Glycosyltransferases ALG3, ALG8 and MGAT4B involved in the first steps of N-gly-
cosylation behaved as BPA (Figure 3A). 

 
Figure 3. Biosynthetic steps in N-glycosylation. (A) shows the core glycosylation steps catalyzed by 
three BPA glycosyltransferases in initiation of N-glycosylation. (B) shows the reaction catalyzed by 

Figure 3. Biosynthetic steps in N-glycosylation. (A) shows the core glycosylation steps catalyzed
by three BPA glycosyltransferases in initiation of N-glycosylation. (B) shows the reaction catalyzed
by the chain capping sialyltransferase ST3GAL4 in N-glycan biosynthesis. Enzymes catalyzing core
glycosylation are boxed in black, while that catalyzing chain capping is boxed in violet.
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Experimental data indicate that ALG3 contributes to malignancy of lung [5] and
oral [6] cancer cell lines, in agreement with TCGA data reporting an association with a
worse prognosis in LUAD and HNSC cohorts. However, the association with malignancy
reported for esophageal [7] and cervical cancer [8] was not supported by TCGA data.
ALG8 was reported to be associated with gastric [9] and colorectal [10] cancer. However,
in the current study, we failed to observe any correlation with overall survival in these
two malignancies. Very little or no information is available on the role of MGAT4B in
experimental cancer systems.

5.1.2. Glycosyltransferases Initiating O-Glycosylation

In the context of the 20 protein:O-GalNAc transferases mediating the addition of the
first GalNAc of O-linked chains [11], GALNT2 and GALNT10 were identified as BPA. On
the other hand, GALNT16 was GPA (Figure 4A). GALNT2, which is also the best predictor
in CESC, provided a remarkable example of consistency between experimental data and
prognosis. GALNT2 promoted malignancy through O-glycosylation of EGFR in oral
cancer [12], glioma [13] and endometrial hyperplasia [14] cell lines, and by Notch signaling
modulation [15] resulting in PD-L1 expression [16] in lung adenocarcinoma. Consistently,
high GALNT2 expression was associated with poor overall survival in HNSC, LGG, UCEC
and LUAD. On the other hand, increased malignancy related with high GALNT2 expression
was also observed in hepatocellular carcinoma [17], while no relationship with overall
survival was observed in the LIHC cohort. In gastric cancer cells, GALNT2 suppressed
malignancy [18], but did not impact overall survival in STAD patients. Consistent with data
of the OV cohort, in ovarian serous adenocarcinoma, high GALNT10 expression is related
to an immunosuppressive microenvironment [19]. However, GALNT10 was causally
associated with malignancy in cholangiocarcinoma [20] and hepatocellular carcinoma [21]
but no relationship in the LIHC cohort was observed. Little or no information was available
on GALNT16 in cancer.

Another type of O-glycosylation is O-GlcNAcylation (Figure 4B) [22]. The addition
of a single O-GlcNAc residue to serine or threonine of cytosolic and nuclear proteins
is mediated by a single enzyme, O-GlcNAc transferase (OGT). This enzyme is the best
predictor of a good prognosis in BLCA. However, studies in bladder cancer cell lines have
highlighted its tumor supporting activity [23,24].

A third type of O-glycosylation is O-fucosylation. POFUT1, which adds O-fucose
to the NOTCH receptors (Figure 4C) [25], was found to be BPA. POFUT1, reported as a
tumor-promoting glycosyltransferase in several studies, has also been proposed as a marker
of colon cancer [26] and of high risk of tumor progression in adenomas [27]. Inhibition of
POFUT1 decreased malignancy of CRC cell lines [28] by reducing stemness [29]. In a few
cases, POFUT1 undergoes point mutation in CRC, resulting in enzyme hyperactivation
and cancer progression [30]. POFUT2 is the best predictor of a poor prognosis in COAD.
In hepatocarcinoma cells, POFUT1 promotes proliferation and invasion [31–33]. A high
POFUT1 level correlates with glioblastoma [34] and lung [35], stomach [36], esophagus [37],
breast [38], mouth [39] and bladder cancers [40]. However, only in the latter was an
association with worse prognosis confirmed by TCGA data.

5.1.3. Glycosyltransferases Initiating Gangliosides

UGCG catalyzes the addition of glucose to ceramide (Figure 5). High expression of this
enzyme increases malignancy in cervical cancer cells [41], consistent with the TCGA data
of the CESC cohort (Table S1). B4GALT5 is the major enzyme involved in the biosynthesis
of lactosyceramide, the root of all glycolipids [42,43], although it is also involved in other
glycoconjugate formations. B4GALT5 increases the stemness and invasion of breast cancer
cells [44] and multidrug resistance in leukemia cells [45]. No relationship with prognosis
was evident in the BRCA cohort, while a tendency for a better prognosis was observed
in the LAML cohort. B4GALNT1 catalyzes the synthesis of both GM2 and its asialo
counterpart, asialo-GM2 (Figure 5). GM1, as well as GD2 and GD3, derive from GM2,
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while GD1a, GD1b and GD1α arise from asialo-GM2. Gangliosides GD2, GD3, GM2 and
GD1a are greatly increased in breast cancer stem cells [46]. A causal correlation between
high B4GALNT1 expression and malignancy has been noted in cell lines from lung, breast
and kidney cancer, as well as in glioma and melanoma [46–52]. TCGA data are coherent
with the B4GALNT1 role in kidney (KIRC) and lung (LUAD) cohorts. Phenotypically,
the expression of B4GALNT1 has been associated with increased integrin signaling [52],
reduced propensity to anoikis [49], stemness [46,50], augmented angiogenesis [51] and
decreased immune surveillance [53]. B4GALNT1 is one of the most consistently and
unambiguously glycosyltransferases associated with a bad prognosis (Tables 1 and 2) in a
large number of cohorts.
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can be GalNAc (A), as in Mucin-type O-glycosylation; GlcNAc (B), as in many cytosolic and nuclear
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those catalyzing chain cappings are boxed in violet.

5.2. Extending Glycosyltransferases

Among the extending glycosyltransferases, we will consider the enzymes involved in
polylactosamine biosynthesis and LARGE.

5.2.1. Polylactosaminic Chains

Polylactosamines constitute repeated Gal-GlcNAc (lactosamine) units. The two sugars
can be linked either by a β1,3 bond (type 1 chains) or by a β1,4 bond (type 2 chains)
(Figure 6A). N-linked chains, as well as O-linked chains and glycolipids, can be elongated
by polylactosaminic chains. The first step of their biosynthesis consists of the addition of a
GlcNAc residue in β1,3 linkage to an underlying galactose (Figure 6A).



Cancers 2022, 14, 2128 8 of 19
Cancers 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Biosynthesis and structure of gangliosides. The sugar linked to ceramide is glucose. En-
zymes catalyzing core glycosylation are boxed in black, while those catalyzing chain capping are 
boxed in violet. 

5.2. Extending Glycosyltransferases 
Among the extending glycosyltransferases, we will consider the enzymes involved 

in polylactosamine biosynthesis and LARGE. 

5.2.1. Polylactosaminic Chains 
Polylactosamines constitute repeated Gal-GlcNAc (lactosamine) units. The two sug-

ars can be linked either by a β1,3 bond (type 1 chains) or by a β1,4 bond (type 2 chains) 
(Figure 6A). N-linked chains, as well as O-linked chains and glycolipids, can be elongated 
by polylactosaminic chains. The first step of their biosynthesis consists of the addition of 
a GlcNAc residue in β1,3 linkage to an underlying galactose (Figure 6A). 

This reaction is mediated by different B3GNTs, specific to several types of sugar 
chains (e.g., type 2 chains for B3GNT4 and B3GNT7, glycolipids for B3GNT5, O-linked for 
B3GNT9). These four B3GNTs are BPA. B3GNT5 is a key enzyme for the biosynthesis of 
both type 1 and type 2 chains in glycolipids (Figure 6). Consistent with TCGA data, 
B3GNT5 enhances malignancy of glioma cells [54] and is stimulated by Helicobacter pylori 
infection in the stomach [55]. B3GNT7 promotes Lewis antigen expression [56] and sup-
presses malignancy in colon cancer cell lines [57], although in a large number of cohorts 
(but not in COAD), it is associated with worse prognosis. Within the B3GNTs group, 
B3GNT3 (which is neither a BPA nor a GPA) represents the subject of a larger number of 
studies. It mainly plays tumor-promoting activity in various types of tumors, including 
pancreatic [58,59], cervical [60], endometrial [61], and lung cancer [62,63]. In some in-
stances, the expression of B3GNT3 inhibits the anti-cancer immune response, as in pan-
creatic [64], breast [65] and lung cancer [66]. In particular, in triple negative breast cancer, 
B3GNT3 promotes through EGFR the interaction between PD-1 and PD-L1, resulting in 

Figure 5. Biosynthesis and structure of gangliosides. The sugar linked to ceramide is glucose.
Enzymes catalyzing core glycosylation are boxed in black, while those catalyzing chain capping are
boxed in violet.

This reaction is mediated by different B3GNTs, specific to several types of sugar
chains (e.g., type 2 chains for B3GNT4 and B3GNT7, glycolipids for B3GNT5, O-linked for
B3GNT9). These four B3GNTs are BPA. B3GNT5 is a key enzyme for the biosynthesis of
both type 1 and type 2 chains in glycolipids (Figure 6). Consistent with TCGA data, B3GNT5
enhances malignancy of glioma cells [54] and is stimulated by Helicobacter pylori infection
in the stomach [55]. B3GNT7 promotes Lewis antigen expression [56] and suppresses
malignancy in colon cancer cell lines [57], although in a large number of cohorts (but not in
COAD), it is associated with worse prognosis. Within the B3GNTs group, B3GNT3 (which
is neither a BPA nor a GPA) represents the subject of a larger number of studies. It mainly
plays tumor-promoting activity in various types of tumors, including pancreatic [58,59],
cervical [60], endometrial [61], and lung cancer [62,63]. In some instances, the expression of
B3GNT3 inhibits the anti-cancer immune response, as in pancreatic [64], breast [65] and
lung cancer [66]. In particular, in triple negative breast cancer, B3GNT3 promotes through
EGFR the interaction between PD-1 and PD-L1, resulting in immune escape [65]. These
insights are in good agreement with TCGA data, which report an association with poor
prognosis in PAAD and LUAD cohorts. However, the tumor-suppressive role of B3GNT3
in pancreatic cancer [67] and neuroblastoma [68] has also been reported.

The second step in polylactosamine biosynthesis involves the addition of a galactose
residue either through a β1,3 or a β1,4 linkage, generating type 1 or type 2 chains, re-
spectively (Figure 6A). The enzyme B3GALT4, which both synthesizes type 1 chains and
participates in ganglioside biosynthesis (Figure 5), is a GPA, although its association with
poor survival in colon cancer has been reported [69]. On the other hand, the BPA B4GALT3
synthesizing type 2 chains behaves as a tumor-promoting gene in neuroblastoma [70,71],
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glioblastoma [72] and cervical carcinoma [73]. Consistently, B4GALT3 is a predictor of
negative prognosis in the endometrial carcinoma (UCEC) cohort. However, B4GALT3
reduces malignancy in colon cancer [74].
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5.2.2. LARGE

α-Dystroglycan is a plasma membrane glycoprotein that indirectly links the cytoskele-
ton with the laminin of the extracellular matrix. The laminin- α-dystroglycan interaction
is mediated by its peculiar O-mannosyl glycans [75,76]. The addition of mannose to the
peptide is catalyzed by POMT1 and POMT2 (Figure 4D). The chain starting with the first
O-linked mannose is elongated by other sugars and terminated by repeated disaccharide
units comprised of xylose and glucuronic acid. The glycosyltransferase LARGE is respon-
sible for the biosynthesis of these repeated disaccharide units. TCGA data show that in
6 cohorts, LARGE expression is associated with better prognosis. Although little data have
been published on the relationship between LARGE expression and cancer, it has been
described that O-mannosylation as a whole exerts tumor-suppressing activity in gastric
cancer [77].

5.3. Capping Glycosyltransferases
5.3.1. Sialyltransferases

The BPA sialyltransferases ST3GAL2, ST3GAL4, ST6GALNAC3 and ST6GALNAC4
are involved in the sialylation of both O-linked chains and glycolipids (Figures 4 and 5),
while ST3GAL4 sialylates also N-linked chains (Figure 3B). ST3GAL2 is differentially
methylated in cancer [78] and is positively associated in oral cancer with advanced stages
of the disease, lymph node involvement, and perineural invasion [79]. In addition to its
involvement in sialylation of O-linked chains, ST3GAL2 is also a key player in ganglioside
biosynthesis [80]. The ganglioside stage-specific embryonic antigen 4 (SSEA4), which is
also a ST3GAL2 product, marks chemotherapy-resistant breast cancer cells with mesenchy-
mal features [81]. Although not strictly associated with prognosis in BRCA and HNSC
cohorts, the tumor-promoting activity of ST3GAL2 is supported by both experimental and
clinical data. ST6GALNAC3 and ST6GALNAC4 are also involved in sialylation of both
O-linked chains and glycolipids. ST6GALNAC3 was reduced in lung cancer tissues [82],
while increased ST6GALNAC4 enhanced invasion of follicular thyroid carcinoma [83] and
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lung cancer [84]. Inconsistently, the latter is associated with a better prognosis in LUAD.
ST3GAL6 is specific to type 2 chains and is the best predictor of poor survival in STAD.
Experimental work has shown that its overexpression in gastric cancer cell lines protects
against tyrosine kinase inhibitors [85].

5.3.2. Fucosyltransferases

Fucosyltransferase FUT7 is one of the major α1,3 FUTs involved in the biosynthesis of
the cancer-associated sialyl Lewis x antigen (Figure 6B). In this work, we observed that in
the LAML cohort, high FUT7 was associated with worse prognosis, confirming a previous
study [86]. Although in a variety of other malignancies, including lung [87,88], liver [89],
bladder [90], thyroid [91], and breast [92] cancers FUT7 behaves as a tumor-promoting
enzyme, in 7 of the TCGA cohorts, including LUAD, it is associated with better overall
survival. In addition, FUT7 is the best predictor of good prognosis in BRCA.

6. Mechanistic Aspects of Glycosyltransferase Expression

Like other genes, glycosyltransferases are regulated at multiple levels, including the ac-
tivity of specific transcription factors, promoter methylation, and the network of non-coding
RNAs, such as micro RNA (miRNA), long non-coding RNAs (lnRNA) and circular RNAs
(circRNA). On the other hand, glycosylated cell surface molecules, such as growth factor
receptors and cell adhesion molecules, trigger multiple signaling pathways, resulting in
modulation of cell behavior [93]. Table 3 reports the mechanisms regulating the expression
of relevant glycosyltransferases (upstream regulators) and their downstream pathways.

Table 3. Mechanistic aspects of glycosyltransferase action and regulation.

Enzyme Upstream Regulator(s) Downstream Pathways Cancer Tissue/Cell
Line Effect *

ALG3

TGF-β receptor 2 Breast Stemness,
radioresistance [94]

Heat shock factor 2 Breast Progression [95]
miR-98-5p Non-small cell lung Progression [5]

B3GNT3

RhoA/RAC1 Endometrial Progression [61]
miR-149-5p Lung Progression [62]

EGFR/PD-L1 Lung Immune escape [66]
EGF/PD1-PD-L1 Breast Immune escape [65]

B3GNT5 lncRNA
MIR44352HG/miR1365p Liver Progression [96]

B3GNT7 Promoter methylation Colorectal Inhibition ** [57]

B4GALT3

lncRNA DANCR/miR-338-3p Neuroblastoma Progression [70]
β1-integrins Neuroblastoma Progression [71]

miR-27a β1-integrins Cervical Progression [73]
β1-integrins Colorectal Inhibition [74]

B4GALT5
Wnt/β-catenin Breast Stemness [44]

Circ_0009910/miR-491-5p PI3K/AKT Acute myeloid
leukemia Progression [97]

B4GALNT1

JNK/c-Jun/Slug Lung Progression [47]
EGFR breast Stemness [50]

β1 integrins/FAK/SRC/ERK Glioblastoma,
lung, kidney Progression [52]

GM2/GD2 Melanoma Angiogenesis,
progression [51]
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Table 3. Cont.

Enzyme Upstream Regulator(s) Downstream Pathways Cancer Tissue/Cell
Line Effect *

GALNT2

IGF-R1 Neuroblastoma Inhibition [98]
Met Gastric Inhibition [18]

EGFR Liver Inhibition [17]
EGFR/AKT Oral squamous Progression [12]

EGFR/PI3K/AKT/mTOR Glioma Progression [13]
Notch/Hes1-PTEN-

PI3K/AKT Lung Progression [15]

GALNT10
DLGAP1-AS2/miR-505 Bile ducts Progression [20]

HNF4/miR-122 Liver Progression [21]
Histone methylation/ZBTB2 Ovary Stemness [99]

FUT7
EGFR/AKT/mTOR Lung Progression [88]

Promoter methylation Bladder Progression [90]
EGFR Thyroid Progression [91]

POFUT1 Notch
Liver

Progression
[31,32]

Colorectal [28,29]
Glioblastoma [34]

ST3GAL4

Met, RON Gastric Progression [85,100,101]
Promoter

methylation/GATA2 Ovary, Breast Progression [102,103]

miR-370 Colorectal Adhesion [104]

ST6GALNAC4 miR-429 Thyroid Progression [83]

* The indicated effect is positively related to the expression of the indicated glycosyltransferase. ** Inhibition
indicates attenuation of the neoplastic phenotype.

From these data, it is evident that glycosyltransferases modulate different pathways in
different cellular contexts. Sometimes, the activation of the same pathway induces opposite
phenotypes in different tissues. For example, B4GALT3 activates β-integrin signaling in
both neuroblastoma [71] and colon cancer [74], resulting in progression in the former and
inhibition in the latter.

7. Discussion

The present work aims to combine the huge amount of clinical data from the pub-
lic database TCGA with experimental studies on the glycosyltransferase role in cancer
biology. Several key points emerged from the TCGA data analysis. First, some glyco-
syltransferases (BPA or GPA) are consistently associated with either poor or favorable
prognosis in a large number of cohorts, while others (for example, ALG6 and GALNT12)
displayed opposite associations in different cohorts. These findings support the notion
that a few glycosyltransferases have a pleiotropic effect on several cell types and tissues,
while the majority exert their effects in a tissue-specific manner. A paradigmatic exam-
ple of this statement is provided by the B4GALNT2 gene, whose product synthesizes
the carbohydrate antigen Sda. A high level of B4GALNT2 expression is associated with
longer overall survival in the COAD cohort and attenuation of malignant phenotype in
colon cancer cell lines [105,106]. However, high B4GALNT2 expression correlated with
a worse prognosis in the BRCA cohort [107] and increased malignancy in breast cancer
cell lines [108]. Some BPA genes are involved in the early steps of N-glycosylation (ALG3,
ALG8 and MGAT4B) and of mucin-type O-glycosylation (GALNT2 and GALNT10). In-
triguingly, GALNT16, another member of the protein:O-GalNAc transferases, behaves
as a GPA, indicating that subtle variations in the first step of O-glycosylation can lead
to opposite effects on malignancy. The very strong association of POFUT1 with poor
prognosis is probably due to its effect on the first step of NOTCH receptor glycosylation.
The BPA group also includes enzymes involved in the biosynthesis of the core portion of
glycolipids, such as B4GALT5 and B4GALNT1. B3GNT4, -5, -7 and -9, participating in
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initiation/extension of polylactosaminic chains, are also BPA, consistent with the recog-
nized role of extended polylatosaminic chains in promoting malignancy. However, of the
two galactosyltransferases synthesizing polylactosamines, the one producing type 2 chains
(B4GALT3) is a BPA, while that producing type 1 chains (B3GALT4) is a GPA. The gene
LARGE, responsible for the elongation of α-dystroglycan sugar chains, represents one of
the stronger GPA, probably because of the role of its product in promoting cell adhesion.
Among the capping enzymes, we identified 4 sialyltranferases acting mainly on glycol-
ipids and/or O-linked chains behaving as BPA. This finding is not surprising, considering
the well-established association of sialyltransferases with malignant phenotype [109,110].
By contrast, fucosyltransferases, another major class of capping enzymes, displayed an
opposite behavior. This was unexpected, considering that several members of this group
(FUT3-7) are responsible for the biosynthesis of well-known cancer-associated Lewis type
antigens and their sialylated counterparts sialyl Lewis x and sialyl Lewis a [111]. FUT7 was
found to be a GPA and a best predictor of good prognosis in BRCA, despite experimental
studies showing its tumor-promoting activity. Several glycosyltransferases, including
MGAT5 [112], FUT8 [113], ST6GAL1 [110], ST6GALNAC1 [114,115] and ST8SIA1 [116]
have an established reputation as tumor-promoting enzymes. On the other hand, MGAT3
is probably the best-recognized tumor-restraining glycosyltransferase [117,118]. However,
no one of these enzymes displays a relevant association with prognosis in different cohorts.
Comparison of TCGA data with literature indicates a consistent malignancy-oriented be-
havior by some glycosyltransferases, including ALG3, GALNT2, B4GALNT1, POFUT1,
B4GALT5, B3GNT5 and ST3GAL2. On the other hand, the profile of other glycosyltrans-
ferases emerging from TCGA data analysis appears to be inconsistent with that emerging
from experimental studies. This group includes B3GALT5, B3GNT7, B3GALT4 and FUT7.
The limited consistency between the experimental and clinical data could be explained by
the fact that cell lines derived from a single or a few cancer cases might not be representative
of the many patients of the whole cohort. Moreover, transcriptomic data are not necessarily
representative of enzyme activity and cancer antigen expression levels. In fact, the biosyn-
thesis of a given carbohydrate antigen is the final effect of many factors, including the
translational efficiency of glycosyltransferase mRNA, the half-life of enzyme protein, the
effect of postranslational modifications on enzmatic activity, the availability of donor and
acceptor substrates, the competition with other glycosyltransferases and probably many
others. In addition to the identification of glycosyltransferases playing a pleiotropic effect
in many cohorts, we also pursued the identification of glycosyltransferases with a very
high prognostic value (VHPV), in which the overall survival of the top 15% expressers was
statistically different from that of the bottom 15% expressers with a p < 1 × 10−3. There
were no VHPV glycosyltransferases in some cohorts, such as BRCA, while in others, such
as LGG and KIRC, they were numerous. These discrepancies suggest that several tumors
display intrinsically different sensitivity to glycosylation changes. We have shown that gly-
cosyltransferases involved in the biosynthesis of different sugar chains are able to activate
relatively few signal transduction pathways. EGFR/AKT appears to be one of the most
frequently involved. Among the mechanisms regulating glycosyltransferase expression,
the contribution of non-coding RNAs is increasingly recognized. The complex network of
interactions between lncRNA, circRNA and miRNAs is essential to ensure the fine-tuning
of glycosyltransferase expression. Considering the huge therapeutic importance of immune
checkpoint inhibitors targeting the PD-1/PD-L1 interaction, it is worth mentioning that
such interaction is modulated by glycosylation and that glycosylation inhibitors are able to
revert the cancer-induced inhibition of the immune system [65,119–124].

8. Conclusions

In conclusion, the wide analysis of TCGA data allows the identification of glyco-
syltransferases whose over- or under-expression impacts patients’ overall survival more
dramatically. Even if the studies on experimental systems remain crucial to understanding
the molecular mechanisms linking glycosyltransferase expression and malignancy, informa-
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tion from databases appears to be the best way to identify glycosyltransferases as potential
biomarkers, either alone or in combination [125–128]. Owing to their very strict association
with survival in specific malignancies, VHPV glycosyltransferases are ideal candidates as
prognostic biomarkers and targets of therapeutic approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14092128/s1, Table S1: Prognostic value of glycosyltrans-
ferase gene expression in TCGA cohorts.
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Abbreviations

BPA bad prognosis-associated
circRNA circular RNA
GPA good prognosis-associated
lncRNA long non-coding RNA
PD-1 programmed death 1
PD-L1 programmed death ligand 1
VHPV very high prognostic value
BLCA bladder urothelial carcinoma
BRCA breast invasive carcinoma
CESC cervical squamous cell carcinoma and endocervical adenocarcinoma
COAD colon adenocarcinoma
ESCA esophageal carcinoma
GBM glioblastoma multiforme
HNSC head and neck squamous cell carcinoma
KIRC kidney renal clear cell carcinoma
KIRP kidney renal papillary carcinoma
LAML acute myeloid leukemia
LGG brain lower grade glioma
LIHC liver hepatocellular carcinoma
LUAD lung adenocarcinoma
LUSC lung squamous cell carcinoma
OV ovary serous cystadenocarcinoma
PAAD pancreatic adenocarcinoma
READ rectum adenocarcinoma
SARC sarcoma
SKCM skin cutaneous melanoma
STAD stomach adenocarcinoma
TCGA the cancer genome atlas
UCEC uterine corpus endometrial carcinoma
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