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Pressure mapping has garnered considerable interest in the healthcare and robotic
industries. Low-cost and large-area compliant devices, as well as fast and effective
computational algorithms, have been proposed in the last few years to facilitate
distributed pressure sensing. One approach is to use electrical impedance
tomography (EIT) to reconstruct the contact pressure distribution of piezoresistive
materials. While tremendous success has been demonstrated, conventional algorithms
may be unsuitable for real-time monitoring due to its computational demand and runtime.
Moreover, the low resolution of reconstructed images is a well-known issue related to the
regularization strategies typically employed for traditional EIT methods. Therefore, in this
study, two different supervised machine learning (ML) approaches, namely, radial basis
function networks and deep neural networks, were employed to efficiently solve the inverse
EIT problem and improve the resolution of reconstructed pressure maps. The
demonstration of high-resolution pressure mapping, specifically, for identifying pressure
hotspots, was achieved using a carbon nanotube-based thin film integrated with foam.

Keywords: carbon nanotube, contact pressure, difference imaging, electrical impedance tomography,
piezoresistive, sensor, supervised machine learning

1 INTRODUCTION

An ever-increasing number of devices, mainly in healthcare and robotic industries, employ pressure
mapping strategies to visualize the contact distribution on its sensing surfaces. For instance, pressure
sensing can detect prolonged localized pressures in patients with limited mobility who may develop
ulcers due to the difficulty of shifting their weight. Such ulcers can cause tissue necrosis and can lead
to death in the most severe cases. Another example is that pressure mapping is largely employed in
the automation field to mimic the feeling of touch in sophisticated human-inspired robots. In these
applications, high mapping resolution and real-time sensing are of primary importance.

Conventional pressure mapping systems often employ dense grids of discrete transducers or electrodes.
In these cases, themapping resolution is proportional to the density, complexity, and cost of the distributed
transducers (Wu et al., 2016; Nela et al., 2018). The need to overcome these limitations, as well as to achieve
miniaturization and conformability to complex surfaces, have motivated the development of pressure
sensing systems in the form of films (Shirinov and Schomburg, 2008; Nela et al., 2018), textiles (Ryu et al.,
2018; Kim et al., 2019), paint (Li et al., 2021), and foams (Wu et al., 2016). Many of these pressure-sensitive
materials have been made possible by leveraging the unique material properties of carbon nanotubes
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(Huang et al., 2017; Nela et al., 2018; Kim et al., 2019; Li et al., 2021),
carbon black (Wu et al., 2016), graphene nanosheets (Tao et al.,
2017), and conductive polymers (Shirinov and Schomburg, 2008;
Ding et al., 2018), among many others (Zang et al., 2015).

Recently, several studies have demonstrated the efficacy of
electrical impedance tomography (EIT) and electrical resistance
tomography (ERT) for inferring the conductivity distribution of a
surface or a solid using only boundary voltage measurements (Gupta
et al., 2017; Duan et al., 2019; Tallman and Smyl, 2020; Li et al., 2021;
Lin et al., 2021). For this reason, one of the first applications of EIT
has been for noninvasive medical imaging, such as for assessing
regional lung aeration (Frerichs et al., 2017). On the other hand,
recent studies in the mechanical and civil engineering fields have
shown how EIT can be effectively employed to detect material
discontinuities and strain states that alter the original conductivity
of the inspected material (Loh et al., 2009). Because conductivity is
pre-calibrated to applied strains, the resulting conductivity
distribution of piezoresistive materials can be used to directly
visualize the magnitudes and locations of strain concentrations or
distributions of strain. In this context, several fabric-based devices
were proposed for pressure sensing (Yao and Soleimani, 2012; Duan
et al., 2019; Lee et al., 2021; Lin et al., 2021). For instance, Yao and
Soleimani (2012) presented a knitted fabric whose conductivity
increases with applied pressure. EIT conductivity mapping was
employed to identify pressure distributions. Wang et al. (2016)
proposed a nanocomposite sensitive fabric. Specifically, a
piezoresistive multi-walled carbon nanotube-latex thin film was
integrated with flexible fabric. The identification of pressure
hotspots was confirmed, and the sensing performance of this
device was found to be stable even after handwashing. More
recently, Dai and Thostenson (2019) used EIT to map pressure
distributions on a relatively large sensing device made of a nonwoven
elastomeric composite coated with carbon nanotubes. Out-of-plane
loads induced in-plane Poisson expansion of the coated sensing
material and showed acceptable resolution performance. Liu et al.
(2021) employed a flexible hydrogel-based sensor to reconstruct
high-resolution pressure maps. Although some of these materials
can be easily produced in laboratories, the dimensions of the sensing
area must be known during the fabrication process. As a
consequence, these sensing devices are case-specific, and different
applications require custom fabrication.

Since the inverse problem in EIT typically involves least
squares-based methods, these conventional algorithms may be
unsuitable for real-time pressure mapping due to the extensive
computational runtime of matrix inversion operations.
Moreover, the low resolution of reconstructed images is a
well-known issue related to the regularization strategies
typically employed by these EIT methods. Instead, machine
learning (ML)-based techniques have been applied to solve the
strongly nonlinear EIT problem, mainly in the medical field.
Duan et al. (2019) applied machine learning to correct the
pressure distribution of fabric using the spatiotemporal total
variation algorithm and confirmed near-real-time pressure
mapping. Lin et al. (2020) showed that an end-to-end artificial
neural network (ANN) approach is faster and generally provides
more accurate results with respect to hybrid procedures that
employ ML to solve parts of the traditional algorithms, although

being less general. Radial basis function networks (RBFNs) have
demonstrated excellent generalization capabilities and require a
small computational footprint to operate, which has thus become
particularly suitable for mobile sensing applications. In addition,
Wang et al. (2021) has also shown the superior robustness of
RBFNs to noise. Husain et al. (2021) recently proposed a tactile
sensing solution employing an RBFN followed by segmentation
techniques for object recognition. However, end-to-end solutions
based on RBFNs that exploit their low computational cost are still
rarely used due to the typical low resolution of the outcome.

This study aims to build on the rich body of work in ML-based
EIT methods and to compare the spatial conductivity mapping
performance of end-to-end RBFN and deep ANN versus the
“traditional” total variation method (TV) (Holder, 2004). In
particular, the focus is on reconstructing the strain distribution
of a smart foam for pressure hotspot monitoring applications. A
pressure-sensitive smart foam was prepared by integrating a
piezoresistive carbon nanotube-based thin film with a
commercially available foam. Different from other sensing
devices, in this case, the sensing film is obtained simply by
spray-coating the substrate with an airbrush. This solution is
thus easily scalable, since the area and shape of the sensing region
only depend on the geometry of the substrate.

Pressure sensing tests were performed, while EIT boundary
voltage measurements were acquired for different scenarios. The
same datasets were used and processed by the RBFN, ANN, and
TV-based algorithms to obtain the corresponding conductivity
maps for comparison. For the ML-based approaches, a data
normalization strategy and noise-assisted regularization
process were proposed to obtain robust and accurate
conductivity reconstruction.

2 ELECTRICAL IMPEDANCE
TOMOGRAPHY BACKGROUND

EIT is a soft-field imaging method that uses applied electrical
excitations and measurements obtained along the boundaries of a
conductive body to estimate its distribution of electrical
properties. In short, EIT consists of the forward and inverse
problems. The former involves calculating the voltage
distribution on the boundary of the interrogated body when
the boundary electrical excitation and the spatial conductivity
properties of the body itself are known a priori. On the other
hand, the inverse problem consists of estimating the conductivity
distribution using boundary current excitations and voltage
measurements. The EIT inverse problem can be solved when
an alternating current excitation is applied and both voltage
magnitudes and phases are recorded. In the case of a direct
current (DC) excitation, the EIT problem specializes to become
electrical resistance tomography (ERT).

2.1 ERT Forward Problem
Let Ω be a conductive body with conductivity distribution σ and
boundary Γ. Considering a given number of electrodes deployed
along Γ, if DC is injected using at least two of them (a source and a
sink), the electric flow inΩ can be described using Kirchoff’s law,
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which correlates σ with the electric potential distribution ϕ in the
absence of any current source or sink inside of Ω:

∇ · σ∇ϕ � 0 (1)
Let n be an outward unit vector normal to Γ, and j � σ∇ϕ · n

be the current density in Γ. Given σ, the knowledge of ϕ on the
boundary ϕ|Γ (known as Dirichlet boundary condition) is
sufficient to uniquely determine ϕ. Similarly, knowing j
(known as Neumann boundary condition) allows determining
ϕ up to an additive constant. An operator that relates Dirichlet
and Neumann data can be defined as Λσ : ϕ|Γ → j, which is
known as the Dirichlet to Neuman (DtN) map. This
operator—or its inverse Λ−1

σ , the Neuman to Dirichlet (NtD)
map—represents the response of the system that is electrically
interrogated at its boundary.

In this study, electrical current and voltage were applied and
measured, respectively, at discrete electrodes, using a finite
element (FE) model. In a FE formulation, the region in which
the problem is solved is segmented into a finite number of
elements. A collection of these elements is herein called
“mesh,” and this work employed linear triangular elements. In
the FE solution, a weak formulation of the differential Eq. 1 was
solved at the mesh nodes using the complete electrode model
(CEM) (Holder, 2004). The solution was thus interpolated over
each element using shape functions along the edges of the
elements. For more details about the FE implementation, the
reader can refer to the referenced works (Holder, 2004; Gupta
et al., 2017).

2.2 ERT Inverse Problem
The inverse problem, as formulated by Calderón (2006), consists
of recovering σ from Λσ by injecting currents in a subset of
electrodes and measuring the voltage using all the others.
Arranging these quantities in vectors (iq ∈ RQ and vq ∈ RQ,
respectively), a discrete equivalent DtN map can be
represented in matrix form as:

iq � Yvq (2)
whereY represents the transfer admittance matrix (which has real
elements in the case of direct current). Different measurement
protocols can be applied using predefined interrogation patterns
(i.e., given sets of iq vectors) that allow building a basis for the
space of Y. The set of iq and vq vectors obtained through
interrogation can be employed to reconstruct Y by inverting
Eq. 2. Therefore, the inverse problem in the discrete case becomes
recovering a vector σ ∈ RM containing the conductivity values of
all the M elements of the FE mesh from Y. Alternatively, the
inverse problem can be defined in terms of the transfer
impedance Z � Y−1, which is the discrete counterpart of an
inverse operator Λ−1

σ : j → ϕ|Γ. Also, the inverse problem can
be defined for difference imaging, where the variation of
conductivity between two different time instances or states
(generally, a baseline and an inspection instant) is recovered
from a variation in the NtD map. In all these cases, the inverse
problem is ill-posed and ill-conditioned (Holder, 2004), which
also becomes extremely unstable in the presence of noise.

Several methods have been proposed to solve the inverse
problem using a priori information, which mainly consist of
regularization criteria (Holder, 2004) that constrain the solution
to rule out the variations that cause instability. These methods,
which are briefly described in Section 3, generally require the
calculation and inversion of a sensitivity matrix that represents
the derivative of the voltage measurements with respect to a
conductivity parameter. However, complex inversion operations
may hinder portable applications where the computational
footprint of processing devices is generally limited.

3 REGULARIZATION APPROACHES

Given a current interrogation pattern, consider the matrix of
measured boundary voltages V � ZI, where V � [v1, . . . , vQ] and
I � [i1, . . . , iQ], with the column vectors vq and iq defined in
Section 2.2. For simplicity of notation, let v be a vector containing
all the elements of V arranged in a single column.

Considering difference imaging, the voltage measurement
used as an input to the inverse EIT problem can be defined as
δv � v(c) − v(0), where v(0) and v(c) are the voltage vectors
measured in two different states. A similar difference can be
defined in the forward problem, as:

δvf � f (σ + δσ) − f (σ) (3)
where f (■) is the output of the forward problem evaluated at the
conductivity in its argument, and δσ is the conductivity change
between the two considered states. Truncating the Taylor series
expansion of f (σ + δσ) to the first term and defining the
sensitivity matrix as the Jacobian J � zf (σ)/zσ, an estimate δσ̂
of the difference in the conductivity distribution can be calculated
by minimizing the difference between δv and δvf ≈ Jδσ, as
follows:

δσ̂ � argmin
δσ

(����Jδσ − δv
����2 + α

����R(δσ)����2) (4)

Here, the symbol ‖■‖ denotes the L2 vector norm of its
argument, R(δσ) is a regularization matrix, and the scalar
parameter α controls its relative contribution. Common
regularization approaches are summarized in the referenced
work (Tallman and Smyl, 2020). In this study, the TV
approach is employed, according to which

R(δσ) � ∫
Ω
∇δσ dΩ (5)

and can be practically implemented in an iterative procedure
(Holder, 2004).

To date, the L2 norm has mainly been used on the error
minimization term of Eq. 4 to reduce computational complexity
(Tallman and Smyl, 2020). Thereby, it was considered in this
study to represent potential portable applications in devices with
a small computational footprint. Besides, quadratic regularization
functionals have proven particularly effective in reducing
oscillations in reconstructed conductivity (Holder, 2004).
However, most of these methods typically favor smoothly
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varying distributions. On the other hand, the total variation
functional can also regularize non-smooth profiles, preserving
the edges between conductivity artifacts and background
conductivity (Holder, 2004; Tallman and Smyl, 2020). Thus,
the TV method was used in this work for comparison to
reconstruct small and sharp conductivity variations effectively.

4 MACHINE LEARNING APPROACH

In this section, two alternative ML techniques, namely, an
artificial deep neural network (DNN) and a radial basis
function network (RBFN), were employed to solve the inverse
problem. Since supervised learning algorithms were used, specific
considerations were necessary for the construction of a training
dataset. Herein, the architecture of the ML tools is described, as
well as their training process.

4.1 Preparation of the Training Dataset
DNNs and RBFNs have gained considerable interest in the last
decades and are currently some of the most popular supervised
ML tools used for regression due to their effectiveness in solving
nonlinear problems. A training dataset representing examples of
input-output pairs must be used to train the ML tools in the
preliminary training phase. Then, in the application phase, the
trained network can generate an output based only on input data,
following the structure learned from the training set.

Let v(c) and σ(c) be the voltage measurements collected in the
selected interrogation pattern and the conductivity distribution of
a given (cth) condition of the inspected body, respectively. A
normalized difference of voltage measurement and conductivity
distribution in configuration c can be defined as:

δ�v(c) � v(c) − v(0)

v̂
(6)

δσ(c) � σ(c) − σ(0) (7)
where v(0) and σ(0) represent the boundary voltage at the
electrode locations and the conductivity values of the mesh
elements, respectively, corresponding to the baseline
configuration, while v̂ is the absolute value maximum of the
elements in v(0). A training set can be defined as T � {δ�V, δΣ},
with δ�V � [δ�v(1), . . . , δ�v(C)] and δΣ � [δσ(1), . . . , δσ(C)] being
the input and output matrix of the ML tool, respectively. The set
T contains C instances and can be built by solving only the
forward problem. By assuming a given conductivity distribution
σ(c), the voltage at the boundary v(c) can be calculated using Eq. 1.
The entire training set can be generated by simulating a number
(C) of different configurations of the body (e.g., random
conductivity distributions) and then solving the forward
problem for each of them.

In this work, a training set was assembled by simulating
random polygonal areas with reduced conductivity, as
described in Algorithm 1. This study assumed that applied
loads only involved a conductivity reduction in the hotspot
region. The sprayed sensing film was compact and thin;
therefore, applied loads do not involve a substantial reduction

of inter-particle space (and the resulting conductivity increment).
On the other hand, the in-plane dilation of the substrate due to
the applied out-of-plane loads generated a stretching of the
sensing film, which dilated in the specimen’s plane and
reduced its thickness due to Poisson’s effect, thus increasing
resistivity.

Algorithm 1: Construction of the training set

The simulated data included in the training set can be different
from real-world data, which generally includes noise due to
measurement errors and imperfections in the sensing surface or
the electrodes. Two strategies to improve the quality of the
reconstructed conductivity were adopted in this study. The first
concerns the normalization shown in Eq. 6, which is aimed at
making the experimental and simulated data comparable in terms
of their voltage magnitude. This way, the normalized voltage is still
representative of the relative conductivity variation (i.e., minor
voltage differences should represent modest conductivity
variations). On the other hand, jitter was included in the
training set to aid generalization and noise tolerance (Reed and
Marks, 1998). Here, jitter indicates the addition of noise in the
input of the training set (hence, on v(c)). Indeed, it has been
demonstrated that training with noise is equivalent to a form of
regularization in which an extra term is added to the error function
(Bishop, 1995), following the same idea behind Eq. 4. Therefore,
this method can lead to considerable improvements in network
generalization while also reducing the risk of overfitting the
generally limited training set (An, 1996). Thus, noise was added
to the input voltage measurements. The training set that includes
jitter was obtained as ~T � {T 1, . . . , T S}, where

T s � {δ~Vs, δΣ} (8)
with δ~Vs � [δ�v(s,1) + εs,1, . . . , δ�v(s,C) + εs,C], and εs,c is a different
Gaussian-distributed random vector for each value of s � 1, . . . , S
and c � 1, . . . , C such that

εs,c ~ N(0, γ std(v(0)
v̂
)) (9)

where γ is a user-determined parameter, and std(■) denotes the
standard deviation of the elements in its argument. In Eqs 8, 9, S
is the number of times the original training set T is repeated with
noise in ~T . Therefore, the number of instances of ~T is SC.
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4.2 Deep Neural Network
In this study, the Sheffield measurement protocol (Loyola et al.,
2013) was employed, which is also known as the adjacent
interrogation pattern and generates Q − 3 voltage measurements
for each current interrogation. Specifically, the data acquisition
process consists of injecting direct current to adjacent pairs of
electrodes. For each pair, the resulting boundary voltages across
all the other pairs of adjacent electrodes (except those that include
the electrodes used for current injection) were recorded
simultaneously. This process was repeated until DC was injected
into all unique adjacent pairs of boundary electrodes. Thereby, the
entire voltage dataset contains Q(Q − 3) voltage measurements,
which are employed to build the V matrix (see Section 3).

The first ML tool employed in this work consists of a DNN
with three hidden layers, each containing N neurons, in
addition to the input and output layers (having Q(Q − 3)
and M neurons, respectively). After the input layer, batch
normalization was performed, followed by the fully connected
hidden layers that implement an exponential linear unit
activation function. At the end of the network, one last
fully connected layer operated as the output layer for
regression, without any activation function.

The forward propagation of the network in the central hidden
layers can be written as

xl � elu(Wlxl−1 + bl) (10)
where xl ∈ RN and bl ∈ RN are the output and the bias vectors of
the lth layer, respectively, while elu(■) represents the exponential
linear unit activation function. Wl ∈ RN×N is the matrix of the
weights of the lth layer (i.e., containing the weights associated with
the connections between the neurons of the (l − 1) th and the lth

layer). It should be noted that, since the input and output layers
have different numbers of neurons, the size of xl, bl, andWl vary
accordingly between l � 1 and l � 4. The entire weight set W �
{W1, . . . ,WL} is determined during the training procedure using
the set T s as follows:

W � arg min
W

(�����δΣ − x(W, δ~V)����2) (11)

4.3 Radial Basis Function Network
RBFN is a feedforward neural network with a single hidden layer,
which uses a radial basis function (RBF) as a nonlinear activation
function for each neuron. In this work, an RBFNwith the number
of neurons smaller than the space of the output (N<M) was used
to approximate the output conductivity distribution. In
particular, a Gaussian function ϕn was employed as the RBF
for each nth neuron, which is defined as follows:

ϕn � exp( −
����δ~v − cn

����2
2b2

) (12)

where δ~v is a generic difference voltage measurement, and the
centers cn of the RBFs were selected as the centroids of the clusters
obtained using the k-means clustering algorithm on the set of
training inputs. Moreover, given a vector d containing the

Euclidean distances ‖δ�v(c1) − δ�v(c2)‖ between all the possible
combinations of indices c, the spread parameter b is selected as:

b � d̂ + std(d) (13)
where d̂ is the mean of the elements in d and is the same for all the
RBFs. The results obtained by testing different RBFNs with different
spread factors using a simulated validation dataset show that the
parameter defined as in Eq. 13 generally provides the best
approximation of the reference conductivity distribution in this
study. Given the RBFs, the output x of the RBFNwas calculated using:

x � ∑N
n�1

wnϕn (14)

where wn contains the weights associated with the connections
between the neurons in the output layer and the nth neuron in the
hidden layer. The weight vectors wn were determined upon
defining the parameters of the RBFs (i.e., cn and b) by
carrying out a training procedure of the network using the
training dataset ~T . Specifically, the following least-squares
problem was solved:

W � δΣΦ† (15)
Where W � [w1, . . . ,wN] ∈ RM×N is the complete weight
matrix, and Φ ∈ RN×SC is the matrix of ϕn for each instance
δ~v(s,c), while ■† means the Moore-Penrose pseudoinverse of its
argument.

5 PRESSURE MAPPING

Pressure mapping tests were performed to compare the performance
of ML-based methods versus conventional ERT. A piezoresistive
nanocomposite-enhanced foam was prepared with boundary
electrodes to facilitate ERT boundary current excitations and
voltage measurements. Pressure hotspots were applied to the
specimens in order to induce localized resistivity changes, while
ERT measurements were obtained. In addition to solving the ERT
inverse problem, theML-basedmethods were trained and then tested
for comparison purposes. In this section, the fabrication process of
the sensing specimen is described in detail, and the results obtained
from the experimental tests are reported and discussed.

5.1 Nanocomposite-Enhanced Foam
Fabrication
The pressure-sensitive surface used in this study was fabricated by
depositing a piezoresistive thin film onto a soft substrate,
consisting of the Smartfoam (15DC-3G), produced by Nano
Composite Products (NCP, Orem, UT). The piezoresistive film
is a latex-based ink containing multi-walled carbon nanotubes
(MWCNT) (with an outer diameter of 8 nm and purchased from
NanoIntegris). Specifically, the MWCNT-latex ink was prepared
and fabricated according to the procedure described byWang and
Loh (2016) and briefly reported herein (Figure 1).
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First, 2 wt.% of poly (sodium 4-styrenesulfonate) (PSS)
(Sigma-Aldrich) was dissolved in deionized (DI) water.
Second, 0.339 g of MWCNT and 0.806 g of N-methyl-2-
pyrrolidinone (NMP) (Sigma-Aldrich) were mixed with
33.855 g of 2 wt.% PSS solution. The mixture was then
immersed in an ice bath and subjected to high-energy tip
ultrasonication (5 s on and 5 s off; 6.35 mm tip; 30 min at 30%
amplitude) for 1 h to disperse the MWCNTs. Last, the sprayable
ink was finalized by adding an appropriate amount of latex
solution (Kynar Aquatec) and DI water to the MWCNT
dispersion.

TheMWCNT-latex ink was manually spray-coated onto 214 ×
230 mm2 Smartfoam specimens (3 mm thick) using a Paasche
airbrush. Each specimen was then air-dried at room temperature
for at least 12 h before use. After the thin film was completely dry,
multi-strand wires were deployed along the boundaries of the

specimen using copper tape and silver epoxy (provided by MG
Chemicals) to form the electrodes. A total of 26 electrodes
arranged in a 6 × 7 pattern was prepared as shown in
Figure 2A. Since the foam was flexible and soft, the specimen
was fixed to a rigid 3D-printed PLA support.

Since the deposition process only involved spraying the
sensing material onto the foam substrate, fabrication was
easily scalable. However, it is worth noting that the resolution
of conductivity images reconstructed by EIT is generally related
to the properties (size and impedance) and the number of
electrodes. From a practical point of view, increasing the
number of electrodes leads to a longer vector of voltage
measurements, which generally needs a more extensive set of
trainable variables (i.e., number of RBFs in the RBFN and number
of neurons and/or layers in the DNN) to reconstruct conductivity
distributions at a high resolution. Moreover, large sensing areas

FIGURE 1 | Preparation of the MWCNT-latex ink and fabrication of the pressure-sensitive foam.

FIGURE 2 | (A) Schematic of the sensing specimen and ERT boundary electrodes (B) test setup for applying pressure hotspots (C) 3D-printed shapes to control
contact area; and (D) location of hotspots and coordinates of their centers. All dimensions are shown in millimeters.
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involve longer distances in the interrogation process, increasing
material resistance and, therefore, leading to smaller voltage
measurements in electrodes far from those used for current
injection. This may lead to a higher dependency of the results
on instrumentation noise and amplify the effects of unevenly
distributed conductivity (e.g., due to material defects). However,
in general, these issues can be addressed by increasing the
magnitude of the injected current.

5.2 Applied Pressure Test Setup
Prior to the start of any test, baseline ERT measurements of the
unstrained nanocomposite-enhanced foam were obtained. ERT
measurements were collected using a customized data acquisition
(DAQ) system consisting of a Keithley 6221 AC/DC generator
(for boundary current excitations) coupled with a Keysight
34980A multifunctional switch with an embedded digital
multimeter (for switching and boundary voltage
measurement). MATLAB was used to control the DAQ system
using the adjacent interrogation pattern. It should be mentioned
that DC was injected across a pair of boundary electrodes, while
voltage magnitudes across all other adjacent pairs were recorded.

Two sets of pressure sensing tests were performed, both using the
setup illustrated in Figure 2B. Test #1 was aimed at investigating
whether the proposed sensing solution could accurately determine
the location of pressure hotspots. In order to keep the contact area as
constant as possible throughout the test, the S1 3D-printed polylactic
acid (PLA) disc represented in Figure 2C with a diameter of 10mm
was inserted between a weight and the sensing specimen. A mass of
200 g was placed at 16 different positions on the nanocomposite-
enhanced foam as shown in Figure 2D, and ERTmeasurements were
obtained for each position. Test #2 aimed to characterize the accuracy
of identifying different pressure shapes. In this case, three 3D-printed
PLA shapes (i.e., S2, S3, and S4 shown in Figure 2C) were placed at
different positions on the sensing surface. Specifically, a mass of 500 g
was used for shape S2, 1 kg for shape S3, and 4 kg for shape S4.
Similar to Test #1, ERT measurements were recorded after each
pressure hotspot was introduced.

The foam substrate used in this study was relatively thin
compared to the dimensions of the sensing area and
baseplates. Besides, the latex enhanced the elastic properties of
the sensing film and allowed it to adapt to foam deformation
without developing significant stresses on its outer surface.
Therefore, shear effects due to applied loads and in-plane

stretching of the sensing surface that could arise far from the
applied pressure hotspot are limited as compared to the
deformation of the MWCNT-latex film in the loaded region.
For this reason, the expected conductivity variations obtained
through ERT were almost coincident with the shape of PLA
baseplates. This result remains valid for foam substrates with a
modest thickness or relatively high Poisson’s ratio.

5.3 Training Dataset for ML Methods
As explained in Section 4.1, the dataset used to train the 2 ML
methods was built by numerically solving the forward problem.
The nanocomposite-enhanced foam was modeled according to
Figure 3A, with 9716 elements for the FE model and electrodes
modeled as void areas. CEM conditions were imposed at the
boundary of each electrode (i.e., at the interface between the
sensing film and the silver epoxy) as shown in Figure 3A. The
experimental test setup is shown in Figure 3B, and the specimen
resembles the FE model.

It is pointed out that, while unevenly distributed material may
generate spatial differences in the conductivity distribution for real
specimens, the training dataset was generated considering a uniform
conductivity in “unloaded” regions. However, only variations in
conductivity with respect to the baseline configuration are assessed
by difference imaging. Therefore, if a complex conductivity pattern
constitutes the baseline configuration, and an additional effect (e.g.,
due to load) perturbs locally the baseline conductivity distribution,
only the artifact generated by the perturbing phenomenon is
reconstructed by EIT. However, applying a given load to different
locations may lead to different conductivity variations based on the
effective distribution of the sensing material. The normalization
criterion proposed in Section 4.1 aims at minimizing this effect
and the differences between the simulations and real experiments.

A set of C = 15,000 random polygons within a rectangular
region of interest of 3,690 elements (see Figure 3A) were
generated using the following parameters: P = 4, Rp = 70 mm,
and Kp = 5 with reference to Algorithm 1. The conductivity
within the resulting area was reduced by a random value between
0 and 100% for each case. In order to improve the robustness of
the training process, jitter was included in the training dataset
with γ = 0.01 and S = 5 (see Section 4.1). The DNN used to solve
the ERT inverse problem was designed as follows. After the input
layer, which contains 598 neurons (i.e., the size of voltage
measurements for each inspection), four hidden fully-

FIGURE 3 | (A) FE model of the specimen and (B) experimental setup.
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connected layers, each containing 2048 neurons and followed by
exponential linear unit activation functions, were employed. At
the end of the network, a fully connected layer with 3,690 neurons
without activation functions was used, which has a size equal to
the number of elements that constitute the region of interest in
the FE mesh.

The network was trained using the extended training set
(i.e., including jitter, see Eq. 8) that contains 75,000 different
cases, using the Adam optimization algorithm (Kingma and Ba,
2015). The initial learning rate was set to 0.001, since higher values led
to convergence issues. Indeed, at the beginning of the training
process, a large value was employed to escape spurious local
minima and accelerate training. Then, a decay in the learning rate
of 1/10 was considered when the root mean square reconstruction
error was almost constant (i.e., after 10 epochs) to avoid oscillation
around local minima. The authors also noticed that the
reconstruction error was almost constant after two drops.
Therefore, a total of 30 epochs was selected. The denominator
offset was set to 10−8, and the decay rate of the gradient moving
average was 0.9, while the batch size was 128. These parameters are
recurrent in training applications (Kingma and Ba, 2015) and the
results showed to be slightly affected by different values.

On the other hand, the RBF network consists of a single fully
connected layer containing 100 neurons activated by Gaussian
RBFs. The centers of the kernel functions were selected as the
centers of 100 clusters determined using the k-means algorithm
on the jittered training dataset, while the spread parameter b was
determined as explained in Section 4.3. The RBF network was
trained by solving the least-squares problem of Eq. 15 while
considering the full dataset containing 75,000 cases.

Typically, the training set is adequate for regression problems if
it uniformly spans the space of the input features. Therefore, the
training samples must be designed such that their shape and size
represent a comprehensive set of the expected pressure hotspots (in
size, shape, and location). From the perspective of scalability, if the
sensing area becomes larger but the size of the expected hotspots is
the same, the size of the training dataset should increase to include
samples that span the input space uniformly and densely.

5.4 Results and Discussion
First, Test #1 was performed, and the datasets were used for solving
the ERT inverse problem using difference imaging and the TV
method. Figure 4 plots the conductivity distribution changes
between each applied pressure hotspot with respect to the

FIGURE 4 | Conductivity distributions obtained using the TV method for Test #1.
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baseline. Specifically, an α factor equal to 10−6 and a single iteration
of the procedure shown in Section 3 were employed to generate
these results. The location of the largest conductivity variation was,
in general, correctly identified, as can be seen in Figure 4 (the
reference locations of applied loads are represented as dashed red
circles). However, the shape and size of the pressure hotspot
(i.e., using the S1 baseplate shown in Figure 2C) are not clearly
visible due to the several artifacts present in the reconstructed change
in conductivity distributions. It should also be noted that the
magnitude of the conductivity changes (here expressed in S/m)
were also inconsistent despite the applied pressure being the same. In
fact, conductivity change is generally higher when the load was
applied closer to the electrodes, which is consistent with previous
reports of nonuniform sensitivity between the center and boundary
regions (Baltopoulos et al., 2013). Overall, the average computing
time to solve the ERT inverse problem using the TV method was
0.65 s using MATLAB (R2020b version) running on an Intel®
Core™ i7-8,700 6@3.20GHz-processor CPU with 2 GB NVIDIA
Quadro P620 GPU, 32GBRAM, andWindows 10 operating system.

On the other hand, Figures 5, 6 show the results for Test #1
when the ERT datasets were processed using the DNN and the

RBFN methods, respectively. Specifically, the elements in the
output vector generated by the ML algorithms are represented on
a 2D map corresponding to the respective mesh elements.
Compared to the results of Figure 4, the DNN-based method
provides a much higher resolution of detecting pressure hotspots,
where the actual size and location of the baseplate are generally
accurately identified, while noise artifacts are minimized
(Figure 5). The reconstruction process takes on average
0.005 s using the trained DNN running on the same hardware
system (i.e., less than two orders of magnitude as compared to the
TV method). This considerable improvement in computing
performance is due to the nature of the feedforward process
employed by DNN to solve the ERT inverse problem, which does
not require performing demanding matrix inversion operations.

The results obtained using RBFN in Figure 6 have a visibly
lower resolution as compared to DNN (Figure 5). Although
hotspot location in each image is generally well estimated, noise
artifacts are more regular as compared to the results of the TV
method (Figure 4). The main advantage of the RBFN-based
method is its computational time, which was significantly lower
and was on average 0.003 s for each reconstruction. Moreover, due

FIGURE 5 | Conductivity distributions obtained using the DNN-based method for Test #1.
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to the limited number of neurons employed in the network, the
RBFN has 100 weights for each output value or 369,000 weights in
total. In contrast, DNN uses over 21 million weights and is difficult
to track, especially when these algorithms are implemented and
executed using portable computing nodes such asmicrocontrollers.

The DNN, with a higher number of trainable variables, has shown
superior ability in accurately correlating slight and localized variations
in the input (voltagemeasurements) to complex conductivity patterns.
On the other hand, a limited set of RBFs constitutes a basis for
describing the conductivity distribution in RBFNs, which can only
provide a general yet robust reconstruction of the conductivity
variation. The relatively large spread factor of the RBFs improves
the generalization ability but makes the reconstruction of complex
patterns and sharp peaks in predicted conductivity particularly
challenging. Nevertheless, in general, due to the lower sensitivity to
minor variations of the voltage data, RBFNs are less sensitive to noise.

Overall, both ML methods provided conductivity reduction
magnitudes that are almost proportional to those obtained by the
TV method, which confirmed the efficacy of the adopted
normalization process. However, the estimated magnitude was
not only dependent on the load but also on the location on the

sensing surface. This result could be due to the uneven thickness
(and hence resistance) of the sensing specimen or local
phenomena that affected areas close to the electrodes.

Second, the results for Test #2 are shown in Figure 7, where
Test #2 corresponded to the case when different contact pressure
patterns were applied to the nanocomposite-enhanced foam.
Different weights were placed onto rectangular, triangular, and
figure-eight baseplates and on the sensing specimens. Figure 7
shows that, although DNN generally provides a more accurate
localization and shape reconstruction for small pressure hotspots,
it behaves worse for distributed loads, as is visible from the results
for the figure-eight baseplate. On the other hand, good
reconstruction for large distributed loads obtained through the
RBFN confirms its superior generalization ability. Indeed, the
maximum size of the polygons representing pressure hotspots in
the training set is 70 mm, lower than the maximum size of shape
S4. In this case, the result obtained using the DNN may be less
accurate since the training set did not include enough samples
representative of the real condition, which could only be
generated by randomly combining several closely-spaced
polygons.

FIGURE 6 | Conductivity distributions obtained using the RBFN-based method for Test #1.

Frontiers in Materials | www.frontiersin.org May 2022 | Volume 9 | Article 86279610

Quqa et al. Pressure Mapping Using Nanocomposite Foam

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


6 CONCLUSION

Pressure mapping was demonstrated using a nanocomposite-
enhanced soft foam and the use of 2 ML tools, namely a DNN and
an RBFN algorithm, to solve the ERT inverse problem. The DNN
method provided accurate results for the identification of small
hotspots while also allowing accurate shape reconstruction of the
shape of the baseplate used to apply the load. Larger and more
complex pressure regions are localized but without accurate
shape information. On the other hand, although the RBFN did
not allow accurately localize small pressure hotspots, it was more
robust for identifying larger applied pressure regions. Both ML
techniques performed better than the traditional total variation
method, especially in terms of computational efficiency, with a
runtime two orders of magnitude lower than the traditional
method. The RBFN required a much smaller physical memory
and computational footprint than the DNN, since network
weights are about 58 times fewer and makes them more
suitable for portable applications such as healthcare and
robotic. The easy deployment of the sensing film, together
with the modest runtime and satisfactory accuracy of the ML-
based mapping algorithms, make the proposed solution
promising for portable applications (e.g., running on low-cost
microcontrollers), especially when the exact shape of the pressure
hotspot is not of fundamental interest, such as in most medical
applications.
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