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Abstract 

The cellular environment can affect the structure and function of pharmacological targets, and the 

interaction with potential drugs. Such complexity is often overlooked in the first steps of drug design, 

where compounds are screened and optimized in vitro, leading to high failure rates in the pre-clinical 

and clinical tests. In-cell NMR spectroscopy has the potential to fill this gap, as it allows structural 

studies of proteins and nucleic acids directly in living cells, from bacteria to human-derived, providing 

a unique way to investigate the structure and dynamics of ligand-target interactions in the native 

cellular context. When applied to drug screening, in-cell NMR provides insights on binding kinetics and 

affinity towards a cellular target, offering a powerful tool for improving drug potency at an early stage 

of drug development.  

 

Introduction 

Structural knowledge of biological macromolecules is fundamental for understanding their function 

and for developing more effective drugs. However, structural studies on pharmacological targets are 

typically carried out in vitro, where any possible influence of the physiological environment is lost. 

Indeed, much more reliable information would be obtained if cellular targets could be characterized 

in the complex environment of the cell membrane or the intracellular milieu. Ultimately, this 

unaccounted complexity is among the causes of the high attrition rate in modern drug design 

campaigns, where promising ligands selected in vitro often show poor activity and/or fail to engage 

the right target within the cells. To optimize drug candidates to be effective in the complex native 

environment of the target, ligand-target interaction studies should be performed directly in living 

cells. Among the structural biology techniques, NMR spectroscopy is the most suited to obtain atomic-

level structural insights on the interaction between a ligand and its target, and to probe the dynamics 
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and kinetics of such process, in a non-destructive way [1]. More importantly, NMR can analyze ligands 

and macromolecules in complex and heterogeneous environments. Cell lysates/extracts have been 

used for NMR studies in close-to-native conditions [2,3]. However, lysates cannot retain the 

complexity of intact cells, as the molecular constituents lose their spatial organization, are mixed 

together and diluted, resulting in the loss of emergent properties such as compartmentalization, 

crowding, quinary interactions, and homeostasis of metabolites and ions [4]. To retain these 

properties, the NMR analysis should be carried out in the interior (or at the surface) of intact, living 

cells. Over the last two decades, continuous development of cellular NMR approaches has greatly 

expanded the capability of NMR to probe macromolecular structure [5,6], dynamics [7,8], maturation 

and interactions with cofactors, cellular partners and external molecules [9] directly in intact cells. The 

history of cellular NMR in its many flavors and applications has been extensively covered in other 

recent reviews [10–14]. Here, we focus on the recent developments of in-cell NMR (Figure 1A) applied 

to the characterization of drug-target complexes in intact cells/membranes and to the screening of 

drug candidates towards a specific cellular target (Figure 1B). We show that, thanks to the latest 

methodology and hardware advancements, in-cell NMR spectroscopy can now probe within living cells 

target engagement, conformational changes upon complex formation, and binding kinetics and 

thermodynamics, offering a potentially revolutionizing tool in the development of more effective 

drugs against cellular targets. 

 

Structural and dynamical changes upon binding 

Interactions of pharmacological targets with ligands or partners induce changes in conformation and 

dynamics, which causes changes in the frequency and relaxation of the NMR signals of the affected 

nuclei. Indeed, backbone Chemical Shift Perturbation (CSP) is among the most commonly methods to 

probe protein-ligand and protein-protein interactions in solution [15]. When the backbone resonance 

assignment is available, CSP analysis offers a straightforward way to find out where a ligand binds sites 

on the surface of the protein, and the to assess the extent of ensuing structural rearrangements. In 

vitro, titration experiments allow routine determination of the interaction surface and the binding 

affinity of ligands or fragments [15]. Since the first proof that isotopic labeling allowed selective 

investigation of a protein of interest in intact cells by heteronuclear NMR [16], it was immediately 

realized that protein-ligand interactions could be easily monitored in E. coli through the CSP induced 

by ligand binding [17]. Backbone CSP were later employed to probe protein-ligand interactions in 

various types of cells [18–21**]. To date, CSP analysis remains one of the most information-rich 

experiments when studying macromolecular chemical and conformational changes and interactions 
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by in-cell NMR, and is at the basis of the latest drug screening applications (see below). While easy to 

measure, chemical shifts differences can only be determined when both the free and bound states of 

a protein give rise to visible signals in the NMR spectrum. However, it often happens that soluble 

intracellular targets interact with other cellular macromolecules, causing a drastic decrease in 

tumbling rate and, as a consequence, broadening their NMR signals beyond detection [22–25]. 

Importantly, these interactions may be modulated by ligand binding, if the ligand interferes with the 

interaction surface between macromolecules. Under such circumstances, it is still possible to monitor 

the effect of a ligand on an intracellular target, based on the change of signal intensity upon ligand 

treatment. Shekhtman and coauthors relied on this approach to monitor the ‘indirect’ effect of ligands 

that, upon binding to their intracellular target (antibiotics binding to the ribosome), either liberate the 

observed molecule (thioredoxin) or trigger its interaction with a third component (RNA), with opposite 

effects on the intensity of the observed signals [26,27]. While this approach is ingenious, care must be 

taken when interpreting the results: the assay gives meaningful results only if the signal intensity 

changes are caused by the effect of the ligand on the target molecule or its partners, and not by other 

unrelated mechanisms. Similar to proteins, chemical shift changes upon complex formation are 

determinant to study the interaction between ligands and small DNA/RNA targets in cells. The 

Trantirek group pioneered this application, showing that the 1H spectra of small DNA motifs (a 24-nt 

hairpin and a 11-bp DNA duplex) delivered to the nucleus of human cells (Figure 2A) change 

dramatically when the same molecules are complexed with ligands, making possible to determine 

whether the complexes are stable in the nuclear environment (Figure 2B) [28]. Trantirek, Schwalbe 

and coauthors further extended the approach to observe the structural rearrangement of functional 

short riboswitch aptamers upon binding of their cognate ligand, 2′-deoxyguanosine, in human cells 

[29**]. Compared to DNA, RNA molecules are even more challenging due to fast degradation in the 

cellular environment. With the aid of isotope labeling and 2D heteronuclear NMR, large functional 

RNA riboswitches (up to 70-nt) can be observed in Xenopus laevis oocytes, without resorting to 

chemical modification, whereas lower delivery efficiencies in human cells restrict the approach to 

smaller RNA molecules (~15-nt).  

 

Ligand-target complexes in frozen cells/membranes 

As mentioned above, the slow tumbling of macromolecules due to interactions with the environment 

or to exceedingly large molecular sizes make several targets unamenable to solution NMR analysis. 

The same holds true for proteins embedded in cellular membranes, which completely restrict their 

rotational motion. To overcome this limitation, cellular/native membrane solid-state NMR (SSNMR) 
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approaches have been developed [13]. High-resolution SSNMR relies on fast spinning of the sample 

(at the so-called magic angle with respect to the static magnetic field) to recover narrow spectral 

features resembling those of solution NMR. Furthermore, Dynamic Nuclear Polarization (DNP)-

assisted SSNMR can greatly enhance the signals of interest in cryogenically cooled samples of intact 

cells or membranes. The approach, first introduced by the Baldus group [30,31], was recently applied 

by Weingarth and coauthors to structurally characterize the mode of binding of two antimicrobial 

peptides, nisin and teixobactin, to their native target lipid-II within membranes from Micrococcus 

flavus [32,33**]. In the native membrane environment, both compounds form pore-like complexes 

with lipid-II that markedly differ from those obtained in synthetic micelles, revealing structural details 

that are crucial for understanding the mechanism of action of this promising class of antibiotics and 

for designing novel, more effective antimicrobial compounds. Baldus and coauthors showed that DNP-

assisted SSNMR on cryogenically cooled cells allows the observation of cytoplasmic proteins involved 

in interactions that would prevent solution NMR studies [34]. Petzold and coauthors employed the 

same approach to observe the signals of an antisense oligonucleotide drug in frozen human cells, likely 

involved in macromolecular complexes with its target mRNA and/or with other cellular components 

[35]. While the DNP-SSNMR application to intact cells is still in its infancy, the above works represent 

the first steps towards its broader application to characterize intracellular ligand-target complexes. 

 

Drug screening by in-cell NMR 

As seen above, in-cell NMR can directly probe the interaction between ligands and their intracellular 

targets. This capability makes it an extremely appealing tool in the field of drug development, which 

suffers from high attrition rates. Indeed, most of the compounds optimized for maximum in vitro 

activity fail to show activity in cellular or animal models, or worse, do not pass the clinical trials due to 

poor efficacy or selectivity towards the target. To improve the success rate of the last steps, 

compounds highly active in vitro that cannot engage their intracellular target should be identified as 

early as possible. Cellular assays often rely on downstream effects, such as cell proliferation or 

invasiveness and, because do not provide insights on the mode of action, they are prone to false 

positives. In extreme cases, compounds could be selected that exert the desired effect through a 

completely unrelated mechanism, causing it to fail in the following phases due to poor activity or 

toxicity in vivo. Biochemical methods have been proposed to probe target engagement in cells, such 

as the cellular thermal shift assay and its variants [36]. While powerful and high-throughput, these 

assays are extremely ligand- and target-dependent, as they rely on different temperature-dependent 

unfolding of the free and bound target, and must be interpreted with caution [37].  
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Following the first proof-of-concept works on protein-ligand interactions [17,18], in-cell NMR has been 

successfully applied to drug screening. Shekhtman and coauthors devised an approach, SMILI NMR, 

to screen libraries of compounds for protein binding in bacteria by relying on either CSP or changes in 

the intensity of the target protein signals (Figure 3A, 3B) [19]. To increase the throughput, the authors 

proposed a matrix approach, where a compound library arranged in a N × M matrix is screened on N 

+ M cell samples, each treated with a mixture of N or M compounds. This strategy led to the 

identification of three compounds that efficiently inhibited a protein-protein interaction (a notoriously 

challenging target in drug development), namely that of the prokaryotic ubiquitin like protein (Pup) 

with the mycobacterial proteasome ATPase (Mpa), showing potential implications in the development 

of novel antimicrobial drugs (Figure 3C, 3D) [38]. These works suggested that in-cell NMR could 

combine the best of two worlds: the direct proof of binding typical of in vitro screenings, and the high 

biological relevance of the cellular environment (Figure 3E). With the same rationale, our research 

group applied in-cell NMR to the screening of drugs in human cells overexpressing the target protein 

of interest  [21**]. By protein-observed in-cell NMR, we analyzed the dose- and time-dependent 

binding of a set of compounds to the first two isoforms of the human carbonic anhydrase (CA I and II), 

part of a family of pharmacological targets for glaucoma, epilepsy, cardiovascular diseases, and cancer 

(Figure 4A). That work showed that, for nanomolar-affinity compounds, cell membrane permeability 

becomes the bottleneck that determines whether they will bind the intracellular target (Figure 4B), 

with striking correlation with the efficacy in vivo. Time-resolved in-cell NMR analysis over several 

hours (Figure 4C) confirmed that drugs with similar affinities bind intracellular CA II with very different 

rates, as a function of cell permeability [39*]. We further investigated the binding kinetics and stability 

of existing drugs to CA II in human cells, and classified them based on their binding kinetics as either 

1) fast, stable binders; 2) slow, stable binders and 3) unstable binders, which slowly left CA II over time 

[40]. Intriguingly, the latter class comprised drugs developed for other targets, suggesting that the 

binding instability is caused by the presence of multiple high-affinity targets. The same approach 

allows measuring intracellular binding affinities in the nanomolar range, by means of in-cell 

competition binding experiments where cells are incubated with a test compound at variable 

concentration and a reference with known affinity at constant concentration (Figure 4D, 4E) [41]. At 

the diffusion-limited equilibrium, the affinity of the test compound is determined by the fraction of 

protein bound to each ligand (Figure 4F). The Trantirek group applied a similar approach to screen 

ligands towards an intracellular DNA G-quadruplex using 19F in-cell NMR [42*]. 19F is a highly sensitive 

nucleus that, once chemically introduced on the molecule of interest, provides an excellent 

background-free probe to investigate macromolecules in living cells [43,44] and to distinguish free and 

ligand-bound forms. 
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Ligand-observed cellular NMR 

Specular to protein-observed approaches, ligand-observed NMR is widely used in vitro for high-

throughput screening, thanks to faster analysis through 1H NMR and lower sample preparation costs. 

When applied to cells, ligand observation faces additional challenges, due to 1) the difficulty of 

observing the signals of a small organic molecule bound to its target in the cellular environment, 

without resorting to isotope labeling (which requires ex-novo organic synthesis) and 2) the lack of 

information on where the compound is binding in the cellular context. Despite these limitations, 

several applications of ligand-observed NMR in intact cells have been reported. Due to the first issue, 

ligand-observed NMR is better suited to probe binding to proteins on the plasma membrane of intact 

cells (on-cell NMR) by relying on saturation transfer difference experiments, which detect intensity 

changes on the free external ligand upon interaction [45–47], and transferred nuclear Overhauser 

effect, which provides additional information on the ligand binding mode [48,49]. Both approaches 

require carefully designed control experiments to demonstrate binding to a specific target. Lastly, 

Primikyri et al. extended the approach to screen an intracellular target, Bcl-2, in human cells, thus 

widening the range of applications of ligand-observed in-cell NMR [50]. 

 

Outlook: present and future 

The cellular NMR approaches described above provide precious structural and thermodynamic 

insights on ligand-target interactions in living cells, and allow screening of lead compounds for binding 

in cellular settings, holding great promises for the development of future drugs. Solid-state NMR has 

a great potential for structural characterization, as it is not limited by the tumbling rate of protein-

ligand adducts, while solution NMR approaches can probe the kinetics and dynamics of ligand binding 

at physiological temperatures. The most recent applications of in-cell NMR to drug screening show 

that protein-observed in-cell drug screening, despite being low-throughput, offers unique advantages 

in terms of selectivity, thanks to the exquisite chemical sensitivity of NMR. Indeed, because each 

protein-ligand adduct exhibits different chemical shifts, nanomolar affinity constants can be measured 

by competition binding with accuracy and specificity unmatched, to our knowledge, by any other live-

cell assay. On the other hand, ligand-observed approaches are preferable in terms of throughput and 

cost-per-sample and are less constrained in terms of types of cells and target expression levels, 

therefore they will likely see a broader application to drug screening in cells. The recent advancements 

in terms of hardware will further extend the capabilities of NMR: ultra-high field spectrometers 
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provide higher sensitivity and resolution [51], and improved NMR bioreactor designs now allow time-

resolved NMR on living cells lasting several days [39*,52,53]. Finally, we envision that the next 

generation of cellular NMR approaches will rely upon novel spectroscopic tools, such as the 

multidimensional homo- and heteronuclear 19F NMR experiments recently reported [54,55], which 

will allow higher-throughput and -content ligand screening and the structural investigation of more 

challenging cellular targets. 
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Figures 

 

Figure 1 

 

Overview of in-cell NMR approaches for characterizing ligand-target complexes and drug screening. 

(A) NMR methods, from left to right: intact living cells are analyzed by high-field NMR; CSP induced by 

ligand binding allows mapping the interaction surface and structural rearrangements; Recovery of 

signal intensity can indicate the dissociation of a protein from a slow-tumbling complex; Time-resolved 

NMR over several hours reveals binding kinetics; Saturation transfer-based experiments can probe the 

interaction of ligands with intact cells. (B) Applications, from left to right: treating cells with ligands 

allows studying the interaction with an intracellular protein (magenta) or nucleic acid (blue); inhibitors 

of protein-protein interactions (PPI) can be screened by relying on the increase of signal from a labeled 

protein released from the complex with a partner; the structure of membrane-bound drugs is 

investigated in cryogenically-cooled native membranes by DNP-assisted SS-NMR; protein-observed 

drug screening gives insights on the kinetics of membrane diffusion and intracellular binding affinity; 

ligand-observed screening identifies ligands interacting with membrane-bound or intracellular 

targets. 
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Figure 2 

 

DNA-ligand complexes observed in human cells by NMR. (A) Strategy for in-cell NMR sample 

preparation: the complex between a short DNA motif and a ligand is preformed and analyzed in vitro, 

and subsequently introduced in human cells for in-cell NMR analysis; (B) Internalization efficiency of 

a 24-mer DNA hairpin (MH-DNA) and cell viability are assessed by flow cytometry (top left), nuclear 

localization is confirmed by confocal microscopy (bottom left), while the stability of the intracellular 

complex is evaluated by chemical shift analysis (right). Reproduced with permission from Krafcikova 

et al. [25] Copyright 2019 American Chemical Society. 
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Figure 3 

 

Protein-observed drug screening against protein-protein interactions in bacteria. (A) Drug binding 

induces CSP in the 2D in-cell NMR spectra of a target protein; (B) Protein surface residues involved in 

the interaction with the drug (red), which interferes with the complex formation with a cellular partner 

(blue); (C) Drug binding causes release of the unfolded protein Pup from its complex with Mpa, leading 

to signal increase; (D) Model of the interaction between Pup (blue) and Mpa (gray), where residues 

perturbed by the drug are shown (red); (E) Rationale for drug screening by in-cell NMR, combining 

advantages from in vitro binding studies and cellular assays (left); the screening throughput is 

increased by matrix approaches (right). Reproduced with permission from Xie et al. [16] Copyright 

2009 American Chemical Society (panels A, B, E right) and from DeMott et al. [35] Copyright 2018 

American Chemical Society (panels C, D, E left). 
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Figure 4 

 

Drug screening, binding kinetics and thermodynamics in human cells. (A) 3D view of a drug 

(acetazolamide, AAZ) bound to the active site of human CA II (PDB: 3HS4); (B) In-cell NMR spectra 

showing CA II in the absence of ligands (black) and bound to AAZ (red), methazolamide (MZA, 

magenta), and other ligands (blue); (C) Intracellular drug binding monitored by time-resolved NMR 

reveals different membrane diffusion kinetics for AAZ (red) and MZA (magenta); (D) 2D NMR spectra 

of CA II bound to a reference ligand (MZA, black) and to a test ligand (SLC, red); (E) Time-resolved 

concentration profiles of the two adducts at increasing concentration of test ligand and constant 

reference ligand; (F ) Bound fractions obtained at the equilibrium for each step are fitted to obtain the 

affinity constant of the test ligand. Reproduced with permission from Luchinat et al. [18] Copyright 

2020 Luchinat et al. (panels A, B), from Luchinat et al. [36] Copyright 2020 American Chemical Society 

(panel C), and from Luchinat et al. [38] under the terms of the CC-BY 4.0 license (panels D-F). 


