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Abstract: This paper deals with a parametric family of ordinary differential equations originated by an ancient 
geometric problem posed in 1719 by the Swiss mathematician Jakob Hermann (1678-1733) and partially solved by 
Jacopo Vincenzo Riccati (1676-1754). We translate Riccati approach, called by himself dimidiata separazione (splitted, 
or halved, separation), in modern terms and we give the full solution of the Hermann problem completing the partial 
solution provided by Riccati.

Keywords: Hermann problem, two steps separation, change of variables, Lambert function

MSC: 34A05, 01A50, 33B99

1. Introduction
The separation of variables for a scalar nonlinear first order ordinary differential equations is, in general, a problem 

that often results analytically intractable. In some well known and particular situations, separation is obtainable, 
according to some specific structure of the equation itself, searching for an integrating factor. When the integrating 
factor depends on both (independent and dependent) variables, say (x, y), some old-school textbooks like for instance [1] 
pages 50-51, [2] pages 53-55 or [3] chapter 6, use an “inspection method”, otherwise “method of grouping” to detect it; 
this is possible when the given equation presents some recognizable pattern. As a matter of fact, this grouping technique 
was indeed introduced for the first time ever by the Italian mathematician Jacopo Vincenzo Riccati, in the treatise 
Della separazione delle indeterminate nelle equazioni differenziali del primo grado e della riduzione delle equazioni 
differenziali  del secondo e di altri gradi ulteriori [The separation of indeterminates in differential equations of the 
first degree and the reduction of differential equations of the second and further degrees] which was originated by his 
lectures on the differential equations. Although not directly involved in teaching activities, Riccati willingly instructed, 
in addition to his children, some interested talented students, including Maria Gaetana Agnesi (1718-1799). Riccati, 
around 1710, communicated to Hermann, who was teaching at the University of Padua at the time, his first attempts to 
find a general method for the separation of variables. This method was completed in 1714 and was first presented in an 
essay sent to the scientist who was the main reference for “continental” European mathematicians at that time: Gottfried 
Wilhelm von Leibniz (1646-1716). The definitive exposition of the separation method was printed in 1757 by his son 
Giordano in the first of four tomes Opera Omnia [4], dedicated to his lectures on differential equations. Riccati called 
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his method “dimidiata separazione” that can be translated as “two steps separation” or “halved separation”. A quick but 
very interesting scientific biography of Jacopo Riccati, is available (in Italian) from the University of Pisa, Ennio De 
Giorgi Research Centre [http://mathematica. sns.it/autori/1349/].

In a recent article [5], we gave an account of the two steps separation, applying it to a class of differential 
equations:
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In that paper, we extended Riccati’s results, thanks also to the reinterpretation of the methods used at the time 
in terms of double change of variables and Lie symmetries, to a more general family of equations. Our letter goes 
in the same direction considering a parametric family of differential equations, studied by Riccati in order to solve 
the geometrical problem, posed by Hermann in [6]. In this way, we revisit the method introduced by Riccati in the 
eighteenth century, in the light of current knowledge about variable transformations in differential equations and 
the computational power of computer algebra. Clearly, our approach remains symbolic in nature, as a matter of fact, 
founded on tailor-made procedures that depend on the structure of the problem: in its real essence, it is a problem of 
finding an integrating factor for a first-order nonlinear ordinary differential equation.

2. Materials and methods
2.1 Revisiting the Riccati contribution

At page 490 of [4], Riccati presents a problem proposed in 1719 by Jakob Hermann [The article is available at 
[https://www.beic.it/it/articoli/biblioteca-digitale] the BEIC web site using the research key Acta Eruditorum, Calendis 
Augusti 1719 page 361], see [6] and Figure 1. Translating in modern terms Hermann required those curves such that 
their area from (x0, y0) to (x, y) could be measured by an algebraic function of both Cartesian coordinates, say: axy + 
bxcy 

f where a, b, c and  f  are fixed real numbers.

Figure 1. The original statement of the problem by Hermann

Later Riccati, facing the problem in [4], see Figure 2 assumes the values of the two exponents of the monomial 
xcy 

f are equal to c. Anyhow, first we treat the problem following Riccati and then we will face the general case, c  ≠  f  as 
stated by Hermann. The generality is not affected choosing x0 = 0, so we can formulate the Hermann problem as:

Single out a real valued function of one real variable, say y = y(x), of class C 
(1) such that:
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where we assume a, b, c,  f  given real numbers.
As we said, Riccati faced the problem (1) assuming c =  f, this as we will see simplifies the relevant treatment. 

We start exposing Riccati method [Once again from the already addressed BEIC website with the key “Opere del 
conte Jacopo Riccati, nobile trevigiano, tomo I” one can view the original work on page 490], providing some modern 
improvements and, in the next section, we solve the original Hermann problem (1).

Figure 2. Riccati statement of the problem

Differentiating both sides of (1) we get:

(2)1 1 .c c c cy axy ay bcx y bcx y y− −′ ′= + + +

In normal form (2) reads as:
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Riccati, instead, used Pfaffian form in this way, grouping the terms of the equation as:
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The structure of (4) suggested by Riccati, here we translate his approach in modern terms, to use the change of 
variables
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which indeed separates equation (3), arriving at:
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If c  /= 1 using the integration constant k solution to (5) is easily obtainable by separation of variables: 
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Going back to the original variables in (5) we get solution of (3) assuming c  /= 1
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Observe that, using the Lambert W function, which is indeed the multivalued inverse of ℓ : R → [−e−1, +∞), ℓ(u) 
= ueu (for more informations one can see [7] or [8]), we can solve for y from (6), starting from an equation, in the 
unknown y of the form

1exp( ) ( ),β β βH y Ay y W βAH
βA

= ⇔ =

thus, specifying the constants, using k to denote an integration constant, we arrive at:
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Here it is important to remark that, since the Lambert function is indeed multivalued, when specific values of 
parameters and the initial value are fixed, it is necessary to individuate which of the branches of the Lambert W function 
is involved in the process.

It is interesting to note that the solution obtained is validated by symbolic calculation, specifically Mathematica®, 
as one can check by downloading the file [https://www.dropbox.com/s/uyqo0xh2gw1kaxb/verificationfile.nb?dl=0]. It 
also seems to us extremely interesting to verify that the function determined here satisfies Hermann’s condition (1), in 
fact, integrating the right hand side of (7), using the change of variable

1
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we arrive at
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The integral at right hand side is elementary, thus after its computation, going back to the original variable we 
arrive at
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At this point (1) follows immediately. This equality is also confirmed symbolically with Mathematica, as can be 
verified using the file indicated in the previous link.

Eventually for c = 1 integration of (3) is trivial leading to:
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3. Results and discussion
3.1 General treatment of Hermann problem

Hermann problem (1) in the general case leads to the ordinary differential equation

(8)
1

1
(1 ) .

c f

c f
a y bcx yy

ax bfx y

−

−
− −′ =

+

To solve (8) we slightly modify the Riccati’s change of variable
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obtaining the transformed separable differential equation
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So that separating the variables in (10) we arrive at
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being k an integration constant. Going back to the original variables using (9), we can express implicitly the solution to 
(8):
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Observe that having, assumed c  /=  f  it is generally not possible in this situation to explicitly derive the dependent 
variable y from (11).

We present an example, fixed the values of the parameters, a = 2, b = 3, c = 4,  f  = 2 and the initial conditions x0 = 
1, y0 = 1 in which we superimpose the implicit solution expressed by the formula (11) with the numerical solution of (8) 
obtained with Mathematica®, see Figure 3: the implicit solution obtained using Riccati’s method drawn in red, while 
the numerical solution is represented in black,  with a slightly thickened line.
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Figure 3. Superposition between the implicit and numerical solution to (8)

This numerical simulation is available in the verification file accompanying the article. To conclude notice that in 
(11) some occurrences of the parameters are not admitted, namely:

(i) ac − af + f − 1 = 0

(ii) ac − af + f = 0

while the case c − f = 0 was discussed formerly. The particular situations (i) and (ii) result into elementary solutions, 
which we provide in detail below for the sake of completeness.

If (i) holds true, then (8) becomes:
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With the change of variable y = xαu and then selecting α properly we obtain the solution of (12) using elementary 
methods:
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Assume first  f  − 1  /= 0. In (13) we can choose α so that c + α( f  − 1) − 1 = 0, then (13) becomes
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Writing (14) in normal form, we arrive at the (separable) equation
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whose integral is
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From (15) going back to the original variables, using (i), with  f   /= 1, solution of (8) is found, in implicit form, using 
k to represent the relevant integration constant, as:

(16)1 1 ( )( ln ln ) .c fx y b f c c x f y k− − = − + +

It is indeed possible, using again the Lambert W, to obtain y from (16), taking full advantage of the symbolic 
calculus provided by Mathematica®:
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When  f  = 1 equation (12) is separable, it reduces at:
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Eventually when (ii) holds, solution is by far easier. In fact, if we assume a =  f /( f  − c) equation (8) is elementary:
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c
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4. Conclusions
Starting from a differential equation, arising from the solution of a geometric problem proposed in 1719 by 

Hermann and partially solved by Jacopo Vincenzo Riccati, we have produced the complete integration of a four 
parameters family of first order nonlinear differential equations, highlighting the particular cases where the solutions 
are already known, adding to these the solutions founded by generalizing the Riccati “splitted separation” method: 
solution (11) of the equation (8), for the best of our knowledge, does not appear in the main repertoires, like [9], [10] or 
[11]. Often, going back to the original contributions of the great mathematicians of the past, allows, and this is indeed 
the case, a posthumous revisiting, which in the light of the knowledge subsequently acquired, improves the results then 
obtained.
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