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Abstract

Complex networks are an important methodology to model several (if not
all) aspects of the real world, in which multiple entities interact, in some
way. While many aspects related to such interactions can be investigated by
looking at the general mathematical metrics of the networks, an alternative
approach lies in the simulation of some application protocol on top of (large
scale) complex networks. In this paper, we present a study on this intricate
problem. The complexity of the simulation is due to the need to model all
the interactions among network nodes. We focus on discrete-event simula-
tion, a simulation methodology that enables both sequential (i.e. monolithic)
and Parallel And Distributed Simulation (i.e. PADS) approaches. We discuss
the performance and scalability requirements that the simulator should have.
We also introduce a case study based on the agent-based simulation of gossip
dissemination on top of a complex network. To demonstrate the viability of
this simulation technique, we focus on a tool we built to simulate complex
networks. The tool exploits adaptive partitioning mechanisms, which are es-
sential to reduce the communication overhead in the PADS. An experimental
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evaluation has been conducted using different network topologies and simu-
lator setups. Results demonstrate the feasibility of the approach to simulate
complex networks.

Keywords: Simulation, Complex Networks, Parallel and Distributed
Simulation

1. Introduction

Every aspect of life can be described as a set of interactions between an
entity (being a human, any form of life, or even a synthetic system) and
the external world, and other entities in particular. All these interactions
among entities can be seen as creating a network of interactions. Most of
these networks, built from the observation of interactions in the real world,
exhibit complex connectivity patterns. To explore these patterns and study
if and how they have an influence on the global system, such systems are
described as graphs and analyzed using the mathematical theory of complex
networks [40]. Each entity of the system is represented as a node while
interactions among entities are mapped into links connecting the nodes of the
graph. This process works no matter what the network is, e.g. a technological
network (distributed system, the Internet of Things), a social network, a
spreading disease, a biological network (metabolic and protein interaction
networks), healthcare system [31]. The more complex the system, the more
complex the resulting network [18].

The typical study of complex networks follows two possible approaches.
The first one is to make a theoretical modeling of the system. In this case, a
synthetic model is developed to analyze the system properties, by looking at
some main metrics to be derived from the mathematical model itself. The
second approach refers to a data science-based analysis. In this case, data
traces are collected and manipulated to represent a real network as a graph.
The study of the graph typically reveals some peculiarity of the network and
general characteristics of its nodes. This is the common approach employed
when dealing with social networks, for instance [37].

The problem arises when one would like to analyze the possible behavior
of a system, knowing the behavior of its components and possible external
factors that may alter the typical interactions within the system. Thus,
for instance, it is of interest to understand whether changes in the system
would alter its general properties. As an example, what would happen in a



social network, in presence of a novel filtering mechanism that hinders the
dissemination of fake news? How an update on the road network would
impact the traffic of a city? What happens if we deploy a set of sensors in
a smart city and use the related information to control the flow of vehicles?
What about trying to immunize a population during a pandemic, by planning
ad-hoc vaccinations to most exposed humans?

As a matter of fact, one of the main problems is the lack of powerful tools
for the simulation of complex networks. Under the simulation viewpoint, the
modelling of large networks implementing complex interaction protocols is a
challenging task. It is often difficult to build a simulator that is indeed able
to mimic interaction protocols that are not naive and at the same time that
can scale to a wide number of simulated entities. Thus, commonly used sim-
ulation tools are, on one hand, multi agent-based simulation systems which
allow creating a high number of entities whose behavior is rather simple. Or,
on the other hand, we do have small size simulators that only permit the
creation of relatively small networks, i.e. a low number of simulated enti-
ties, in which nodes interact with moderate or low frequency. In essence,
traditional simulation approaches permit building small-size toy models, or
medium-scale models with simplified dynamics. In this paper, we discuss the
main simulation techniques that cope with this issue.

The contribution of this paper is twofold. First, we show that through the
use of simulation techniques it is possible to model complex dynamics over
complex networks. This represents an alternative way of studying complex
systems, with respect to analytical modeling or the study of static networks.
The proposed framework works using Discrete Event Simulation (DES).

We also show how the use of Parallel And Distributed Simulation (PADS)
strategies can truly improve the scalability of DES models. PADS allows
modeling complex simulation environments, where a huge amount of dis-
crete events is generated. In particular, the use of migration strategies allows
moving simulation entities from one CPU core to another in the PADS sys-
tem. This can strongly improve the performance of a parallel simulator. In
fact, such schemes enable clustering highly interacting entities in the same
CPU core, therefore reducing the communication overhead and increasing
the scalability of the system.

Such an underlying framework is agnostic with respect to the simulation
methodology employed to model the specific application or system under
investigation. However, in this paper, we focus on multi-agent simulation
systems. Agent-based simulation is largely employed in a variety of domains,
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e.g. finance and economics, network modeling, epidemiology. In the case of
complex networks, the simulation model can be specified by implementing
the behavior of one or more categories of agents that represent the simulated
entities. It is the interactions among agents that advance the simulation.

Second, we present LUNES (Large Unstructured NEtwork Simulator),
a specific tool that implements the framework described above. LUNES is
an easy-to-use tool for the generation and use of large graphs of whatever
topology. It allows the expression of network dynamics through an agent-
based simulation abstraction [44]. Moreover, it exploits parallelization and
distribution features that allow building of scalable simulations. Through
the description of LUNES, we show how agent-based simulation permits to
easily model the interactions among network nodes and provides the granu-
larity we need to properly perform load balancing of both computation and
communication in parallel/distributed execution architectures. In fact, in
our view, the agent is the smallest building block of the simulation model,
i.e., the minimum set of variables that represent an entity. In this case, the
concept of agent can be assimilated to the concepts of “object” or “entity”
and even “node” in the case of network simulation.

To prove the viability of our first claim and assess the performance of the
LUNES software, we conducted an experimental study specifically focused on
scalability. In this assessment, we study different types of networks, such as
random graphs and scale-free networks, with different simulator setups, e.g. a
different number of CPU cores to be used by the simulator [40]. We measure
how the simulator behaves, based on the number of simulated nodes and CPU
cores in a parallel simulation. We also show that the use of adaptive partition-
ing improves the performance of the simulation, hence enabling large-scale
simulations of complex networks. In particular, the application model we
have used leads to a simulation that is strong communication bound, with a
huge number of transmitted messages and a very low amount of computation
on each node/entity. Thus, the most crucial aspect related to scalability are
the communication protocol and the amount of messages, rather than the
number of simulated nodes.

Obtained results demonstrate how the joint and combined use of agent-
based simulation, Discrete Event Simulation (DES), Parallel And Distributed
Simulation (PADS) strategies, equipped with adaptive migration approaches
to balance the workload, allow to simulate application scenarios running on
top of dynamic complex networks.

The remainder of this paper is organized as follows. Section [2| describes
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the background about complex networks and simulation. Section [3| describes
the LUNES simulator and Section [4] introduces the case study that has been
used to obtain the results presented in Section [§} Finally, Section [6] provides
some concluding remarks.

2. Background

In this section, we describe the main concepts at the basis of simulation
and then we introduce discrete event simulation and parallel/distributed sim-
ulation techniques. We also briefly discuss agent based simulation. Then, we
analyze the specific issues related to the simulation of complex networks.

2.1. Simulation

Computer simulation consists in the design of a software architecture that
models the behavior of some system over time [22]. The simulated system
can be a real system to be studied; alternatively, it might be something that
has to be built, and its simulation helps in understanding which benefits and
pitfalls the system being designed could have. Simulation can be used for
several reasons, e.g. cost analysis, the need to test in a synthetic environment
since doing such tests in a real environment would be too dangerous, or when
many different solutions must be evaluated. From a technical viewpoint,
the simulation of a system can be accomplished using a single process or
using multiple networked components (e.g. CPU cores or hosts) that interact
together to compute the whole simulated system.

In the last decades, some formalisms for modeling and analyzing general
systems that can be discrete event systems have been proposed. Among
them, the Discrete Event System Specification (DEVS) is quite popular in
the field [50]. In this work, we are not interested in applying a particular
formalism of description and in the following, we will describe the simulation
background needed for the proposed methodology.

2.1.1. Discrete Event Simulation

Discrete Event Simulation (DES) [20] is an old but still very popular
simulation paradigm due to its ease of use and good expressiveness level.
A DES is represented by a simulated model, represented through a set of
state variables, and its evolution, represented by a sequence of events that
are processed in chronological order. Each event is timestamped, i.e. occurs



at a given instant in time, and represents a specific change in the state vari-
ables, i.e. that is a change of the simulated model state.  Following this
approach, the evolution of the whole simulated system is obtained through
the processing of an ordered sequence of timestamped events. As an ex-
ample, take intelligent transportation systems. In this case, the events are
used to model the updates of the vehicles” positions, as well as data packet
transmissions among vehicles. Thus, a DES can be implemented using a set
of state variables (i.e. describing the modeled system), an event list (i.e. the
pending events that will be processed for evolving the simulated state), and
a global clock (i.e. the simulation time). It is important that each event is
tagged by a timestamp that specifies the simulated time at which it has to
be processed. Otherwise, the simulation would not model correctly the evo-
lution of the simulated system. Furthermore, in order to embody some kind
of randomness and variability to the model, the simulation must implement
some pseudo-random choices. This way, through repeated simulation runs
it is possible to study how the system behaves in different scenarios. This
provides a comprehensive and clearer understanding of the simulated system
and allows performing some statistical analysis on the obtained metrics.

2.1.2. Sequential DES

In a sequential, i.e. monolithic, simulation, a single Physical Execution
Unit (PEU), which is a CPU core in case of a parallel simulation, is in
charge of the generation of new events, managing and updating the pend-
ing event list that contains the future events and processing the events that
are extracted in timestamp order from the list.  Thus, the simulation is
implemented as a single process that is executed on a specific CPU. The
simplicity of the related software architecture has some drawbacks neverthe-
less. For instance, when the simulation consists of many different entities
that are competing and interacting in a simulated world, having a sequen-
tial, single process program can make the task of simulating multiple and
concurrent activities harder. Moreover, the main concern of this monolithic
approach is about the simulator scalability, both in terms of execution time
to complete the simulation runs and the complexity of the system that can

be modelled [19].

2.1.8. Parallel DES and PADS

As an alternative to a sequential simulation, DES can be parallelized using
a set of networked PEUs, e.g. CPU cores, processors or hosts. This approach



is usually referred to as Parallel Discrete Event Simulation (PDES) [11], 211
22]. In this case, each PEU models only a part of the simulation model. This
enables the modelling and the processing of larger and more complex simula-
tion models with respect to DES. In fact, in massively populated simulation
environments certain problems may become too big to be solved in a serial
computing environment [7]. The memory and computational requirements
cannot be supplied by a single CPU.

In PDES, each PEU manages a local pending events list. To let simulated
entities interact with other simulated entities executed over other PEUs, some
events are exchanged and delivered to these PEUs. As a consequence of this
parallelization of the execution, a synchronization algorithm among PEUs is
needed to guarantee the correct simulation execution [22].

Evidence demonstrates that, in many cases, a PDES approach can speedup
the simulation execution [I§]. In the rest of this paper, we will show that
this is true also when simulating complex networks.

A possible extension to PDES is to employ more than a single multi-
core CPU, thus offering the possibility to run the simulation over multiple
CPUs, or even over multiple distributed computing nodes. This approach is
commonly referred to as Parallel and Distributed Simulation (PADS) [22].
This approach can improve execution speed, model scalability, interoperabil-
ity, and composability of different simulators. With respect to a sequential
simulation, a PADS lacks a global model state, since each PEU manages a
part of the simulated model only. According to the PADS terminology, the
model components, executed on top of each PEU and interacting to advance
the simulation, are called Logical Processes (LPs) [33].

More specifically, the implementation of a PADS requires that all simula-
tion events are delivered following a message-based approach. The messages
have the role to deliver the events exchanged between different LPs. Two
events are defined to be in causal order if one of them may depend on the
other [33]. As said above, the respect of causal order in a PDES is obtained
by synchronizing all the LPs participating in a simulation. This is neces-
sary since, for many different reasons, each LP can proceed at a different
speed, and therefore each partition of the simulation model, represented in
the specific LP, may evolve at a different speed [23].  Different solutions
to the synchronization problem have been proposed. They can be broadly
summarized as: time-stepped, optimistic [29], and conservative [11] synchro-
nization.

Usually, the simulation is called “parallel” when the LPs are run on PEUs
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with a shared memory that is available. Conversely, the simulation is “dis-
tributed” when the interconnection among the PEUs is given by a computer
network, i.e. LAN, WAN, or Internet.  Clearly enough, the performance
of the underlying network has a significant effect on the simulator speed.
Indeed, the parallelization/distribution of the simulator does not come for
free. It is important to distribute the model as evenly as possible, doing
whatever is possible to minimize message passing requirements between LPs
and synchronizing all the LPs to ensure a correct and consistent simulation.

It is worth mentioning that distributed simulation is not only about per-
formance, in fact in some cases interoperability is the most relevant subject.
For example, in [48], the authors present a new transformation algorithm
from workflow XML specification to G-DEVS models. In which, a work-
flow may involve a process model, different programs, and actors which are
essential to its execution and the Generalised-DEVS (G-DEVS) is used to
define abstractions of signals with piecewise polynomial trajectories. All
that is obtained by means of the HLA specification that also allows the con-
necting of new HLA-compliant components in the Workflow environment.
A seminal work for the interoperability in HLA is [49], in which is intro-
duced DEVS/HLA, which is an HLA-compliant modeling and simulation en-
vironment that supports high-level model building using the DEVS (Discrete
Event System Specification) methodology. The main goal of this approach
is to provide a sound formal modelling and simulation framework.

2.1.4. Load-balancing in PADS and Adaptive PADS

In PADS, each LP handles a set of simulated entities [5I]. This parti-
tioning of the simulated model can be approached in many different ways.
One possibility is trying to minimize the amount of network communication
among LPs while doing the best for balancing the workload of the LPs in
the parallel/distributed execution architecture.

Over the years, many static and dynamic approaches have been evalu-
ated to automate and enhance the partitioning of parallel and distributed
simulations. The most relevant partitioning approaches have been discussed
in [17].

A typical approach is proposed in [51], where different partitioning schemes
of the simulated region are used with the aim to assign an approximately
equal number of simulated nodes to each partition and an equal number of
partitions to each processor, therefore trying to reduce the amount of inter-
processor messages. A relevant limitation of this approach is that, in this



case, the proposed partitioning schemes are static and cannot be adjusted at
runtime and furthermore a static network topology is assumed.

Many of the approaches that have been proposed in the past to deal with
load-balancing are designed to address computational load balancing [5] or
the communication aspects [47, [I4] but not both of them. In our view,
this is a severe limitation of these approaches. Another relevant limitation
is that, in many of the proposed approaches, the granularity of the load
balancing mechanism is at the level of the whole LP. In other words, a whole
LP is migrated from a CPU to another one. This is even more relevant in
the simulation of complex networks in which representing each node with a
different LP would lead to a huge number of LPs and therefore increasing
the coordination and synchronization cost in the PADS.

More recently, in Distributed MASON [13], which is a scalable distributed
multi-agent simulation environment, a novel geometric non-uniform work
partitioning approach for the simulation environment has been proposed. In
[9], the imbalance in computational load is considered and a generic self-
adaptive framework is proposed. The framework is then evaluated when
applied to two different simulation models: a micro-traffic simulation and
a cellular automata simulation. In [36], the authors propose a new static
resource allocation strategy based on the particle swarm optimisation algo-
rithm for distributed simulations in cloud environments. Even if the pro-
posed approach is static, it considers both computation and communication
load. Finally, in [I5] a novel bi-objective load balancing model is developed.
This work is specifically aimed at the distributed High Level Architecture
(HLA) simulation systems and it makes use of two meta-heuristic algorithms,
i.e. NSGA-II and MOPSO, to avoid load imbalances in the distributed sim-
ulation.

In [17], we proposed a load-balancing approach in which the simulated
model is represented by a multi-agent system. The simulated model is par-
titioned into small model components, also called Simulated Entities (SEs),
and the model evolution is obtained through the exchange of interactions
among SEs. In this way, the LPs are containers of SEs and it is possible
to move (migrate) a SE from one LP to another. This permits avoiding the
static partitioning of the simulated model and to adaptively reallocate the
SEs for better computational and communication load balancing. In many
cases, this leads to a speedup in the simulation execution and enhanced scal-
ability. This adaptive PADS approach is implemented in the GAIA/ ARTIS
simulator [3].



In the following of this paper, we will refer to two different versions of the
adaptive PADS mechanism. The first one, which is referred as GAIA, imple-
ments a set of simple self-clustering heuristics that analyze the communica-
tion pattern of each SE and self-cluster them with the aim to minimize the
communication cost [I7]. Another, more complex mechanism, called GATA+,
implements the features of GAIA but also introduces a computational load-
balancing scheme. More in detail, GAIA+ [17] checks the execution speed of
each LP in the execution architecture and migrates some SEs with the aim
to react to both imbalances in the simulated model (i.e. highly loaded nodes
in the simulated network) and background load in the execution architec-
ture (e.g. other processes running on the host/cluster used for running the
simulation).

2.1.5. Agent-based Simulation

A particular type of simulation is the Agent Based Modeling and Simula-
tion (ABMS) [42]. In ABMS, the simulated entities are called agents. Agents
can represent any actor entity within a simulation [26]. The model specifies
the behavior of each agent, i.e. microscale model; such behavior is usually
influenced by the information that agents obtain from the environment [34].

Thus, events generated in the environment have an impact on the agent’s
states, and the whole simulation evolves based on these interactions among
agents and the environment. Typically, the simulation model specifies one
or more classes of agents; each agent of a certain class executes the same
behavior procedure. The variety of the possible outcomes of a simulation is
thus due to some kind of randomness introduced in the specification of such a
behavior, and the different interactions and situations each agent is involved
in.

2.2. Complex Networks and their Simulation

Complex networks are networks that feature patterns of connection be-
tween their elements. These patterns are usually neither purely regular, nor
purely random. Many real-world networks, such as transportation systems,
social, biological, communication networks, do have such complex patterns
[4]. Complex network theory provides a useful methodology to understand
the peculiarities of the whole network, identifying the most important enti-
ties, the critical elements, etc.

Whatever the nature of the dynamical processes under investigation, com-
plex network theory provides a unified framework for their modeling [8), 27].
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In essence, every entity being modeled is represented as a node of a network.
Interactions among nodes are represented as edges of the network. We thus
obtain a graphﬂ that describes the dynamics of the specific process.

In this work, we are not specifically interested in such graphs manage-
ment. There is a plethora of works that deal with many aspects of graph
theory, in general [25, 32, [35]. However, these systems deal only with static
graphs and do not consider the issue of processing evolving and dynamic
graphs [6].

Rather, we are interested in the possibility of simulating and studying
the complex dynamics of specific application models on top of such net-
works. Clearly, such dynamics might be strongly influenced by the topology
of the underlying interaction network. To this aim, the most natural choice to
model such systems is to resort to agent-based simulation, being each agent a
node/entity of the network, and representing interactions between two enti-
ties as communications between agents. However, the agent-based approach
poses several issues, such as hindering scalability, due to the number of agents
to be simulated and their interactions. In particular, the amount of mem-
ory and computation to perform the simulation might result quite high and
unevenly distributed in the execution architecture. In fact, using this mod-
eling approach, each interaction between two nodes in the network results
in a message exchanged between two simulated agents. Clearly enough, the
simulation of an application protocol on top of a complex network might
generate an important amount of messages to be handled. As a matter of
fact, this is one of the main issues we consider in Section [5; Experimental
Evaluation.

Take, for instance, a scale-free network, i.e., a network whose node de-
gredﬂ distribution follows a power law. This kind of network has hub nodes,
i.e. nodes that have a degree much higher than others.

In general, a scale free network is characterized by a non-homogeneity of
nodes, which is a key issue to be considered when designing simulators. This
non-homogeneity in the number of connections causes different workloads at

"'While the terms “graph” and “network” can be considered as synonyms in this paper,
it is worth noting that often the word “graph” is used when referring to the mathematical
object, i.e. a set of nodes with edges that connect them. Instead, the word “network” is
used when a real system is modeled, through nodes that refer to some specific entity, and
edges that represent interactions among nodes.

2The degree of a node is its amount of links in the network.
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each node. These imbalances in the computation and communication load
can lead to very unsatisfactory results, in the case of a naive partitioning of
the network in a parallel or distributed execution architecture.

Several tools exist for the modeling of simple multi-agent systems that can
be utilized to model a network of interactions. Examples are the multi agent
simulation toolkit (MASON) [2], NetLogo [46], PeerSim [39], Swarm [3§].
The rationale behind some of these tools, e.g. NetLogo and Swarm, is to
provide an easy-to-use framework to develop toy models, where simplified
agent behaviors can be rapidly implemented. The resulting analysis usually
provides a good understanding of certain properties of the network, such as
the presence of emergent behavior. However, typically such tools are not
employed to model highly detailed simulation models, mainly for scalability
issues.

PeerSim is a Java-based tool [39]. Its purpose is strictly confined to peer-
to-peer systems, by modeling them as network overlays. Thus, the underlying
idea is to look at these systems as a set of interacting nodes. Thus, the
employed modeling methodology is agent-based. The tool has demonstrated
good scalability and it has been widely employed to build simulators of peer-
to-peer systems.

MASON is another Java-based tool, that offers easy-to-use APIs to build
multi-agent simulations [2]. While the original tool is a centralized, sin-
gle process tool, a new distributed version has been presented, i.e. DMA-
SON [12]. With respect to these cited tools and the models they are typ-
ically able to support, our main goal is to simulate scenarios much more
data-intensive, e.g. for the total number of messages that must be delivered
in the network. In other words, we aim to deal with simulation models that
cannot be addressed using a centralized approach. All cases in which the
usage of multi-core CPUs, clusters of PCs or High-Performance-Computing
(HPC) architectures are necessary.

Some works that focus on the use of PADS techniques to model and
simulate complex networks are [16, 28 4T, 43]. In all the cited cases, the
focus was solely on the simulation of scale-free networks. Usually, a node-
based approach is utilized, i.e. each LP is in charge of the behavior of a subset
of network nodes. Each interaction between two nodes causes a change state
in the simulation. If the two nodes are within the scope of the same LP, that
LP will handle the state change. Conversely, if the two nodes are managed
by two different LPs, then a message exchange and coordination between the
two LPs is required.
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In contrast to the conventional approach of mapping each network node
to an LP, in [41] a link partitioning scheme is employed, where each network
link is mapped to a LP. The simulation handles information passing through
each link, rather than focusing mainly on the behavior of the nodes. A
flow of information is thus modeled and randomly simulated, traveling from
sources to destinations. It is clear that this is a very different approach, not
comparable with the idea of an agent-based simulation of complex networks,
where nodes represent modeled entities.

The problem of computation and communication load-balancing in PADS
has been extensively explored in the past. More specifically, we discussed
the well-known problem of simulation model partitioning in our previous
work [I7]. To the best of our knowledge, LUNES is the most recent work
that provides a series of advanced features for the simulation of complex
networks.

3. The LUNES simulator

This section illustrates the aspects of the complex networks simulator
that we designed and implemented. LUNES (Large Unstructured NEtwork
Simulator) is an easy-to-use tool for the generation of large graphs of any
topology [18]. It allows running a simulation model on top of the network
nodes, with nodes that can interact through their interconnections, repre-
sented as network links. LUNES is based on a modular architecture, whose
components are in charge of:

1. network creation;
2. implementation of the protocols;
3. analysis of the results.

The use of a modular approach permits the re-use and integration of existing
software tools and facilitates the update and extensibility of the software.
The flow of data processing goes as follows: a network overlay with a spe-
cific topology is created by the network generation module; then the protocol
simulator executes the application/communication protocol on top of such a
generated network; obtained results are processed by the trace analysis mod-
ule. The application/communication protocol corresponds to the modeling
of any kind of interaction that occurs between two or more entities during
the simulation. If, for instance, the simulation model mimics a P2P over-
lay, the application/communication protocol mimics all the steps required to
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exchange some data among nodes in the P2P system, i.e. the P2P commu-
nication protocol.

All the LUNES software architecture is designed and implemented for
parallel /distributed processing. Therefore, all the LUNES modules can ex-
ploit the computational resources provided by parallel or distributed execu-
tion architectures. The interoperability between modules is obtained through
simple template files, such as the graphviz dot language. In the following
of this section, the LUNES modules are briefly described.

3.1. Network Topology Creation

LUNES is able to import the graph topologies generated by other tools.
For example, in the current version, the graph topologies are generated by
the igraph library [I]. This library provides algorithms for network analy-
sis methods and graph theory and allows handling graphs with millions of
vertices and edges. The graphs generated by igraph (or other tools) can be
directly used for protocol simulation or stored in “corpuses”, i.e. collections
of homogeneous graphs. In this phase, the graph generated can be further
annotated adding weights to specific edges or nodes. This would permit us
to model and investigate setups and environments requiring that.

3.2. Protocol Simulation

LUNES provides to the simulation modeller a high-level Application Pro-
gramming Interface (API) for the implementation of the protocols to be
simulated. For example, in the current version all the most common features
of dissemination protocols, used in peer-to-peer (P2P) distributed systems,
are already implemented. Moreover, adding new variants or more complex
protocols is straightforward. New protocols can be implemented using a set
of available primitives. Thus, the simulationist can decide to avoid all the
low-level simulation details. For example, LUNES has been used to easily
develop an agent-based simulator of blockchains and then to study the effect
of security attacks performed by malicious nodes.

To this aim, LUNES exploits the simulation services offered by the ARTIS
middleware and the GAIA/GAIA+ framework [3]. It is in these two tools
that PADS features are implemented. Following the design of the simulation
framework, LUNES represents each node in the simulated network as an
agent. In the current implementation, there is no formalism behind the
definition of agents and their interactions. In fact, they are implemented
through very simple programs written using the C language.
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More in detail, LUNES allows specifying the agent behaviour through
the implementation of a behaviour function, as it is done in many multi-
agent based systems. While the current LUNES implementation is based on
the C programming language, any other language able to interoperate with C
libraries, or even send messages through classic socket communication, can be
exploited. As said before, each node in the simulated network is represented
by an agent. The behavior of each agent is implemented through a set of
function handlers that are able to both generate messages, to be delivered
to other agents, and to change the agent’s local state. Moreover, it is also
possible to deal with dynamic topologies and to consider specific attributes
(e.g. weights) to be added to the network edges. This permits the simulation
of temporal networks.

3.8. Trace Analysis

Under the performance and scalability viewpoint, the most demanding
points are the protocol simulation and the traces analysis. In LUNES, the
trace analysis task has been designed as separated from the other simulation
tasks; instead, some specific software tools have been implemented. The ra-
tionale behind this choice is that the simulation of a network, even with a few
hundred nodes, can generate a huge amount of simulation traces that have to
be stored, parsed, and analyzed. In LUNES, trace analysis is implemented
using a set of shell scripts and some specific tools, for the computing of the
required metrics on the trace data, that have been implemented in C lan-
guage for efficiency. This mix is both quite efficient and easy to extend and
personalize. We have intentionally avoided building a monolithic application
to provide users with an easily customizable tool.

3.4. Time Evolution

LUNES exploits a time-stepped approach to perform simulations. This
choice simplifies the deployment of the simulation over PADS architectures
even if, in some cases, more complex conservative or optimistic synchroniza-
tion algorithms can obtain better results in terms of execution speed. On the
other hand, using a time-stepped synchronization allows exploiting the load
balancing techniques and simulation entities migration approaches provided
by the ARTIS middleware and the GATA/GAIA+ framework [3).

It is worth noticing that the use of time-stepped simulations is quite
common when studying complex networks [10, [30] even if the simulation of
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asynchronous systems using time-stepped simulations impose a neat granu-
larity of the time steps. In fact, each timestep should be small enough to
properly order and handle successive events that occur in time, thus guar-
anteeing a correct event ordering for subsequent events. Clearly, the choice
of the timestep size has a relevant impact on the performance of the par-
allel/distributed simulator. In general terms, the larger the timestep size,
the better is the efficiency of the synchronization mechanism. On the other
hand, a timestep that is too coarse reduces the accuracy of the simulated
model.

3.5. ARTIS and GAIA/GAIA+

As described above, LUNES exploits the services provided by the ARTIS
simulation middleware and the GAIA/GAIA+ framework, which are briefly
described in the following.

3.5.1. ARTIS

The Advanced RTI System (ARTIS) [3] is a parallel and distributed sim-
ulation middleware developed by our research group and partially inspired
by the IEEE 1516 standard “High Level Architecture” (HLA). ARTIS im-
plements a typical parallel /distributed architecture in which the simulation
model is statically partitioned in a set of LPs at bootstrap time. The goal of
ARTIS is to provide to the simulation model all the typical services of a dis-
tributed simulation middleware: communication, synchronization, and Data
Distribution Management (DDM). The communication between the LPs is
implemented efficiently by different communication protocols. The choice
of the protocol depends on how the different PEUs are interconnected. For
example, two LPs that are running on two CPUs cores in the same host
communicate using low-latency and high-bandwidth shared memory, i.e. a
specific implementation of shared memory to better suit the simulation re-
quirements. Conversely, LPs running on hosts interconnected by the Internet
communicate using TCP connections or reliable-UDP protocols like SCTP.
In other words, the role of ARTIS is to provide the best communication ser-
vice in regards to the networking characteristics, i.e. latency, bandwidth, and
jitter. For what concerns time management (i.e. synchronization), ARTIS
supports both conservative (Chandy-Misra-Bryant [I1]) and optimistic [29])
synchronization algorithms. Moreover, a fully distributed implementation
of the time-stepped synchronization is included. Finally, DDM is provided
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by means of a very fast parallel implementation of the sort-based matching
algorithm.

3.5.2. GAIA/GAIA+

The Generic Adaptive Interaction Architecture (GAIA) [3,17] is a frame-
work that exploits the services provided by ARTIS. In GATA, each LP is de-
signed as the container of a set of simulated entities that can also be seen as
agents. The simulated system behavior is then modeled by the interactions
among the simulated entities. The enhancement provided by GAIA is based
on the assumption that, in most cases, the interaction between the simulated
entities is not uniform in terms of frequency and intensity. This means that
it is often possible to find clusters of simulated entities in which “internal
interactions” are more frequent than the “external ones”, i.e. interactions
with a destination that is outside the cluster. Obviously, in most simulated
models (but not in all of them) the structure of these clusters changes over
time. This effect is mainly caused by the simulation model evolution.

The basic task of GAIA is to identify such clusters with the aim to improve
the performance of a PADS by allocating each cluster of heavily-interacting
entities in the same LP. This operation, when successful, has the effect of
reducing the amount of costly LAN/WAN communications with the more
efficient shared memory messages. That clustering is not operated by GAIA
at the simulation bootstrap since it would require the previous knowledge
of the simulation model specificities and evolution but happens at runtime
by means of entity migrations. In practice, GAIA analyzes the communica-
tion pattern of each simulated entity and implements a set of self-clustering
heuristics to evaluate if the cost of migrating an entity is worth the commu-
nication enhancement provided by the clustering. We have developed GAIA
with the aim to model a wide spectrum of systems. For this reason, all the
provided heuristics are generic and not model-dependent. As an example, the
basic clustering heuristics works as follows: every few simulation timesteps,
for each simulated entity it is found which LP is the destination of the large
percentage of interactions. If it is not the LP in which the simulated entity
is contained and if the communication imbalance is relevant then a migra-
tion is triggered. The migration of simulated entities among LPs is totally
transparent to the simulation model developer.

The main difference between GAIA and GAIA+ is in the form of load-
balancing that is implemented. The aim of GAIA is to improve the com-
munication efficiency in the parallel/distributed execution architecture while
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preserving the current computational load in each LP. GAIA+ extends the
previous heuristics by triggering adjunctive migrations with the aim to im-
plement an adaptive computational load-balancing in parallel/distributed
simulator. This is fundamental when in the presence of heterogeneous exe-
cution platforms in which the execution units are not identical, e.g. different
CPUs and network performances. ~ When necessary, GAIA+ can migrate
some entities away from less powerful PEs towards more capable ones. An-
other case in which GAIA+ is useful is when the different simulated entities,
in which the simulation model is partitioned, are not homogeneous. The
adaptive computational load-balancing provided by GAIA+ is obtained by
instrumenting the synchronization protocol implemented by the LPs. The
LPs that are “slow” in terms of synchronization are then enabled by a dis-
tributed coordination protocol to trigger extra migrations, with respect to
the migrations previously identified by GAIA, with the aim to balance the
computation in the parallel /distributed execution by lifting the bottlenecks,
i.e. the slow LPs.

4. Case study: gossip protocol dissemination

As a use case to show and test the peculiarities of LUNES in the simula-
tion of a complex network, we implement a common communication protocol
used in many distributed systems. In particular, we simulate an informa-
tion dissemination protocol based on gossip running on a P2P overlay net-
work [I§]. This distributed system can be easily represented through multi-
agent simulation. More specifically, the agents represent nodes of the P2P
system, i.e. it is sufficient to implement the behavior of each agent (node) in
the system, and then define the interactions that agents may have with other
agents. In this case, each agent can interact with a subset of agents. This
subset represents those nodes with which the considered node is connected
with. Such connections define the P2P overlay, which can be a complex net-
work of whatever topology. The global system behavior emerges from the
single interactions among network nodes. In this use case, the behavior of the
components of the system is rather simple: network nodes exchange appli-
cation messages with their connected nodes, following the rules of a specific
dissemination protocol.

It is worth pointing out that, in this simulated model, the P2P network
is defined through the simple ability of agents to send messages to other
agents. Thus, the overlay creation and management does not consider issues
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concerned with the underlying physical network and proximity of nodes in
the simulated distributed system. This is a common practice during the eval-
uation of a P2P protocol over an unstructured overlay [10], 30, 39]. Indeed,
adding variables related to physical communication networks, such as net-
work proximity and delay in message transmission, would increase the com-
plexity of the model, hence making it more difficult to extract and compare
some general results related to the performance of a dissemination protocol
in an overlay.

All nodes generate a new message to be disseminated in the network.
When the generation procedure is invoked at a given node, a single message
is created with a certain probability, as described in Algorithm [I The gen-
eration of a message simulates the occurrence of a new event produced at a
given node that must be propagated. If the message is created, then it is sent
through the net, using a DISSEMINATE() procedure (line 6 of the algorithm).
The message is also inserted in a cache (line 5).

The caching scheme implements a classic Least Recently Used (LRU)
approach that discards the least recently used messages first (code not shown
in the algorithm).

Algorithm 1 Generation of a Message

: function GENERATE()

: t <~ GENERATIONTHRESHOLD()

if RANDOM() < ¢ then
msg < CREATEMESSAGE()
CACHE(msg)
DISSEMINATE(msg)

end if

e Wy

Algorithm 2 Reception of a Message

: function RECEIVE(msg)

if (NOTCACHED(msg) A msg.ttl > 0) then
CACHE(msg)
msg.ttl < msg.ttl — 1
DISSEMINATE(msg)

end if
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Algorithm 3 Dissemination: Gossip with Fixed Prob. of Dissemination (at
ni)

1: global v {// global parameter shared among agents}
2:

3: function DISSEMINATE(msg)

4: for all n; € II; do

5. if RANDOM() < v then

6: SEND(msg,n;)

7. end if

8: end for

Upon reception of a given message (see Algorithm , the receiving node
forwards the message to its neighbors by calling the DISSEMINATE() func-
tion (line 5 in the algorithm). This is accomplished only if the message is
not already in the node’s cache. In fact, if the message is in the cache, it
has already been disseminated; hence, the node has nothing to do with the
message msg (line 2). Conversely, msg is transmitted and cached (line 3 of
Algorithm . Needless to say, due to the possible memory constraints of a
node, the cache is limited in size.

The DISSEMINATE() function is described in Algorithm [3] It is imple-
mented as a fized probability scheme. Let denote with n; the node executing
the function. This node randomly selects nodes to which the message msg
has to be propagated [24] 45]. In particular, all n;’s neighbors (i.e. II;) are
considered and a threshold value v < 1 is maintained, which determines
the probability that msg is gossiped to the neighbor. Hence, on average, at
each step, the message is propagated from n; to v|II;| other nodes. Clearly
enough, the higher the node degree, the higher its workload.

4.1. Simulation Model Characterization

As already mentioned, the simulation model implemented in LUNES that
will be used in this performance evaluation is based on a data dissemination
protocol. Two different network topologies will be investigated: random
networks and scale-free topologies. Both of them are very common in com-
plex networks. As described previously, the network generation process in
LUNES is obtained by means of the igraph network library. Table [1] re-
ports the specific library functions used to generate the network graphs on
which the fixed-probability dissemination protocol is executed. As we will

20



see in the remainder of this section, this communication protocol produces
a huge amount of messages that need to be delivered and processed. It is
worth noticing that many of the delivered messages are duplicates of original
messages. To cope with this issue, with the aim to improve the efficiency
of the gossip protocol, two adjunctive mechanisms are usually implemented:
message cashing and Time-To-Live (TTL). More in detail, each node imple-
ments a cache that stores the identifiers of the messages following the policy
described above. Furthermore, all the generated messages in the dissemi-
nation are set with a TTL that limits the number of hops that each message
can traverse.

igraph generators
\ method \ nodes

Random | igraph_erdos_renyi_game | 100-3000
Scale-free | igraph_barabasi_game 100-3000

Table 1: igraph generators used for building the networks.

Under the simulation modeling viewpoint, the main characteristics to be
considered are: a) the number of nodes in the simulated network, b) the
number of edges, ¢) the number of delivered messages and, finally, d) the
computational load of each node in the network. The number of simulated
nodes has an effect on both the total number of original messages (i.e. that
are not duplicated messages due to forwards), that are generated in the net-
work, and on the computational load that is caused by updating the node
variables and implementing the local cache. The effect caused by the number
of edges is on the amount of duplicated messages that are generated during
the dissemination. In fact, when a given node receives a new message i.e. that
is not already in the local cache then the fixed-probability dissemination pro-
tocol evaluates for each edge of the node if the message must be forwarded
or discarded. As said by the name of this gossip approach, this evaluation
is randomized and based on a fixed-probability threshold. It is clear that
increasing the number of edges in the network leads to an overall increase
of the duplicated messages generated by the forwarding nodes. The effect of
the number of messages, both original and duplicated, on the simulator per-
formance is two-fold and it is the most important parameter to be considered
in the scalability evaluation of the simulator. On one side, each message
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needs to be processed by the simulator and delivered. In a PADS setup,
both the latency and bandwidth constraints can strongly reduce the perfor-
mance of the simulator. On the other side, each incoming message triggers
in the receiving node the processing of the message (e.g. the execution of the
fixed-probability gossip protocol) and more specifically a lookup operation
in the data structures used by the message caching mechanism. Under the
computational viewpoint, these operations can be quite costly. All this can
hugely increase the simulation execution time.

As mentioned, in this simulated model the main part of the computational
load is due to the generation of new messages and the forwarding of received
ones. For this reason, in this performance evaluation, we model the dissemi-
nation protocol without adding any synthetic load to the nodes, while many
real-world applications such as, for instance, the simulation of blockchain
networks, would require a larger amount of data to be processed by nodes.
The effect of our decision is that in this performance evaluation the parallel
setups are disadvantaged with respect to the sequential approach, and dis-
tributed ones would be even more.  The reason for this behavior is very
simple: the PADS approaches are able to parallelize the model computation
at the cost of an increased communication cost while in the setup described
above there is a huge amount of communication and a limited amount of
computation. In other words, this simulated model is communication bound
and therefore we can not expect very large performance gains by employ-
ing a parallel setup and we should expect relevant slowdowns in presence of
distributed execution architectures.

Table [2| reports the main model and simulator parameters for setting up
the experiments reported in the following. To foster the reproducibility of
our experiments, all the source code used in this performance evaluation and
the raw data obtained in the experiments are freely available on the research
group website [3].

Figure (1] reports the total number of messages that are delivered during
a single simulation run when considering an increasing number of nodes and
links per node. As discussed above, we consider this metric as the main
aspect for the scalability of the simulator to be considered. All the results
reported in this performance evaluation are obtained averaging the data col-
lected in multiple independent runs. This specific result shows that the net-
work topology (random vs. scale-free) has a negligible impact on the number
of generated messages. On the other hand, the network size (i.e. number of
nodes) has a big impact on the number of messages. In other words, the num-
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Model and Simulator parameter Description / Value

Number of nodes [100,3000]

Number of delivered messages see Figure
Simulated time 1000 timesteps
Time-To-Live (TTL) = network diameter
Dissemination protocol (gossip) fixed probability
Dissemination probability (gossip) 0.8

Prob. of each node to generate a new message | 0.01 (per timestep)

Prob. of nodes that are generators of messages | 1 (i.e. all nodes)

Prob. of nodes that are forwarders of messages | 1 (i.e. all nodes)

Cache size (positions) in each node 256

Table 2: Simulation model and Simulator parameters.

ber of messages delivered in the network increases exponentially with respect
to the number of nodes. That exponential increase in the number of delivered
messages makes it impossible, or very slow, to simulate networks composed
of a very large number of nodes while using this specific configuration of
the simulation model. On the other hand, it would be sufficient to reduce
the number of messages generated by each node to allow the simulation of
large-scale setups but this is not the aim of this paper.

Another preliminary aspect that needs to be investigated is what is the
effect of the number of links per node on the total amount of delivered mes-
sages. Figure [l shows the results obtained when considering the scale-free
network topology when adding, during the preferential attachment, 2, 3, and
4 links per node. As described above, due to the characteristics of the dis-
semination protocol, increasing the number of links in the network has the
effect of boosting the number of duplicate messages that are delivered during
each simulation run. When not stated differently, the considered networks
in the following of this performance evaluation are those obtained by adding
2 links, during the preferential attachment, for each node.

This result shows how the simulation of a message dissemination strategy
represents a complex use case for PADS, due to the simplicity of the compu-
tation performed at LPs, and the high message generation rate. This means
that the scalability of the PADS execution, in this specific use case, is ruled
by the ability to optimize local interactions within LPs, and minimize the
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Figure 1: Number of delivered messages in a single simulation run with an increasing
number of Nodes and Links per node. Random and Scale-free network topologies.

inter-LP communications. In other words, an efficient parallel /distributed
execution is possible only by means of strategies that are able to reduce/limit
the communication overhead necessary for a correct PADS implementation.

5. Experimental evaluation

The main goal of this section is to evaluate the scalability of LUNES
in presence of different setups of the execution platform used for running
the simulator and the parameters used to instantiate the complex network
simulation model. More specifically, we are interested in evaluating the scal-
ability of the simulator with respect to an increasing and very large number
of delivered messages (see Figure |1)).

In this performance evaluation, the main metric that is measured and
discussed is the amount of time that is necessary for the simulator to complete
the simulation of the dissemination protocol on the network overlay. In
other words, other phases such as the network topology generation and the
trace analysis (previously described in Section |3) are not considered since
they are not necessary for addressing our research question. The hardware
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CPU Intel Xeon E5-2640
Clock frequency 2.00 GHz

Processors 2

Cores/proc 8

Total cores 16

Threads/core 2

HyperThreading  Yes

RAM 128 GB

L3 cache size 20480 KB

Operating System Ubuntu 18.04 LTS
Kernel 4.15.0-66-generic (x86_64)

Table 3: Execution architecture used for the experimental evaluation.

platform and the software configuration used in this performance evaluation
are reported in Table

Given that the simulated model used in this performance evaluation is
communication-bound, the following performance evaluation has been run
only on a parallel machine. Running the gossip-based dissemination protocol
on top of a distributed architecture, i.e. a LAN or Internet-based cluster
can be very interesting. However, under the performance viewpoint, the
latency introduced by the distributed communication architecture would be
so relevant to nullify the effect of the computational parallelization given by
the set of computation units. In other words, the distributed simulator would
be slower with respect to both the parallel and the monolithic setup.

5.0.1. Random graph topology

We start the performance evaluation by measuring the amount of time
(wall-clock time, WCT) that is necessary to complete a sequential run of
LUNES (i.e. LPs = 1) in presence of an increasing number of simulated nodes
organized following a random graph topology. This means that, in this case,
the simulator is run on a single CPU without exploiting any parallelization
feature that is provided by the multiple execution cores that are available.

As expected, Figure [2| shows that the sequential setup (i.e. the black line)
is unable to deal with networks composed of a large number of nodes. As
expected, the scalability of a monolithic simulator when running a complex
network model is quite limited. The sharp increase in the WCT follows
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Figure 2: Wall-Clock-Time of a simulation run (random network topology) in sequential
and parallel setups (i.e. GATA OFF) with an increasing number of Nodes. Lower is better.

the behavior of the dissemination protocol in terms of messages that are
delivered in the system (i.e. Figure . The more the messages are generated
and duplicated in the overlay network, the more the simulator is unable to
cope with the load. The result is more and more time to complete each
simulation run. In Figure [3] is reported the efficiency in terms of speedup,
that is the ratio between the sequential WCT and the WCT of a specific
parallel setup, of the different simulation configurations with an increasing
number of nodes. From the figure, it is clear that a configuration with 2 LPs
is unable to provide a speedup that can be achieved by increasing the amount
of computational resources. Overall, the speedup that can be obtained with
16 and 32 LPs is relevant but it is mainly due to the inefficiency of the
sequential run when in presence of a large number of nodes (see Figure .
In a parallel simulation (i.e. LPs > 2), the simulated nodes are parti-
tioned among the different LPs. In this paper, we consider the typical case
in which the simulated nodes are evenly distributed in the execution archi-
tecture. This means that at the simulation bootstrap the simulated entities
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Speedup with a different number of Nodes and LPs (random topology)
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Figure 3: Speedups in sequential and parallel setups (i.e. GAIA OFF) with an increasing
number of Nodes (random network topology). Higher is better.

are equally split among the LPs. This allocation is static, i.e. it will last for
the whole simulation run. Conversely, when adaptive partitioning techniques
are used (i.e. GAIA/GAIA+ is enabled), the number of simulated entities in
each LP will dynamically change during the simulation when reallocations
are triggered by GAIA/GAIA+ for load-balancing purposes.

We start investigating what happens when using 2 LPs (i.e. LPs = 2).
The simulator is able to parallelize the computation at the cost of an increased
communication cost. This is shown by the purple line (i.e. LP = 2): when
the number of nodes is less than 1900 the parallel setup is slower than the
sequential one. This is due to the fact that the parallelization provided by
using 2 PEUs is not sufficient to compensate for the extra cost caused by
the communication between the two execution units used by the simulator.
On the other hand, for a larger number of nodes, there is a negligible gain.
The gain of the parallel setup is significant only when the number of LPs is
increased. In fact, in this case, the communication cost is more than balanced
by the computation load sharing given by the multiple PEUs that are used.
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This trend is confirmed when using 16 LPs, in which the gain is very relevant.
Further increasing the number of LPs to match the virtual cores (i.e. LPs =
32) provided by the Hyper-threading technology, that is available in the
processors equipping the testbed, slightly increases the simulator speed with
respect to LPs = 16. This happens because a Hyper-threading CPU core has
a single execution unit but can store two architecture states at the same time.
In fact, Hyper-threading CPUs cores are detected by the operating system
as two “logical” CPU cores. In practice, the operating system and then the
simulator can schedule two independent execution threads. This allows a
marginal increase of execution speed that is due to increased efficiency in the
management of the shared execution unit but is not comparable with the
execution speed obtained by “physical” CPUs cores.

The results show that the best performance of a PADS, in terms of speed
of simulation, depends on many different factors. Not always the larger
the execution architecture the better the performance. There is a trade-
off between the parallelization/distribution of the workload among different
LPs and the number of messages that need to be transmitted, in order to
synchronize all the LPs. In other words, it is a case-by-case evaluation and
the performance of the simulator is very difficult to predict before running
it.

Figures [] and [§] report the effect of the GAIA on the WCT in different
setups, i.e. an increasing number of LPs used to parallelize the computation.

In this case, the adaptive mechanism has the goal to reduce the commu-
nication overhead among the LPs while the computational load balancing
mechanism provided by GAIA+ is disabled. In all LPs configurations that
have been measured, GAIA is able to improve the simulator execution effi-
ciency by clustering communications. The effect is a reduction of the WCT.
The data shown in Figure [5| demonstrate that the best configuration for this
simulation model, in terms of WCT, is obtained with 32 LPs and when GAIA
is enabled. In the considered setup with 32 LPs, the self-clustering adap-
tive mechanism (i.e. GAIA) is able to provide a gain but this is very thin
if compared to the setup with 8 or 16 LPs. The reason behind this behav-
ior is related to the partitioning of the simulation model that is operated
by the PADS approach. In fact, partitioning the model entities into more
and more parts increases the complexity of the self-clustering operations and
reduces its efficiency. In particular, increasing the number of LPs increases
the probability that a group of frequently interacting entities needs to be
allocated to different LPs. For example, to fulfill the load-balancing con-
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WCT with a different number of Nodes (random topology)
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Figure 4: Wall-Clock-Time of a simulation run (random network topology) in parallel
setups (i.e. 2-4 LPs) with an increasing number of Nodes. Lower is better.

straints of the PADS. The direct effect of breaking such a group of entities is
a reduction of the system’s ability to cluster the communication in the same
LP. The cascading effect is a reduction of the amount of “cheap” intra-LP
communication and an increase of “costly” communication overhead due to
the inter-LPs communication (see Figure [7)).

Figure [6] shows the speedup for all the configurations reported in the fig-
ures. The speedup is a metric typically used in parallel/distributed systems
to compare the performance of a parallel/distributed setup with a sequential
one that runs on a single CPU core. In this case, we have considered the par-
allel execution (i.e. GAIA OFF), the parallel execution with communication
load balancing (i.e. GAIA ON), and the parallel execution with both com-
munication and computational load-balancing (i.e. GAIA+). Since random
networks have an average degree with a distribution that is quite regular,
i.e. with limited imbalances among the nodes, we do not expect that GAIA+
is able to provide a significant speedup in the execution. In other words,
GATA+ is designed to react to imbalances in the simulation execution, but
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WCT with a different number of Nodes
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Figure 5: Wall-Clock-Time of a simulation run (random network topology) in parallel
setups (i.e. 8-32 LPs) with an increasing number of Nodes. Lower is better.

both the simulation model and the execution architecture considered in this
evaluation have no relevant imbalances. For this specific evaluation, the best
speedup for the random topology simulation model with 3000 nodes is ob-
tained with 30 LPs. With respect to the parallel approach (i.e. GAIA OFF),
both GATA and GATA+ are able to provide a small speedup increase in many
configurations.

Generally speaking, given the complexity of the simulation model, the
very limited computation running on each node, and the huge amount of
communication that is required by the gossip-based dissemination protocol,
a speedup larger than 4 with 8 LPs can be considered a good outcome. In
other words, the model considered in this paper is very communication-bound
and therefore it is near to be a worst-case for PADS. Conversely, simulation of
models that are more CPU-bound would obtain even larger speedup values.
The effect of GAIA on the simulation model execution is significant but
could be further increased if clustering mechanisms, specifically aimed at
complex networks, are implemented in the simulation middleware. In fact,

30



Speedup comparison, random topology (3000 nodes)
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Figure 6: Speedups with a different number of LPs and load-balancing configurations.
3000 Nodes in a random topology. Higher is better.

in this performance evaluation, we have opted to use the generic clustering
heuristics provided by GAIA without any form of specific adaptation and
a very limited tuning. This decision was motivated by the fact that we
are interested in obtaining results that can be easily generalized and we
are not much interested in very specific setups that would give a limited
contribution. Finally, GAIA+ is unable to provide a significant gain. As
explained above, this was somehow expected given the specific characteristics
of random networks, i.e. degree distribution and topology structure. On the
other hand, it is interesting to note that the results show that the mechanism
used for implementing GAIA+ does not introduce a significant overhead.
This means that, in presence of a shared execution architecture, in which
it can not be avoided the presence of possibly unexpected (computation or
communication) background load, GAIA+ would be able to improve the
simulation execution, i.e. changing the load of specific LPs to balance the
background load caused by other running processes, without reducing the
simulation execution speed. This feature could be very useful when running
simulations on shared execution architectures.
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Local communications percentage comparison, random topology (3000 nodes)
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Figure 7: Local communication (i.e. intra-LP) percentage with an increasing number of
LPs and different load-balancing configurations. 3000 Nodes in a random topology. Higher
is better.

In Figure[7], we investigate the behavior of GAIA and GAIA+ in terms of
their ability to cluster the intra-LP communications when in presence of an
increasing number of LPs and a fixed number of simulated nodes (i.e. 3000).
As shown in the figure, the absence of a load-balancing mechanism (i.e. GATA
OFF) reduces the amount of local communication while increasing the parti-
tioning of the simulated model. This figure demonstrates that GAIA, in pres-
ence of a random graph topology, is able to effectively increase the percentage
of local communications by clustering the interacting simulated nodes in the
same LP. Clearly, the trend in the figure is declining with the increase of the
number of LPs, since the problem is getting harder and harder. GAIA+
shows a similar behavior, but with a small reduction of its efficiency that is
due to the further constraints imposed by the computational load-balancing
mechanism.

5.0.2. Scale-free topology
In this part of the performance evaluation, we report the results of the
same experiments seen above in the presence of networks generated with a
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WCT with a different number of Nodes (scale-free topology)
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Figure 8: Wall-Clock-Time of a simulation run (scale-free network topology) in sequential
and parallel setups (i.e. GAIA OFF) with an increasing number of Nodes. Lower is better.

scale-free topology. As shown in Figure[I] the network topology has a negligi-
ble impact on the number of messages that are delivered by the gossip-based
dissemination protocol. Under the simulation viewpoint, the big difference
between the random and the scale-free network topologies is the degree distri-
bution of nodes. In a scale-free topology, the nodes have a degree distribution
that follows a power-law. This means that with respect to a random net-
work, in the simulation there are significant imbalances among the different
nodes in terms of sent/received messages with clear consequences in both
terms of communication and computation overhead. In a sequential simu-
lation (i.e. LPs = 1) the imbalances described above have no consequences
since there is a single execution unit that is responsible for running all the
simulated nodes (i.e. LPs). In other words, an execution architecture that is
composed of a single node has no issues with load-balancing, but it can be
easily overloaded. This can be observed by comparing the results reported
in Figures [2] and [§, in which the WCTs for running random and scale-free
simulations are very close. This happens also when 2 LPs are used, but the
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gap between the WCT's enlarges with more than 2 LPs. In other terms, in
the simulation of a scale-free network, the parallel approach is still able to
produce a speedup, but this is reduced with respect to a random topology
due to the imbalances in the simulated model.

Figure [§| shows that in the simulation of scale-free networks, the setups
with more than 8 LLPs are unable to give a relevant performance boost. More
specifically, the WCTs that are obtained by 16 and 32 LPs are quite unsatis-
factory since by increasing the number of simulated nodes we obtain a WCT
that is equal to 8 LPs. In other words, adding more nodes to the execution
architecture there is no gain in terms of reduction of the amount of time that
is necessary to obtain the simulation results.

WCT with a different number of Nodes (scale-free topology)
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Figure 9: Wall-Clock-Time of a simulation run (scale-free network topology) in parallel
setups (i.e. 2-4 LPs) with an increasing number of Nodes. Lower is better.

Figures [9] and [10] show that, also in this case, GAIA is able to provide a
significant speedup of the execution. This means that, even if in the scale-
free topology the communication among modes is very unbalanced, GAIA
is able to self-cluster the nodes obtaining a satisfactory reduction in the
communication cost (see also Figure . Moreover, it is worth noting that
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WCT with a different number of Nodes (scale-free topology)
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Figure 10: Wall-Clock-Time of a simulation run (scale-free network topology) in parallel
setups (i.e. 8-32 LPs) with an increasing number of Nodes. Lower is better.

the setup with 2 LPs with GAIA ON is better than the setup with 4 LPs
with GATA disabled.

In terms of speedup, the best setup for the simulation of scale-free net-
works with 3000 nodes is obtained with 32 LPs with GAIA turned ON (see
Figur. There are two key aspects that are relevant. First, the perfor-
mance of {8, 16, 32} LPs with GAIA ON are very close. Moreover, in the
setup with 32 LPs, GAIA introduces a not negligible instability. In general,
we can see that also in the case of scale-free topologies, with respect to the
parallel approach (i.e. GAIA OFF), GAIA is still able to provide a relevant
increase of the speedup. The gain obtained by GAIA in scale-free networks
is higher with respect to random topologies. This demonstrates that in pres-
ence of significant imbalances in the communication load among nodes, the
self-clustering mechanism is able to improve the allocation of the parallel sim-
ulation. On the other hand, GAIA+ does not introduce an overhead with
respect to GATA, but it fails in dealing with the imbalances that are caused
by the scale-free networks’ topology. In other words, GAIA+ is unable to
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Speedup comparison, scale-free topology (3000 nodes)
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Figure 11: Speedups with a different number of LPs and load-balancing configurations.
3000 Nodes in a scale-free topology. Higher is better.

provide a speedup by migrating the simulated nodes, with the aim to obtain
a more balanced execution in terms of computation among the LPs. This
is due to both the characteristics of the load-balancing mechanism and the
topology of the scale-free networks. More in detail, even if the degree distri-
bution in a scale-free network is not uniform, i.e. there are few nodes with
many links and many nodes with few links, the magnitude of this imbalance
is reflected more in the communication cost than in the amount of compu-
tation to be executed on each simulated node. GAIA+, as seen above, is
composed of a first part (i.e. GAIA) that clusters the highly interacting sim-
ulated entities in the same LP, i.e. communication load-balancing. Then,
a computational load-balancing mechanism that tries to balance the work
speed of the different LPs. By looking at the results, we can conclude that
in the scale-free scenario described above, the GAIA+ mechanism is mainly
dedicated to reducing the communication cost rather than being really able
to obtain a smooth computation among the different LPs. In practice, the
current implementation of GAIA+ considers as more important to reduce
the communication cost than balancing the computation among the LPs.
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Also in this case, simulation models of complex networks with more compu-
tational activity to be run in each node would have a more relevant benefit
from GAIA+ with respect to the simulation model used in this performance
evaluation.

Local communications comparison, scale-free topology (3000 nodes)
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Figure 12: Local communication (i.e. intra-LP) percentage with an increasing number
of LPs and different load-balancing configurations. 3000 Nodes in a scale-free topology.
Higher is better.

In Figure [12] we show the behavior of GAIA and GAIA+ in terms of
their ability to cluster the intra-LP communications when in presence of an
increasing number of LPs and a fixed number of simulated nodes (i.e. 3000)
organized in a scale-free topology. This figure demonstrates that GAIA, also
in this case, is able to effectively increase the percentage of local communi-
cations but with respect to the random topology, the quality of clustering
is significantly lower. In fact, the obtained percentage of local communica-
tions is lower with respect to the corresponding setup in a random topology.
As described above, this is due to the uneven characteristics of scale-free
topologies and of the communication on top of them. Again, GAIA+ shows
a behavior that is similar to GAIA but now with a relevant instability of
performances.
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5.0.3. Random Graph vs Scale-Free Network Simulation

It is interesting to observe how the WCTSs for simulating random graphs
and scale-free networks differ. In particular, the WCT observed for the se-
quential execution for random and scale-free nets (i.e. LP=1, Figures [2| and
is similar. When we consider the PADS execution, without GAIA (Figures
and , the scale-free scenario requires a higher WCT than random
networks. This is due to the fact that, even if the amount of generated
messages is similar in both scenarios, the scale free net is “more complex”
and difficult to handle. Hubs have many connections, resulting in a higher
amount of messages going to different nodes. This results in a higher amount
of inter-LP messages. When we activate GAIA, the clustering mechanism al-
lows us to reduce this workload, thus reducing the WCT needed to perform
the simulations.

6. Conclusions

In this paper, we have discussed the main characteristics in order to build
effective simulation tools for large scale complex networks. We specifically
focused on DES, with specific attention to the benefits introduced by exploit-
ing a PADS approach. Our claim is that, through PADS, it is possible to
simulate application protocols on top of complex network topologies. This
allows us to simulate very diverse real systems and understand their behav-
ior. This methodology fosters what-if analyses and enables experiments with
a synthetic model of a system, when subject to different environmental con-
ditions. This is not possible if we consider a simple analysis of static complex
networks, through complex network theory. On the other hand, the use of
traditional ABMS systems allows the creation of simple toy models, where
the behavior of each agent is usually over-simplified, as well as the agent
interactions. This is due to the fact that sequential simulators do not allow
to scale both in terms of complexity of the model and size of the simulated
system. We claim that the use of agent-based simulation over PADS method-
ologies, equipped with a tool able to generate and handle complex network
topologies, allows taking the best of the two worlds, also increasing the scal-
ability of the simulation. However, to the best of our knowledge, there were
no current tools available in the literature.

We demonstrated our claims by evaluating LUNES, a parallel and dis-
tributed simulator we built. Thank to PADS approaches and adaptive migra-
tion capabilities, the tool is able to simulate large scale networks and mim-
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icking application protocols on top of them, using an agent-based paradigm.
The tool assigns simulated entities to different nodes in the simulation ex-
ecution architecture e.g. CPU cores or hosts, and based on the level of in-
teractions among entities, it clusters most interacting entities into the same
Logical Process. This saves a lot of communication in the execution archi-
tecture, thus gaining speed in the execution of the simulation and scalability.

In the experimental evaluation, we generated networks of the order of
thousands of nodes and then we varied the network topologies between ran-
dom graphs and scale-free networks. These two network topologies are very
different and thus represent two main benchmarks to study the behavior of
the simulators. Results show that PADS strategies can be quite effective
when they are employed with clever adaptive migration strategies, which are
able to cluster interacting simulator entities, in order to reduce the commu-
nication overheads between different execution units.

Even if in this paper we have considered networks that are static in their
topology, the proposed approach seems to be well suited also for the sim-
ulation of dynamic topologies, which are also referred to as temporal net-
works. In fact, the adaptive load-balancing mechanism provided by the
GAIA/GAIA+ framework should be able to quickly react to imbalances that
are caused by changes in the network topology. For example, by adding or
deleting new nodes and their edges. Clearly, the level of dynamicity of the
temporal network will have to be carefully considered. In particular, in the
design of the self-clustering heuristics used for trigger re-allocations in the
parallel /distributed architecture. In any case, our results suggest that the
framework we proposed in this paper represents a viable approach to inves-
tigate dynamicity aspects.

Acronyms

DES Discrete Event Simulation

HPC High Performance Computing

LP Logical Process

PADS Parallel And Distributed Simulation
PDES Parallel Discrete Event Simulation

PEU Physical Execution Unit
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SE

Simulated Entity

WCT Wall Clock Time
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