
19 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Suggesting assess queries for interactive analysis of multidimensional data / Matteo Francia, Matteo
Golfarelli, Patrick Marcel, Stefano Rizzi, Panos Vassiliadis. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING. - ISSN 1041-4347. - STAMPA. - 35:9(2023), pp. 6421-6434.
[10.1109/TKDE.2022.3171516]

Published Version:

Suggesting assess queries for interactive analysis of multidimensional data

This version is available at: https://hdl.handle.net/11585/884176 since: 2023-05-02

Published:
DOI: http://doi.org/10.1109/TKDE.2022.3171516

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/884176
http://doi.org/10.1109/TKDE.2022.3171516

1

Suggesting assess queries for interactive
analysis of multidimensional data

Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Panos Vassiliadis

Abstract—Assessment is the process of comparing the actual to the expected behavior of a business phenomenon and judging the
outcome of the comparison. The assess querying operator has been recently proposed to support assessment based on the results of
a query on a data cube. This operator requires (i) the specification of an OLAP query to determine a target cube; (ii) the specification of
a reference cube of comparison (benchmark), which represents the expected performance; (iii) the specification of how to perform the
comparison, and (iv) a labeling function that classifies the result of this comparison. Despite the adoption of a SQL-like syntax that
hides the complexity of the assessment process, writing a complete assess statement is not easy. In this paper we focus on making the
user experience more comfortable by letting the system suggest suitable completions for partially-specified statements. To this end we
propose two interaction modes: progressive refinement and auto-completion, both starting from an assess statement partially declared
by the user. These two modes are evaluated both in terms of scalability and user experience, with the support of two experiments
made with real users.

Index Terms—OLAP, analytics, data exploration.

F

1 INTRODUCTION

IN the context of data analysis, assessment is a process
aimed at comparing the actual behavior of some phe-

nomenon to the expected behavior and judging, typically
through a labeling, the outcome of the comparison. For
instance, an analyst may want to assess the state of monthly
COVID-19 infections in France for 2021. (S)he will then have
to issue a query against an OLAP server to obtain a data
cube, and then ask: “how good, normal, bad is the situation I
observe for this cube as compared to some reference data?”.
Examples of how to assess the status of each single cell of
a cube include its comparison to a golden standard (e.g.,
compare French infections against the EU average) and to
sibling cells (e.g., compare French infections to those in Italy,
or infections of April 2021 to those of March 2021), possibly
using some numerical property (e.g., country populations)
to scale values and make the comparison more meaningful.

Assessment is recognized to be one of the main types
of analysis [1] and is consistently reported as a frequent
activity of data explorers [2], [3], who often carry it out using
SQL in combination with languages like Python and R. In
data storytelling, the compare pattern (which lies at the core
of the assessment process) has been discovered to be the one
most used in data stories [4], [5].

Assessment is one of the user’s intentions considered
in the Intentional Analytics Model (IAM), which has been
envisioned as a way to tightly couple OLAP and analytics
[6]. The IAM approach relies on two cornerstones: (i) users
explore the data space by expressing their analysis intentions
rather than by explicitly stating what data they need, and

• M. Francia, M. Golfarelli, and S. Rizzi are with DISI - University of
Bologna, Italy.

• P. Marcel is with the University of Tours, Blois, France.

• P. Vassiliadis is with the University of Ioannina, Greece.

(ii) in return they receive both multidimensional data and
knowledge insights in the form of annotations of interesting
subsets of data. In this context, the assess operator has been
introduced to complement the traditional OLAP roll-up’s
and drill-down’s by judging a cube measure with reference
to some baseline. The idea of how to perform an assessment
for the measure values of a cube (called target cube) encom-
passes (a) the specification of another cube, called benchmark,
that represents the expected or desirable performance of the
measure; (b) the comparison of the measure under investi-
gation to the benchmark measure (for instance via a sim-
ple mathematical difference); and (c) the characterization,
or labeling, of the status of the target cube based on the
result of the comparison. In [7] we have proposed a SQL-
like declarative syntax for the assess operator, defined its
semantics, and experimentally evaluated alternative plans
for its execution.

Example 1. Let a COVID19 cube be given, showing the
number of new cases and the number of deaths by date
and country. A user’s intention can be expressed via the
assess operator with this statement:

with COVID19 for country = ’Italy’ by country, month
assess cases against country = ’France’
using ratio(cases, benchmark.cases)
labels {[0, 0.5): quite lower, [0.5, 0.8): lower,

[0.8, 1.25]: same,
(1.25, 2]: higher, (2, +inf]: quite higher}

Intuitively, the monthly cases in Italy are as-
sessed against those in France and labeled as high-
er/same/lower based on their ratio. As also illustrated
in Figure 1, the semantics of this statement can be infor-
mally explained as follows: (A) access the cube; (B) get
the slice for Italy and group it by month; (C) get the slice

2

lower

lower

lower

lower

lower

Italy

2020-03 96000

2020-04 99986

2020-05 35344

2020-06 7291

2020-07 7760

France

2020-03 40044

2020-04 84401

2020-05 27178

2020-06 11183

2020-07 24983

Italy

2020-03 96000, 40044

2020-04 99986, 84401

2020-05 35344, 27178

2020-06 7291, 11183

2020-07 7760, 24983

B C

D Italy

2020-03 2.4

2020-04 1.2

2020-05 1.3

2020-06 0.7

2020-07 0.3

E
quite higher

same

higher

lower

quite lower

Italy France …

2020-03-01 655 115 …

2020-03-02 709 123 …

2020-03-03 768 141 …

… … … …

A
Italy

2020 179621

Italy

2020-03 96000, 179621

2020-04 99986, 179621

2020-05 35344, 179621

2020-06 7291, 179621

2020-07 7760, 179621

B C

D Italy

2020-03 -0.47

2020-04 -0.44

2020-05 -0.80

2020-06 -0.96

2020-07 -0.96

E

Italy France …

2020-03-01 655 115 …

2020-03-02 709 123 …

2020-03-03 768 141 …

… … … …

A Italy

2020-03 96000

2020-04 99986

2020-05 35344

2020-06 7291

2020-07 7760

Fig. 1. Assessment data for Example 1

for France and group it by month; (D) join the two slices;
and (E) compute the ratio and apply the labeling scheme.

�

However, some preliminary tests have shown that, de-
spite the adoption of a SQL-like syntax that hides the
complexity of the assessment process, writing a complete
assess statement may not be that easy for users. In fact,
even for skilled analysts it may be unclear which specific
data can be conveniently used as a benchmark, but also
which comparison operator and labeling scheme provide
the most effective characterization of the assessment. Thus,
in this paper we focus on making the user experience
more comfortable and fruitful by letting the system suggest
suitable completions for partially-specified statements. To
this end we propose and compare two interaction modes:
progressive refinement and auto-completion, both starting from
an assess statement partially declared by the user.

• In progressive refinement, the system supports users
in specifying the missing clauses one by one. The
idea is to let users drive the process while still re-
lieving them from the complexity of completing the
assessment in all its parts. To ensure that multiple,
diverse aspects of the data are covered, so that the
user is able to learn about their different properties,
we resort to diversification, a technique often used
to this end in exploratory data analysis [8], [9].
Specifically, as sketched in Figure 2, the system (i)
first proposes a subset of benchmarks that can give
the user a wide and diversified view of the situation
(e.g., compare a slice against a sibling slice); (ii) then,
once the user has chosen one of them, the system lets
him/her choose a comparison function (e.g., relative
difference) among a small set determined again via
diversification; and (iii) finally, the system considers
the labeling schemes (e.g., quartiles) compatible with
the chosen comparison function and suggests a rep-
resentative subset. All of this is done in a notebook-
like mode, accompanying each suggested statement
with a chart visualizing its result, so that the user can
easily keep the analysis flow under control. Diversi-
fication ensures that, each time, the user is presented
with more than one options for each choice.

• In auto-completion (Figure 3), the system relies on
the same criteria mentioned above to propose one

Assess Query
Optimizer

Data
Cube

DBMS

GUI

Refinement
Manager

Selection of
candidate

benchmarks

Selection of
candidate

comparisons

Selection of
candidate
labelings

Benchmark
diversification

OLAP query
execution

Formulation of
partial assess

statement

Assessment
visualization

1st refinement
of assess

statement

Assessment
visualization

2nd refinement
of assess

statement
Labeling

diversification
Assessment
visualization

Data
cube

Comparison
diversification

Selection of
candidate

benchmarks

OLAP query
execution

Formulation of
partial assess

statement

Data
cube

Benchmark
diversification

Selection of
candidate

comparisons

Comparison
diversification

Selection of
candidate
labelingsLabeling

diversification

Assessment
visualization

Fig. 2. Functional view of the progressive refinement process

Assess Query
Optimizer

Data
Cube

DBMS

GUI

Refinement
Manager

Selection of
candidate

benchmarks

Selection of
candidate

comparisons

Selection of
candidate
labelings

Benchmark
diversification

OLAP query
execution

Formulation of
partial assess

statement

Assessment
visualization

1st refinement
of assess

statement

Assessment
visualization

2nd refinement
of assess

statement
Labeling

diversification
Assessment
visualization

Data
cube

Comparison
diversification

Selection of
candidate

benchmarks

OLAP query
execution

Formulation of
partial assess

statement

Data
cube

Benchmark
diversification

Selection of
candidate

comparisons

Comparison
diversification

Selection of
candidate
labelingsLabeling

diversification

Assessment
visualization

Fig. 3. Functional view of the auto-complete process

representative statement that completes the one par-
tially specified by the user, and shows its results
(much like a “I feel lucky” button). Then the user
is free to manually edit the statement to better adjust
it to his/her needs, or even switch to the progressive
refinement mode.

The comparison between these two interaction modes is
made through a set of experimental tests focused both on
efficiency and effectiveness, the latter being assessed with
the support of real users.

Roadmap. In Section 2 we formalize the involved con-
cepts and introduce our working example. In Section 3 we
explain how assessments are computed, while in Section 4
we describe the operator syntax. In Section 5 we present
the basic phases that enable partial assessments to be com-
pleted, together with the progressive refinement and auto-
completion processes. Section 6 discusses the results of the
experimental tests we performed. The paper is completed by
Section 7, which discusses the related literature, and Section
8, which summarizes our findings.

3

2 FORMALITIES

To simplify the formalization, we will restrict to consider
linear hierarchies.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a
triple h = (L,�,≥) where:

(i) L is a set of categorical levels, each coupled with a
domain of values (a.k.a. as members), Dom(l);

(ii) � is a roll-up total order of L; and
(iii) ≥ is a part-of partial order of

⋃
l∈LDom(l).

A property is a numerical attribute describing a level. Each
level l is associated with a (possibly empty) set of proper-
ties, Prop(l); given member u ∈ Dom(l) we will denote
the value taken by property d ∈ Prop(l) for member u
with u.d. The part-of partial order is such that, for each
couple of levels l and l′ such that l � l′, for each member
u ∈ Dom(l) there is exactly one member u′ ∈ Dom(l′)
such that u ≥ u′.
A cube schema is a couple C = (H,M) where:

(i) H is a set of hierarchies;
(ii) M is a tuple of numerical measures, each coupled with

one aggregation operator op(m) ∈ {sum,avg,min,
max}.

We will write l�̇l′ to denote that l′ is the level immediately
below l in the roll-up order.

Example 2. As a working example we will use cube schema
COVID19 = (H,M), where

H = {hDate, hCountry}, M = 〈cases, deaths〉,
LDate = {date,month, year}, date � month � year,
Dom(date) = {2021-04-15, . . .},
Dom(month) = {2021-04, . . .}
Dom(year) = {2019, 2020, 2021},
LCountry = {country, continent}, country � continent
Dom(country) = {Italy, France,Greece, . . .},
Dom(continent) = {Europe,Australia, . . .}

and op(cases) = op(deaths) = sum. Level country has
a property named population, with France.population =
67060000. As to the part-of partial order we have, for
instance, Greece ≥ Europe and 2021-04-15 ≥ 2021. See
the supplemental material for more details. �

Aggregation is the basic mechanism to query cubes, and
it is captured by the following definition of group-by set. As
normally done when working with the multidimensional
model, if a hierarchy h does not appear in a group-by set
it is implicitly assumed that a complete aggregation is done
along h.

Definition 2 (Group-by Set and Coordinate). Given cube
schema C = (H,M), a group-by set of C is a tuple of
levels, at most one from each hierarchy of H . The partial
order induced on the set of all group-by sets of C by
the roll-up orders of the hierarchies in H , is denoted
with �H . A coordinate of group-by set G is a tuple of
members, one for each level of G. Given coordinate γ of
group-by set G and another group-by set G′ such that
G �H G′, we will denote with rupG′(γ) the coordinate
of G′ whose members are related to the corresponding

members of γ in the part-of orders, and we will say that
γ roll-ups to rupG′(γ). By definition, rupG(γ) = γ.

Definition 3 (Detailed Cube). Let G0 be the top group-
by set in the �H partial order (i.e., the finest one). A
detailed cube over C is a partial function C0 that maps the
coordinates of G0 to a numerical value for each measure
m in M .

The function is partial since cubes are normally sparse: not
all possible business events actually occur, and a coordinate
participates in the function only if the event it describes took
place. Each coordinate γ that participates in C0, with its
associated tuple t of measure values, is called a cell of C0

and denoted c = 〈γ, t〉. With a slight abuse of notation,
we will also consider a cube as the set of the coordinates
corresponding to its cells, so we will write γ ∈ C0 to state
that 〈γ, t〉 is a cell of C0.

Example 3. Three group-by sets of COVID19 are G0 =
〈date, country〉, G1 = 〈month, continent〉, and G2 =
〈year〉, where G0 �H G1 �H G2. G0 is the top
group-by set. G1 aggregates cases by date and coun-
try, G2 by year over the whole world. Examples of
coordinates of the three group-by sets are, respectively,
γ0 = 〈2020-03-01, France〉, γ1 = 〈2021-03,Europe〉, and
γ2 = 〈2020〉, where rupG1

(γ0) = γ1 and rupG2
(γ1) = γ2.

An example of cell of a detailed cube over COVID19 is
〈γ0, 〈115, 21〉〉 (see Figure 1.A). �

Definition 4 (Cube Query and Derived Cube). Given a
detailed cube C0 over schema C, a query over C0 is a
quadruple q = (C0, Gq, Pq,m) where:

(i) Gq is a group-by set of C;
(ii) Pq is a (possibly empty) set of selection predicates each

expressed over one level of H ;
(iii) m ∈M .

The result of q is called a derived cube, i.e., a partial
function that assigns to each coordinate γ of Gq satis-
fying the conjunction of the predicates in Pq the value
computed by applying op(m) to the values of m for all
the coordinates of C0 that roll-up to γ, provided that
such coordinates of C0 exist.

Like detailed cubes, even derived cubes can be sparse;
a coordinate γ does not participate in the function if there
is no coordinate in C0 that rolls-up to γ. Like for detailed
cubes, we will write γ ∈ C to state that γ is a coordinate of
the derived cube C .

Example 4. A cube query over COVID19 is q =
(C0, Gq, Pq,m) where Gq = 〈month, country〉, Pq =
{country = ’Italy’}, and m = 〈cases〉. The result-
ing cube is shown in Figure 1.B; one of its cells is
〈〈2020-04, Italy〉, 〈99986〉〉. See the supplemental mate-
rial for more details. �

3 COMPUTING AN ASSESSMENT

As explained in [7], the assessment of the values of a
measure m in a target cube C is done in four steps:

1) the specification of a benchmark, i.e., a cube B such that
(i) its cells can be mapped one-to-one with the cells

4

of C , and (ii) it has a measure m′ representing the
expected/acceptable/normal performance of m;

2) the cell-wise comparison of m to m′, which can be done
for instance using algebraic/absolute/relative differ-
ence or ratio, possibly applying some normalization to
m and m′ (e.g., to normalize the number of cases based
on the country population);

3) the characterization, or labeling, of the status of each
cell of C based on the result of the comparison; in the
simplest case, this is done using a set of rules that map
the result of the comparison to a set of predefined labels
(e.g., “insufficient”, “excellent”, etc.).

Each step will be explained in detail in the following sub-
sections.

3.1 Benchmarks

A thorough comparison of a target cube C against a bench-
mark B would require that the latter comes with the same
level members, so that each cell of C can map onto one cell
of B. However, due to cube sparsity, there is no guarantee
that all cells can be mapped. In the following we provide a
broad definition of the conditions under which two cubes
are joinable, i.e., one of them can be used as a benchmark
to assess the other; in this definition, we just require that
the group-by set of the benchmark is coarser that the one
of the target cube, so that there is a many-to-one mapping
(induced by the part-of order) between the cells of the
former and those of the latter.
Definition 5 (Cube Joinability). Let a target cube C and a

benchmark B over the same cube schema C = (H,M)
be given. Let q = (C0, G, P,m) and q′ = (C0, G

′, P ′,m′)
be the queries that resulted in C and B, respectively. We
say that C and B are joinable if G �H G′.

While in [7] four types of (joinable) benchmarks were
defined, within the scope of progressive refinement and
auto-completion we focus on two types1:

• Sibling benchmarks. The idea is to compare the values
of a measure m in a slice on member u ∈ Dom(l)
with its values in another slice of C related to a sib-
ling member u′ ∈ Dom(l) (e.g., assess the COVID-
19 cases in Italy with reference to those in France, as
done in Example 1). Both cubes have the same group-
by set, but while the cells in C are those obtained
from C0 using predicate l = u, those in B are ob-
tained from C0 using predicate l = u′. Then the cell-
to-cell mapping is established by replacing u with
u′ in each coordinate of C . In case of missing tuples
in the benchmark, the corresponding coordinate is
removed from the result.

• Parent benchmarks. In this case the user wants to
assess the values taken by m in each cell of C
against the one taken in a parent (aggregated) cell
(e.g., assess the cases in Italy with reference to those

1. The other types of benchmarks are constant benchmarks and external
benchmarks. A constant benchmark is a predefined target value for a
measure; clearly, this value must be provided by the user and cannot
be inferred by the system. An external benchmark is a cube acting as a
golden standard for the assessment; again, this cube must necessarily
be indicated by the user.

lower

lower

lower

lower

lower

Italy

2020-03 96000

2020-04 99986

2020-05 35344

2020-06 7291

2020-07 7760

France

2020-03 40044

2020-04 84401

2020-05 27178

2020-06 11183

2020-07 24983

Italy

2020-03 96000, 40044

2020-04 99986, 84401

2020-05 35344, 27178

2020-06 7291, 11183

2020-07 7760, 24983

B C

D Italy

2020-03 2.4

2020-04 1.2

2020-05 1.3

2020-06 0.7

2020-07 0.3

E
quite higher

same

higher

lower

quite lower

Italy France …

2020-03-01 655 115 …

2020-03-02 709 123 …

2020-03-03 768 141 …

… … … …

A
Italy

2020 179621

Italy

2020-03 96000, 179621

2020-04 99986, 179621

2020-05 35344, 179621

2020-06 7291, 179621

2020-07 7760, 179621

B C

D Italy

2020-03 -0.47

2020-04 -0.44

2020-05 -0.80

2020-06 -0.96

2020-07 -0.96

E

Italy France …

2020-03-01 655 115 …

2020-03-02 709 123 …

2020-03-03 768 141 …

… … … …

A Italy

2020-03 96000

2020-04 99986

2020-05 35344

2020-06 7291

2020-07 7760

Fig. 4. Assessment data for Example 5

in Europe). So let G′ be a group-by set such that
G �H G′. Then the cell with coordinate γ ∈ C is
mapped onto the one with coordinate rupG′(γ).

Noticeably, in some cases directly comparing the values
of m with its values in the benchmark is not the best option
— or even makes little sense. For instance, assume we wish
to assess the cases in Italy against those in Luxembourg.
The population of Italy is almost 100 times the one of
Luxembourg, so a direct comparison between the number
of cases in these two countries would be quite unfair. One
way to make the comparison fair would be to use some
scaling factor, e.g., the population. The same problem arises
with parent benchmarks, because comparing the cases in
Italy against the total number of cases in Europe would
make little sense. While a simple option here would be to
compare against the average cases over European countries,
a more sophisticated alternative is to use again population
as a scaling factor.
Example 5. Let C be the derived cube obtained by query

q in Example 4 (total monthly cases in Italy, Figure 1.B).
An example of sibling benchmark is Bsib returned by
qsib, being qsib obtained from q by replacing Italy with
France (Figure 1.C). Bsib can be used to assess the cases
in Italy against those in France, as in Example 1. The cell-
to-cell mapping is established by replacing Italy with
France; so, for instance, coordinate 〈2020-04, Italy〉 is
mapped onto 〈2020-04, France〉 (Figure 1.D). An example
of parent benchmark for the same target cube C is
Bpar returned by qpar , being qpar obtained from q by
replacing its group-by set with Gpar = 〈year, country〉
(G �H Gpar) and by dividing the yearly totals by 12.
This example is shown in Figure 4, where A is the de-
tailed cube C0 and B is the target cube. Bpar (Figure 4.C)
can be used to assess the monthly cases in Italy against
the average monthly cases in Italy during the whole
year. The cell-to-cell mapping is established by mapping
each month onto its year (Figure 4.D); so, for instance,
coordinate 〈2020-04, Italy〉 is mapped onto 〈2020, Italy〉.
Note that, in both these examples, descriptive attribute
population could be used for scaling. �

3.2 Comparison
The essence of assessment is to contrast the actual perfor-
mance against its expected value. Thus, the goal of this

5

step is to provide the means to express and perform the
evaluation of how far apart the query result and the bench-
mark are. We refer to this action as comparison to express the
idea that this is not necessarily a simple measure difference.
Modeling-wise, we assume that a library of comparison
functions, all with signature δ : R×R→ R, is available to the
users. Practically, a cell-wise comparison between measures
of the target and benchmark can be easily implemented
via different functions obeying the above signature. The
functions we will consider here are2:

difference(m,m′) = m−m′

relDifference(m,m′) =
m−m′

m′

ratio(m,m′) =
m

m′

An example of comparison based on the ratio function is
shown in Figure 1.E.

3.3 Labeling
The goal of this step is to associate each cell of the target
cube with a label, taken from a predefined set, to express
an evaluation of that cell with reference to the benchmark.
We assume a total ordering is defined on labels. Given
a finite set of distinct values V , a labeling function is a
surjective function that takes the form λ : R → V . Each
value resulting from the comparison of a target cube cell
with the corresponding benchmark cell is fed to the labeling
function, and assigned the appropriate label.

The labeling functions we consider are of two types:

• Functions based on explicit ranges. Specifically, we
defined functions with 2, 3, and 5 labels that can
operate on values resulting from either a difference
(centered on 0 and working with absolute values),
or a relative difference (centered on 0 and working
with percentage values), or a ratio (centered on 1).
For instance, the function used in Example 1 relies
on 5 labels and operates on ratio-based comparisons.

• Functions based on the overall value distribution. Specif-
ically, we consider an equi-depth binning function
(quartiles, can be coupled with any comparison func-
tion) and two equi-width binning functions (with 3
and 5 labels, can be coupled with both difference and
relative difference).

A simple example of a labeling function based on explicit
ranges is the one proposed in Example 1, whose resulting
labels are shown in Figure 1.E.
Example 6. Consider again Example 5, based on the cube

C yielding the monthly cases in Italy. Let us focus on
parent benchmark Bpar which yields, for each year, the
average monthly cases in Italy (Figure 4.C). A compari-
son betweenC andBpar can be done using relDifference,
coupled with a labeling defined as follows:

λ(x) =

lower, if − inf ≤ x < −0.1
same, if − 0.1 ≤ x ≤ 0.1

higher, if 0.1 < x ≤ inf

2. When using ratio, in case m′ = 0 the string inf is returned.

Now consider cell 〈〈2020-04, Italy〉, 〈99986〉〉, which is
compared with 〈〈2020, Italy〉, 〈179621〉〉 (Figure 4.D;
the total cases in Italy in 2020 were 2155446, and
2155446/12=179621). The relative difference between
these two values is −0.44, meaning that the cases in
April were 44% less than the monthly average; thus, the
cell is labeled as ’lower’ (Figure 4.E). �

4 THE ASSESS OPERATOR

In this section we define the syntax of the assess operator.
This syntax relies on the one proposed in [7], extended with
a clause to specify normalized comparisons and restricted
to sibling and parent benchmarks. The operator takes a
detailed cube C0 in input and returns a derived cube C (the
target cube) where each cell is accompanied by the result of
the comparison and by the corresponding label. The main
parameters that drive the process are (i) the measure m to
be assessed, (ii) a selection predicate P along with (iii) a
group-by set G to slice and aggregate C0, (iv) a comparison
function, and (v) a labeling function. Additional parameters
depend on the benchmark type.

The general syntax for writing an assess statement
includes three parts: one (consisting of the with, assess, by,
and for clauses) that specifies the target cube; one (consisting
of the against and scaled clauses) that specifies the bench-
mark; one (consisting of the using and labels clauses) that
specifies the assessment method:

with C0 [for P] by G
assess m against < benchmark > [scaled d]
using < function > labels λ

where C0 is a detailed cube (with schema C = (H,M)), m is
a measure ofC0, P is an (optional) set of selection predicates
each of type l = u (where l is a level of H and u ∈ Dom(l)),
G is a group-by set of C, < benchmark > is the benchmark
specification, d is a property, < function > is a comparison
function, and λ is a labeling function.

The target cube C is defined by aggregating C0 onG and
selecting the cells that meet the conjunctive predicates in P .
As to the benchmark, its specification can take two forms:

• In a sibling benchmark, the for clause must include a
predicate which slices the target cube on member u
of level l ∈ G. In this case, m is assessed against a
benchmark related to a different member of l, say u′:

with C0 for p1, . . . , pk, l = u by G
assess m against l = u′ [scaled d]
using < function > labels λ

where d ∈ Prop(l). For instance, this clause can be
used to assess the monthly cases in u = ’Italy’ against
those in u′ = ’France’ as in Example 1. If no scaled
clause is specified, the benchmark is characterized by
G′ = G, P ′ = P \{(l = u)}∪{(l = u′)}, andm′ = m.
In practice, the slicing on u is replaced by one on u′.
If the scaled clause is specified, it is used to scale the
values of m in the benchmark, so it is

m′ = m · u.d
u′.d

6

• Let G = 〈l1, . . . , l, . . . , ln〉. In a parent benchmark,
the against clause specifies the parent level l′, l�̇l′,
to be used for aggregation:

with C0 for P by G
assess m against l′ [scaled d]
using < function > labels λ

where d ∈ Prop(l). For instance, this clause can
be used to assess the monthly cases (l = month)
against the yearly ones (l′ = year). Let pl ∈ P be the
predicate, if any, expressed in the for clause on level
l. The benchmark is characterized by P ′ = P \ {pl}
and G′ = 〈l1, . . . , l′, . . . , ln〉. As to the benchmark
measure m′, we observe that clearly, if op(m) = sum,
the values of m in the target cube cannot be directly
compared to those in the benchmark, so it cannot
be m′ = m.3 If no scaled clause is specified, a
simple average is used; thus, for each coordinate
γ = 〈v1, . . . , u, . . . , vn〉 ∈ C , with u ∈ Dom(l), it
is

m′ = m · 1

|Domu(l)|

where Domu(l) = {ui ∈ Dom(l) s.t. ui ≥ u′},
u′ ∈ Dom(l′), and u ≥ u′ (intuitively, for each mem-
ber u, m′ is the average of m over all the children of
u’s parent in the part-of order). This means that, for
instance, the cases of April 2020 would be assessed
against the average of the monthly cases of 2020.
If the scaled clause is specified, it is used to scale
the values of m in the benchmark; thus, for each
coordinate γ = 〈v1, . . . , u, . . . , vn〉 ∈ C it is

m′ = m · u.d∑
ui∈Domu(l)

ui.d

Finally, as to the assessment method, its specification is
based on the using and labels clauses:

• The using clause specifies a function (e.g., a differ-
ence or a ratio) that describes how the comparison is
made; a keyword benchmark is used to distinguish
the cells of the target cube from the corresponding
ones in the benchmark.

• The labels clause specifies a labeling function, either
based on explicit ranges (e.g., negative values are
bad, positive values are good) or on the overall
value distribution (e.g., quartiles), to be applied to
the result of the computation specified by the using
clause.

In all cases above, the result returned to the user in-
cludes, for each cell, (i) its coordinate, (ii) the value of m
for that coordinate, (iii) the value of m′ for the benchmark,
(iv) the value resulting from the comparison, and (v) the
corresponding label.

3. For simplicity here we assume that scaling is applied to additive
measures and properties only. Investigating how to properly scale
measure values in the other cases is left for future work.

Example 7. A statement based on a sibling benchmark has
already been shown in Example 1. One based on a parent
benchmark is given below:

with COVID19 for country = ’Italy’ by country, month
assess cases against year
using ratio(cases, benchmark.cases)
labels {[0, 0.5): quite lower, [0.5, 0.8): lower,

[0.8, 1.25]: same,
(1.25, 2]: higher, (2, +inf]: quite higher}

This one assesses the monthly cases in Italy against the
average cases for each year. Thus, as already explained in
Example 6, the cases in Italy for April 2020 are compared
against one twelfth of the cases in Italy for the whole
2020. Similarly, the following one assess the monthly
cases in Italy against the European average scaled by
the country population:

with COVID19 for country = ’Italy’ by country, month
assess cases against continent scaled population
using ratio(cases, benchmark.cases)
labels {[0, 0.5): quite lower, [0.5, 0.8): lower,

[0.8, 1.25]: same,
(1.25, 2]: higher, (2, +inf]: quite higher}

5 COMPLETING PARTIAL ASSESSMENTS

In this section we discuss how a partial assessment specified
by the user can be completed. The partial statement must
include at least the with, by, and assess clauses, while the
for clause is optional:

with C0 [for P] by G assess m

We will assume for simplicity that no other clauses are spec-
ified by the user at this stage; clearly, if either the against,
using, or labels clauses are included in the partial statement,
the corresponding refinement step will be omitted.

After explaining how we determine the sets of candidate
benchmarks, comparisons, and labelings, we describe the
diversification step aimed at picking some representative
candidates to be suggested to the user. Then we explain how
the results of each step are visualized. Finally, we describe
the overall processes of refinement and auto-completion.

5.1 Selection of candidates

Let P and G be, respectively, the (possibly empty) set of
predicates (for clause) and the group-by set (by clause) in
the partial assessment.

(i) The set of candidate benchmarks, S, is made of both
parent and sibling benchmarks. Specifically:

• for each l ∈ G, S includes a parent benchmark
on the level l′ immediately below l in the roll-up
order (l�̇l′);

• for each l ∈ G, if there is a predicate (l = u) ∈
P , then S includes a sibling benchmark for each
other member of Domu(l).

7

(ii) The set of candidate comparisons,R, includes the three
functions listed in Section 3.2, each applied with no
scaled clause and with a scaled clause on each prop-
erty in Prop(l). The ratio function is excluded when
the domain of the measure to be assessed includes
negative values.

(iii) The set of candidate labelings, T , includes all the func-
tions that are compatible with the comparison function
selected.

Example 8. Let the following one be the partial statement
formulated by the user:

with COVID19 for country = ’Italy’ by country, month
assess cases

Then, the set of candidate benchmarks includes two
parent benchmarks and one sibling benchmark for each
other European country, resulting in the following possi-
ble refinements: against continent, against year, against
country = ’France’, etc. As to candidate comparisons,
level country has one population property, so R includes
six comparisons (the three functions of Section 3.2, each
applied with and without a scaled population clause).

5.2 Diversification

In querying and analysis applications, the capability of rank-
ing data with respect to diversity features is becoming more
and more valuable [9]. The idea is that not only the retrieved
elements should be as relevant as possible to the query, but
also that the result set should be as diverse as possible.
Specifically, diversification is achieved by maximizing the
sum of inter-element distances amongst elements of the
result set [8].

Diversification is applied in our approach to select repre-
sentative candidates among benchmarks, comparisons, and
labelings. To this end we adopted the k-medoids algorithm
[10], which partitions the candidates into k clusters while
minimizing intra-cluster distance, and returns cluster cen-
troids as representative candidates. The number of clusters
k determines the alternatives that will be offered to users.
Setting k to a fixed, small value ensures adaptation to our
scenario, in which there are interaction and visualization
constraints; however, it is also possible to automatically tune
k based on the actual distribution of values (e.g., as done in
[11]).

Diversifying benchmarks, comparisons, and labelings
requires different distance functions, as explained below; we
recall that such functions are the ones to be minimized for
building clusters of similar elements.

(i) Benchmark diversification. Picking a subset of represen-
tative benchmarks from S is based on the distance of
their measure values. We adopt the Euclidean distance
since measure values belong to R and have the same
semantics.

(ii) Comparison diversification. Directly diversifying com-
parisons results —e.g., the results of a ratio and a
difference— is not sound, as comparison functions
convey different semantics. Thus, to pick a subset of
representative comparisons from R we rely on the
similarity between meta-features describing the result

Spain

UK

Netherlands
continent

Belgium
Greece

Finland

benchmark.cases (2021-01)

be
nc
hm

ar
k.
ca
se
s(

20
21

-0
2)

0 200k 400k 600k 800k 1000k 1200k

500k

400k

300k

200k

100k

0

France

year

Germany

Germany
2021-01 ‹cases = 513032›
2021-02 ‹cases = 216648›

Fig. 5. Benchmark diversification; representative candidates are shown
as larger, grey circles

of the comparison. Specifically, we compute the mean,
variance, and skewness of each comparison and use
these values as the components of the vectors to
be diversified [12]. Euclidean distance between meta-
feature vectors is then adopted.

(iii) Labeling diversification. Picking a subset of representa-
tive labelings from T is based on the agreement between
label values; being ordinal, label values act as ranks
of the comparison result. In particular, we adopt the
Kendall’s Tau distance [13], a metric that counts the
number of disagreements between two ranking lists
by counting the swaps necessary to place one list
in the same order as the other list. Specifically, the
Kendall’s tau distance between two rankings λ1 and
λ2, denoted K(λ1, λ2), is defined as the number of
pairs of candidates whose relative ordering is different
between λ1 and λ2.

Once pairwise distances between candidate items (either
benchmarks or comparisons or labelings) are computed,
these items are split into k clusters whose centroids are
picked as the k representatives.
Example 9. Consider again the partial intention in Exam-

ple 8, restricted for simplicity to two months: January
and February 2021. Figure 5 positions some candidate
benchmarks (2 parent benchmarks and 10 sibling bench-
marks for European countries) within a scatter chart
based on the number of cases they yield in the two
selected months, showing the three clusters obtained and
the corresponding representative benchmarks. An exam-
ple of computation of the Euclidean distance between
two candidate benchmarks to be used for clustering is:√
(513032− 186524)2 + (216648− 115767)2 = 341737,

where 513032 and 216648 (186524 and 115767) are the
numbers of cases in Germany (Netherlands) in January
and February 2021, respectively.

5.3 Visualization
This step aims at letting the user preview the assessment re-
sults at each refinement, so that (s)he can pick the suggestion
in terms of benchmark/comparison/labeling (s)he deems
most interesting for completing the statement. To choose an
approach for visualization we considered that:

1) The dimensionality of the result will be b + 2, where b
is the number of levels in the by clause that are not also

8

included in the for clause (plus one dimension for the
result of comparison and one for the labels).

2) The by clause can include at most two levels besides
those also appearing in the for clause, so b ≤ 2 and the
dimensionality will be at most 4.

3) Level members typically have either nominal, ordinal,
or interval type, while the comparison result is nor-
mally a ratio value and the labels are ordinals.

4) The visualization should be oriented to comparison,
since the user will use it to pick the most interesting
suggestion.

Based on the above, and taking into account the commonly
adopted data visualization guidelines [14], we opted for
using small multiples [15] featuring either bar graphs or
bubble graphs. After each refinement, a small multiple is
drawn featuring one graph for each suggested assessments.
Bar graphs are used when dimensionality is 2 or 3; the
vertical axis shows the member names, while the bar length
and color show, respectively, the comparison value and the
label of each cell. Bubble graphs are used when dimension-
ality is 4; the two axes show the member names for the
two grouping levels, while the bubble size and color show,
respectively, the comparison value and the label of each cell.
The most proper color code can be interactively selected
by the user (e.g., a red-to-green code can be selected to
emphasize that some labels are “preferred” to others).

Figure 6 shows an example of visualization (obtained
through the web-based interface for our prototype imple-
mentation) after the first step of progressive refinement. The
two benchmarks proposed are of parent and sibling type,
respectively; the default comparison and labeling functions
used are shown in angular brackets.

5.4 Progressive refinement
As already mentioned, the basic idea of this interaction
mode is to let the users drive the process step by step while
relieving them from the complexity of completing the as-
sessment in all its parts. We emphasize that this complexity
arises not so much from the syntax of the operator, but
rather from the difficulty in choosing a proper benchmark,
comparison, and labeling among the set of possible alterna-
tives.

The first refinement stage is aimed at the selection of a
benchmark and takes place in four steps (see Figure 2):
1.1 Selection of candidate benchmarks. The set of candidate

benchmarks S is determined (Section 5.1, (i)).
1.2 OLAP query execution. Given the levels in the group-

by set G expressed in the by clause and the selection
P in the for clause, the goal of this step is to retrieve
the target cube C and join it with the corresponding
(parent and sibling) benchmarks. A parent benchmark
B on level l′ (e.g., continent), direct parent of l ∈ G
(country), is obtained with a cube query whose selection
is P and whose group-by set is G \ {l} ∪ {l′}. B is
then joined with C . Noticeably, this join can be avoided
for sibling benchmarks. By issuing a single cube query
whose group-by set is G and whose selection drops
predicate l = u from P , both the target slice and the
sibling slices are retrieved; sibling slices are then pivoted
into measures as explained in [7].

1.3 Benchmark diversification (Section 5.2, (i)) is applied to
obtain a set S ⊆ S of k representative benchmarks.
Each benchmark in S is then associated with one default
comparison (difference) and with one default labeling
(quartiles) to obtain complete statements.

1.4 Assessment visualization and Refinement of assess state-
ment. The user previews the results of the assessments
based on S and on the default comparison and labeling
(Section 5.3), and selects one of the proposed assess-
ments for further refinement.

LetB ∈ S be the benchmark used in the assessment selected
by the user. The second refinement stage is aimed at the
selection of a comparison to be coupled with B and takes
place in three steps:
2.1 Selection of candidate comparisons. The set of candidate

comparisons R is determined (Section 5.1, (ii)).
2.2 Comparison diversification (Section 5.2, (ii)) is applied to

obtain a set R of k representative comparisons. Each
comparison in R is then associated with one default
labeling (quartiles) to obtain complete statements.

2.3 Assessment visualization and Refinement of assess state-
ment. The user previews the results of the assessments
based on B, on R, and on the default labeling (Section
5.3), and selects one of the proposed assessments for
further refinement.

Let r ∈ R be the comparison used in the assessment selected
by the user. The last stage is aimed at the selection of a
labeling to be coupled with B and r and takes place in three
steps:
3.1 Selection of candidate labelings. The set of candidate label-

ings T is determined (Section 5.1, (iii)).
3.2 Labeling diversification (Section 5.2, (iii)) is applied to

obtain a set T of k representative labelings.
3.3 Assessment visualization. The user previews the results of

the assessments based on B, r, and T (Section 5.3).
Note that, at each stage, the user can edit all the assess

statements either to complete and execute them, or to mod-
ify the suggestions given by the system.

In terms of computational cost, in Section 6.1 we demon-
strate that -quite expectedly- among all these steps, the one
taking most time is by far 1.2, which reads the target and
benchmark data from the DBMS.

5.5 Auto-completion

The goal of this interaction mode is to give the users who
formulate a partial intention an immediate and represen-
tative completion, to let them quickly evaluate its results.
Clearly, the users can then manually edit the statement in
each of its clauses to better tune it to their analysis interests.
The process can be sketched as follows:
1 Selection of candidate benchmarks. The set of candidate

benchmarks S is determined (Section 5.1, (i)).
2 OLAP query execution. Same as for progressive refinement.
3 Benchmark diversification (Section 5.2, (i)) is applied to ob-

tain one representative benchmark B ∈ S; specifically, B
is the centroid of S obtained via the k-medoid algorithm
with k = 1.

4 Selection of candidate comparisons. The set of candidate
comparisons R is determined (Section 5.1, (ii)).

9

Fig. 6. An example of visualization after the first step of progressive refinement (the picture only shows two suggestions for better readability)

5 Comparison diversification (Section 5.2, (ii)) is applied to
obtain one representative comparison r ∈ R.

6 Selection of candidate labelings. The set of candidate label-
ings T is determined (Section 5.1, (iii)).

7 Labeling diversification (Section 5.2, (iii)) is applied to obtain
one representative labeling λ ∈ T .

8 Assessment visualization. The user previews the results of
the assessment based on B, r, and λ (Section 5.3).

Again, the most expensive step is 2, which reads the target
and benchmark data from the DBMS.

6 EXPERIMENTS

The source code for the prototype implementation we used
for the tests is available at https://github.com/big-unibo/
assess; the web-based interface can be accessed at http:
//big.csr.unibo.it/projects/assess/. The prototype uses the
simple multidimensional engine described by [16], which
in turn relies on the Oracle 11g DBMS to execute queries
on a star schema based on multidimensional metadata (in
principle, the prototype could work on top of any other
multidimensional engine). The mining models are imported
from the Scikit-Learn Python library.

6.1 Scalability

These tests aim at evaluating the querying performance
by measuring the time required to return the assessment
under different conditions. To this end we used the Star
Schema Benchmark (SSB) cube, described by four hierar-
chies; please refer to [17] for the logical schema of SSB.
Specifically, we generated four base SSB cubes, namely

TABLE 1
Times for computing an assessment with parent benchmarks (in

seconds); |G| denotes the number of levels in the by clause

Partial refinement Auto-complete
|G| SSB1 SSB5 SSB10 SSB15 SSB1 SSB5 SSB10 SSB15

1 11 37 84 97 11 40 95 116
2 24 100 223 293 28 107 242 340
3 70 332 690 1045 73 331 746 1145

SSB1, SSB5, SSB10, and SSB15, with different scale factors
resulting in the following cardinalities:

|SSB1| = 6 · 106, |SSB5| = 3 · 107

|SSB10| = 6 · 107, |SSB15| = 9 · 107

Note that the cardinality of each cube is equal to the number
of tuples in the corresponding fact table. As commonly done
in OLAP settings, primary and foreign keys were indexed
using B-Trees. Each test has been repeated multiple times
and the average results are reported. The tests were run on
an Intel(R) Core(TM)i7-6700 CPU@3.40GHz with 8GB RAM.

Tables 1 and 2 show the times required to compute dif-
ferent assessments based on parent and sibling benchmarks,
respectively, with the four SSB cubes and in either partial
refinement or auto-complete mode. Our first comment is
that the performance of the refinement and auto-complete
modes are roughly the same (for a fair comparison, in partial
refinement mode the times taken to execute each step are
summed up); thus, in the following we will focus on the
auto-complete mode only.

https://github.com/big-unibo/assess
https://github.com/big-unibo/assess
http://big.csr.unibo.it/projects/assess/
http://big.csr.unibo.it/projects/assess/

10

TABLE 2
Times for computing an assessment with sibling benchmarks (in
seconds); |P | denotes the number of predicates in the for clause

Partial refinement Auto-complete
|P | SSB1 SSB5 SSB10 SSB15 SSB1 SSB5 SSB10 SSB15

1 14 42 99 109 13 44 98 124
2 21 60 146 160 23 62 146 164
3 26 74 194 204 30 79 192 204

SSB1 SSB5 SSB10 SSB15

101

102

103

Ti
m

e
(s

)

|G| = 1
|G| = 2
|G| = 3

SSB1 SSB5 SSB10 SSB15
101

102

103

Ti
m

e
(s

)

|P| = 1
|P| = 2
|P| = 3

Fig. 7. Times for computing an assessment with parent (left) and sibling
(right) benchmarks in auto-complete mode

Figure 7 shows how performance scales when the car-
dinality of the cube and the assessment complexity are
increased, for parent and sibling benchmarks. For parent
benchmarks, the simplest (partial) statement is with SSB
by year assess quantity, which is made more complex by
adding first category, then nation to the by clause. The
cardinalities of the target cubes for the three resulting
assessments are 7, 175, and 4375, respectively. For sibling
benchmarks, the simplest (partial) statement is with SSB for
year = ’1992’ by year assess quantity, which is made more
complex by adding first a predicate on category, then one
of nation to the for clause (and the corresponding levels to
the by clause). The cardinality of the target cubes here is
always 1. The number of siblings involved is 7 for year, 25
for category, and 5 for nation.

When increasing the cardinality of the SSB cube, the
execution times scale linearly for the parent benchmark and
less than linearly for the sibling benchmark. In the first case,
as confirmed by Table 1, the relative increase in time is the
same as the one in cardinality, since each intention accesses
all the cube tuples (i.e., no selection predicate is applied).
For the sibling benchmark (Table 2), the selection predicates
restrict the access to fewer cube tuples, so the time increase
is smaller.

We also note that, expectedly, the execution time in-
creases proportionally to the number of parents and siblings
since (i) adding parents and siblings increases the number
of joins necessary to build the benchmark, and (ii) adding
parents increases the cardinality of such cube. In particular,
in sibling benchmarks the increase in time is smaller than in
parent benchmarks due to the selectivity of the predicates
involved in the intention; intuitively, the computation of a
parent benchmark typically requires a large portion of the
cube to be accessed (e.g., to assess the cases for Italy, all the
cells of Europe must be accessed), while the computation of
a sibling benchmark only requires accessing a smaller cube
slice (e.g., to assess the cases in Italy, the corresponding cells
for France must be accessed).

TABLE 3
Breakdown of the execution time for SSB15 (in seconds)

|C| Querying Comparison Labeling

Sibling
|P | = 1 1 124 0.007 0.02
|P | = 2 1 164 0.007 0.02
|P | = 3 1 204 0.007 0.02

Parent
|G| = 1 7 116 0.007 0.02
|G| = 2 175 340 0.007 0.1
|G| = 3 4375 1137 0.02 8

Finally, Table 3 shows the execution time for the auto-
complete mode, broken down into (i) querying (selection
of candidate benchmarks, OLAP query execution, and di-
versification), (ii) comparison (selection of candidate com-
parisons and diversification), and, (iii) labeling (selection
of candidate labelings and diversification). For both sibling
and parent benchmarks, the largest amount of time is spent
(by far) in reading the target and benchmark data from
the DBMS; this time could be improved by leveraging
workload-specific optimization strategies. While the diver-
sification time necessary to select comparison functions is al-
most negligible, diversifying labeling schemes takes slightly
longer due to the computation of the Kendall Tau distance
[13].

6.2 User experience

In this section we describe two experiments carried out to
put our approach to the test with real users. The first experi-
ment, called Exp1 from now on, concerns a cube measuring
the electric consumption in France4 by IRIS (an IRIS is a
subdivision of a French town), year, consumption category
(residential, professional, enterprise), and commercial sector
(e.g., telecommunications and catering). The second experi-
ment, Exp2, has been conducted on the COVID19 cube used
as a working example throughout the paper5. The test had
three main goals: (i) evaluate the user satisfaction with the
interaction paradigm and the assess operator, (ii) compare
the auto-complete and progressive refinement modes in
terms of user satisfaction and formulation effort, and (iii)
evaluate the saving in formulation effort of the two modes
as compared to manual writing of assess statements. See
the supplemental material for more details about the data
used.

In all our tests we set k = 3 to avoid burdening users
with too much information.

6.2.1 Description
The relevant figures for the two cubes used in the exper-
iments are summarized in Table 4. In Exp1, 5 volunteers
were involved. All of them were data journalists or data
enthusiasts with little or no skill in databases and OLAP
but a good knowledge of the business domain (electric
consumption in France). In Exp2, 10 PhD students and post-
docs with good database and OLAP skills and some generic

4. https://data.enedis.fr/explore/dataset/
consommation-electrique-par-secteur-dactivite-iris/export/

5. https://www.ecdc.europa.eu/en/publications-data/
data-national-14-day-notification-rate-covid-19

https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/export/
https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/export/
https://www.ecdc.europa.eu/en/publications-data/data-national-14-day-notification-rate-covid-19
https://www.ecdc.europa.eu/en/publications-data/data-national-14-day-notification-rate-covid-19

11

TABLE 4
Main figures for the cubes used in the experiments

Cube name ELEC CONS COVID19

] dimensions 4 2
] measures 1 2

cube cardinality 2,968,697 14,704
dimension cardinality 45, 268× 10× 3× 97 77× 214
total number of levels 12 6

knowledge of the business domain (COVID-19 infections)
were involved.

In both cases, the users were first shown a 10 minutes
tutorial video explaining the meaning of assessment, the
operator syntax, and the test goal6; then they were assigned
two tasks:
Task 1: Assess a specific cube measure for a specific slice

starting from a given partial statement. This had
to be done in three steps: (i) use auto-completion
to obtain a fully-specified statement; (ii) manually
edit this fully-specified statement to try to obtain a
more interesting result; (iii) starting again from the
initial partial statement, use progressive refinement
to obtain a fully-specified statement.

Task 2: Given a generic assessment goal, take 20 minutes to
assess the cube measures by writing one or more
partial statements and freely using one or the other
mode.

Eventually, we collected the feedback of the users by means
of a questionnaire. The participants answered a set of ques-
tions aimed at assessing their satisfaction from different
points of view. For the first 14 questions we adopted a 5-
point Likert scale, which allows a neutral midpoint and two
nuances for positive and negative answers. These questions
are:

1) Satisfaction with the assessment obtained by auto-completion (Task 1.i)
2) Satisfaction with the assessment obtained by editing the previous one (Task

1.ii)
3) Experience with the auto-complete mode in terms of quality and interest
4) Experience with the auto-complete mode in terms of effort
5) Satisfaction with the assessment obtained by progressive refinement (Task

1.iii)
6) Experience with the progressive refinement mode in terms of quality and

interest
7) Experience with the progressive refinement mode in terms of effort
8) Satisfaction with the benchmarks proposed (Task 2)
9) Satisfaction with the comparisons proposed (Task 2)

10) Satisfaction with the labeling schemes proposed (Task 2)
11) Satisfaction with the label coloring schemes proposed (Task 2)
12) Complexity of assess statements
13) Understandability of assess statements
14) Preference of refinement over auto-completion

The last question was in open form and aimed at collecting
general suggestions.

6.2.2 Results
We start by discussing Exp1. As shown in Figure 8, the pro-
gressive refinement mode is preferred to the auto-complete
mode in terms of effort (questions 4 and 7) by data jour-
nalists, while it is considered mostly equivalent in terms of
satisfaction with the assessment obtained (questions 1 and 5)
and overall experience (questions 3 and 6). Manual editing
after auto-completion brings some marginal improvement
(questions 1 and 2). Among the single components of the

6. https://tinyurl.com/4tnddrp8 (in French)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Exp1

0

1

2

3

4

5

0%

20%

40%

60%

80%

100%

* ** *** **** *****

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Exp2

* ** *** **** *****

0

1

2

3

4

5

Fig. 8. Questionnaire results for the user experiments

approach that were evaluated, comparison functions were
liked the least (question 9) while coloring schemes were
liked the most (question 11). Users found the syntax of
complete assess statements (those suggested by the system)
complex and not very understandable (questions 12 and 13).
At the end of the test, no user expressed a preference for
auto-completion over progressive refinement (question 14).

As to Exp2, progressive refinement is preferred by stu-
dents in terms of effort but also of satisfaction and overall
experience. Manual editing after auto-completion seems to
bring no real improvement. Among the single components
of the approach, labeling schemes were liked the least while
comparison functions were liked the most. The judgement
of understandability and complexity is better than the one
by journalists. Again, at the end of the test, no user ex-
pressed a preference for auto-completion over progressive
refinement.

The suggestions given in open form from both user
groups were mainly focused on auto-completing the names
of members to facilitate writing the for clause, on the dif-
ficulty in interpreting the charts at first glance, and on the
possibility of having explanations of the selections made by
the system.

Table 5 shows, for both experiments and both modes, the
average number of assess statements issued, the average
percentage of characters saved in formulating an assess-
ment using our approach, the average percentage of edited
statements, the average time taken by the user to interpret
the charts obtained and take a further action, and the av-
erage time taken by the system to compute an assessment.
As an example of computation of the formulation saving,
consider again Figure 6: Intention 0 (the partial intention
initially formulated by the user) and Intention 1 (a complete
intention proposed via progressive refinement) take 68 and
144 characters, respectively, so the formulation saving is
(144− 68)/144 = 53%.

6.2.3 Lessons learnt
With reference to the three goals of these experiments, we
can conclude that:

https://tinyurl.com/4tnddrp8

12

TABLE 5
Average number of statements per task, formulation saving, editing

effort, and timing for the user experiments

Exp1 Exp2
Progr. ref. Auto-compl. Progr. ref. Auto-compl.

] statements 3 1 3 1
Form. saving 42% 40% 54% 51%
Edit effort 66% 50% 39% 48%
Form. time 80s 15s 34s 21s
Exec. time 7s 7s 6s 6s

(i) Overall, the user satisfaction with the approach is
good. Some users found the syntax of complete assess
statements overly complex, which confirms that giving
suggestions to complete partial statements is important
to make the assess operator more usable.

(ii) Progressive refinement is preferred to auto-completion
from all points of view.

(iii) Both interaction modes significantly help users in the
assessment process by saving, on average, about half
the formulation effort.

Interestingly, the user groups involved in Exp1 and Exp2
behaved differently. Being domain experts, data journalists
do deeper and more focused analyses. This is shown by
the high percentage of edited statements in Exp1 (Table 5):
users have a clear understanding of the domain and look
for specific parents and siblings; thus, they spend more time
in getting insights from the comparisons suggested. Con-
versely, students in Exp2 tend to perform more explorative
analyses, which entail fewer edits and a “coarser” reading
of the charts (i.e., users are focused more on general trends
rather than on the details).

7 RELATED WORK

Our approach lies at the intersection of three active research
areas: OLAP operators, interactive data exploration, and visual-
ization.

OLAP comes with a large number of proposals on its
foundations and operators; we refer the interested reader to
an excellent survey [18]. Over the years, several additional
operators have been proposed to complement the funda-
mental ones and have been recently classified depending
on their purpose [19]: coverage (return patterns that cover
tuples with certain values; e.g., [20]), information (return
patterns providing information about the distribution of
measure values; e.g., [21]), and contrast (return patterns
occurring with some values but not the others). Noticeably,
while coverage and information operators are focused on
returning tuples representative of different parts of a cube,
contrast operators entail the comparison of cube tuples —
thus, they are closely connected to our approach. Specif-
ically, among contrast operators, some variants of a DIFF
operator have been introduced either to (i) return the set
of tuples that most successfully describe the difference of
values between two given cube cells [22]; (ii) group and
highlight commonalities among data points [23]; or (iii) pin-
point differences between two datasets that share the same
discrete attributes [24]. The EKISO algorithm [25] returns
the best insights derived from aggregating a cube; insights
are scored with respect to how much the returned value

impacts on the aggregate and how unexpected the insight
is. The RELAX operator verifies whether a pattern observed
at a certain level of detail is present at a coarser level of
detail too [26]. In the same direction of RELAX, in [27], the
authors evaluate and confirm the accuracy of user insights
on a given query result. Alternative operators have also
been proposed in the Cinecubes approach [28] to compare
the result of a given query to results over sibling values
or drill-downs. The Cinecubes can be seen as a form of
assessment, although neither tunable nor explicitly invoked
by the user. Finally, Siddiqui et al. [29] define the Compare
operator to give a clear semantics and logical foundations
to general comparisons of two series of data. While assess
is expressed in terms of a cube algebra and implemented
as a web application, Compare is expressed in SQL and
implemented within a RDBMS.

Similarly to OLAP operators, interactive data explo-
ration aims at producing sequences of queries that can
give users interesting insights, and is often complemented
by visualization techniques capable of highlighting hidden
patterns. Many studies focus on learning users’ preferences
to suggest personalized search and give recommendations
[30]; this is somehow complementary to our approach, since
assess could be one of the potential patterns to be learned
and recommended to the users. Similarly, in [31], the authors
profile the explorations of a user and use the maximum
entropy principle to recommend parts of the cube can be
the most surprising in a subsequent query. NextiaJD [32]
aims at finding interesting and accurate joins (in other
terms, at suggesting benchmarks) to bring together datasets
with heterogeneous schemata. Other approaches, that can
be profitably used for interactive data exploration, aim at
creating data descriptions, i.e., explanations that make large
dataset more understandable at a glance by a user. For
instance, in [33] this description is generated in the form
of predicates that apply to the target dataset.

As to visualization, query result comparison is achieved
by showing multiple visualizations juxtaposed and high-
lighting the difference between them [4]. In [5], the au-
thors return visualization sequences by grouping subsets
of visualizations with shared properties (e.g., a common
measure or time period) so as to minimize the cognitive cost
(or perceived amount of difference) across adjacent views.
Similarly, Voyager2 [34] allows users to specify multiple
charts in parallel by authoring partial specifications; Voy-
ager2 returns a chart gallery, showing all charts that satisfy
the specified constraints, and uses the global minimum
and maximum values of a data field to aid comparison
across charts. Finally, Zenvisage [35] introduces an algebra
to compose, filter, compare, and sort multiple visualizations.

Overall, the novelty of the approach based on the assess
operator lies in (i) the fundamental problem it addresses,
i.e., the support to a complete assessment process consisting
of getting the benchmark, computing the comparison, and
labeling the result; (ii) the adoption of a declarative syntax
to hide the complexity of the assessment; and (iii) the auto-
matic/interactive refinement of each part of this process.

We close this section by observing that, although the
work presented in this paper may seem to be related to
the recommendation of OLAP queries (e.g., [36]) or sessions
(e.g., [37]), the goal of recommendation is quite different:

13

given interestingness and similarity functions and former
analytic sessions, recommendation helps a user navigating
data by recommending queries/sessions that are either sim-
ilar to what interested her in the past or that interested
similar users.

8 CONCLUSIONS

In this paper we proposed and evaluated two interaction
modes aimed at supporting the assessment process by
suggesting completions for partially-specified assess state-
ments. Both modes have performances compatible with the
interactivity requirement of analysis sessions. The tests with
users showed a good level of user satisfaction, with a clear
preference of progressive refinement over auto-completion.

Our future work on this topic will be mainly aimed
at addressing the issues raised by the users during the
experiments; specifically, we will investigate how to provide
an effective explanation of the system’s suggestions.

As a final remark, we emphasize that the assessment
suggested by the auto-complete mode is typically not in-
cluded in those proposed by partial refinement. Indeed, this
is a predictable consequence of the approach adopted for
the two modes: although the same clustering algorithm is
used, auto-completion sets k = 1 since it aims at providing
a representative assessment, while refinement sets k > 1
since it aims at diversification. Thus, the two modes can be
eventually seen as complementary rather than competing.

REFERENCES

[1] V. L. O’Day and R. Jeffries, “Orienteering in an information
landscape: how information seekers get from here to there,” in
Proc. INTERACT, 1993, pp. 438–445.

[2] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise
data analysis and visualization: An interview study,” IEEE Trans.
Vis. Comput. Graph., vol. 18, no. 12, pp. 2917–2926, 2012.

[3] K. Wongsuphasawat, Y. Liu, and J. Heer, “Goals, process, and
challenges of exploratory data analysis: An interview study,”
CoRR, vol. abs/1911.00568, 2019.

[4] T. Blount, L. Koesten, Y. Zhao, and E. Simperl, “Understanding
the use of narrative patterns by novice data storytellers,” in Proc.
CHIRA, 2020, pp. 128–138.

[5] J. Hullman, R. Kosara, and H. Lam, “Finding a clear path: Structur-
ing strategies for visualization sequences,” Comput. Graph. Forum,
vol. 36, no. 3, pp. 365–375, 2017.

[6] P. Vassiliadis, P. Marcel, and S. Rizzi, “Beyond roll-up’s and drill-
down’s: An intentional analytics model to reinvent OLAP,” Inf.
Syst., vol. 85, pp. 68–91, 2019.

[7] M. Francia, M. Golfarelli, P. Marcel, S. Rizzi, and P. Vassiliadis,
“Assess queries for interactive analysis of data cubes,” in Proc.
EDBT, 2021, pp. 121–132.

[8] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, C. T. Jr., and V. J. Tsotras, “On query result diversi-
fication,” in Proc. ICDE, 2011, pp. 1163–1174.

[9] O. B. El, T. Milo, and A. Somech, “Automatically generating data
exploration sessions using deep reinforcement learning,” in Proc.
SIGMOD, 2020, pp. 1527–1537.

[10] X. Jin and J. Han, “K-medoids clustering,” in Encyclopedia of
Machine Learning, C. Sammut and G. I. Webb, Eds. Springer US,
2010, pp. 564–565.

[11] M. Francia, P. Marcel, V. Peralta, and S. Rizzi, “Enhancing cubes
with models to describe multidimensional data,” Inf. Syst. Front.,
2022, to appear.

[12] T. Haslwanter, An Introduction to Statistics with Python: With appli-
cations in the life sciences. Springer, 2016.

[13] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee,
“Comparing and aggregating rankings with ties,” in Proc. PODS,
2004, pp. 47–58.

[14] K. Börner, Atlas of knowledge: anyone can map. MIT Press, 2015.

[15] E. Tufte, The Visual Display of Quantitative Information. Graphics
Press Cheshire, 1983, vol. 2.

[16] M. Francia, E. Gallinucci, and M. Golfarelli, “COOL: A framework
for conversational OLAP,” Inf. Syst., vol. 104, p. 101752, 2022.

[17] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak, “The star schema
benchmark and augmented fact table indexing,” in Proc. TPCTC,
2009, pp. 237–252.

[18] O. Romero and A. Abelló, “On the need of a reference algebra for
OLAP,” in Proc. DaWaK, 2007, pp. 99–110.

[19] L. Golab and D. Srivastava, “Exploring data using patterns: A
survey and open problems,” in Proc. DOLAP@EDBT/ICDT, 2021,
pp. 116–120.

[20] L. Golab, H. J. Karloff, F. Korn, and D. Srivastava, “Data auditor:
Exploring data quality and semantics using pattern tableaux,”
Proc. VLDB Endow., vol. 3, no. 2, pp. 1641–1644, 2010.

[21] A. Chédin, M. Francia, P. Marcel, V. Peralta, and S. Rizzi, “The
tell-tale cube,” in Proc. ADBIS, 2020, pp. 204–218.

[22] S. Sarawagi, “Explaining differences in multidimensional aggre-
gates,” in Proc. VLDB, 1999, pp. 42–53.

[23] F. Abuzaid et al., “DIFF: a relational interface for large-scale data
explanation,” VLDB J., vol. 30, no. 1, pp. 45–70, 2021.

[24] R. Subramonian, “Defining diff as a data mining primitive,” in
Proc. KDD, 1998, pp. 334–338.

[25] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang, “Extracting top-
k insights from multi-dimensional data,” in Proc. SIGMOD, 2017,
pp. 1509–1524.

[26] G. Sathe and S. Sarawagi, “Intelligent rollups in multidimensional
OLAP data,” in Proc. VLDB, 2001, pp. 531–540.

[27] E. Zgraggen, Z. Zhao, R. C. Zeleznik, and T. Kraska, “Investigating
the effect of the multiple comparisons problem in visual analysis,”
in Proc. CHI, 2018, p. 479.

[28] D. Gkesoulis, P. Vassiliadis, and P. Manousis, “CineCubes: Aiding
data workers gain insights from OLAP queries,” Inf. Syst., vol. 53,
pp. 60–86, 2015.

[29] T. Siddiqui, S. Chaudhuri, and V. R. Narasayya, “COMPARE:
accelerating groupwise comparison in relational databases for
data analytics,” Proc. VLDB Endow., vol. 14, no. 11, pp. 2419–2431,
2021.

[30] L. Song, J. Gan, Z. Bao, B. Ruan, H. V. Jagadish, and T. Sellis, “In-
cremental preference adjustment: a graph-theoretical approach,”
VLDB J., vol. 29, no. 6, pp. 1475–1500, 2020.

[31] S. Sarawagi, “User-adaptive exploration of multidimensional
data,” in Proc. VLDB, 2000, pp. 307–316.

[32] J. Flores, S. Nadal, and O. Romero, “Towards scalable data discov-
ery,” in Proc. EDBT, 2021, pp. 433–438.

[33] M. Paganelli, P. Sottovia, A. Maccioni, M. Interlandi, and F. Guerra,
“Explaining data with descriptions,” Inf. Syst., vol. 92, p. 101549,
2020.

[34] K. Wongsuphasawat et al., “Voyager 2: Augmenting visual analy-
sis with partial view specifications,” in Proc. CHI, 2017, pp. 2648–
2659.

[35] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. G.
Parameswaran, “Effortless data exploration with zenvisage: An
expressive and interactive visual analytics system,” Proc. VLDB
Endow., vol. 10, no. 4, pp. 457–468, 2016.

[36] M. Francia, M. Golfarelli, and S. Rizzi, “A-BI+: A framework for
augmented business intelligence,” Inf. Syst., vol. 92, p. 101520,
2020.

[37] A. Giacometti, P. Marcel, E. Negre, and A. Soulet, “Query recom-
mendations for OLAP discovery-driven analysis,” Int. J. of Data
Warehousing and Mining, vol. 7, no. 2, pp. 1–25, 2011.

Matteo Francia received his Ph.D. in Computer
Science and Engineering from The University of
Bologna, Italy. He is an adjunct professor and
a post-doc research fellow at The University of
Bologna. His research focuses on advanced an-
alytics and unconventional data, with particular
reference to trajectory, social, and sensory data.

14

Matteo Golfarelli is full professor at the Uni-
versity of Bologna. He is author of over 130
publications in international journals and confer-
ences mainly in the areas of database systems
and business intelligence. His research interests
include Big Data Analytics, Machine Learning,
NoSQL. He is member of the steering committee
of DOLAP and associate editor for DKE and
Electronics journals.

Patrick Marcel is an Associate Professor at the
University of Tours, France. His current research
focuses on OLAP and data warehousing, recom-
mender systems, exploratory data analysis and
data narration. He authored numerous publica-
tions in international conferences and journals
on these subjects. He is a member of the steer-
ing committee of DOLAP and a member of the
regular editorial board of DKE.

Stefano Rizzi is a Full Professor at the Uni-
versity of Bologna, Italy. He has authored more
than 150 papers in international journals and
conferences mainly in the field of business intel-
ligence. He is member of the steering committee
of DOLAP and of the editorial board of DKE.
His research interests include data warehouse
design and business intelligence.

Panos Vassiliadis is a professor at the Uni-
versity of Ioannina, Greece. His research fo-
cuses on the rigorous modeling of data, soft-
ware, and their interdependence. Currently he
works in the areas of business intelligence
and schema evolution. He is a senior member
of the IEEE. More information is available at
http://www.cs.uoi.gr/ pvassil.

	Introduction
	Formalities
	Computing an assessment
	Benchmarks
	Comparison
	Labeling

	The assess operator
	Completing partial assessments
	Selection of candidates
	Diversification
	Visualization
	Progressive refinement
	Auto-completion

	Experiments
	Scalability
	User experience
	Description
	Results
	Lessons learnt

	Related work
	Conclusions
	References
	Biographies
	Matteo Francia
	Matteo Golfarelli
	Patrick Marcel
	Stefano Rizzi
	Panos Vassiliadis

