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a b s t r a c t

The Unresolved Obstacles Source Term (UOST) is a general methodology to parameterize the dissipative
effects of subscale islands, cliffs and unresolved coastal features in oceanwavemodels. It can be applied to
any numerical scheme and modulates the dissipation with spectral direction. Its applicability to practical
contexts is made possible by the development of the software package alphaBetaLab, which given a
mesh and a high-resolution bathymetry is able to automatically estimate the cell-dependent transparency
coefficients needed by UOST (Mentaschi et al., 2018). Here we provide the documentation of the package,
of its architecture and flow, and a couple of illustrative applications.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

In large-scale modelling of ocean waves, subscale islands, cliffs
and features are a major source of local error if neglected. This
can affect large portions of the domain [1]. The Unresolved Ob-
stacles Source Term (UOST) is a general approach to parameter-
ize such effects. It comes with advantages on numerical-scheme-
based approaches that are usually limited to regular grids and do
not consider the spatial/directional layout of the obstructions. The
potential of UOST was first shown by Mentaschi et al. [2], who
introduced the method and implemented it in the spectral wave
model WAVEWATCH III (WW3, [3]). Mentaschi et al. [4] first ap-
plied themethodologywith real-world bathymetry and input data.
Mentaschi et al. [5] showed that on global scale UOST has a positive
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impact on themodel skill compared to other approaches, thanks to
the modulation of wave dissipation with spectral direction.

For each partially obstructed cell of the mesh, UOST needs
several parameters, such as the direction-dependent transparency
coefficients of the cell. Therefore, itwas necessary to develop a soft-
ware (the alphaBetaLab package) for the automatic estimation of
such parameters from meshes and bathymetries. This manuscript
offers a brief overview of the UOST methodology (Section 2), dis-
cusses the flow and architecture of alphaBetaLab (Section 3), and
describes a couple of illustrative examples included in the source
code (Section 4). The conclusions are drawn in Section 5.

2. Overview on the Unresolved Obstacles Source Term (UOST)

UOST relies on the hypothesis that any mesh can be considered
as a set of polygons, called cells, and that the model estimates the
average spectrum of each cell. Given a cell (labelled as A in Fig. 1a
and b), UOST estimates for each spectral component the effect of
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Fig. 1. (a) a square cell (A) and its upstream polygon (A’, delimited by blue line, in light blue colour) for a spectral component propagating with group velocity cg; (b) same
as (a) but for a triangular mesh (the hexagons approximate the median dual cells, i.e. the cells of a triangular mesh); (c) computation of the transparency coefficient for a
square cell and a spectral component propagating along the x-axis (the brown squares represent unresolved obstacles); and (d) like (c) but for a hexagonal cell and for a
tilted spectral component (here the grey squares represent unresolved obstacles).

(a) the unresolved features located in A (local dissipation); (b) the
unresolved features located upstream of A and their shadow on A
(shadow effect). For the estimation of the shadow, an upstream
polygon A’ is defined for each cell/spectral component as the in-
tersection between the joint cells neighbouring A (cells B, C and D
in Fig. 1ab) and the flux upstream of A. Two different transparency
coefficients are needed for each cell/polygon and for each spectral
component:

1. The overall transparency coefficient α, computed from the
ratio between the cross section of the obstacles and the
one of the polygon containing them (Fig. 1c and d). For an
obstacle-free cell α = 1.

2. A layout-dependent transparency β , defined as the average
transparency of cell sections starting from the cell upstream
side. If the obstacles are located close to the upstream side
of the cell then β ∼ α, if the obstacles are located close to
the downstream side of the cell then β ∼ 1.

An important limitation of UOST is that, in order to work properly
on a given cell, the time step for the source terms (also called
the global time step in WW3) should be less than or equal to the
critical Courant–Friedrichs–Lewy (CFL) time step of the cell, i.e., the
amount of time needed by the fastest spectral component to en-
tirely cross the cell. Otherwise, part of the energy will leak through
the cell without being blocked. For a more detailed description of
UOST the reader is referred to [2,4].

3. Software description

alphaBetaLab comes as a Python2.7 library. Its use requires an
operating system fully supported by Python. An installation guide
valid for unix operating systems is provided in the wiki page.
Running alphaBetaLab on large domains can be computationally

expensive and the required time can be significantly reduced by
running it in parallel on multicore workstations.

In the remainder of this section, we present an overview of
the software flow and architecture. To fully understand this topic,
some knowledge of object-oriented programming is required. For
more detailed information, the reader is referred to the related
section in the wiki.

The flowchart of alphaBetaLab is shown in Fig. 2. In synthe-
sis, the input of the system consists of a model mesh and high-
resolution bathymetric data. alphaBetaLab assumes that a mesh
(represented by an object of class abGrid) can be considered as a
set of polygons, called cells. Utility functions create instances of
abGrid objects for different types of mesh (e.g. regular, triangular
or Spherical Multi Cell – SMC – mesh). The main routine of alpha-
BetaLab is in the module abEstimateAndSave, which launches the
algorithm and saves the output. The algorithm loops on the cells of
the mesh and estimates the transparency coefficients for the local
dissipation and for the shadow. The output is finally saved to the
file format that can be read by the UOST source term implemented
in the wave model (see the wiki page for a detailed explanation).

3.1. High-resolution matrix of transparency

alphaBetLab needs a high-resolution map of the features (small
islands, cliffs, coastal features) that are unresolved in the mesh.
This definition is provided through the class abHighResAlphaMa-
trix. The elements of the matrix are coefficients of transparency
to the waves, and have a value between 1 (no obstruction) and 0
(land pixel). At high resolution, the transparency coefficients are
assumed to be independent from the wave direction.

Instances of abHighResAlphaMatrix based on ETOPO1 [6]
can be built using the function loadBathy found in the module
abEtopo1BathyLoader. Future releases will also support the Gen-
eral Bathymetric Chart of theOceans (GEBCO, [7]) and allow to load
multipleDigital ElevationModels (DEM)with different resolutions,
giving priority to higher resolution DEMs.

https://github.com/menta78/alphaBetaLab/wiki/Installation-guide
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https://github.com/menta78/alphaBetaLab/wiki/Output
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Fig. 2. Flowchart of alphaBetaLab.

3.2. Model mesh definition

The class _abGrid, in module abGrid, defines a model mesh as
a collection of polygons, each representing a cell. For the defi-
nition of the polygon objects, alphaBetaLab relies on the library
shapely. _abGrid objects have knowledge of the position of each
cell and of its neighbours, enabling a fast estimation of the up-
stream polygon for each wave direction. Only the cells containing
unresolved obstacles are relevant to the algorithms implemented
in alphaBetaLab, while empty and land cells are excluded from
_abGrid instances. Furthermore, in cells intersecting large land
bodies UOST would usually conflict with the resolved portion of
coastal dynamics. Therefore, also the coastal cells are generally
excluded from the instances of _abGrid (the logics of exclusion of
coastal cells are defined in class abCoastalCellDetector, see thewiki
for more details).

The instances of _abGrid for specific types of mesh are gen-
erated by specialized utility classes and functions: (a) abRectan-
gularGridBuilder for regular grids; (b) abTriangularGridBuilder for
triangular meshes, which supports the input formats gmesh (used
by WW3 and by Wind Wave Model — WWM [8]) and gr3 (used
by the hydraulic model SCHISM [9]); and (c) abSMCGridBuilder
for Spherical Multi-Cell (SMC) meshes [10,11], which is still under
development.

3.3. Upstream polygon

To be able to estimate the shadow effect, an upstream polygon
needs to be computed for each cell-polygon and spectral compo-
nent. The upstreampolygon of a cell A is defined as the intersection

between the joint cells neighbouring A and the flux of the spectral
component upstream of A. In alphaBetaLab this is computed by
function getUpstreamPoly of the module abUpstreamPolyEstima-
tor. This function takes as arguments a cell-polygon, a neigh-
bourhood polygon and a direction. The neighbourhood polygon
is estimated within the class _abGrid and is given by the union
of the neighbour polygons. It can be retrieved with the method
_abGrid.getNeighbors.

3.4. Estimation of α and β in a single polygon

For each single polygon (that can be a cell or an upstream poly-
gon) the value of the directional α transparency coefficients are
computed by instances of the class abSingleCellAlphaEstimator.

The method computeAlpha computes α for a given spectral
component as a function of the cross section of the unresolved
features inside the polygon along the propagation direction. Inside
this function, the problem is first rotated and reflected to transform
it to the first octant (class abFirstOctantTransformation in mod-
ule abFirstOctantTransformation). Then the computation is done
on the first octant (private method _getAlphaFirstOctant of class
abSingleCellAlphaEstimator).

The computation of the β coefficients is executed by abSin-
gleCellBetaEstimator objects in the method computeBeta. Similar
to the method computeAlpha of abSingleCellAlphaEstimator, the
problem is transformed to the first octant before the actual compu-
tation. The algorithm implemented in _getBetaFirstOctant follows
the definition of β: estimate n polygon slices starting from the
upstream side of the cell and then for each of these slices estimate
the α coefficient. The value of β is then given by the average of the

https://pypi.python.org/pypi/Shapely
https://github.com/menta78/alphaBetaLab/wiki/Software-architecture
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α coefficients over the slices [2,4]. This approach provides accurate
estimations of β but is computationally expensive. A future, more
optimized implementation will start from the value of α and will
change it as a function of the distribution of the obstacles in the
polygon. If the distribution mean lies close to the upstream side
of the cell then β ∼ α. If it lies at the downstream side then
β ∼ 1. If the distribution mean lies at a certain position between
the two sides then β will be increased with respect to α by the
corresponding fraction.

3.5. Cell sizes

UOST needs the sizes of the cell-polygon along the propagation
directions of each spectral component. These distances (that must
be estimated in meters) are computed within the class abCellSize.
The algorithm finds the main axes of the cell-polygon and approx-
imates it as an ellipse.

3.6. Assembling all together

Given an instance of _abGrid and one of abHighResAlphaMa-
trix, the computation of α and β for all the cells/upstream poly-
gons/directions is performed within the class abCellsEstimator.

To speed up the computation a few directional bins are consid-
ered (8 by default) and the estimated α and β are subsequently
interpolated to the directions of the spectral grid.

To attain better performances alphaBetaLab is extensively par-
allelized using the Python multiprocessing approach that can be
successfully employed in shared memory environments.

3.7. Saving the output

The output of the algorithms, described in the previous sections,
consists of two sets of α and β coefficients, one for the local
dissipation and one for the shadow effect. These two sets are
saved to two separate files (class abWwiiiObstrFileSaver, method
saveFiles) in the format that can be loaded by the UOST module
of WW3. The default names of the output files are obstructions_
local.<gridname>.in and obstructions_shadow.<gridname>.in. For
a description of the format of the output files the reader is referred
to the wiki and to the examples provided in the source repository.

3.8. End user commands

Wave modellers should not handle directly the modules/
classes/algorithms described in the previous sections. Rather, they
should invoke simple functions with simple parameters that ac-
complish all the requested activities. This end-user Application
Programming Interface (API) is implemented in the module abEs-
timateAndSave and includes the possibility to pass parameters to
the different components of the algorithm (module abOptionMan-
ager, see thewiki for a list of available parameters and their default
values). In Section 4 two examples showing the use of such API are
illustrated.

3.9. Shortcomings

A practical issue of alphaBetaLab when working on large do-
mains is that it is rather slow. A development that could sig-
nificantly boost the execution speed is the optimization of the
computation of β , as explained in Section 3.4.

Another shortcoming is that in presence of unresolved break-
water intersecting several consecutive cells, the approach imple-
mented in abSingleCellAlphaEstimator and abSingleCellBetaEsti-
mator based on the estimation of the cross section of the obstacle in

each single cell is not enough. In such cases abSingleCellAlphaEs-
timator would detect a total block only for spectral components
normal to the breakwater,while if all the cells crossedby the break-
water are considered, the block should be total for all the spectral
components propagating from one side of the breakwater to the
other. Tackling this problembecomes important at high resolution.
A prototype of an algorithm to deal with this problem is developed
inmodule abLongBreakWaterLocAlphaAdjust. However, it was not
applied in the case study analysed by [4] and will require further
testing before being available for use. Moreover, it is unoptimized
and not parallelized.

Finally, the classes/functions handling the SMC meshes are still
under development. Addressing this pointwill be necessary to fully
support all the numerical schemes available in WW3.

4. Illustrative examples

The examples below are available in the project repository and
can be used as a guideline on how to prepare simple Python scripts
that launch alphaBetaLab.

To run the illustrative examples, the user must have down-
loaded alphaBetaLab (let us assume to the directory /src/
alphaBetaLab/) and installed it in an instance of Python (which we
assume can be called with the command ablPython). For instruc-
tions on how to install alphaBetaLab the reader is referred to the
wiki.

4.1. A global regular domain

In this example alphaBetaLab and WW3/UOST are run on a
global regular domain at a resolution of 1.5◦.

The script to generate the transparency coefficients needed by
UOST for this example is

/src/alphaBetaLab/examples/ww3/regularMesh/
bathyAndObstructionsGlobal/obstFileBuilder.py.

A line-by-line explanation of the script is provided in thewiki. After
a set of instructions that generate the input of the algorithm (the
spectral grid, the specifications of the regular grid, the path of the
bathymetric file, the output directory, the number of cores for the
parallelization, an optional set of algorithm parameters), the core
of the script is the last instruction:

abEstimateAndSaveRegularEtopo1(dirs, freqs, gridname, regularGrid-
Spec, etopoFilePath, outputDestDir, nParWorker, opt)

This launches the computation and saves the output.
To generate the input files for UOST the user should use the

console commands:

$ cd /src/alphaBetaLab/examples/ww3/regularMesh/
bathyAndObstructionsGlobal/

$ ablPython obstFileBuilder.py.

The run can take some time. A faster example can be found in
directory
/src/alphaBetaLab/examples/ww3/regularMesh/
bathyAndObstructionsCaribbean, which estimates α and β on a
subset (the Caribbean Sea) of the same domain.

The two output files are located in
/src/alphaBetaLab/examples/ww3/regularMesh/
bathyAndObstructionsGlobal/output.

UOST is available in the official version 6.x of WW3. To enable
it, the user has to enable the UOST switch before the compilation
(see the manual of WW3 for details).

An example ofWW3 setup using the obstruction files generated
with this illustrative example can be found in /src/alphaBetaLab/
examples/ww3/regularMesh/wwiiiRunCFSR. The script to launch
the simulation is run_multi_restarts.sh, in which the following
variables need to be modified:

https://github.com/menta78/alphaBetaLab/wiki/Output
https://github.com/menta78/alphaBetaLab/wiki/Parameters
https://github.com/menta78/alphaBetaLab/wiki/Installation-guide
https://github.com/menta78/alphaBetaLab/wiki/Examples
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Fig. 3. Significant wave height simulated in the illustrative case on a global regular grid for February 21st 2000, 3:00. The red rectangles highlight some of the areas where
the sheltering effect of the unresolved small islands is clear.

Fig. 4. Significant wave height simulated in the illustrative case on a Mediterranean triangular mesh for January 15th 2000, 13:00. The red rectangles highlight some areas
where the sheltering effect of the unresolved small islands is clear.

1. the variable exepath must be set to the directory containing
the ww3 executables (e.g. /myww3/v6.x/exe).

2. nParallelProc should be set to the number of desired parallel
processes.

3. mpicmd must be set to the mpirun command (e.g. /mympi/
bin/mpirun). If nParallelProc is 1 this variable is not required.

This simulation by default runs for the months of January and
February 2000, and saves the output as netcdf in the same direc-
tory. The significant wave height (Hs) simulated for February 21st
2000 is shown in Fig. 3. Inmany areas (highlightedwith red rectan-
gles), the dissipation due to unresolved islands parameterized by
UOST is clearly visible, as a decrease of Hs.

4.2. A triangular mesh on the Mediterranean Sea

In this example, alphaBetaLab and WW3/UOST are run on a
triangular mesh covering the Mediterranean Sea with a resolution
variable between 20 km and 2 km.

The sample script that generates the obstruction files is /src/
alphaBetaLab/examples/ww3/regularMesh/bathyAndObstructions
/obstFileBuilder.py. This script is similar to the one described in the
previous example and a line-by-line explanation can be found in
the wiki.

The main instructions of the script are:

triMeshSpec = triMeshSpecFromMshFile(‘med.msh’)

which instantiates a specification object for the triangular mesh
loaded from file med.msh. The subsequent line

abEstimateAndSaveTriangularEtopo1(. . . )

performs the elaboration and saves the output. In this case, the
cells smaller than 3 km are skipped by alphaBetaLab due to the
parameter minSizeKm = 3. Such small cells would require a too
small global time step in WW3 to be adequately resolved and
would slow down the computation of alphaBetaLab.

A setup of WW3 to run this case study can be found in /src/
alphaBetaLab/examples/ww3/triangularMesh/wwiiiRunCFSR and
is similar to the one of the previous example. AmapofHs simulated
for January 15th 2000 is shown in Fig. 4. In the areas highlighted
with red rectangles, the unresolved islands parameterized byUOST
have a clear sheltering effect.

5. Impact and conclusions

alphaBetaLab allows the employment of UOST in real-world
wave modelling applications with clear advantages for the wave
community. Considering the directionality of the unresolved fea-
tures and their geometrical layout inside each cell, UOST has a

https://github.com/menta78/alphaBetaLab/wiki/Examples
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positive impact on the model skill both in terms of mean wave
parameters and the wave spectrum, with mean results close to the
ones of higher resolutionmodels [4,12]. The independence of UOST
from the numerical scheme for energy propagation will allow
the parameterization of the unresolved obstacles with any mesh
supported by alphaBetaLab. The availability of UOST will simplify
the generation process of unstructured meshes (refinement at any
small island will not be needed) and improve their computational
economy (the flux of waves in complex areas like archipelagos
will be satisfactorily parameterized at a much lower resolution).
Therefore, it will impact positively on the use of flexible meshes in
large-scale contexts.
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