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This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, 
represents the first coordinated multivariate ensemble of 21st Century global wind-wave climate 
projections available (henceforth COWCLIP2.0). COWCLIP2.0 comprises general and extreme statistics 
of significant wave height (HS), mean wave period (Tm), and mean wave direction (θm) computed over 
time-slices 1979–2004 and 2081–2100, at different frequency resolutions (monthly, seasonally and 
annually). The full ensemble comprising 155 global wave climate simulations is obtained from ten 
CMIP5-based state-of-the-art wave climate studies and provides data derived from alternative wind-
wave downscaling methods, and different climate-model forcing and future emissions scenarios. The 
data has been produced, and processed, under a specific framework for consistency and quality, and 
follows CMIP5 Data Reference Syntax, Directory structures, and Metadata requirements. Technical 
comparison of model skill against 26 years of global satellite measurements of significant wave height 
has been undertaken at global and regional scales. This new dataset provides support for future broad 
scale coastal hazard and vulnerability assessments and climate adaptation studies in many offshore and 
coastal engineering applications.

Background & Summary
Wind-generated waves are recognized as a key element of the climate system1, having considerable environmen-
tal2,3, geophysical3,4 and socioeconomic5 impacts globally. They are considered paramount to navigation planning, 
offshore and coastal engineering activities, and energy generation (from fossil to renewable energy)6 with struc-
tural design strongly dependent on wind-wave characteristics.

Furthermore, ocean waves are considered dominant drivers of coastal dynamics and stability7,8, and are key 
contributors to coastal sea-level extremes at multiple time-scales9,10. Hence, integrating non-stationary multivar-
iate wave conditions into broad-scale comprehensive assessments of future coastal hazards and vulnerability is 
critical10,11 to avoid potentially costly maladaptation12. These assessments must consider not only wave run-up 
and swash contributions9,10,13 but also changes in littoral sediment supply whose effects on the open coasts can 
be as considerable as effects of projected future sea-level rise13–15. Impacts of a changing wave climate might also 
affect surfing tourism worldwide, a growing market with economic relevance16.

However, projected wave climate data is not available among the standard suite of climate variables used 
to characterize the climate system1,17 since coupled atmosphere-ocean general circulation models (GCMs) 
under the Coupled Model Intercomparison Project 5 (CMIP5)18 do not usually include wind-wave-dependent 
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parameterizations As a result, the availability of projected wind-wave climate data is limited relative to other 
climatological parameters such as temperature, precipitation and/or sea level. Using atmospheric forcing derived 
from CMIP5 GCM models to force dynamical or statistical wave models, multiple international climate research 
groups19–28 have developed ensembles of global wave climate projections. However, these standalone studies cover 
different subsets of the uncertainty space (e.g., number of climate models, or emission scenarios), use different 
wave downscaling approaches, consider different historical and future simulation periods and provide different 
wave characteristics, within a range of data formats.

Hence, to date, there is no consistent global multivariate dataset of global wave climate projections capa-
ble of sufficiently sampling the uncertainty associated with projected future ocean wave climate available29 
for widespread use by stakeholders, government, and the research community. Here, we describe the first 
community-driven dataset (COWCLIP2.0) of 21st century global wind-wave climate projections comprising dif-
ferent dynamical and statistical downscaled data. This collection assembles ten individual global datasets and was 
created under a pre-designed sampling framework established by the Coordinated Ocean Wave Climate Project 
(COWCLIP)30–32.

The COWCLIP2.0 dataset aims to meet current needs from many different perspectives, through the pro-
vision of an open access spatial data collection which provides consistent data (in terms of format, resolution 
and quality) across the global ocean. This dataset archived in Network Common Data Form (NetCDF) with CF 
(Climate & Forecasts) compliant metadata contains a large ensemble of 148 global ocean wave climate projec-
tions gridded on a 1° spatial grid resolution (i.e., a common grid is imposed on the various resolutions of the 
different datasets - section 2.3.2). The dataset provides a variety of standard wave statistics for present-day and 
future global multivariate wave fields (HS, Tm and θm) at monthly, seasonal and annual time scales (Table 1). The 
COWCLIP2.0 data also includes a new set of extreme HS indices designed by the Expert Team on Climate Change 
Detection (hereafter ETCCDI)33 (https://www.wcrp-climate.org/data-etccdi). These represent an additional set of 
ocean wave statistics (Table 2) relevant to climate change detection for a range of scientific applications.

The COWCLIP2.0 dataset overcomes many previous limitations29, including lack of standardisation amongst 
existing CMIP5-driven global wave field simulations (e.g. wave variables and their statistics, spatial coverage and 
resolution and time-slices used for simulation) and limited sampling of dominant sources of uncertainty (e.g., 
model forcing and wave-downscaling uncertainties). This extensive wave information can now be widely used by 
different research communities (e.g. those focusing on natural hazards, coastal management, renewable energy, 
and ship navigation). The purpose is for this dataset to expand, as further projections of future global wave cli-
mate become available. It is envisaged that open and easy access to such dataset might provide a new stimulus 
and facilitates broad-scale coastal hazard and vulnerability assessments. It is also a robust basis for a range of 
inter-comparison analyses (e.g., quantification of sources of uncertainty)29, given the size and diverse nature of 
this dataset. For instance the annual and seasonal set of wave statistics from the COWCLIP2.0 ensemble were 
recently used to quantify the robustness and uncertainties in multivariate global wave projections34.

Research centre CSIRO19 JRC20 USGS21 NOC22 ECCC (d)23 IHE24 LBNL25 KU26 IHC27 ECCC (s)28

Country Australia EU US UK Canada Netherlands US Japan Spain Canada

Emission scenario RCP4.5/8.5 RCP4.5/8.5 RCP4.5/8.5 RCP4.5/8.5 RCP8.5 RCP8.5 RCP8.5 RCP8.5 RCP4.5/8.5 RCP4.5/8.5

Number of GCM(s) used 8 6 4 1 5 1 1 4 29 20

Atmospheric downscaling (high-resolution atmospheric models and/or regional climate models)

Atmospheric downscaling No No No No No No CAM5a MRI-AGCMb No No

Wind-wave modelling configuration (WMM)

Wind-wave modelling 
method Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Statistical Statistical

Statistical/Spectral wave 
model WW3 WW3 WW3 WW3 WW3 WAM4.5 WW3 WW3 Weather type Regression

Surface wind/SLP forcingc 3-hourly 3-hourly 3-hourly 3-hourly 3-hourly 3-hourly 3-hourly 6-hourly Daily SLP 6-hourly SLP

Atmospheric correction — — — — — — — — SLP SLP

Source-term packaged ST3 (BJA) ST4 ST2 ST4 ST4 ST3 ST4 ST4 — —

Calibration Default Default Default Default Default Default Default Default — —

Sea-Ice forcing Monthly No No Daily Daily Daily Monthly Monthly — —

Spatial resolution (°) 1 × 1 1.5 × 1.5 1.25 × 1 ~0.7 × 0.5 1 × 1 1 × 1 0.25 × 0.25 ~0.56 × 0.56 1 × 1 1 × 1

Spectral partition 29f × 24d 25f × 24d 25f × 24d 30f × 36d 29f × 24d 32f × 24d 32f × 36d 29f × 36d — —

Bathymetry data ETOPO ETOPO DBDB2 GEBCO DBDB2 ETOPO ETOPO ETOPO — —

Table 1. Summary of the wave contributions to the COWCLIP2.0 intercomparison data set. The emission 
scenarios (RCP pathways) and wave downscaling approaches used by each wave climate modelling group are 
provided. The specific GCM models used by each climate modelling group are provided in Supplementary 
Table 1. aobserved SST obtained from the HadISST1-based data set were used to force the atmospheric model 
CAM5. bSST0 to SST3 correspond to four different SST future change patterns derived from CMIP5 GCM 
models to force the atmospheric model MRI-AGCM32. cSurface wind/Sea level pressure (SLP) forcing used 
to drive the wave simulations. dSource-term physics (e.g., whitecapping dissipation formulation) used in the 
spectral wave model (consistent with the definitions used in the WW3 manual).
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The development of the COWCLIP2.0 dataset helps wave researchers and data users to address the previ-
ous limited sampling of dominant uncertainties (e.g., model forcing and wave-downscaling) and significantly 
enhances interoperability. Before this dataset was created, researchers could access only a limited range of sim-
ulations, meaning assessment across projection scenarios and intra and/or inter-model ensembles were chal-
lenging31,35, with little possibility of sampling the uncertainty among wave downscaling methodologies. The 
inconsistencies in output wave parameters and data structures made intercomparison analysis between wave data 
produced by different modelling groups difficult.

Methods
In this data descriptor, we explain the methods and techniques used to generate the original data; the data acquisi-
tion process; the standardized framework applied; the methodology used to derive the vast range of wave param-
eters/statistics for historical and future periods; and the computational processing used to create this consistent 
global dataset.

The dataset presented has been compiled from ten standalone CMIP5-based global wave projection datasets, 
which have been extensively described elsewhere. Those wave projection data sets draw on thirty-three different 
CMIP5 climate models to force the dynamical and statistical wave models, listed in Table 1. In this section, we 
provide a concise description of the original data created by each wave climate modelling group, with the details 
of each contribution provided in Table 1.

CMIP5 GCM-forced dynamical global simulations. CSIRO: Multiple-model multiple-scenario ensem-
ble. Hemer and Trenham19 (hereafter CSIRO) developed a global wind-wave climate projection dataset derived 
using a dynamical wave approach. Surface wind fields (10 m) at 3-hourly temporal resolution and sea-ice fields 
at monthly frequency, taken from eight CMIP5 GCMs, were used to drive a global WAVEWATCH III (WW3)36 
wave model at 1° spatial grid resolution. The WW3 was setup using the ST3 (BAJ) source-term physics. The 
simulations were conducted under RCP4.5 and RCP8.5 emission scenarios for three time-slices: 1979–2005, 
2026–2045 and 2080–2100.

JRC: Multiple-model, multiple-scenario ensemble. Mentaschi et al.20 (hereafter JRC) developed a global wave 
climate projection dataset using 3-hourly surface wind forcing from six CMIP5 models to drive a global WW3 
model at 1.5° grid resolution. The WW3 model was set up using the ST4 source-term physics with no sea-ice forc-
ing fields. The simulations were conducted between 1970–2100 under emission scenarios RCP4.5 and RCP8.5.

USGS: Multiple-model, multiple-scenario ensemble. Li et al.21 (hereafter USGS) used 3-hourly surface winds (no 
sea-ice concentration) simulated by four CMIP5 GCMs to generate an ensemble of wave conditions for a recent 
historical time-period (1976–2005) and projections for the middle and end of the 21st century for 2 forcing 
scenarios (RCP4.5 and RCP 8.5). The wave fields were simulated by the wave model WW3, applied globally at 
1 × 1.25° grid resolution.

NOC: Single-model, multi-scenario ensemble. Bricheno and Wolf22 (hereafter NOC) developed a global wave 
climate projection for RCP4.5 and RCP8.5 scenarios, using surface wind forcing fields from EC-EARTH and 

COWCLIP2.0 set of wave statistics

Variable Statistics ID Indicator name Time-frame resolutions Units

via getStat.f

HS

Hs_avg Mean significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_p10 10th Percentile significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_p50 50th Percentile significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_p90 90th Percentile significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_p95 95th Percentile significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_p99 99th Percentile significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Hs_max Maximum significant wave height Annual (1), Seasonal (4) and Monthly (12) m

Tm

Tm_avg Average mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_p10 10th Percentile mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_p50 50th Percentile mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_p90 90th Percentile mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_p95 95th Percentile mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_p99 99th Percentile mean wave period Annual (1), Seasonal (4) and Monthly (12) s

Tm_max Maximum mean wave period Annual (1), Seasonal (4) and Monthly (12) s

via getStatDir.f

θm θm_avg Circular mean Annual (1), Seasonal (4) and Monthly (12) °N

θm_std Circular standard deviation Annual (1), Seasonal (4) and Monthly (12) °N

Table 2. Summary of the variables and standard wave statistics included in the COWCLIP2.0 data set.

https://doi.org/10.1038/s41597-020-0446-2
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daily sea-ice concentration to drive a global WW3 wave model (using the ST4 source-term physics). The global 
simulation was conducted at ~0.7 × 0.5° between 1970–2100.

ECCC (d): Multiple-model, single-scenario ensemble. Casas-Prat et al.23 (hereafter ECCC(d)) developed a global 
wave climate projection dataset at 1° grid resolution (refined to 0.5° nearshore). The simulations were conducted 
using the WW3 model using the ST4 source-term physics, forced by 3-hourly surface winds and daily sea-ice 
fields taken from the RCP8.5 emissions scenario simulations by five CMIP5 climate models. Simulations were 
conducted for two time-slices: 1979–2005 and 2081–2100.

IHE-DELFT: Single-model, single-scenario multiple-run ensemble. Semedo et al.24 (hereafter IHE-DELFT) devel-
oped a dataset of global wave climate projections using the WAM4.5 model at a 1° spatial resolution forced by 
surface wind fields and sea-ice concentration from seven different EC-EARTH realizations under the RCP8.5 
emissions scenario. The WAM model was set up with default ST3 source-term physics and the simulation period 
spanned from 1979–2100 continuously.

LBNL: Single-model, single-scenario ensemble. Timmermans et al.25 (hereafter LBNL) developed a 
high-resolution global wave climate projection using monthly sea-ice fields and 3-hourly surface winds taken 
from the Community Atmospheric Model (or ‘CAM5’), the atmospheric model of the NCAR Community Earth 
System Model at 0.25° horizontal resolution. These surface wind fields were used to drive a global WW3 model 
(using ST4 source-term physics) between 1995–2005. Four simulations were performed using the high-resolution 
wind fields each initialized with a different microscopically perturbed atmospheric state. Future wave condi-
tions were generated using the high-resolution 0.25° CAM5 wind forcing for RCP8.5 between 2081–2100 using 
observed SST + 2 °C.

KU: Single-model, multiple-scenario ensemble. Shimura et al.26 (hereafter KU) developed an ensemble of global 
wave climate projections using the WW3 model forced by 6-hourly surface winds (and monthly sea-ice forcing) at 
0.5625° horizontal resolution from the high-resolution atmospheric MRI-AGCM3.2 H model. The WW3 model 
was setup using ST4 source-term physics. The forcing of MRI-AGCM were four future SST conditions derived 
from CMIP5 GCMs under the RCP8.5 emissions scenario. Simulations were conducted for two time-slices: 1979–
2005 and 2079–2100.

CMIP5 GCM-forced statistical global simulations. IHC: Multiple-model, multiple-scenario ensemble.  
Camus et al.27 (hereafter IHC) developed a global wave projection dataset at 1° grid resolution on the basis 
of a weather-type statistical downscaling method. They used daily SLP fields as predictor from thirty CMIP5 
climate models and a reference wave hindcast ‘Global Ocean Wave’ (GOW2.0) as predictand observations. A 
regression-guided clustering method based on linear regression and k-mean clustering was performed at each 
wave grid site of GOW2.0, from which estimates of average HS and Tm were obtained for each weather type (WT). 
The wave climate projections were estimated from the future probability of WTs and the mean value of the varia-
bles associated with each WT at each wave grid node. The CFSR (Climate Forecast System Reanalysis) and GOW2 
data from 1970–2015 were used in the training of the statistical relationship by comparing estimations of monthly 
wave parameters obtained using the statistical approach and from the time series of GOW2.0. To diminish GCM 
biases, the SLP data were adjusted such that they have the same climatological average and standard deviation as 
the CFSR SLP dataset, used as proxy for observations over 1975–2005. The simulations were performed for two 
time-slices: 1975–2005 and 2010–2100 (under emissions scenarios RCP4.5 and RCP8.5).

ECCC (s): Multiple-model, multiple-scenario ensemble. Wang et al.28 (hereafter ECCC(s)) developed a global 
dataset of statistical wave projections using a multivariate regression model with lagged dependent variable to 
represent a SLP-HS (mean sea level pressure and significant wave height) relationship. ECMWF’s ERA-interim 
data was used to calibrate the statistical relationship between predictand HS and its SLP-based predictors. To 
reduce biases, the CMIP5 simulated SLP data fields were adjusted such that they have the same climatological 
mean and standard deviation as the ERA-Interim SLP data (used as proxy for observations for 1981–2000). The 
time series of 6-hourly SLP-based predictors obtained from the RCP4.5 and RCP8.5 scenarios simulations by 
twenty CMIP5 climate models were input to the calibrated statistical model to make projections of 6-hourly HS 
over a 150-year period from 1950–2100 under both scenarios.

Data processing framework. The COWCLIP experimental protocol was defined to provide a systematic, 
community framework and infrastructure to support validation, intercomparison, documentation and access for 
global (and eventually regional) wave climate projections forced from CMIP atmospheric datasets. Inconsistency 
between data (due to different historical and future time-slices, emission scenarios and variables) has been a key 
factor precluding our ability to move forward.

Based on this framework, we removed wind-wave parameter uncertainty by adopting a set of wave variables - 
significant wave height (HS), mean wave period (Tm) and mean wave direction (θm) - from which a standard set of 
wave statistics was obtained (across annual, seasonal and monthly time-frame resolutions) in a consistent manner 
(Table 2)31,32. This is explained below in Data Generation Method. The resulting data over three frequencies and 
three variables, capturing seven statistical measures (for HS and Tm, and two for θm) and seven extremes statistics 
measures (for HS annual), represents the entire dataset available for CMIP5-forced wave climate projection data. 
We note however that the USGS ensemble was not available to process with the COWCLIP code (section 2.3.1) - 
only annual and seasonal means and 99th percentile of HS were accessible.

https://doi.org/10.1038/s41597-020-0446-2
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The flowchart of the experimental framework employed, and described below, is shown in Fig. 1.

Data generation method. As part of the COWCLIP community framework, code was developed with 
programming language Fortran90 to ensure a consistent and precise computational data processing. The code 
comprises three functions (getStat.f, getStatDir.f and getHsEx.f) to calculate two standard sets of statistics, using 
sub-daily raw data from each standalone dataset19–28. During processing, the data was written to netCDF4 format. 
For information on access to (and guidelines for setup and usage of) the COWCLIP Fortran code, consult the 
Code Availability section.

Standard statistics - getStat.f and getStatDir.f. The getStat.f code was designed to estimate statistics 
valid for scalar variables (HS, Tm). The code was applied to each individual dataset separately19–28, enabling the 
calculation of seven wave statistics (mean, 10th, 50th, 90th, 95th, 99th percentiles, and maximum) for HS and Tm 
calculated for monthly, seasonal and annual time-frame resolutions. The seasonal statistics were computed on 

Fig. 1 Flowchart of the COWCLIP2.0 experimental framework.

ETCCDI set of HS statistics

Statistics 
ID Indicator name Definition Units

via getHsEx.f

HsRo Rough wave days Annual count of days when daily max HS > 2.5 m days

HsHi High wave days Annual count of days when daily max HS > 6 m days

fHsRo Frequency of rough wave days Annual percentage of days when daily max HS > 2.5 m %

fHsHi Frequency of high wave days Annual percentage of days when daily max HS > 6 m %

fHs10pa Frequency of top decile wave days Annual percentage of days when daily max HS > 10th 
percentile of daily max HS in the base perioda %

fHs90pa Frequency of top decile wave days Annual percentage of days when daily max HS < 90th 
percentile of daily max HS in the base perioda %

HHsDIa Top decile wave spell duration indicator
Annual count of days with at least 2 consecutive days 
when daily max HS > 90th percentile of daily max HS 
in the base perioda

days

Table 3. Summary of the ETCDDI set of extreme significant wave height statistics included in the 
COWCLIP2.0 data set. aRelative statistics with base period 1980–2000 used for bootstrap procedure in relative 
statistics.

https://doi.org/10.1038/s41597-020-0446-2
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default seasons defined as DJF, MAM, JJA and SON. The output netCDF files derived from each individual dataset 
retained all the relevant metadata of the input file and the coordinate variables/statistics. The names of the output 
files contained the time-frames of the statistics processed and the temporal resolution of the input data.

The getStatDir.f code is analogous to the getStat.f, but it was designed to calculate circular statistics meaningful 
for directional variables such as θm. The code was applied to each standalone dataset19–28 (with available θm) pro-
viding 2 circular statistics (mean and standard deviation) over the time-frames described above (Table 2).

extremes statistics - getHsex.f. The getHsEx.f code was designed to calculate an ETCCDI set of extreme 
annual Hs indices from the sub-daily Hs input data19–28 (Table 1). The code was applied to each standalone dataset 
separately after concatenating the COWCLIP standard historical and future time-slices in a time sequence. A 
defined baseline period over 1986–2005 for relative statistics was adopted. The output netCDF files contained 
seven extreme statistics calculated annually (Table 3).

Data assembly method. The netCDF files generated from each standalone dataset using the code described 
above, were used as a basis to build the collection of global wave climate projections following the standardi-
zation framework (see Fig. 1)31,32. In addition to removing parameter uncertainty, we also removed time-slice 
uncertainty between the processed datasets by using standardized historical (1979–2004) and future projection 
(2081–2100) time-slices. In terms of future emission scenarios, we processed data for two representative concen-
tration pathways (RCPs)37: RCP4.5 and RCP8.5 defining a medium stabilization (+4.5 W/m2 forcing by the end 
of 21st century) and a very high-emission scenario (+8.5 W/m2 forcing by the end of 21st century), respectively.

Before assembling, each independent netCDF file underwent a quality-control analysis. The relevant statistics 
were extracted from each file (i.e. derived from each standalone dataset). The data compliant with the COWCLIP 
standard time-slices for simulation (for each frequency resolution), was extracted, and then converted to a global 
grid at 1° spatial resolution. For consistency, a mask was applied to exclude areas that are not captured by the full 
ensemble set of simulations (e.g. some simulations did not consider particular enclosed/semi-enclosed areas and 
others did not archive model outputs across regions with latitudes >60°N or S). After the regridding process, a 
shoreline dataset was imposed on the full set of wave simulations to ensure consistency between all the gridded 
data at the shoreline. The resultant data is therefore temporally and spatially consistent, without ‘undesirable’ 
uncertainties that previously hampered intercomparison analysis. Users seeking particular simulations (i.e., orig-
inal simulated data developed by a specific climate modelling group) can be obtained with the individual model-
ling groups or through a request via the COWCLIP portal (data accessibility).

Data Records
The full archived dataset38 comprising the different statistics described (consult the Data Generation Method) can 
be accessed through a Scientific Data recommended data repository: Australian Ocean Data Network (AODN) at 
DOI: 10.26198/5d91a9d00d60d.

The data set in total comprises 1372 files, with a total volume of 144 GB. The data is structured to mimic the 
DRS used for CMIP (and related data sets) and was specifically based on the DRS of the Coordinated Regional 
Downscaling Experiment (CORDEX)39 (as described in the CORDEX archive design: https://www.cordex.org/
publications/report-and-document-archives/). This means a consistent directory structure and file naming con-
vention is employed. Some wave modelling groups performed analysis across ensemble members within a GCM 
defined differently to the ‘r1i1p1’ definitions used within CMIP. Where this has occurred, the value for ‘ensemble’ 
in the DRS will take values relevant to that climate modelling group rather than standard CMIP5 values. The DRS 
adopted for the global COWCLIP2.0 dataset is as follows:

Directories. global/<modelling_centre>/<GCM>/<experiment>/ensemble>/<region>/<version>/<fre-
quency>/<variable>

Filenames. <variable>_<region>_<modelling_centre>_<GCM>_<experiment>_<ensemble>_<fre-
quency>_<start_date>-<end_date>.nc

Where <region> takes value “glob” and version is given in the form “vYYYYMM” (year/month). The Earth 
System Grid Federation convention is that files contain only one variable, however as we have produced three 
standard wave variables with two or seven statistical measures for each, as well as extremes statistics for annual 
Hs the files use <variable> values Hs, Tm, Dm, and HsEx, and each file contains multiple variables describing the 
statistics for that wave variable.

The data were made CF compliant by ensuring the ‘standard_name’ field was not erroneously used, variable 
‘long_name’ was defined consistent with the Fortan90 code and units applied. No value for ‘_FillValue’ was pro-
vided and thus this has been omitted. Recommended global attributes are defined and included, drawing from 
the COWCLIP metadata table (Table 1) - which enable some additional compliance with the ACDD metadata 
standard.

Note that although every effort was made to ensure data adhered to both the CF and ACDD metadata con-
ventions, the files are not strictly CF-compliant in time dimension - which uses units “years since” and “months 
since” the reference date. This is not advised by the CF convention since these values are ambiguous and depend 
on the calendar used. As the input data comes from CMIP5 models which use a variety of calendars and this 
information is not captured in the data generated by the getStat scripts, retrospectively applying calendar defi-
nitions was deemed to be less appropriate than using the more generic time definition, which is in line with the 
data produced by getStat.
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technical Validation
All contributing datasets have undergone previous validation, with each individual study providing a model-skill 
assessment of developed GCM-forced global wave simulations against waverider buoy observations, and/or 
wave hindcasts/reanalysis, as reference19–28. Comparison of model-skill between all simulations relative to two 
well-validated historical datasets have also been conducted34, allowing an intercomparison of all simulated wave 
data under a common reference dataset.

The data produced for publication was verified to be numerically unchanged between the submitted netCDF, 
intermediate Matlab matrix, and final netCDF files. Comparison of the GCM-forced global wave simulations 
against satellite altimetry data40 (between 1991–2017). Note that climate models are not constrained to reproduce 
the timing of natural climate variability in the ‘observational record’, and consequently, our climate model-driven 
wave simulations are not in phase with observations. Hence, we can test the performance of the climatology 
(distribution) of model vs altimeter wave heights only; Figs. 2 and 3 are examples of skill analysis that have been 
previously done with respect to satellite measurements.
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Fig. 2 Taylor diagram for annual mean of Hs (a) and Hs
99 (b) of all global ocean region relative to the Satellite 

data over the period 1991–2017. The metrics shown are the spatial correlation (SC), normalized standard 
deviation (NSD) (given by σsim/σobs derived from a specific simulation and the satellite dataset40) and the 
centred-root-mean-square (CRMSD) difference. The SC is shown by the azimuthal angle, the normalized 
standard deviation is shown by the radial distance from the origin (i.e., satellite data) and the CRMSD is shown 
by the distance from the origin (the yellow lines). Each colour denotes a specific model forcing and each symbol 
a specific modelling group. The symbols with black outline denote the ensemble mean of each study group when 
suitable and the asterisk to the full multi-member ensemble mean.
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Fig. 3 Taylor diagram for annual mean of Hs in 3-sub regions (North Pacific Ocean, Tropical Pacific and South 
Indian Ocean) of global ocean relative to the satellite data over period 1991–2017, respectively. The metrics 
shown are the spatial correlation (SC), normalized standard deviation (NSD) (given by σsim/σobs derived from 
a given simulation and the satellite dataset40) and centred-root-mean-square (CRMSD) difference. The SC 
is shown by the azimuthal angle, the normalized standard deviation is shown by the radial distance from the 
origin (satellite data) and the CRMSD is shown by the distance from the origin (the yellow lines). Legend as per 
legend of Fig. 2.
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Usage notes. The data is published via the Australian Ocean Data Network (AODN). The metadata record is 
available via GeoNetwork at ‘DOI’: 10.26198/5d91a9d00d60d. The dataset is accessible via the AODN THREDDS 
server (netCDF files) and can be accessed remotely using the OPeNDAP protocol at: http://thredds.aodn.org.au/
thredds/catalog/CSIRO/Climatology/COWCLIP2/catalog.html. OPeNDAP is a protocol that allows netCDF files 
to be accessed from a remote server as though they were local on the file system. It is an effective mechanism to 
remotely subset files to extract only an area or time period of interest. This reduces the need for data replication 
and download. OPeNDAP file access is supported through most tools which permit analysis of the netCDF data 
files, including MATLAB, R, Python, ArcGIS and many others.

Due to the ambiguous nature of the time dimension defined without a calendar attribute, these files may 
display unexpected timestamps when read with some tools. We would advise the data consumer that use of this 
data with python’s Iris library or other libraries which depend on CF-compliance of the time dimension may be 
problematic.

Code availability
Fortran code: getStat.f, getStatDir.f, getHsEx.f

The Fortran code developed to derive the COWCLIP statistics can be requested via the COWCLIP website 
(https://cowclip.org/data-access). The code - as described in the Data Generation Method section, consists of a 
set of commands (getStat.f, getStatDir.f and getHsEx.f) which can be compiled with a Fortran compiler, linked 
against netCDF4 and HDF5 libraries. The documentation for setup, usage and requirements for the code is 
described within the technical reports30–32 that complement this manuscript. These commands can be executed 
by COWCLIP contributors to generate the set of wave statistics from their raw simulations. With the specific 
purpose of sharing in an open data format, and adhering to relevant data standards, the processed data is given in 
netCDF format, the global metadata attributes from the submitted netCDF data recorded, and additional infor-
mation added where possible to ensure both CF Conventions and Attribute Convention for Dataset Discovery 
(‘ACDD’) standards compliance.

Python code: COWCLIP_stats_mat2nc.py and COWCLIP_extremes_mat2nc.py
The Python commands developed to produce the final standardised netCDF files (which comprise this data 

publication) are available in the COWCLIP website (https://cowclip.org/data-access). The code is written in 
Python 3 as well as standard python modules, depends on numpy, pandas, scipy, tables and netCDF4 python 
modules. Both python scripts require setting of the descriptive metadata location (path to file COWCLIP-
GlobalProj-Metadata-merged.xlsx, structured to be readily usable with python’s pandas library), and the location 
of the Matlab matrix (.mat) and script (.m) files for the standardised data. The python scripts take as command 
line arguments the climate modelling group (e.g., ‘LBNL’) and time-slice simulation period (i.e., ‘Historical’ or 
‘Future’). They produce, where possible, CF and ACDD standards-compliant output files in a Data Reference 
Syntax (DRS) structure akin to that used in CMIP and CORDEX modelling projects.
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