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ABSTRACT

We study information dynamics between the largest Bitcoin exchange markets during the bubble in 2017-2018. By analyzing high-frequency
market microstructure observables with different information-theoretic measures for dynamical systems, we find temporal changes in infor-
mation sharing across markets. In particular, we study time-varying components of predictability, memory, and (a)synchronous coupling,
measured by transfer entropy, active information storage, and multi-information. By comparing these empirical findings with several mod-
els, we argue that some results could relate to intra-market and inter-market regime shifts and changes in the direction of information flow

between different market observables.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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Cryptocurrencies are a novel financial instrument, whose unique-
ness lies in a novel distributed ledger technology that serves as a
public database of executed transactions. They are also character-
ized by high price fluctuations, price bubbles, and sudden price
crashes. Cryptocurrencies can be traded (sold and bought) at
many independently operating venues (exchange markets); how-
ever, the price of a cryptocurrency eventually synchronizes as the
traders take advantage of mismatches between prices, as observed
by a single asset in several markets, or exploiting several assets
within one market. Therefore, the universal price of a cryptocur-
rency is also determined in a distributed fashion, depending on
trading decisions within each individual market and trades that
occur in between markets. To understand the importance of dif-
ferent types of dynamics that come into play while determining
the next price of a cryptocurrency, we analyze temporal patterns
of information flow within and across markets. In particular, we
analyze minute-level market data that would capture price dis-
crepancies among markets and allow us to detect any potentially
anomalous information flows during a turbulent market event
such as the Bitcoin price crash that occurred in 2017.

Bitcoin is a cryptocurrency that was originally designed as a
medium of exchange;' however, there is still no strong consensus as

to whether it is a currency, a commodity, or an asset.””* Cryptocur-
rencies are usually transmitted and created via distributed peer-to-
peer networks with well-defined cryptographic protocols that record
the system’s state via a public ledger (blockchain). Thus, blockchain
(or another type of ledger that maintains knowledge of distributed
consensus) is at the heart of digital currencies. Blockchain technol-
ogy promises benefits such as proving the existence of an asset as
well as keeping track of its current and all past ownerships, both
in a distributed manner. It also plays a role in crypto-asset price
discovery.’

Electronic coins, such as Bitcoin, are “chains” of digital sig-
natures: an owner transfers the coin by digitally signing a hash
of the previous transaction and the public key of the next owner,
adding them to the end of the coin. The exchange of cryptocur-
rencies to fiat money [U.S. dollar (USD), Euro (EUR), and Great
British Pound (GBP). etc.] occurs in cryptocurrency exchange mar-
kets, which are based on electronic double auctions, operating using
limit order books. Here, real-time market data, such as transaction
volume, amount of bid and ask orders, and exogenous information,
such as news and social media mentions, are sources of informa-
tion that feed into trading decisions. Within the crypto-market
ecosystem, two distinguishable types of information sources exist:
intra-market sources and inter-market sources. The first source is
related to internal dynamics of a market’s limit order book, e.g., its
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FIG. 1. Information is shared between markets (house icons) and within markets.
Different nodes indicate separate market observables, discussed in Sec. |. Past
information about one market observable (e.g., volatility) can be used by the same
market observable (a self-loop), as well as by other market observables (edges
between different color nodes in the same market). Information is also shared
across markets (edges among market icons), and the system as a whole is also
exposed to unknown exogenous information (curly arrows).

liquidity and volatility, which may influence trading decisions® as
well as one another.” The second source is related to communica-
tion between different markets. Therefore, any two crypto-markets
are “connected:” explicitly, when there is a mutually traded currency
(or an arbitrage opportunity) or implicitly, when prices of currencies
among several markets are correlated.

The blockchain ensures that, in the long run, the price of a cryp-
tocurrency develops synchronously across exchanges, i.e., the law of
one price holds.” However, even without the presence of blockchain,
one would expect price synchronization across different venues due
to arbitrage.” Hence, the Bitcoin price is processed collectively in a
distributed manner. Its dynamics is affected both by internal feed-
back and by exogenous information (e.g., public news), as illustrated
in Fig. 1. It is not clear, however, what type of information is the
most relevant for the price formation process. Often, these multiple
influences lead to very large fluctuations (high volatility in tech-
nical terms) of exchange rates between cryptocurrencies and fiat
money, price bubbles, and sudden price crashes. These properties
make cryptocurrencies exchange rates a unique laboratory to empir-
ically study the collective dynamics leading to market instabilities,
which are well known to be ubiquitous in all financial markets.

Although at low frequencies, the prices of Bitcoin in differ-
ent markets (and, oftentimes, prices of other cryptocurrencies in
relation to Bitcoin) develop in apparent synchrony, the law of one
price does not hold at very high frequencies.*” Furthermore, at suf-
ficiently high frequency, one observes lagged relationships between
the prices of the asset(s), i.e., past information about the change in
the price of one cryptocurrency is informative for predicting the
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future price change of another cryptocurrency. Such mechanisms
are detectable with information transfer measures: linear relation-
ships can be detected via Granger causality,'” while more general
nonlinear dependencies can be detected via transfer entropy,''* that
is one of constituents of a process’s entropy. Entropy itself relates to
computation: at each point in time, computation of the next state
of the process. When a system is composed of multiple interacting
units, information transfer could be thought of as communication
or signaling and the system as a whole as processing information
to determine its collective behavior at each time step via distributed
computation. A study of information dynamics aims to decompose
this computation into unique elements, namely, transferred, stored,
and modified information, and their changes in space and time.'*""

Spatiotemporal patterns of information dynamics (in particu-
lar, information transfer and multi-information) within the system
of interacting markets were observed to increase in the finan-
cial crisis periods, meaning that the system appears to be more
synchronized.”” Such synchronization of a system could be a pre-
cursor of a “phase transition”'*'’—a dramatic dynamical shift that
occurs due to exogenous or endogenous events that perturb the
system. Inefficiencies and delays of transfer of information among
system’s constituents open possibilities for arbitrage, risk, and dis-
tress spillover across markets. They may also be precursors of price
bubbles. Although the information-theoretic measures have been
shown to signify dramatic dynamical changes in the system, both
where the phase transition can be pinpointed exactly'®" as well
as when they are discussed in a more qualitative manner,” the
observed dynamical patterns are difficult to interpret. This is par-
ticularly challenging if the data are incomplete, unrepresentative,
noisy, e.g., sampled at a low,”" inconsistent frequency, with not all
relevant system’s constituents taken into account, using erroneous
measurement tools.

Therefore, in this paper, our aim is twofold. First, we study
several econometric models that couple market microstructure vari-
ables. Our aim is to find out whether a particular coupling and its
(sudden or slow) change are detectable with information dynam-
ics tools. We then analyze the persistence of information dynamical
patterns that signify a particular regime shift. It is important to clar-
ify that in the following we are not attempting to model regime shift
dynamics where the different regimes and the transitions between
them must be inferred from the data. On the contrary, based on
the observed price dynamics of Bitcoin described below, we test
the hypothesis that the periods before and after the price peak are
characterized by different statistical and information dynamic prop-
erties, suggesting the presence of two distinct regimes.”” Specifically,
we investigate several financial variables across markets during one
turbulent event in the crypto-market ecosystem, namely, the Bit-
coin bubble in 2017-2018. We remind that the bubble occurred
in December 2017 when the Bitcoin price went up from around
6463$% on the 1st of November, 2017 to, at that time, an all-time-
high of 19 716$ on the 17th of December, see the left panel of Fig. 2.
After this crash date, the price dropped to 11 414$ before the end of
the year, descending for weeks and months afterward. Furthermore,
ripple effects of the Bitcoin bubble also penetrated other cryptocur-
rencies, and much research has been put into studying the drivers
of the crypto crash, e.g., see Ref. 23. This price bubble is also unique
in that in 2017, Bitcoin was still a dominant cryptocurrency with the
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FIG. 2. (a) Average mid-price of Bitcoin (black). (b) Realized order imbalance expressed in quote currency, aggregated across 12-h windows and all considered trading
venues (black). (c) Average 12-h spread (black). Red lines indicate the peak of the bubble, and the green dotted lines indicate the dates at which each observable reached
the maximum value (for price, we show the date of the maximum value of the price returns). From left to right, each dotted green line indicates the following dates: December
10, 2017; December 7, 2017; December 8, 2017. The red line is positioned at December 17, 2017.

largest market capitalization. At the time of writing, alternative coins
have become more prominent. Assuming that high-frequency mar-
ket data related to Bitcoin traded against dollar and Tether captures
the majority of the dynamics that took place at that time, we con-
centrate our attention on information dynamics within and across
markets using this particular set of data.

The paper is organized as follows. First, in Sec. I, we describe
the data used, as well as market microstructure observables, related
to price as well as liquidity in markets, that we use for the inference
of information dynamics measures in Sec. I. Section II includes a
description of information-theoretical tools, an experimental setup
for data analysis, and analysis of models. We report the data anal-
ysis results in Sec. 111, and conclude the paper with a discussion in
Sec. IV.

I. DATA

The data for this paper are tick-level trading and order book
data obtained from Ref. 24. Data of trades are provided at a millisec-
ond frequency, and for observables based on this data, we aggregate
the information to a minute-level frequency. The limit order book
data consists of one snapshot in each minute. Since the snapshots are
not taken at exactly the same second of a minute in different mar-
kets, we align the data from the limit order books and from trades
to ensure the lack of non-causal information flows. We describe
this procedure in Appendix A. Note that the alignment procedure
ensures that causal order of events is respected when we treat snap-
shots of a limit order book as a discrete-time process that is studied
at a frequency that is at most 1 min.

For the proceeding analysis, we restrict our attention to the
most liquid and the largest cryptocurrency—Bitcoin (BTC), traded
against either a fiat currency of U.S. dollar (USD) or Tether
(USDT), a stablecoin, designed to be worth $1.00 at all times. More
specifically, we consider Bitcoin traded against USD in the follow-
ing venues: Gemini, BTC-e, Bitstamp, Coinbase, Kraken, HitBTC,
Bitfinex, and against USDT in Binance, Bittrex, and Poloniex. The
time period under our study ranges from November 1, 2017 to
February 1, 2018. This period involves a price bubble observed in
Bitcoin as well as other cryptocurrencies. The left panel of Fig. 2
shows the price dynamics.

A. Microstructural variables

In order to study the price and liquidity dynamics in the differ-
ent venues, we introduce three market microstructure variables.

a. Price quantifies the value of an asset. Here, we define price
as the mid-price at each snapshot of the order book, namely,
pr=" ?:p ! , where p°, p’ are, respectively, the best ask and bid price at
time ¢. We define the price increments (hereafter termed returns for
simplicity) as r, = p; — p;—1. Price dynamics is strongly asymmetric
around market crashes and shows a slow (power law) relaxation of
volatility.””

b. Order imbalance quantifies the demand of liquidity takers.
Specifically, suppose we have a set of executed trades, indexed over
arbitrary integer index i : i € Z, and each trade also has an associated
time stamp t; € Rt, asign¢; € {—1,1}, and a volume v; € R*. If the
trade is initiated by a buyer, then its sign is ¢, = +1, while ¢; = —1
for seller-initiated trades. We define order imbalance for the time
interval (f — §,t] as a sum of the signed volumes of all trades within

the interval
O, = Z €iVi. (1)

ilt—s<ti<t

Similarly, & can be expressed in quote currency: s, = 3, 5.
€;v;p; if p; is the transaction price. For the relation between order
flow and price returns, see, for example, 26 and 27.

c. Spread is a symmetric measure of market’s liquidity (as small
spread indicates that trades are easily executable) and is defined
as s; = p? — p®. Spread has been shown to display nonsymmetric
dynamics around market crashes.”

In Fig. 2, we show the dynamics of price, order imbalance, and
spread for time period from November 1, 2017 to February 1, 2018.

Il. METHODS
A. Information dynamics for stochastic processes

Consider a system, composed of N stochastic processes
{X*}4eq> together forming a multivariate process X*. Each stochas-
tic process X“ is a collection of random variables {X}}, .+ with
Q being the total number of observations. For each random vari-
able X, its realized value is defined as x;. Note that Q denotes
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the finite set of markets in this paper. In the definitions of infor-
mation dynamics measures, we will use subscripts X, Y to refer
to information dynamics among some two stochastic processes
(e.g, X=X", Y = X#). These information dynamics measures
will be defined using length-/ and length-k collections of random
variables, for each time t: Yﬁl_)s ={Yi s Yisii1r..-> Yish ng)l
= {Xi—1-> Xe—1-k+1> - - - » Xi—1}, where § is a time delay.

a. Information-theoretic measures for static variables. The fun-
damental quantity in this work is the Shannon entropy of a random
variable X, defined as H(X) = — > p(x)logp(x). Here, x is an
instance of a random variable, and the sum is over of all possible
values that x can take. Conditional entropy of X, given Y is the aver-
age uncertainty that remains about X after learning the values of Y:
HX|Y) = — Zx)y p(x, y) log p(x]y). Mutual information between X
and Y measures the average amount of information that is commu-
nicated in one random variable about another. Y: I(X,Y) = H(X)
— H(X]Y). The conditional mutual information between X and Y
when Z is known is defined as I(X, Y|Z) = H(X|Z) — H(X|Y, Z).

These information-theoretic measures for static variables can
also be adapted to analyze stochastic processes. When temporal
information is incorporated, one can quantify: how much infor-
mation is shared between system’s units at each point in time;
how much information about the current state of X is conveyed
in the past states of Y; and how much information about the cur-
rent state of X is conveyed in the past states of X. These questions
can be addressed with information dynamics measures'*'* that are
summarized below.

b. Multi-information. Multi-information (MI) is defined as a
measure of the deviation from the independence of the components
in the system'**

N
Iya = (Z H(X‘;)) — HX®). )
a=1

Large values of MI are a signature of high synchronous inter-
connectivity of a system.

c. Transfer entropy. Transfer entropy (TE) encapsulates the
“distributed nature” of computation. Schreiber,'’ and, indepen-
dently, Palus et al.'* defined TE as the amount of information that a
source process Y, and, in particular, its past state Y, provides about
a target’s state X, in the context of the target’s immediate past state
Xfli)l .

ks 1 k
T(Y—ng = I(YQ& Xi |X§—)1 )

= HX/X®) — HX XY, Y. 3)

The superscript indicates the parameters used for the delay § as well
as the lengths [ and k of collections of the random variables. This for-
mulation of information transfer quantifies pairwise relationships
between variables. When a system is composed of more than two
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stochastic processes, (3) is known as apparent transfer entropy, as
it does not account for unobserved sources, potentially leading to
over-estimation of the total amount of entropy transferred within
the system.

d. Conditional transfer entropy. To discount redundant joint
influences of two sources Y,Z on a target X, (3) is generalized to
a measure of transfer entropy from Y to X given that Z can also
provide information about X,

k,l,m,8 k
TP = 1Y 5 XX, Z™)

k m ) m
= HXIXP, 2" — HXIXPL, YD, 2. )

Finally, the conditional TE can be generalized to account for a
multivariate set of processes with the next definition.

e. Collective transfer entropy. To find the total amount of
information that was collectively transferred to a target X from all
potential sources in the system, we use collective TE, Tx, which
accounts for redundancies and synergies among information that
sources provide to a target.'" To compute Ty, we consider a set
X, The true effect of one source variable Y to the target variable
X in the universe of X% is computed through conditional trans-

Yéx‘x)s(z\(y),where X;Z\m = {Z e X*\{X, Y}}. However,

>y TY—>X\X§§\‘Y’ would not be equal to the total amount of infor-

fer entropy: T

mation transferred to X, as only unique information™ would be
accounted for. To calculate the collective TE (see Ref. 14 for more
details), we sum incrementally conditional TE terms. Let us con-
sider an ordered set X§ = {Z € X®\{X}}: Z,...,Z%,...,Z" " and
its subset X5* = {Z% € X{|a < B). Collective transfer entropy is
then defined as

N-1
Ix= Z TY5—>X\X§}‘9‘1' ©)
B=1

f. Active information storage. Overall, the predictability of the
next state of a process X is characterized by its entropy, whose
non-overlapping constituents are the collective transfer entropy T,
the active information storage (AIS), A;?, defined as memory of the
process that is actively in use,"

AP = 1x%5x,) = HX,) — HOGX®). (6)

AIS is information in the past that contributes to the computation
in the next state of X.

g Local information dynamics. The measures defined above
can also be considered in a point-wise fashion as they are expectation
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values of local measures at each observation at time 7 as follows:

Q 1
Ixe = (ixe (7)) = 1 Zlo pi(x,,xi,...,xf)

g
Q4 " amipG)
Q k) v
1 P(xr 1|X( ’y )
T = R @) = 5 Y log =i, ()
y=X X Q; ’ p(x,+1|x§k))
Q

p(xr+1>xg—k))

(oy "

AY = @ @) = =3 o
o 28

Q

B. Experimental setup

a. Information dynamics. We use Java Information Dynamics
Toolkit—JIDT*' to compute all information dynamics quantities.
For the TE estimator, we choose Kraskov, Stogbauer, Grassberger
(KSG) K-nearest neighbor estimator,’” which is minimally parame-
terized and has been shown to be robust for a wide range of data.
To ensure our estimates are reliable, we studied sample-size bias
of transfer entropy using the approach of Ref. 33 as described in
Appendix C. We found that K = 4 for nearest neighbors estimator
produces reliable results for our dataset. All values of information
dynamics are reported in units of nats.

Throughout the paper, we considered the case where
I=1. To ensure that we do not over-estimate information trans-
fer for active information storage—the memory of a process in
use—of X, we chose k = argmaX(Agf)) for results in Sec. I1I A and

Ke[1,60]
k = argmax(AY’) for results in Sec. 111 B. We then used this k

«e[1,10]
when computing Ty_, x as well as Tx. Lastly, as was demonstrated in
Ref. 34, when two processes are coupled via non-zero delay u, T5,
is maximized for § = u. Therefore, we consider T{}ﬁz x foré € [1,10]
and select 8 for which T¢, , is maximal. Such a procedure ensures
that non-instantaneous coupling across markets is also captured.
For the results in Sec. I1I B, we do not do this and consider a fixed
6=1.

b. Rolling windows. For results discussed in Sec. III A, we
considered weekly subsets of the time series, moving each sliding
window by 3 days with respect to the previous one. In such a way,
we achieve a twofold advantage. First, we reveal temporal patterns
in information dynamics. Second, we ensure that the data are locally
stationary (we expect the time series associated with markets around
the crash to be globally non-stationary; however, at sufficiently
small time windows intervals, we observe stationary time series). In
Sec. 11T B, we considered two non-overlapping time series windows:
the data preceding the price peak date (December 17, 2017) and the
remainder.

c. TE significance test. All reported results are significant, where
significance is tested against the null hypothesis that no informa-
tion transfer exists. For all results, we used 100 surrogate time series
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to evaluate significance, and, unless otherwise stated, we chose the
significance level of 0.05. The surrogate time series are generated
by permuting time indices of appropriate time series, see Ref. 31
for details. For the results of Sec. III A in each time window, a
Benjamini-Yekutieli procedure’” was also performed.

d. Stationarity test. For each observable’s time series in all
rolling windows, we considered the Augmented Dickey-Fuller
(ADF) test™*” whose null hypothesis is a presence of a unit root, and
we used significance level of 0.05. To determine the lag length, we
used an information minimization criterion (AIC, in particular) and
considered values from a range [0, 1, . . ., 38]. We found that we can
reject the null hypothesis that there is a unit root with a 5% signif-
icance level for the test statistics for all of the time windows of s, &
time series. Contrary, we found the presence of unit roots in price
time series, so we used price returns (i.e., equal to applying differ-
ence operation r, = p; — p,_), after which all time windows passed
the ADF test.

C. Statistics of information dynamics

In the data analysis part, we will consider information dynam-
ics, described in Sec. II, first using one of the observables for each
market. In doing so, we assume that the strongest coupling occurs
through the same observable (spread in « has a stronger relation to
spread in B than to price returns in 8), see Fig. 3 for an illustration.
Second, we also consider the extent to which market variables are
internally coupled via different observables (e.g., quantifying how
much spread in « has an effect on price returns in o). See Fig. 4
for an illustration. To interpret the results, we aggregate informa-
tion dynamics measures into several spatiotemporal global and local
metrics.

For each information dynamics metric, namely, MI, AIS, and
TE, the argument w denotes the time series window, based on
which the reported values are computed. We will also denote one
microstructure observable (e.g., s), with the same capital letter that
defines a random variable for a market, e.g., Txe_, y# denotes trans-
fer entropy from a market o to a market 8 considering the same
market microstructure observable while Ty _, ys would indicate that
different microstructure observables are considered.

a. Global metrics. To quantify the global, system-describing
information dynamics, we aggregate results obtained for all markets
within a time series window. In particular, in Sec. III A we study
the extent to which a microstructural variable in one market affects
the same microstructural variable in another market. Therefore, the
extent of this effect is captured with a sum of transfer entropies
(3) between all pairs of markets, namely, the total apparent transfer
entropy
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FIG. 3. lllustration of analysis described in Sec. ||| A. We choose one observable (illustrated with green node) for each market. We then divide the observable’s time series
into overlapping sliding windows and compute information dynamical quantities (MI, TE) between markets using this one observable. The connectivity between markets via

green observable’s “channel’ is illustrated with green edges linking different markets. We also compute the AlS for each market; this is illustrated with a self-loop for a green
node. Given a set of individual market's, or pairs of markets information dynamics quantities, we then aggregate these quantities into global statistics for each time window.
The timeline illustrates three critical points: the price peak date, the date when we observe the maximum value obtained by the (green) observable, and the peak in Ml for a
given same observable. In Fig. 7, these points are shown in vertical lines of corresponding colors.

FIG. 4. lllustration of analysis described in Sec. Il B. Each market is charac-
terized by a set of market microstructure observables (nodes of the same color
illustrates the same observable). In the section, we discuss the information trans-
fer between observables. TE between the same observable is illustrated as an
edge between nodes of the same color and results into self-loops in a result-
ing multigraph where nodes represent microstructure observables. We allow for
multiple loops where each edge represents a link based on a single pair of mar-
kets. TE between different observables is illustrates as the flow from one color
nodes to another color nodes. In a resulting directed multigraph, these connec-
tions are edges between nodes. We again allow for multiple edges where each
indicates information transfer from one observable in a market to another observ-
able in the same market, calculated for all markets. The illustration emphasizes
how connectivity in the triadic multidigraph is obtained for a “green observable.”

These two metrics reflect on the total amount of information trans-
fer within the system.

Similarly, we also study markets” synchronization within one
variable via the multi-information: in the definition (2) we consider
X® as a union of random variables that describe a single market
observable in N markets, denoting it as I, in the further discussion.

Lastly, we report the average active information storage, A},
defined as

N
1
AY = N E Axe = (Axe)o (10
a=1

i.e., it is the average AIS per market, at a each time series window.

b. Market-specific statistics. To analyze the market-specific
information dynamics measures, we will consider averages of a
measure obtained from different time windows w € [1, W]. The
amount of information transfer received by each individual market
a, termed an average collective transfer entropy is defined as

w
1
T = W ; Txe (W) = (Txa ), (11)

and an individual market’s average AIS is defined as

1 w
Ay = W;AXH(W) = (Axe) - (12)
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c. Comparison between inter- and intra- market connectivity. In
Sec. I1I B, we consider the amount of information transfer between
microstructure observables within one market. Therefore, we com-
pute the apparent information transfer of the form Txe_ ye, and
contrast the amount of information transfer within the market to
the amount of information sharing across markets. To make a
fair comparison, we normalize the average values of TE per pos-
sible link in a transfer entropy network where nodes are market
observables.

For the comparative analysis of inter- and intra- market inter-
actions, consider a directed graph that consists of three nodes that
represent our observables. We map information transfer results onto
this triadic graph in which multiple edges are allowed between
node pairs. Furthermore, each node is allowed to have multiple
self-loops. The directed multi-graph representation depicts infor-
mation transfer among different observables in a market (a some-
what endogenous information flow). In opposition to this type of
internal information sharing, we also allow for inter-market con-
nectivity, as discussed in Sec. III A (this can be thought of as
exogenous information flow). Such links are represented as loops
in the directed multi-graph as information is transferred from
an observable in one market to the same observable in another.
By appropriate edge averaging, we will turn this directed multi-
graph into a directed graph that depicts averaged information
transfer.

Each loop represents a significant transfer entropy link from
one market to another, therefore, at most, there can be N(N — 1)
self-loops for each node-observable, since each market can have
2(N — 1) TE links (N — 1 incoming and N — 1 outgoing). We calcu-
late the averaged TE for an observable X between all pairs of markets
o, B as

N N
1
self __ _
oy = (Txe xplap = NN-1) ;ﬁzlilﬂ;a Txa_xp- (13)

We also compute the average strength of incoming links, @™,
and outgoing links @®". For each market observable, there can be
at most two incoming edges (from the other two observables) and
at most two outgoing edges, therefore, the normalization factor

is %,,
1 N
wy = Ty xa)oy = N Z Z Tye_,xe, (14)
Y#X a=1
1 N
out __ —
oy" = (Txeyo)ey = N Z Z T ya. (15)
Y#X a=1

Here, X represents one type of observable, e.g., s and Y represents a
different observable, e.g., r.

D. Models of non-linear information transfer in
complex systems
Here, we define two case models of stochastic processes

coupled via lagged non-linear interaction. By analyzing the
information-theoretic, spatiotemporal signatures of these models,

ARTICLE scitation.org/journal/cha

we will be able to explain in the information dynamics trends
observed using real market microstructure data.

a. Vector auto-regressive model of regime shifts. Let us first
consider two coupled autoregressive processes,

X = a1 X; 1 + Bier: + K(®ey, (16)
Yi = oY1 + Brgas + K& + C(t) | Xiy 1,

ie., we have a time-delayed directional coupling X — Y, whose
time-varying strength is C(f). In addition to this, let us assume the
presence of a common, time-varying hidden driver whose strength
is K(). ¢ terms denote independent Gaussian noise. Here, d is a
constant, which we use to vary the linearity of the causal link from
X to Y. Note that the hidden driver term K(f)¢, is present in both
variables without any delay. This model is useful to analyze causal
interaction among system’s sub-units when they are “of the same
type,” i.e., representing the same market observable in some pair of
markets.

We consider several potential systemic changes, and local
information dynamics signatures associated with them. A regime
shift itself is defined as a significant change in the strength of a
certain type of coupling between two variables, observed at a cer-
tain point in time f¢. In particular, here we consider a time-varying
coupling strength f modeled via logistic function,

s
Here, s relates to the maximum value of the function and b to the
sharpness of the transition. For example, a regime shift of a causal
driver may be modeled as a change of a coupling strength term C(#).

As Fig. 5(a) shows, in case of a regime shift in a causal driver, we
observe a significant change in the absolute values of local informa-
tion dynamical measures.”® This situation is characterized by large
TE and large AIS in the high-coupling regime and no significant
change in MI. In Appendix D, we also show that a change in MI
is also possible, when K(t)’s absolute value is large: its value is high
when AIS and TE values are low and vice versa.

Similarly, the case of a regime shift of a hidden (common,
simultaneous) driver can be modeled via variation in the coupling
strength K(f). The result, shown in Fig. 5(b) suggests that the change
in a hidden driver’s strength is signified by high MI when coupling
is strong, and vice versa when coupling is weak. Note that changes
in AIS and TE are possible: the former is possible when K(f) is
sufficiently high-valued, while the latter is possible when C(f) is
high-valued.

Lastly, we studied a case when B, = 8, = B(¢), defined using
(17) i.e., the system’s overall uncertainty is a time functional, while
C(t) = K(t) = 0.3 = const. In this case, we find that all three infor-
mation dynamic measures can be mutually low-valued on the side of
transition that models high-uncertainty regime, and mutually low-
valued on the other, where the system’s intrinsic uncertainty is low,
see Fig. 5(c).

In Appendix D, we also show that the results are robust for a
wide range of parameter values s, b, C. Although the analysis ensures
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K(t)=0.01, C(t) = +0.5 C(t) =0.01, K(t)

3
(1 +exp(=10(t - tc)))
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FIG. 5. Causally coupled autoregressive processes and local information-theoretic signatures of the response of a system with three types of regime shifts: the change in
(a) strength of a causal driver, (b) strength of a hidden driver, and (c) intrinsic uncertainty. Figures report mean at each time step and the standard error in the mean, obtained
from 100 independent simulations. The yellow vertical line indicates tc, purple line shows causal coupling strength C(t), and the gray dashed line shows the strength K(f)
of a hidden driver. The parameters oy = a; = 0.2,d = 0.5 in all figures. In (a) and (b), 81 = B, = 1, while in (c), B1 = B are functions of time, defined using (17) and
depicted in the figure in gray dashed and magenta dash-dot lines, while K(t) and C(f) are constants, equal to 0.01 and 0.5, respectively.

that the results shown in Fig. 5 are not coincidental, further statisti-
cal proofis needed to prove that signatures are persistent in a general
spectrum of nonlinearly coupled autoregressive systems. We also
note that it is more than possible that a combination of these effects

Note that in this formulation, a link from price to spread is indi-
rect, and in fact price returns affect spread at the two-step delay.
Therefore, in the following figures, we will scan through § € [1, 2]
and use the one for which the observed TE is larger. Depending on

comes into play in real data, and such convolution and its signature
is not studied any further in the current work.

a) Expected link s - r

. 0.05 0.05
b. GARCH model for price returns and spread. Next, we ana- I KsG I KsG
lyze a model of coupling between different market microstructure 0.04/ 1 Gaussian 0.04/ ! Gaussian
variables, using a variant of generalized autoregressive conditional
heteroskedasticity.””” Our model considers possibly bidirectional 0.03 0.03
couphrllg betwegn price returns r agd spread s when spread is cou- ,j 0.02 paiiet s ,ﬁ 0.02
pled with volatility (variance) of price. Therefore, we have coupled i1
time series of the form a0y, H 0.01
i
Ty = 0¢€1, €1t ™ </I/(0, 1), 0.00 5 o im ittt i o it a1 0.00RE it stz iat st aaan
2 _ 2 2
of =wHar_, + ol +ysip (1s) ~0015 5500 s000 7500 10600 %%l 2500 5000 7500 10000
2 2 2 2 N N
s, =as,_, +bo’ +ce &ar ~ N(0,1). .
! ! o b) Expected link r = s
Compared to the standard GARCH(1,1)* (where “(1,1)” indicates
. . o 0.14 iKsG 0.14{ | KsG
that there is one variance dependence term, and the second indi- I Gaussian I Gaussian .
cates that there is one ARCH term &, w denotes constant base level 012 012 e
of volatility, «, B determine the influence of past squared returns 0.10 0.10 e -
and past volatility), we have several additional parameters, a, b, ¢, y. 0.08 008
The new parameters have the following economic interpretation: a is .}0 o6 .}0 o6
the (bare, i.e., not volatility driven) persistence of the spread, which ' g
is known to be strongly autocorrelated (especially for small tick 0-04 004
stocks);* ¢ measures the dispersion of spread and ¢ is the associated 0.02 0.02
innovation noise; b links past volatility to future spread. It might 0.00B% Bt s s ST =] () (0SS S ettt o e
be connected with asymmetric information, since market makers 0 2500 5000 7500 10000 0 2500 5000 7500 10000
N N

adjust spread according to volatility (see, for example’); y links past
spread with future volatility. If the spread is large, it is likely that
the limit order book is sparse (as empirically shown in Ref. 40). But
a sparse, i.e., illiquid, book leads to a more volatile price, since any
order can create a large price change."!

FIG. 6. (a) TE from spread to returns (left) and reverse (right), & = 0.1,
B =04,a=080b=0.0,c=0.1,y = 0.9.(b) TE from spread to returns (left)
and reverse (right), « = 0.1, 8 =01,a=0.1,b=0.9,¢ = 0.1,y = 0.0.
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parameter values b,y we can have bi- or uni-directional couplings
T, , or T,,. Each datapoint in the proceeding results is considered
at a significance level of 0.01, and results are obtained from 1000
independent simulations.

Parameters @, 8,4, b, ¢, w, y affect stationarity and damping in
the system, therefore, we need to choose such parameter values that
system would be stationary throughout. To find a stationary combi-
nation of the parameters, we perform a moment analysis of the two
processes (see Appendix E for more details). In Fig. 6, we show that
expected links from spread to returns (top) as well as from returns to
spread (bottom) are detectable using KSG estimator for TE, whereas
Gaussian estimator cannot detect the non-linearly coupled GARCH
variables. We also note that at small time series lengths, spurious
bidirectional coupling may be observed, and the observed coupling
strength converges to a true one when the time series are sufficiently
long.

Since for stationary time series transfer entropy is an expec-
tation value of the logarithm of ratios of conditional probability
density functions, defined as per (7), in GARCH model (18), these
probability density functions can be estimated using numerical inte-
gration and samples of a joint process {r,s;}. In case of causal link
from spread to returns, TE is defined as an expectation value of

ARTICLE scitation.org/journal/cha

prelr—1,80—1)

log =D

. Here, we have an exact probabilistic model, namely,

p(ry = x[t_1,S1-1,01—1)
=N (0,w+ar + Bol, +ysi),

where A (i =0,0> =w+ar | + Bo2, + ysi_,) is a normal
probability density function parameterized with u, o. Similarly, one
can obtain the analytical expression for p(r;|r,_;) via marginal-

ization. Similarly, transfer entropy from returns to spread is the

fGtlst—1se—2or—1,71-2)
Fstlst—1,51-2)

that the numerator can be estimated by marginalization over ¢ (y)

Zf(St = }’|5t71,3t72, 112, 0t2):

expectation value of log . In Appendix E, we show

2 ok

2y y-q
r/227 - T ( 2 )IWW) »-

Here, ¢ = as* | + b(w + ar’_, + Bo?, + ys2,) and 1 4 stands for
an indicator function defined over a subset &7, of real numbers.
Again, f(s;|s;—1, S;—2) can be obtained by marginalization.

In Appendix E, we show that the values of information transfer
that we obtained empirically and report in Fig. 6 are in agreement
with the transfer entropy obtained using numerical integration.
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FIG. 7. Top row: multi-information /*** (denoted with red triangles) and the total apparent transfer entropy T2 (denoted with black circles) across all pairs of markets using
the following time series: (a) price returns, (b) order imbalance, and (c) spread. The blue dashed vertical lines indicate “critical points”: the date of the peak value obtained
by each variable is indicated by green dotted line; the red lines indicate the peak of the bubble, and the blue dashed lines highlight the dates at which multi-information was
maximal. Bottom: average active information storage A% for (d) price returns, (e) order imbalance, and (f) spread.
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I1l. EMPIRICAL RESULTS

In this section, we report results of information sharing across
markets when a single observable is considered, and when infor-
mation communication between different observables is taken into
account.

A. Inter-market information dynamics for a single
observable

First, we consider information dynamics individually for each
of the observables: r, s, &. Here, we look at the following:
the total apparent transfer entropy, TEPPSYS paPPSYS "[aép 8, multi-
information, I, I°, I’ és; and average active information storage,
A AT, A7), When constructing each of these measures, only
significant information dynamics values are considered (the signifi-
cance is discussed in Sec. IT B). The results obtained for each sliding
window are reported in Fig. 7: top figures show the total apparent
transfer entropy as well as multi-information; bottom figures report
average active information storage. Overall, we observe that week
by week, there were large fluctuations in the amount of information
sharing and synchronization across markets. The patterns of infor-
mation dynamics for each microstructural variable differ, therefore,
we discuss them individually.

a. Spread. The temporal evolution of information processing
in spread suggests that a “critical point” exists nearing price peak
and the peak in spread itself. Such a point in time is thought to
be characterized by a peak in MI among agents that constitute the
system.””~"" The authors of Ref. 20 claim that stock market crashes
exhibit a peak in MI at the point in time when one would expect a
significant regime change to take place. The peak in MI observed in
Fig. 7 for spread is similar to the case simulated in Fig. 5(b), where a
mutual hidden driver increased in strength, making the system more
synchronous.

Among spread variables, we see a large amount of total appar-
ent transfer entropy, as well as large average AIS, persisting for
weeks preceding the price peak, similar to a situation simulated in
Fig. 5(a), where the importance of information sharing increased to
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FIG. 8. Total collective TE. Left: change of total collective TE over time. Vertical
lines have the same meaning as in Fig. 7. Right: relationship between average
collective TE and average market's AIS. Black circles show this relationship aver-
aging over time series windows before the price peak date; red triangles show the
relationship averaging over the time series windows after the price peak date.

a larger value after ¢ in contrast with before. Therefore, we suggest
that spread system variables transit from a strong-coupling regime
before the price peak to a weak-coupling regime after the crash. Our
intuition is further supported by similar results observed by con-
Lsys

sidering T<™™, shown in left of Fig. 8. The figure shows that the
absolute values of the total collective transfer entropy T are
much smaller than the values of apparent transfer entropy. How-
ever, we still observe a similar shift from a strong-coupling regime
to a weak-coupling regime, centered around the crash date.

In Table I, we analyze AIS and total collective TE for individual
markets in the two market regimes (leading up to and follow-
ing the price peak). The averages are calculated from either the
observed AIS values in the windows that precede the crash or fol-
low it. Markets with small A, are those whose future values of spread
are not predictable from the past values of spread (e.g., Gemini,
Coinbase): their order book spreads are responsive to either exoge-
nous information sources or inter-market dynamics or are generally
intrinsically unpredictable. Other markets such as BTC-e use a lot of
information from their memory to compute the next market spread.

TABLE I. Average market spread’s AlS and average market spread’s collective TE, obtained by averaging over windows before the price peak date (first and third columns) and

averaging over windows after the price peak date (second and fourth columns).

Ag x 1072 Ae x 1072 T x 1073 T x 1073
o before December 17th after December 17th before December 17th after December 17th
BTC-e 30.1 23.1 9.34 0.87
Binance 15.18 3.32 17.65 0.13
Bitfinex 4,13 2.35 1.59 0.16
Bitstamp 7.12 5.58 11.62 0.68
Bittrex 8.15 5.87 9.34 0.53
Coinbase 9.17 4.88 3.79 0.05
Gemini 11.4 9.54 4.54 0.29
HitBTC 23.0 9.58 2.44 0.44
Kraken 10.32 5.6 11.35 0.78
Poloniex 7.42 5.03 13.84 0.27
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Lastly, right figure of Fig. 8 shows that those markets that were
shown to have large T, also are those with the largest A;. On the
other hand, spread in markets such as Gemini, Coinbase, Bitfinex
is driven by exogenous information as both T and A, is small.
Therefore, given information available from market microstruc-
ture observables, they are the least predictable. Table I shows that
Bitfinex, Gemini, and Coinbase are exchanges that experienced the
smallest influx of information from other exchanges prior to crash.
We also observed that these markets have small average AIS, sug-
gesting that they are “independent” from other exchanges and could
primarily be driven by exogenous information sources. On the con-
trary, Binance, Poloniex absorb the largest amount of information
from other markets. They were also found to have large average AIS.
Such markets could be labeled as “information absorbers.”

b. Price returns and order imbalance. Figure 7 shows that infor-
mation dynamics patterns for &, r are different from those of s. First,
for both observables, temporal evolution of MI is similar: some-
what symmetric around the crash date, minimal at the crash date,
and fluctuating from high MI to low MI with a period of around
2-3 weeks. These observations suggest that similar processes were
driving the system at either side of the price bubble. The peak of
the bubble is characterized by a clear, although not dramatic, reduc-
tion in both TE and MI, and to a lesser extent, reduction in AIS.
We observe that for ¢ (and to a smaller extent, for r), all three
measures—AIS, TE, MI—follow the same pattern, that is, when
TE is large, AIS, MI are also large. We were able to simulate this
scenario in Fig. 5(c) by changing the autoregressive parameters
responsible for the amount of uncertainty in the signals. When the
amount of noise, unique for each system’s constituents, is varied, the
three information dynamics measures either increase or decrease in
magnitude simultaneously as a response, being high-valued when
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the uncertainty is low. The minimal values of information dynami-
cal quantities at the peak of the bubble suggest that the system was
unpredictable, chaotic and not synchronized.

B. Information flow between market microstructure
observables

Here, we consider information sharing between different mar-
ket microstructure observables and compare it to inter-market
information sharing. We study two non-overlapping time series
windows: the time series preceding the price peak date (November 1,
2017 to December 17, 2017) and the remainder (December 17, 2017
to January 31, 2018).

We report the results in Table II. Altogether, they suggest that
the different periods before and after the price peak are characterized
by significantly different properties of information dynamics. More
specifically, we found that all significant changes in the strength of
information dynamics where higher in the period before the price
peak, as opposed to the period after the price peak. We find that the
spread’s inter-market connectivity changed significantly, as opposed
to the other two observables, suggesting that after the price peaked,
spread became responsive to changes in other market observables
or it responded to unobserved variables. Considering that there are
less and weaker links in the multigraph that illustrates the post-peak
market microstructure (Fig. 9, right) as opposed to pre-peak mar-
ket microstructure (Fig. 9, left), we consider the former case less
likely. We also found that ™™ decreased for spread, and ™, A%, [
decreased for price returns.

IV. DISCUSSION

In this paper, we studied patterns of information dynamics
in the Bitcoin system, describing it with market microstructure
observables: price returns, order imbalance, and spread—three mea-
sures that quantify the state of market makers and market takers.

TABLEII. Intra- and inter-market information dynamics before and after the price peak. Top and middle blocks of the table: amount of active information storage, multi-information,
apparent information transfer between market microstructure observables per possible link. The first column shows an average active information storage for the same time series
window. The second column reports /** which is the average mutual information for each observable and each other observable within a market, averaged over markets, whereas
the penultimate column reports the multi-information for a given observable across markets. All values are in nats. Bottom block of the table: results of Welch’s t-test,* which tests
the hypothesis that two populations for each observable have equal means before the price peak and after (the test cannot be performed on /*¥%, since only one data point exists
for each time period). With an asterisk we highlighted the result for which the p-value of the test was below 0.05, indicating that we have evidence against the null hypothesis of

equal population means.

Period ASYS s ™ WO Isys,self wself
Before Dec. 17th 0.367 £ 0.292 0.079 £ 0.09 0.281 £0.015 0.008 £ 0.007 0.369 0.009 £ 0.009
0.112 £ 0.052 0.029 £ 0.031 0.064 £ 0.003 0.007 £ 0.01 0.413 0.006 £ 0.007
0.468 £ 0.082 0.097 4 0.081 0.233 +£0.01 0.014 £ 0.015 1.857 0.033 £ 0.023
After Dec. 17th 0.168 + 0.183 0.034 £ 0.039 0.102 £ 0.006 0.004 £ 0.006 0.05 0.001 £+ 0.002
0.076 £ 0.034 0.028 £ 0.028 0.046 £ 0.004 0.006 £ 0.008 0.418 0.005 £ 0.005
0.342 + 0.062 0.054 £ 0.035 0.168 £ 0.009 0.005 + 0.006 2.545 0.031 + 0.027
* * n.a. *
n.a.
* * * n.a.

Intra-market Inter-market

Chaos 32, 043123 (2022); doi: 10.1063/5.0080462
© Author(s) 2022

32, 043123-11


https://aip.scitation.org/journal/cha

Chaos

Before Dec. 17th After Dec. 17th

im@nce imb@ﬁce

sd

returfis N

FIG. 9. Directed multi-graphs of information flow between the three market
observables before the price peak (left) and after the price peak (right). Satu-
ration of edges indicates the strength of information transfer. Self-loops repre-
sent transfer entropy from one market to another when considering the same
observable.

Our analysis contrasted micro-level information processing within
important Bitcoin trading venues during two distinguishable states:
while the price was, on average, ascending and during the period
in which the price was, on average, dropping. We found persisting
intra-market connectivity at the minute level frequency. Further-
more, we found that at high frequency, markets are interconnected
via order book spread, and the interconnectivity is enhanced prior
to price peak, suggesting a potential regime shift. On the contrary,
the inter-market connectivity via price returns and order imbalance
appeared symmetric around the price peak. We also observed the
dip in all information dynamic measures at the time of the crash,
suggesting that the system was asynchronous and unpredictable. We
also observed information flow between different market observ-
ables. By contrasting the two market regimes, we found that the sys-
tem shifted from a strongly interlinked state to a sparsely connected
one.

To supplement these findings, we analyzed several simulated
econometric models. With the model of autoregressive non-linearly
coupled variables that have time-varying drivers, we found several
simplified mechanism that could explain the empirical observations.
With the generalized autoregressive conditional heteroskedasticity
model (GARCH) coupled with spread dynamics, we studied a link
between returns and spread, as well as potential of detecting it using
means of information transfer. Our findings suggest that different
types of regime changes can be distinguished when a collection of
information dynamics measures is used together.

All in all, the results indicate that prior to a price peak, the Bit-
coin system was in a strongly coupled state. In particular, this is
clear when liquidity marker—spread—is considered. The drop in
all forms of information at the point at which the price is maxi-
mal suggests a reduction in predictability of the system. It may also
indicate that such a system is susceptible to various types of per-
turbations; however, we leave such hypothesis for further research.
We also make a note that the results of Fig. 7 (right column) for
s are reminiscent of a second order phase transition’>*’ and could
be a predictor of a financial crash.”* Of course other explanations
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are possible for this empirical observation and future studies could
further clarify its microscopic origin.

Our findings, although interesting, have limited explanatory
capacity due to the granularity of order-book data, the presence of
noise, and effects due to mixtures of unobserved system drivers. We
also assumed that the minute-level snapshots of the limit order book
data are sufficiently high-frequency to reveal true interactions across
and within markets. Of course, thess data are an approximation
of, in reality, practically continuous-time dynamics of the mar-
kets. Finally, since we limited our analysis to Bitcoin traded against
USD(T), an analysis of larger market microstructure datasets, con-
sisting of a bigger variety of currency pairs and forming larger
information transfer networks, would undoubtedly provide richer
insights as to why we observe increased market co-integration at the
time of a price bubble. Lastly, it would be important to repeat our
analysis using other similar datasets, concerning market microstruc-
ture during price bubbles. Observing similar results would suggest
that information dynamics framework may be a generally applicable
tool for early warning signals of financial crashes.
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APPENDIX A: DATA ALIGNMENT

As stated in the main text, the limit order books are snap-
shots sampled at approximately minute level frequency. However,
the exact time of a snapshot is not the zeroth second of a minute, the
intervals between consecutive snapshots in one market are not iden-
tical due to different technological reasons. Furthermore, for a given
minute, the times at which the snapshots are taken in different mar-
kets need not be exactly the same. The trading data on the other hand
is stored in continuous time, as each trading event is being registered
with its exact execution time. Derivatives obtained from each type
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FIG. 10. Histogram of the exact capture second of each minute snapshot of the
limit order books used in this paper.

of data, therefore, have to be carefully aligned for the consequent
analysis to always respect the order of time.

To illustrate the data alignment problem, consider some two
consecutive LOB snapshots in the BTC-e market: the first limit order
book snapshot is taken on November 1, 2017 at #; =00:00:03.021
and the second one is taken approximately 1min later, at
t, =00:01:02.798. Further consider the Binance market, where the
first limit order book snapshots are taken at t; =00:00:01.267
and #,=00:01:01.274. One can already see that #; # | and that
t, — ) # 60s precisely.

Binance - Bitfinex

Bitstamp - Coinbase

scitation.org/journal/cha

Let us first consider the data alignment for analysis in Sec. [1] A,
where we consider information transfer between markets given one
observable, e.g., spread.

First, for the observable based on trading data, we simply re-
sample the trades at the minute level so that the trades that happened
between 00:00:00.000 and 00:00:59.999 would represent the order
imbalance at time T = 00:01:00.000.

For observables based on limit order books, we assume that
the snapshot is representative of a limit order book that would be
observed at the zeroth second of the minute, namely, at precisely
HH:mm:00.000 for every hour HH and minute mm. In Fig. 10, we
show the histogram of the exact snapshot seconds within a minute
of each limit order book. It is clear that the majority of the limit
order books were captured at first halves of a minute. Since we
chose to use information dynamics that assumes discrete time series,
the limit order book snapshot times are first floored to the clos-
est minutes, after which spread and price returns observables are
extracted.

For the example snapshots, we consider here ¢; and ¢, would
be rounded to the closes smaller minutes: t; = [#;| = 00:00:00.000,
7, = [£] = 00:01:00.000 from where we obtain s;,, s, and .

We note that the problems would occur only when there is
a systematic delay between the exact snapshot times for a given
minute in a pair of markets. If for some pair of @, 8, t* < t* in the
majority of minutes, one may observe a spurious link 8 — «. To test
whether this could be the case, we computed the differences between
the exact snapshot times at each minute between pairs of markets.
We report several observed distributions and note that the distribu-
tions do not appear skewed and the mean of the distributions is close
to 0, see Fig. 11.

We could also observe spurious information transfer if map-
ping to the closest minute is not done systematically. For instance,
information transfer from BTC-e (whose first snapshots are taken
at t1, t, and are later rounded to 7;, 7,) to Binance (whose first snap-
shotsaretakenatt]; < t;,t, < t, and arelater rounded to 7;, 7). One

BTC-e - Gemini

10000
2500 5000
061 0.0 0.1 o 0.0 0.1 061 0.0 0.1
Coinbase - Poloniex Gemini - Kraken Binance - Kraken
5000 00
5000
%1 0.0 %1 00 o1 %1 00 01

FIG. 11. Differences between capture seconds at the same minute for a pair of markets. The title of each subfigure indicates o — B for the histogram that shows t — t*.

The x-axis is in units of 1 min.
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may think that TE in the direction from Binance to BTC-e would
be spurious because the market representation of Binance at either
T relates to an earlier true date t. However, in estimating transfer
entropy, we measure the amount of reduction of uncertainty about
the state of some variable X at time 1, given the state of another vari-
able Y at an earlier time t,, over and above the information about
X at time T, that is already available from its own past at time 7.
Therefore, issues would arise only if we mapped, e.g., f; to 7; and
t, to 7, but not if we use flooring operator. Note that this type of
rounding, overall, ensures that no acausal, spurious links can occur
when the system is probed at a frequency of at least 1 min. There-
fore, our results are limited to measuring information dynamics at
the inter-minute granularity.

For the second part of the analysis, presented in Sec. III B,
we consider information transfer between different observables.
Therefore, we need to ensure that we do not create acausal links.
To compare the information flow from spread at t, to order
imbalance within that minute, we must only consider the trades
that occurred in the interval (t;,%], ((00:00:03.021,00:01:02.798]
in the example) when calculating &. Similarly, the price returns
at f, must be the price difference between t, and t;. There-
fore, we consider the time index of order books, where the fre-
quency is approximately 1min, and aggregate trading data based
on that.
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APPENDIX B: KOLMOGOROV-SMIRNOV TESTS FOR
OBSERVABLES BEFORE AND AFTER PRICE PEAK

Table 11T reports the Kolmogorov-Smirnov test results for all
observables in each market analyzed in the main text. The table
shows that the two partitions of the data, namely, before the price
peak date, December 17th, 2017, and afterward, have different mean
values, and for all Kolmogorov-Smirnov tests at 1 min frequency
and almost all tests at 12 h frequency (except for s in Coinbase and r
in HitBTC and Bitstamp), the null hypothesis that the means are the
same is rejected, suggesting that different types of dynamics prevail
during the two periods.

APPENDIX C: CHOICE OF K IN K-NEAREST
NEIGHBORS

At the heart of transfer entropy is the estimation of differential
conditional mutual information, which, in turn, relies on the qual-
ity of probability distributions of our variables. Mutual information
involves averages of logarithms of P, the underlying probability dis-
tribution. Since, for small P, log P — 00, the ranges of values for our
variables X,Y where P is small and hence cannot be sampled and esti-
mated reliably from data contribute disproportionately to the value
of information.”

TABLE lll. Average of observed values for observables and results of the two-sided Kolmogorov—Smirnov test for each observable and market analyzed in the main text,
performed on the two samples of the data: values observed before December 17th, 2017 and after. The null hypothesis of the tests is that two independent samples are drawn
from the same continuous distribution, therefore, if p-value is high, then we cannot reject the hypothesis. For a p-value threshold of 0.05, at high frequency, we reject the
hypothesis for all observables in each market, whereas at the low frequency, we cannot reject the hypothesis for a few cases, namely, s in Coinbase and r in HitBTC and Bitstamp.
Columns “Before” and “After” show the average of observed values for the two time periods, “KS” and “p-value” columns report the Kolmogorov-Smirnov statistic and significance,

respectively.
s r 0
o Before After KS p-value Before After KS p-value Before After KS  p-value
1 min frequency ~ BTC-e 26.08 3647 0.24 0.0 0.17 —0.11 0.03 0.0 0.13 —0.04 0.22 0.0
Binance 1896 15.27 0.11 0.0 019 —-0.07 0.09 0.0 0.22 0.06 0.16 0.0
Bitfinex 2.6 329 032 0.0 021 —0.03 0.03 0.0 0.13 —1.68 0.06 0.0
Bitstamp  10.86 18.64 0.26 0.0 0.16 —0.03 0.05 0.0 0.9 —0.21 0.07 0.0
Bittrex 10.29  21.94 0.27 0.0 0.18 —0.04 0.03 0.0 0.14 —-0.13  0.05 0.0
Coinbase 0.98 1.0 0.04 0.0 022 —0.04 0.05 0.0 2.77 0.81 0.11 0.0
Gemini 3.74 6.22 0.12 0.0 0.21  —0.06 0.07 0.0 0.42 —-0.04 0.07 0.0
HitBTC 13.57 1342 0.15 0.0 0.19 —0.04 0.04 0.0 0.0 —0.04 0.06 0.0
Kraken 10.99 13.13 0.15 0.0 025 —0.02 0.06 0.0 —0.06 —-0.23 0.06 0.0
Poloniex 10.26 17.34 0.27 0.0 019 —-0.05 0.03 0.0 —0.0 —0.28 0.05 0.0
12 h frequency BTC-e 2694 4401 0.75 0.0 122.53 —41.44 0.22 0.0 92.86 —29.87 042 0.0
Binance  19.22 1547 0.28 0.0 124.78 —48.25 0.2 0.01 158.92 42.88 0.39 0.0
Bitfinex 2.63 331 046 0.0 133.09 —-29.04 0.21 0.01 91.29 —1206.33 0.21 0.04
Bitstamp  10.93 18.93 0.68 0.0 123.08 —1531 0.18 0.03 647.54 —152.98 0.37 0.0
Bittrex 1032 21.96 0.75 0.0 116.57 —30.16 0.18 0.03 98.48 —-93.8  0.29 0.0
Coinbase 0.99 1.0  0.08 095> 130.5 —3643 0.21 0.0 1995.38 585.12 0.43 0.0
Gemini 3.97 6.5 054 0.0 129.14 —41.82 0.21 0.01 302.27 —2691 0.34 0.0
HitBTC 13.59 13.55 0.35 0.0 126.85 —30.76 0.17 0.04 2.62 —29.66 0.26 0.0
Kraken 11.01 13.8 0.36 0.0 17586 —12.71 0.25 0.0 —43.55 —166.86 0.23 0.02
Poloniex 10.26 17.45 0.67 0.0 124.65 —42.06 0.22 0.0 —1.88 —202.68 0.28 0.0
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Information estimators that use continuity of real valued data
to overcome issues related to undersampling have proved to be
the most successful for a wide range of databases and applications.
Among those, one of the most successful is the Kraskov, Stogbauer,
and Grassberger estimator,’” which we will refer to as KSG. The
KSG estimates information transfer based on the statistics of dis-
tances between neighboring data points. To implement this, KSG
uses the max(Ax, Ay, Az) metric to define the distance between two
points that are (Ax, Ay, Az) away from each other in the joint space
{x, y,z}. For each given test point, n, is the neighbor count strictly
within & in the z marginal space, and n,; and n,, are the neighbor
counts strictly within ¢ in the joint {x, z} and {y, z} spaces, respec-
tively. Conditional mutual information is then defined in terms of
these variables, '’

I(X,Y|Z) = y(K) = E[Y () — ¥ (n,) + ¥ (n)], (C1

where ¥ is a digamma function and averaging is over the samples.

As pointed out in Ref. 33, for any information estimator, it is
essential to ensure that such estimators (there a KSG estimator for
MI rather than conditional MI was considered) is minimally biased
toward the sample size, and the choice of K is optimal: that is, for
independent sub-samples of the dataset the variance of obtained
result is minimal.

The details of this approach for the choice of K are thoroughly
described in Ref. 33. Here, we simply note that we tested several
choices of nearest neighbors for a pair of sample time series for
which we identified significant transfer entropy with estimator using
K = 4 nearest neighbors. As Fig. 12 shows, this choice of K has a
small bias for the sample size: even if we slice the time series in four
to five parts, the value of TE does not increase significantly. Fur-
thermore, the variance for values of individual subsamples is also
minimal. Note for K = 1, we have a strong sample-size dependent
bias as well as large variance.
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FIG. 12. Bias and variance of transfer entropy for subsamples of size n for spread
time series from Bitstamp to HitBTC where we identified a significant information
transfer of 0.0052 nats using K = 4 nearest neighbors.
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FIG. 13. Expected values of information dynamical variables when C(f) is a
sigmoid functional of time, (17), parameterized by (a) s, (b) b, (c) C, (d) in the
presence of a constant hidden driver of strength c. Information dynamic mea-
sures are significantly different in the two regimes, as defined by the values of the
sigmoid function.

APPENDIX D: INFORMATION TRANSFER METRICS
AROUND REGIME SHIFTS IN AUTOREGRESSIVE TIME
SERIES

Here, we perform a parameter sensitivity analysis for the
results, shown in Fig. 5. Note that in Figs. 13 and 14 we do not
consider the parameters oy, ®,, 81, B, as variables and set them to
a; = oy =0.2and B; = B, = 1.Inall figures, we also chose d = 0.5.
We note that for a definite conclusion regarding these information
dynamical signatures, a thorough analysis of the relation to these
parameters should also be conducted.

In Fig. 13, we show that a signature of high TE and AIS with no
change in MI indicates strong causal coupling [illustrated in Fig. 5(a)
of the main text], and this statement is robust for a wide range of
parameters. It is worth pointing out, however, that at high levels of
K, a significant amount of MI is also detectable in a weak-coupling
regime.
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FIG. 14. Expected values of information dynamical variables when K is a sigmoid
functional of time, parameterized by (a) s and (b) b, (c) ¢, (d) in the presence of
a constant causal driver of strength c. Parameter b quantifies the abruptness of
the transition, whereas s quantifies the magnitude of change in the two regimes
centered at tc. Ml is high in the high-coupling regime, and the reverse is true in
the low-coupling regime.

The case of a shift in the hidden driver [illustrated in Fig. 5(b)
of the main text] is signed with a high MI value in a strong-coupling
regime and vice versa in a weak-coupling regime. In Fig. 14, we
show that for a wide range of parameter values that characterize
the strength and steepness of the regime transition function, as well
as the strength of causal coupling, MI is significantly larger in the
strong-coupling regime. Although for some parameter values AIS is
anti-correlated with MI, it is not a robust signifier based on the sen-
sitivity analysis. We also note that, not surprisingly, the strength of
the coupling is directly related to the magnitude of ML

Lastly, Fig. 15 shows that a change in overall system’s uncer-
tainty [the amount of uncorrelated random noise, that was illus-
trated in Fig. 5(c) of the main text] is detectable with a signature of
having low TE, MI, and AIS in a high-uncertainty regime and vice
versa in a low-uncertainty regime.
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FIG. 15. Expected values of information dynamical variables when By, 8, are
sigmoid functionals of time, parameterized by (a) C, (b) b, (c) s, (d) autoregres-
sive parameters a4, . Parameter b quantifies the abruptness of the transition,
whereas s quantifies the magnitude of change in the two regimes centered at {c.
MI, TE, AIS are high in the high-uncertainty regime (high B4, B, regime), and the
reverse is true in the low-uncertainty regime. Here, we have C(f) = 1 = cost,
and K(t) = 1 = cost.

APPENDIX E: MODELING THE NON-LINEAR
RELATIONSHIP BETWEEN PRICE AND SPREAD

Consider VAR toy example,

Xi = a1 X; 1 + Biers + K(Dey,

(E1)
Y, = Yy + Baeas + K(B)e, + C() (Xi—1)?,

with d = 1 and d = 2. For simplicity, we set o, = 0, 1, B, = 0.1,
C(t) = 1,and K(f) = 0. In Fig. 16, we show that when the non-linear
relation between the variables is present, KSG estimator can detect
a large amount of information transfer. In case of linear relation, we
show a convergence between two measures in the large N limit, while
anon-linear relationship is only detectable with a KSG estimated TE.
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FIG. 16. (a) d = 1, i.e., linear relationship between X, Y, (b) d = 2, i.e., non-lin-
ear relationship between X, Y.

A more realistic example considers possibly bidirectional cou-
pling between price returns r and spread s when spread is coupled
with volatility (variance) of price. Therefore, we have coupled time
series of the form (18).

Note that in this formulation, a link from price to spread is indi-
rect, and in fact, price returns affect spread at the two-step delay.
Therefore, in the following figures, we will scan through § € [1,2]
and choose the delay for which the observed TE is larger. Depend-
ing on parameter values b,y we can have bi- or uni-directional
couplings T_,, or T,_,. Each datapoint in the proceeding results is
considered at a significance level of 0.01, and results are obtained
from 100 independent simulations.

Parameters , 8,4, b, ¢, w, y affect stationarity and damping in
the system; therefore, we need to choose such parameter values that
system would be stationary throughout. To find a stationary combi-
nation of the parameters, we need to consider the moments of the
two processes.

First, to compute the unconditional mean values o? and s? of
volatility and spread, let us consider

o* = Var[r] = E[r}] = E[E[r{|.F,1]]
=Elw+art | + B2, +ysi]
=w+ (a+ o’ +ys
and similarly,
s* = E[s}] = Elas’_, + bo | + c€}]
=as’ +bo’ +c.

Solving the system, we obtain

Pl e A, (E2)
1—a—-p)(1—a)—yb
2
a-borte (E3)
1—a

From the first equation, we see that unconditional volatility
increases with y, ¢, and b, i.e., there is a contribution of illiquidity to
volatility. From the second equation, for large volatility (6> >> b/c),
we obtain the well known proportionality s oc o between liquidity
and volatility. The stationary condition is obtained by imposing that
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these two quantities are positive, hence, since a < 1, it must be
(l1-—a—pB)1—a)—yb>0. (E4)

Volatility can be eliminated from the Eq. (18) and by recursive
substitution, we get

w ClJroo y+oo
ol =——+=) Bri+=) Bs,
P03 5; - ﬁg -

bw by = ba <X
= =5 +ast |+ e Zﬂ’sf_i + 5 Z Bt + cel,
i—2 =2

i.e.,, the volatility is the sum of an Exponentially Weighted Moving
Average (EWMA) of past square returns and of an EWMA of past
square spreads and the same holds true for squared spread. Squaring
the last two equations in (18) and taking expectations, one gets

E[o"] = w’ + 30’E[0*] + B’El0"] + y*E[s"]
+ 2wao? 4 2who? + 2wy s
+ 2aBE[c*] + 2ayE[0?s*] + 2By E[o*s%]
and
E[s*] = aE[s*] + V’E[0*] + 3¢% + 2abE[o?s*] + 2acs* + 2bco?,

where we have used the fact that E[e!'] = E[¢/] = 3 (because they
are Gaussian), and we introduced in the equations the unconditional
means o2 and s* in Eq. (E2).

In order to close the system, we need an expression for E[o2s?].
This can be obtained by taking the product of the last two equations
in (18) and taking the expectation, obtaining

E[0?5*] = was® + wbo? + wc + aaE[o%s%]
+ abE[o*] + aco? 4 aBE[o?s*] + BbE[o*]
+ Bco? + yaE[s'] + ybE[o?s*] + ycs®.

We now have a system of three equations and three unknowns
(Elo*], E[s*], and E[o2s?]) whose solution gives the second

Expected link s <= r
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FIG. 17. TE from spread to returns (left) and reverse (right), « = 0.1,
B=05a=01b=05c=01y =05
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moments. As usual, these moments will be finite in the parameter
region where they are positive.

The solutions for fourth moments are cumbersome to write in
full form. However, we checked that for the parameter combinations
that we will study next the expectation of 02,s% 0#,s* are all well-
defined. In particular, we considered the three following cases:

e Information transfer from spread to volatility and, therefore, to
price returns; no information flow from price returns to spread:
a=01,8=04,a=08,b=0.0,c=0.1,y =09,w=0.1.

e Information transfer from volatility and, therefore, price returns
to spread; no information flow from spread to price returns:
a=0.1,8=01,a=01b=09,c=0.1,y =0.0,w =0.1.

e Bidirectional coupling from price returns to spread and vice versa:
a=01,8=05a=01b=05c=01y =05w=0.1.

First set of parameter values gives o* ~ 0.13,s* = 0.24, o*
~ 0.01 + 0.040%,s* ~ 0.04 + 0.02s*> + 0.2402. All values are pos-
itive. For the second set of parameters, we get o*=~ 1.1,
£~ 05, 0!~ 02+ 145 + 0202, s* ~ 0.08 + 0.445>. Lastly, for
the third set of parameters, we find o2 ~ 1.27, s* ~ 0.82, and
o'~ 02+ 1452 4+ 0202, s* ~ 0.08 + 044s>. Therefore, all param-
eter values are suitable.

1. Simulation results

The three cases of coupling between spread and price returns
are shown in Figs. 6, and 17. The first case, shown in Fig. 6(top)
considers y = 0.9 and, therefore, coupling from spread to returns
is strong. The figure shows that Gaussian estimate of TE is always
close to zero, whereas KSG estimate of TE is clearly larger in the
direction from spread to price returns (left figure) as opposed to the
reverse (right figure). Note that in some simulations significant non-
zero coupling is observed, when Gaussian estimate is used. However,
on average, the magnitude of information transfer estimated with
Gaussian estimate is smaller in contrast with KSG estimated TE.

The second case, shown in Fig. 6(bottom) considers a situation
where y = 0.0, therefore, the link from spread to returns should
not be observed, whereas parameter b, that indicates the strength
of a reciprocal coupling is set to a large value b = 0.9. Here, trans-
fer entropy detects a significant information transfer only from price
returns to spread. Similar to the previous case, the Gaussian estimate
is also found significant and different from zero in some of the sim-
ulations; however, the magnitude of TE is smaller than that obtained
with the KSG estimate.

The last figure, Fig. 17, considers a case when both y # 0 and
b # 0. Although the link from spread to returns is much weaker
than the reverse, we, nevertheless, observe significant flow in both
directions.

In all cases considered, TE estimates show no apparent size-
dependent value drift, and, therefore, we assume there is no sample
size-related bias, as long as N > 1000.

2. Theoretical values for transfer entropy between
price returns and spread

The mathematical simplicity of our model (18) allows us to esti-
mate the TE using numerical integration techniques. By comparing
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the simulation results, obtained using a data-dependent estimator of
TE, with the results obtained analytically, we can attest the usability
of such estimator for the type of data that could arise from the model
considered.

a. Information transfer from spread to price returns

To proceed, note that transfer entropy from spread to price
returns is the difference of two conditional entropy (H(:|-) terms,
namely,

Ts~>r = H(Tt|T[,1) - H(rt|rt71) st71)~
THT—1>St—
i
we sample points {r;, 7,1, 5,1}, {r, s;} obtained from (18). Using a
natural logarithm, log yields a result in units of nats, and f(-) denotes
probability density function (p.d.f.).

First, let us consider the case when b = 0 (Fig. 6) we derive the
theoretical distribution densities for model-based transfer entropy
from spread to returns. To obtain the p.d.f. f(r;|r,_1,51), one can
sample values of f(r;|r,_1,s_1,0) and integrate over the hidden
volatility variable

It can also be rewritten in terms of expectation o , where

f(?’t|rt71:5t71) = ‘/\f(od)f(rt“’t—l’stfl:o‘) do.

Here, we assume independence of o. Further marginalizing, we
obtain the conditional p.d.f. of price returns

firdry) = / / FO s, o) do ds.

Finally, in case of our model defined in (18), we know the exact
probabilistic model

f("t = X|r—1,8-1,0¢_1)
=N (0,w+arr + Bol, +yst),

where A (x;u =0,02 =w+ar’, + Bo’, +ys-,) denote the
normal probability density function parameterized with u, 0.

Now, to compute the quantity T;_,,, we perform Monte Carlo
sampling

flre=xr1,5-1) = Ea,-Nf(a)[f(rt = x[r—1,5-1,07)]

N
1
~ N ZJV(x; 0,w+ Ol?’f_l + :361‘2 + st—l)'

i=1

«10""* TE estimate return --> spread

TE estimate spread --> return

FIG. 18. Model-based TE from spread to returns (a) and reverse (b), with
expected link s — r. Parameters: o =0.1,8=04,a=038b=0.0,
c=01,y =009.
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FIG. 19. Model-based TE from spread to returns (a) and reverse (b) with
expected link r — s. Parameters: o« =0.1,8=01,a=0.1,b=0.9,
c=0.1,y =00.

S = x|r21) = Egimfio)si~fis) [f(re = xlre—1, 515 09)]

N
1
~ Y N (w0,wtarl, + Bo} +ys)).

i=1

On the left panel of Fig. 18 and right panel of Fig. 19, we show
agreement between the transfer entropy obtained from such analyt-
ical integration and the result we found in Fig. 6 using a K-nearest
neighbor data-driven estimator.

b. Information transfer from price returns to spread

Similar to the case before, transfer entropy from returns to
spread is the difference of two conditional entropies,

Trss = H(selst—1, $t-2)] — H(stlst-15 812, 111, Te-2) ],
which can also be rewritten in terms of expectation value
log fGstlsi—18t—2,ri—1,1—2)

Slstlse—1.5t—2)
Here, we need to estimate a conditional p.d.f. of spread given

last two spread values. We do this again via marginalization of
hidden variables,

f(5r|5r—1s5t—2) = //f(Sr,T’t—bT’r—z|5t—1,5t—2)d7’t—1d7’t—2-

The conditional p.d.f. of spread given last two spread and price
return values, f(s;]S;—1,Si—2, t—1,1—2), is obtained by marginalizing
over a hidden volatility variable,

Slsilsi—1ssi-2: 1115 11—2) (E5)

= /f(Sn 012|815 St—2, -1, 11—2)) doy 5. (E6)

For simplicity, let us denote the conditional density of spread
with ¢ ()
f(St = YI8i—15S1—2: 11=2,01-2) = d ().

Then, the value of spread at time ¢ is connected to the conditional
variables as

s = as;_ +b(w+ar_, + o, +ysi_y) +ee?,

*
t
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where €? is chi-square distribution. Note that spread can be rewrit-

ten as
st = /¢ +ce?,

where +/ce? is the Nakagami distribution. Then, we have

50 24/0.5 —x?

X)=———exp| —
['(0.5)4/c P\ 2

and ¢} + ce? is shifted Gamma distribution. Under the monotone

transformation of random variable y = g(x) = ,/cf +x, we can
compute the p.d.f. of s; as

>

_ —1 i —1
() =f(g (y))‘dy(g 62)]

where

fex) = mx’“z exp (—2%)
and
gm=y—d.
Finally, we get conditional probability density for spread f(s;
= YISi—15S$1—25 11=2,0¢—2) = $ (),

Zy _yz—CT)
F(l/z)\/w——cr)e"p( 2 ) va=)?

where ¢} =asi_, +b(w+arl, + Bo2, +ys;,) and 1 stands
for an indicator function defined over a subset of real numbers,
/. Now, we can get a numerical Monte Carlo estimate of the
model-based transfer entropy as

o) =

f(st = YISe—15 St—25 T1—1> Tt—2)

= Eai~f(at,2) [f(5r|5t—1> St—2>Tt—15T1—2, 07))

N
1
N Z‘P()’; 66 =as +b(wtarn_, + Bol +ys.,))

i=1
and f(s; = y|s;—1, S—2) is an expectation
f(Sr =plsi—1,8-2) = Er,-,r-~ (re—1.11—2) [f(St = YISi—15 =2, 11> 11-2)).
i~ fi

In Figs. 18 and 19, we show agreements of transfer entropy obtained
from such analytical integration, in comparison to transfer entropy
values from returns to spread with KSG estimates shown in cor-
responding panels of Fig. 6. For the case shown in Fig. 17, where
we have bidirectional flow, namely, b > 0 and y > 0, deriving the-
oretical density distributions requires special attention since we
need to account for dependence between spread and volatility in
marginalization step, (E5), that falls out of the scope of current work.
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