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Despite considerable efforts carried out to develop stem/progenitor cell-based

technologies aiming at replacing and restoring the cardiac tissue following severe

damages, thus far no strategies based on adult stem cell transplantation have

been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly,

dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell

differentiation represent the preponderant cellular mechanism by which lower vertebrates

spontaneously regenerate the injured heart. Mammals can also regenerate their heart

up to the early neonatal period, even in this case by activating the proliferation of

endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential

is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell

cycle, undergo further maturation, and continue to grow in size. Although a slow rate

of cardiomyocyte turnover has also been documented in adult mammals, both in mice

and humans, this is not enough to sustain a robust regenerative process. Nevertheless,

these remarkable findings opened the door to a branch of novel regenerative approaches

aiming at reactivating the endogenous cardiac regenerative potential by triggering a

partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes.

Several adaptations from intrauterine to extrauterine life starting at birth and continuing in

the immediate neonatal period concur to the loss of the mammalian cardiac regenerative

ability. A wide range of systemic andmicroenvironmental factors or cell-intrinsic molecular

players proved to regulate cardiomyocyte proliferation and their manipulation has been

explored as a therapeutic strategy to boost cardiac function after injuries. We here

review the scientific knowledge gained thus far in this novel and flourishing field of

research, elucidating the key biological and molecular mechanisms whose modulation

may represent a viable approach for regenerating the human damaged myocardium.
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TOWARD THE DIRECT STIMULATION OF
CARDIOMYOCYTE PROLIFERATION FOR
HEART REGENERATION

Heart failure, consisting in the inability of the heart to pump
enough blood to meet the body’s needs, is a prominent
cause of death worldwide and often occurs as a result of
severe cardiac injuries, such as those induced by myocardial
infarction [reviewed by Savarese and colleagues (1)]. Besides
left ventricular assist devices and heart transplant, which
is the most curative approach, yet with severe limitations
(scarcity of donors, extremely high costs, immune response, and
organ rejection, etc.), currently available therapies are mainly
based on pharmacological treatments for slowing down disease
progression and reducing symptoms. However, none of these
treatments can reverse the progression of the disease or cope
with the underlying conspicuous loss of cardiac muscle cells
(cardiomyocytes) that are replaced by fibrotic scar tissue. During
the last decades, scientific studies based on transplantation of
adult stem cells, isolated from skeletal muscle, bone marrow,
blood, or fat tissue, have been carried out with the hope to
replenish lost or damaged cardiomyocytes, restoring cardiac
function. Unfortunately, these approaches demonstrated modest
beneficial effects on heart function most probably attributable
to paracrine factors rather than the generation of new cardiac
muscle cells [reviewed by Tzahor and Poss (2) and Sadek and
Olson (3)]. Moreover, although a population of lineage negative
c-kit+ cardiac stem cells was initially reported to give rise to
all major cardiac cell types, including cardiomyocytes (4), more
recent lineage tracing studies based on tamoxifen-inducible Cre-
LoxP technology unveiled that newly cardiomyocytes generated
from c-kit+ cells are extremely rare, irrelevant in terms of
cardiomyocyte regeneration, despite abundantly contributing to
the generation of endothelial cells (5) [reviewed by Passier and
colleagues (6) and Chien and colleagues (7)].

During the last two decades, the attention of many research
groups has shifted toward the possibility to regenerate the
damaged heart by reawakening the intrinsic regenerative
potential. Indeed, studies of the animal kingdom have
enlightened the amazing ability of some animals to regenerate
themselves. Hydra, planarians, and lower vertebrates, such
as salamanders, frogs, and fishes, can trigger complex repair
mechanisms, totally or partially restoring missing or damaged
tissues and organs, such as limbs, retinas, eye lenses, spinal cords,
tails, and even the heart. These astonishing observations have
led to intense scientific investigations in cardiac regenerative
medicine, aiming at developing innovative therapeutic strategies
suitable for humans. Specifically, studies in the zebrafish model
at the adult stage unveiled its ability to efficiently regenerate
the damaged cardiac tissue, achieving complete scar resolution
and regeneration of lost cardiomyocytes within 2 months after
surgical resection of 20% of the ventricular myocardium (8). This
striking self-healing property emerges even after more severe
cardiac damages, such as cardiomyocyte-specific depletion of
60% of the ventricular myocardium (9), and cryoinjury-induced
lesions (10, 11). Interestingly, genetic labeling of differentiated

cardiomyocytes with fluorescent markers highlighted that
cardiac muscle cells generated post-injury derive from the
proliferation of endogenous cardiomyocytes. In this process,
transient and partial dedifferentiation of cardiomyocytes has
been documented, as manifested by cardiomyocyte detachment
from one another, sarcomere disassembly, loss of Z-line
structure, and expression of fetal genes (12, 13). Unlike zebrafish,
for a long-time, the mammalian heart has been considered
non-regenerative because of its injury-induced replacement
of dead muscle cells with fibrotic tissue and its inability to
restore the reduced contractile function after major injuries.
Despite adult mammals fail in regenerating their heart, cardiac
regeneration appears to be quite robust during prenatal and early
postnatal stages. Indeed, mammalian fetuses can compensate
for a loss of about half of cardiomyocytes (14, 15). Newborn
mice can robustly regenerate their heart following resection
of 15% of the ventricular apex within 2 months, by inducing
the proliferation of pre-existing cardiomyocytes, as assessed
by lineage tracing analyses and staining of cell cycle markers
(16, 17). A complete cardiac regeneration process has also
been documented in newborn mice following induction of
myocardial infarction by ligation of the left anterior descending
artery (18). The cardiac regenerative ability at the neonatal stage
has also been documented in large mammals. For example,
myocardial infarction in 1 or 2-days-old swine, is followed
by cardiac tissue replacement achieved by dedifferentiation
and proliferation of pre-existing cardiomyocytes in the border
zone (19, 20). It has also been reported the astonishing clinical
case of a newborn child undergoing a rapid functional cardiac
recovery after myocardial infarction, although it was not
possible to assess if the observed recovery was due to bona
fide regeneration or reversible functional impairment (21).
Importantly, cardiomyocyte regenerative potential in the
mouse model dramatically decreases during the first week of
postnatal life; consequently, severe cardiac injuries evolve in
permanent scarring and impair heart function (16). This decline
was suggested to start already 2 days after birth (22). Similar
observations were documented in larger mammals during
the early postnatal period. For example, swine begin losing
cardiomyocyte regenerative ability at postnatal day 3 and more
pronouncedly at later developmental stages (postnatal day 7 and
14), undergoing extensive cardiac fibrosis and not recovering
cardiac function after injury (19, 20).

In this review we first describe how mammalian

cardiomyocyte cell cycle activity is regulated during prenatal
and postnatal life, with particular emphasis on the early

postnatal period, when most cardiomyocytes become bi/multi-
nucleated or polyploid, withdraw from the cell cycle, and

continue to grow in size (hypertrophic growth), consequently

losing the regenerative potential. Then, we review the major
changes occurring at birth and in the immediate postnatal
period, along with systemic, micro-environmental, intracellular
stimuli influencing the proliferative ability of endogenous
cardiomyocytes, whose manipulation is a promise for enhancing
cardiomyocyte regeneration and boosting cardiac function in
heart failure patients.
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FIGURE 1 | Developmental regulation of cardiomyocyte cell cycle activity in mammals. Schematic representation of mammalian cardiomyocyte growth in prenatal and

postnatal life. Most cardiomyocytes during the early postnatal period become bi/multi-nucleated and/or polyploid, withdraw from the cell cycle, and continue to grow

in size (hypertrophic growth). An approximate percentage of bi/multi-nucleated, polyploidy, and diploid cardiomyocytes in different mammalian species at the adult

stage is provided (it may not add up to 100% because cardiomyocytes can have several polyploid nuclei and because these values are derived from different reports)

along with the estimated cardiomyocyte annual turnover.

DEVELOPMENTAL REGULATION OF
CARDIOMYOCYTE CELL CYCLE ACTIVITY

In zebrafish, cardiomyocytes are predominantly mononucleated
and diploid throughout life and retain pronounced proliferative
capacity (23, 24).

In contrast, cardiomyocyte cell cycle activity and nucleation
in mammals are strictly connected to the developmental
stage (Figure 1). During embryonic and fetal development
heart growth in mammals is characterized by the increase
in the number of cardiomyocytes. Importantly, genetic fate
mapping in the mouse model, allowing the identification of the
temporal sequence during which the lineage segregation between
cardiomyocytes and non-myocytes takes place, unveiled that
non-myocytes, which include stem cell populations, contribute
to new cardiomyocyte generation exclusively in the early
embryonic development (25). Starting from mid-gestation, pre-
existing cardiomyocytes become the predominant source of
cardiomyocyte replacement in physiological mammalian cardiac
development (25). As further detailed later in this review,
multiple signaling pathways were shown to play a key role in
cardiomyocyte proliferation during prenatal life and, in some
cases, their manipulation can partially reactivate the cardiac
regenerative ability in the adult stage.

In the mouse model, during the first week after birth,
the majority of cardiomyocytes undergo DNA synthesis
and karyokinesis (nuclear division), without proceeding to

cytokinesis (cytoplasm division), thus resulting in binucleation
(two diploid nuclei per single cell) (26, 27) [reviewed by Soonpaa
and Field (28)]. Specifically, on postnatal day 2 most mouse
cardiomyocytes are mononucleated. On postnatal day 3 mouse
binucleated cardiomyocytes raise to ∼17% and reach the adult
level of ∼80–90% by day 11 (26) [reviewed by Derks and
Bergmann (29)]. Similarly, in rats, the percentage of binucleated
cardiomyocytes, which is around 3–4% in the first 3 days of
postnatal life, increases at ∼17% on postnatal day 4 and reaches
the adult level of ∼90% by day 12 (30) [reviewed by Derks and
Bergmann (29)].

In humans, during the early postnatal period, the majority
of cardiomyocytes undergo DNA synthesis without karyokinesis,
resulting in polyploidization (single tetraploid nuclei) (31).
Other large mammals, such as swine, undergo primarily
multinucleation and to a less extent polyploidization (32)
[reviewed by Derks and Bergmann (29)].

The time at which cardiomyocytes become bi/multi-nucleated
or polyploid is coincident with the time when mammals
lose their regenerative potential [reviewed by Derks and
Bergmann (29) and Gan and colleagues (33)]. In support of
a causal relationship between multinucleation/polyploidy and
loss of cardiac regenerative ability, enforced cardiomyocyte
polyploidization has been demonstrated to reduce cardiomyocyte
proliferation and to represent a barrier to heart regeneration in
the zebrafish model (24). Importantly, during the early postnatal
development, the vast majority of mammalian cardiomyocytes
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also exit from the cell cycle. As a consequence, the number of
postnatal cardiomyocytes does not increase in mammals during
postnatal life (34), and further growth of the heart is achieved
by increasing cardiomyocyte size, a phenomenon known as
hypertrophic growth.

Historically, adult human cardiomyocytes were considered
completely unable to divide. However, this belief has been
disproved in 2009. Indeed, the analysis of the integration of 14C
generated by nuclear bomb tests during the Cold War allowed to
precisely estimate cardiomyocyte renewal in adult humans. This
study detected 1% annual cardiomyocyte turnover at the age of
25, declining to 0.3% at the age of 75. Based on these data, it is
therefore estimated that fewer than 50% of cardiomyocytes are
physiologically exchanged during the course of life (34). Even
though the adult cardiomyocyte renewal rate is extremely low,
definitely insufficient to pursue a successful regenerative process
after major injuries, this remarkable observation suggests that
increasing the rate of adult cardiomyocyte proliferation may
represent a novel strategy for cardiac regeneration.

MOLECULAR STRATEGIES FOR
CARDIOMYOCYTE REGENERATION

Immediately after birth, a complex reorganization of the
cardiovascular system occurs. Recent studies have unveiled that
the adaptation from intrauterine to extrauterine life driven by
the sudden lack of exposure to circulating maternal factors, the
increase in oxygen levels, the increase in heart workload, as well
as changes of systemic, microenvironmental, and intracellular
stimuli, lead to maturation of cardiomyocyte cytoarchitecture,
switch in energetic metabolism from glycolysis to fatty acid
oxidation and cell cycle withdrawal during the early postnatal
period, concurring to postnatal loss of cardiac regenerative
ability. Importantly, the manipulation of specific molecular
mechanisms has been demonstrated to be sufficient for inducing
cardiomyocyte proliferation and heart regeneration upon injury
(Figure 2).

Cell Cycle Checkpoints
Multiple regulators of cell cycle checkpoints, including cyclins,
cyclin-dependent protein kinases (CDKs), CDK-activating
kinases (CAKs), and CDK inhibitors (CKIs) were documented
to regulate cardiomyocyte cell cycle activity during prenatal
and postnatal development. Cyclin/CDK function is mainly
regulated by post-transcriptional or post-translational
modifications. However, cardiac mRNA and protein levels
of several cyclins/CDKs were documented to decrease during
postnatal development (35–38) (bioinformatic analysis in
Figure 3A) and, in several cases, their overexpression was
sufficient to induce postnatal cardiomyocyte cell cycle activity
(Figure 3B). Thus, the decline in expression levels of specific
cyclins/CDKs contributes to mammalian cardiomyocyte cell
cycle blockage in postnatal life.

D-type cyclins, when complexed with CDK4 or CDK6,
drive cell cycle re-entry (transition from G0 to G1 phase).
High protein levels of D-type cyclins, CDK4 and CDK6, have

been reported in the fetal heart, dramatically declining in
the early postnatal and adult stage (26). In agreement, we
observed that cardiac mRNA levels of cyclin D3 (Ccnd3)
and CDK4 significantly decline in the early postnatal period
(postnatal day 9–P9), whereas cardiac mRNA levels of cyclin
D1 (Ccnd1), cyclin D2 (Ccnd2), and CDK6 decline in the
subsequent postnatal developmental step (postnatal day 23–P23)
(see Figures 3A,B). Cyclin D1 overexpression has been reported
to induce abnormal multinucleation (35). The impairment of
its nuclear import in differentiated cardiomyocytes, in part due
to the accumulation of CDK inhibitor p27, has emerged as
a barrier that prevents postnatal cardiomyocyte proliferation
(40). Indeed, overexpression of Skp2 ubiquitin ligase, which
triggers the degradation of p27, enhances the mitogenic effect
mediated by nuclear-targeted cyclin D1 (D1NL)/CDK4 and
improves cardiac function after myocardial infarction (40).
Cardiac-specific overexpression of cyclin D1, cyclin D2 or
cyclin D3 results in increased DNA synthesis of mammalian
cardiomyocytes in adult mice (38). However, myocardial damage
reduces the pro-proliferative effect of transgene-encoded cyclin
D1 and D3 by inducing their cytoplasmatic accumulation.
Importantly, the cardiac injury does not induce cytoplasmatic
accumulation of transgene-encoded cyclin D2, which indeed has
been documented to maintain persistent cell cycle activity in
cardiomyocytes and to trigger infarct regression (38).

E-type cyclins, in association with CDK2, control the
G1 phase of the cell cycle and are known to initiate the
assembly of the pre-replication complex. Cardiac protein
levels of CDK2 are drastically reduced from fetal to adult
stage (38). In this regard, we observed that cardiac mRNA
levels of CDK2 significantly decline in the early postnatal
period (P9) (see Figures 3A,B). Chemical inhibition of CDK2

suppresses DNA synthesis of neonatal cardiomyocytes (41),
whereas its overexpression increases the number of smaller
mononuclear cardiomyocytes in adult mice (42). We also
noticed that cardiac mRNA levels of cyclin E1 (Ccne1)
and cyclin E2 (Ccne2) significantly decline in the early
postnatal period (P9) and the subsequent developmental step
(P23) (see Figures 3A,B). However, the role of E cyclins
in cardiomyocyte proliferative and regenerative ability is
currently unexplored.

A-type cyclins are required for entry into S phase (in
association with CDK2) or into M phase (in association with
CDK1). Interestingly, cardiac protein levels of cyclin A1 and A2
were shown to decline in postnatal development, and very low
levels of CDK1 have been reported in the adult heart (37, 43).
Consistently, we observed that mRNA levels of cyclin A2 (Ccna2)
and CDK1 significantly decline during the early postnatal period
(P9, see Figures 3A,B), whereas cyclin A1 (Ccna1) mRNA
was generally poorly expressed in postnatal life (P1-P4-P9 and
P23, data not shown). Adenoviral overexpression of cyclin A2

has been documented to enhance the endogenous regenerative
mechanism after myocardial infarction by the generation of
new cardiomyocytes in the infarct and border zones, along with
improved cardiac function and reduced collagen/muscle density
ratio (37, 44, 45). The injection of adenovirus encoding cyclin
A2 into the peri-infarct myocardium has been reported to induce
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FIGURE 2 | Cardiac regenerative strategies based on direct stimulation of cardiomyocyte dedifferentiation and proliferation. Modulation of external, systemic,

micro-environmental, and intrinsic molecular mechanisms can re-activate cardiomyocyte proliferative and regenerative potential. Locally produced growth factors and

cytokines, extracellular matrix rigidity and components, direct cell-to-cell contacts, maternal factors, systemic hormones, oxygen levels, physical exercise, miRNAs

and epigenetic regulations modulate a variety of signaling pathways and transcription factors that control cardiomyocyte dedifferentiation and proliferation by

regulating cell cycle checkpoints, cytoarchitectural organization and energetic metabolism.

cardiomyocyte mitosis, to decrease fibrosis and to boost cardiac
function in larger preclinical models (swine) (46).

B-type cyclins in association with CDK1 positively regulate
the transition from G2 to M phase. Interestingly, cardiac levels of
cyclin B1 and CDK1 protein were documented to be dramatically
reduced from fetal to adult stage (36). In line, we observed
that cyclin B1 (Ccnb1) mRNA levels significantly decline in
the early postnatal period (P9), whereas cardiac mRNA levels
of cyclin B2 (Ccnb2) and cyclin B3 (Ccnb3) decline later on

during postnatal development (P23) (see Figures 3A,B). Forced
expression of cyclin B1 and CDC2 (human homolog of CDK1)
increases the number of neonatal and adult rat cardiomyocytes in
vitro (36).

Interestingly, overexpression of a combination of
CDK4-cyclin D1 and CDK1-cyclin B1 complexes in adult
cardiomyocytes has been documented to promote a high rate
(∼15%) of cardiomyocyte proliferation and to contribute to heart
regeneration after coronary artery ligation in adult mice (47).
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FIGURE 3 | Developmental regulation of cardiomyocyte cell cycle in mammals. (A) Cyclins and Cdks expression levels by bioinformatic analysis of the gene

expression profile of the mouse heart at different developmental stages [P1, P4, P9, and P23 from Talman et al. (39)]; (B) Cyclins and CDKs whose modulation has

been demonstrated to be sufficient to induce postnatal cardiomyocyte cell cycle progression (in bold cell cycle factors that were reported to induce adult

cardiomyocyte regeneration after major injuries).
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The replacement of CDK1-cyclin B1 overexpression through
a pharmacological approach, based on the administration of
inhibitors of Wee1 (CDK1-inhibitor) and transforming growth
factor-β (TGF-β), proved to be an alternative way to unlock adult
cardiomyocyte replicative ability (47).

Oppositely, cardiac mRNA and protein levels of cyclin
G1 (Ccng1) increase during the early postnanal development
and in the adult stage (48) (see Figure 3A). However, unlike
the other cyclins described above, cyclin G1 has been linked
to the onset of postnatal cardiomyocyte polyploidization and
multinucleation. Indeed, its overexpression in primary neonatal
rat cardiomyocytes promotes entry in S-phase (uptake of 3H-
thymidine), however reducing the number of cytokinetic events
(Aurora B immunostaining), and thus resulting in an increase
of polynucleated cells. In contrast, the knockout of cyclin
G1 prevents the increase of cardiomyocyte multinucleation in
response to pressure overload and hypertrophy (48).

Cyclin-dependent Kinase Inhibitors (CKIs), including p21,
p27, and p57, were suggested to contribute to cardiomyocyte
cell cycle withdrawal as the heart ages. Manipulation of
their physiological expression by siRNA delivery has been
documented to stimulate cytokinesis of neonatal cardiomyocytes
and progression to the S phase of post-mitotic cells without DNA
damage or apoptosis (49).

Maternal Factors
In mammals, during fetal life, the placenta supplies all
physiological needs. A major change occurring after birth,
besides major hemodynamic and biochemical events, is the
sudden lack of exposure to the maternal circulation. Intriguingly,
exposure to the serum of pregnant animals has been reported to
promote neonatal cardiomyocyte proliferation (50), suggesting
that mother’s serum factors might be involved. Further analyses
unveiled a role for regulatory T cells (Tregs) in this process
(50). Tregs are physiologically expanded during pregnancy and
they are crucial for the suppression of allogenic responses
toward the fetus (51). Endogenous Tregs have been found
able to support cardiomyocyte hyperplasia and the increase
in heart size physiologically occurring during pregnancy (50).
Furthermore, Treg injection at the site of myocardial infarction
has been documented to promote cardiomyocyte replication
and heart regeneration (50). The effect appears mediated by
a group of six cytokines secreted by Tregs, namely TNF

superfamily member 11 (Tnfsf11 or RANKL), Interleukin-33
(IL33), Insulin-like growth factor 2 (IGF2), Cystatin F (Cst7),
Fibrinogen-like 2 (Fgl2), and Matrilin2 (Matn2) (50). Indeed,
the production of the six factors by adenoviral vectors is sufficient
to induce neonatal cardiomyocyte proliferation in vitro, as well
as cardiomyocyte proliferation and heart regeneration in vivo in
adult mice (50).

Oxygen Levels
During fetal stages, the oxygenated maternal blood mixes with
poorly oxygenated blood within the placental space. Thus,
the oxygen content supplied to the fetus is lower than the
maternal uterine arterial blood, resulting in the fetus living in
a more hypoxemic environment. One of the major adaptations

that mammals must face during the transition from fetus to
newborn, when pulmonary circulation starts, is the exposure
to a more oxygenated environment. Importantly, the change
in oxygen concentration has been demonstrated to impact
on cardiomyocyte proliferative and regenerative ability. In
contrast to anoxia, which is reported to impair cardiomyocyte
proliferation (52), the exposure to mild hypoxic conditions (15%
O2) in neonatal mice is sufficient to enhance cardiomyocyte
mitogenesis, protecting cells from oxidative stress (53). In
line, hypoxemia exposure to 2-months-old mice, by a gradual
reduction in inspired oxygen until 7%, is sufficient to facilitate
the proliferation of pre-existing cardiomyocytes and heart
regeneration after myocardial infarction, thus improving left
ventricular systolic function (54). Importantly, intermittent
hypoxia-hyperoxia appears to facilitate the rehabilitation of
patients with coronary artery disease (55). In contrast, hyper-
oxidative (100% O2) exposure is responsible for oxidative DNA
damage and decreased cytokinesis in mouse models (53).

During the first week of postnatal life, the increase in oxygen
levels contributes to the decline in heart regenerative ability
by triggering oxidative energetic mitochondrial metabolism
(further described in the “Energetic metabolism” section) and
by inducing reactive oxygen species (ROS), oxidative DNA

damage, and DNA damage response (DDR) (53). Indeed, ROS
scavenging, or inhibition of DDR is sufficient to extend the
postnatal proliferative window of cardiomyocytes, whereas ROS
production shortens it (53).

Clinical studies on cyanotic congenital heart disease infants
suggest that the hypoxic condition reflects an increased mitotic
potential of cardiomyocytes (56). Ablation ofHypoxia-inducible

factor 1-alpha (HIF1α), a major mediator of the hypoxic
response, reduces fetal cardiomyocyte proliferation and results
in ventricular hypoplasia (57). Moreover, by lineage-tracing
studies employing a tamoxifen-inducible Cre fused to the
oxygen-dependent degradation domain of HIF1α, it has been
unveiled that a population of hypoxic cycling cardiomyocytes
contributes to the slow cardiomyocyte turnover occurring in
the adult mammalian heart (58). Interestingly, a downstream
target of HIF1α, named Zinc finger E-box-binding homeobox
2 (ZEB2), has been recently demonstrated to be enriched in
injured cardiomyocytes of zebrafish models. Its overexpression
improves cardiomyocyte survival and cardiac function, as well as
angiogenesis following cardiac damage (59), however, the role of
ZEB2 on cardiomyocyte proliferation has not been explored.

Energetic Metabolism
In zebrafish, proliferating cardiomyocytes in the border zone of
the wounded heart, where cardiomyocyte dedifferentiation
mainly occurs, switch their metabolism from oxidative
phosphorylation to glycolysis, as manifested by reduced
mitochondrial genes and increased glycolytic genes (60). This
process was reported to be induced by Neuregulin-1/Erbb2
signaling (60). Importantly, inhibition of glycolysis after
cardiac injury impairs cardiomyocyte proliferation in adult
zebrafish (60).

In mammals, during the prenatal period, glucose is the
main source of energy for cardiomyocytes, and anaerobic
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glycolysis is the primary energetic route. With the transition
to extrauterine life, the low-fat and high glucose supply in
the umbilical blood is replaced by the high fat, low glucose
diet of the mother’s milk. As a consequence of the increase in
oxygen levels (due to the opening of the pulmonary circulation)
and the shift in substrate utilization (from glucose to fatty
acids), cardiomyocytes experience a profound change in the
energetic metabolism during the early postnatal development,
with a rewiring from anaerobic cytoplasmic glycolysis to
mitochondrial-dependent oxidative phosphorylation [reviewed
by Piquereau and Ventura-Clapier (61)]. This transition is driven
by the upregulation of genes involved in fatty acid metabolism

and oxidative phosphorylation, and the downregulation
of glycolytic genes (62). The maturation of cardiomyocyte
cytoarchitecture occurring in the early postnatal development
(further described in the “Cytoarchitectural organization”
section), is coupled with a transition from sparse to dense and
well-organized mitochondrial clusters and a more efficient
energy transfer system from mitochondria to sarcomere
structures [reviewed by Piquereau and Ventura-Clapier (61)].
Although mitochondrial oxidative metabolism is a more efficient
energy production to face the increasing cardiomyocyte needs
of the postnatal heart, recent insights have demonstrated
that the glycolysis-to-fatty-acid-oxidation metabolic switch
concurs to the postnatal loss of cardiomyocyte proliferative and
regenerative ability. In this regard, mitochondrial maturation
has been suggested as a mediator of cardiomyocyte cell cycle
arrest (53). Further, fetal cardiomyocytes were found more
mitotic and with delayed maturation when exposed to maternal
hyperglycemia (63). Administration of a fat deficient diet is
sufficient to increase the generation of new cardiomyocytes in
young mice, even though no differences were then observed after
10 weeks of age (64). In addition, cardiac-specific ablation, or
pharmacological inhibition of pyruvate dehydrogenase kinase 4
(PDK4), which physiologically inhibits mitochondrial pyruvate
dehydrogenase thus improving cardiac fatty acid oxidation,
induces cardiomyocyte proliferation and improves cardiac
function after myocardial infarction (64).

Cytoarchitectural Organization
During the early postnatal heart development in mammals,
cardiomyocytes experience a profound maturation of the
cytoarchitecture organization that, along with an increase in
matrix rigidity (described in “Extracellular matrix” section),
is essential to adequately respond to the increased workload
of the extrauterine life [reviewed by Guo and Pu (65)].
Specifically, the loss of cardiac regenerative potential is coupled
with an increase in cardiomyocyte cell size, and a shift
of the cardiomyocyte cytoarchitectural structure from loose
spatial organization to highly organized and efficient sarcomere
units, characterized by the alignment of Z-lines, distinguishable
M-lines and switch from fetal to adult sarcomere isoforms
[reviewed by Guo and Pu (65)]. Importantly, the sarcomere
apparatus occupies a large proportion of the cell, and the
rigid sarcomere structure of adult cardiomyocytes makes them
more refractory to cytokinesis. Interestingly, spontaneous heart
regeneration occurring in injured zebrafish and neonatal mice

appears coupled with sarcomere disassembly (12, 13, 16). Some
regulators of the remodeling of the cardiomyocyte architecture
have been demonstrated to affect cardiomyocyte proliferative
and regenerative ability [reviewed by Ali and colleagues (66)],
including actin-depolymerizing factor Cofilin 2 (67) (further
described in the “miRNA” section) and dystroglycan DAG1 (68)
(further described in the “Extracellular matrix” section), which
anchors the cardiomyocyte cytoskeleton to the extracellular
matrix. Furthermore, unlike zebrafish and newts, which preserve
intact centrosomes throughout life, centrosome integrity is
lost shortly after birth in mammals and has been described
to contribute to postnatal cardiomyocyte G0-G1 cell cycle
arrest (69).

Cardiac Cell Populations
After cardiac injuries in lower vertebrates or neonatal mammals,
a series of cellular events take place to trigger the regeneration
of the damaged tissue. An inflammatory phase driven by
recruited leukocytes starts immediately after the injury. In this
regard, endogenous macrophages have emerged as essential
players for heart regeneration in lower vertebrates and neonatal
mice. Indeed, macrophage depletion impairs myocardium
regeneration following injuries, leading to scar formation in
zebrafish (70) and neonatal mice (71, 72). Secretion of Oncostatin
M (OSM, described in the “Growth factors and cytokines”
section) by macrophages/monocytes appears to be essential for
cardiomyocyte proliferation during neonatal heart regeneration
(73). In addition, the positive effect exerted by hypoxia exposure
on cardiomyocyte proliferation (discussed in the “Oxygen levels”
section), has been suggested to be dependent on an increase in
the number of resident macrophages (56). In contrast to the
neonatal stage, adult mammalian hearts mainly undergo repair
processes based on scarring and fibrosis, mostly as a result
of the interaction between infiltrating immune cells (including
macrophages) and fibroblasts [reviewed by Chen and colleagues
(74)]. The paradoxical role of macrophages, triggering cardiac
regeneration in lower vertebrates and neonatal mammals, and
maladaptive remodeling in injured adult mammals, has been
a matter of investigation. In this regard, neonatal mice in
response to cardiac injuries have been shown to expand a
population of embryonic-derived resident cardiac macrophages
with a pro-reparative (M2) polarization phenotype, which
generates minimal inflammation and secretes numerous soluble
factors that facilitate cardiomyocyte proliferation (71, 72). In
contrast, adult mice in response to cardiac injuries expand
monocyte-derived macrophages with an inflammatory (M1)
phenotype, which lack regenerative properties (71, 72). Inline,
M2 compared to M1 macrophage-conditioned media has been
shown to upregulate neonatal cardiomyocyte proliferation and
to suppress myofibroblast-induced differentiation via secretion
of the anti-inflammatory cytokine IL4 (Interleukin 4) in vitro
(75). However, the potential cardiac regenerative role of IL4
administration has not been further explored thus far. Moreover,
administration of the anti-inflammatory cytokine IL10 (76) or
BMP7 (bone morphogenetic protein 7) [reviewed by Aluganti
Narasimhulu and Singla (77)] has been reported to improve
cardiac remodeling after myocardial infarction by stimulating
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M2 macrophage polarization, although their potential impact
on cardiomyocyte proliferation has not been analyzed. Thus,
manipulation of macrophage lineages and/or polarization, or
their secreted factors, may represent a viable strategy for
cardiac regeneration.

The initial injury-induced inflammatory response in zebrafish
and neonatal mice is accompanied by the activation of the
endocardium and epicardium, which together with cardiac
fibroblasts, repair the tissue and support its regeneration by
inducing cardiomyocyte proliferation. Endothelial cells migrate
into the apical thrombus early after cardiac damage, develop
into functional arteries, and precede cardiomyocyte ingrowth
duringmammalian heart regeneration (78). The pro-proliferative
and pro-regenerative effect of endothelial cells is likely due
to paracrine factors, such as NRG1 (further described in the
“Growth factors and cytokines” section). Activated epicardial

cells also secrete signals with the potential to influence
cardiomyocyte proliferation and heart regeneration, including
BMPs, TGFbs, SHH and IGFs [reviewed by Cao and Poss (79)]
(further described in the “Growth factors and cytokines” section).
In contrast to adult cardiac fibroblasts that are known to promote
myocyte hypertrophy, embryonic cardiac fibroblasts have been
reported to enhance cardiomyocyte replication in co-culture
experiments (80). This effect appears to reside in fibroblast-
secreted factors, such as the extracellular matrix components
fibronectin1 and collagen III as well as the growth factor HBEGF
(80) (further info available in the “Extracellular matrix” and
“Growth factors” sections).

Innervation also plays a key role in cardiac regeneration.
In this regard, sympathetic nerve fibers re-grow and fully
reinnervate during the spontaneous cardiac regeneration in
neonatal mice (81). Importantly, denervation, achieved by
pharmacological ablation of cholinergic signaling, restrains heart
regeneration by inhibiting cardiomyocyte cell cycle activity in
zebrafish and neonatal mice (81, 82). Interestingly, neonatal
sympathetic lesions result in increased expression of Meis1 (83),
a transcription factor involved in postnatal cardiomyocyte cell
cycle arrest (further described in the “Transcription factors”
section). Administration of Neuregulin-1 (NRG1) and Nerve
Growth Factor (NGF) have been shown to partially rescue
denervated hearts, enhancing cardiac regeneration post-injury.
However, unlike NRG1, NGF is not able to directly promote the
proliferation of cultured cardiomyocytes (82).

Growth Factors and Cytokines
A wide spectrum of mitogens sustains cardiomyocyte
proliferation during prenatal development. Administration
of these factors has been investigated as a strategy to
restore cardiomyocyte mitogenic potential, reminiscent of the
embryonic stage. Nowadays, different growth factor ligands and
receptors have been found able to induce adult cardiomyocyte
cell cycle re-entry and proliferation and to achieve substantial
improvements in terms of cardiac tissue regeneration.

Fibroblast growth factors (FGFs) act as paracrine or
endocrine signals in heart development, health, and disease,
exerting biological activities by binding to cell surface FGF
receptors (FGFRs) [reviewed by Itoh and colleagues (84)

and Khosravi and colleagues (85)]. Several FGF members,
including FGF9, FGF10, FGF16, and FGF20 were shown
to induce cardiomyocyte proliferation during embryonic/fetal
development (86–88). Importantly, the ability of some FGFs
in inducing postnatal cardiomyocyte replication and cardiac
regeneration has also been documented. Administration of
FGF1, alone and more pronouncedly in combination with an
inhibitor of mitogen-activated protein kinase (p38), has also been
demonstrated to induce neonatal and adult rat cardiomyocyte
proliferation in vitro (89) as well as in vivo after myocardial
infarction in adult rats, resulting in reduced scar formation and
improved cardiac function (90). FGF10 has been reported to
trigger cell cycle re-entry of adult cardiomyocytes (86); however,
its delivery as a strategy for adult cardiac regeneration has not
been evaluated thus far. The role of FGF16 in the regulation of
postnatal cardiomyocyte replication is currently debated. Cardiac
levels of FGF16 have been shown to increase in early postnatal
life (91). However, in contrast to the documented positive role
on cardiomyocyte proliferation during heart development (87,
88), FGF16 administration to neonatal cardiomyocytes does not
influence their proliferation and even abrogate FGF2-induced
cell cycle re-entry (91). Nevertheless, cardiac-specific FGF16
overexpression has been shown to improve cardiac function and
cardiomyocyte replication after cryoinjury in a GATA4-knockout
mouse model (92). Intriguingly, a decrease in expression levels
and an isoform switching of type 1 fibroblast growth factor
receptor FGFR-1 have been reported in early postnatal life.
Consistently, FGFR-1 overexpression has been shown to enhance
the proliferation of postnatal rat cardiac myocytes, which appears
to be dependent on FGF2, since its neutralization with antibodies
inhibits the proliferative response (93).

Neuregulin-1 (NRG1) is a growth factor, mainly produced
by endothelial cells and acting in cardiomyocytes via its tyrosine
kinase receptors ERBB4 and ERBB2. NRG1/ERBB4/ERBB2
signaling axis is essential for heart development (94–96). In
zebrafish, NRG1 is sharply induced in perivascular cells after
cardiac damage and inhibition of its co-receptor ERBB2 disrupts
cardiomyocyte proliferation in response to injury (97). In
mice, administration of NRG1 has been shown to induce
adult cardiomyocyte proliferation and heart regeneration (98).
Administration of NRG1 moderately improved cardiac function
in heart failure patients in phase I and phase II trials (99–
101). However, it has been observed that its mitogenic effect in
mammals is more pronounced during the neonatal period than
in later postnatal development and in adulthood (102, 103), due
to the decline in cardiac levels of ERBB2, which is necessary
to transduce the mitogenic signaling of NRG1 (102). Thus,
combinatorial strategies of NRG1 with ERBB2 overexpression
or ERBB2 inducing factors should be further explored. Indeed,
transient induction of ERBB2 signaling in cardiac muscle
cells of juvenile and adult mice is sufficient to robustly
induce cardiomyocyte dedifferentiation and proliferation and
to trigger heart regeneration following myocardial infarction
(102). Analysis of ERBB2 downstream players mediating these
effects in cardiomyocytes revealed the involvement of ERK,
AKT, and GSK3β/β-catenin pathways (102). More recently,
ERBB2 signaling has been shown to lead to phosphorylation of
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YAP in ERK-dependent and Hippo-independent manner (104).
Interestingly, HBEGF, a growth factor that activates ERBB4 and
the cognate EGF receptor (EGFR), has been shown to induce
mammalian cardiomyocyte proliferation (80) (described in the
“Cardiac cell populations” section).

Bone morphogenetic proteins (BMPs) are multi-functional
growth factors belonging to the transforming growth factor
beta (TGFβ) superfamily. BMPs play a key role in multiple
steps of cardiac development, including differentiation of
cardiomyocytes from mesoderm, cardiomyocyte growth and
ventricular trabeculation [reviewed by Vanwijk and colleagues
(105)]. Spatially resolved RNA sequencing of regenerating
zebrafish heart unveiled that BMP signaling is activated in
the border zone of the damaged myocardium, as manifested
by expression of BMP ligands (BMP2 and BMP7), receptors
(Bmpr1aa), and activation of downstream SMAD players (Smad
1, 5, and 8) (106). Importantly, BMP signaling is essential
for injury-induced cardiomyocyte proliferation in zebrafish
(106). In particular, a loss-of-function mutation in Bmpr1aa
reduces cardiomyocyte proliferation and heart regeneration
(106). Furthermore, BMP2 overexpression appears sufficient
to boost cardiac regeneration in zebrafish (106). Nevertheless,
the ability of BMP2 in inducing cycle re-entry of mammalian
neonatal cardiomyocytes (rat model) is currently controversial
(106, 107). BMP2 administration in adult infarcted mice
reduces cardiomyocyte apoptosis and scar size, protecting
cardiomyocytes from oxidative stress and hypoxia, although
potential effects on cardiomyocyte proliferation were not
evaluated and deserve further investigations (108, 109).

BMP10 is essential for maintaining cardiac growth during
cardiogenesis in murine models (110). Mechanistically, BMP10
promotes the production of the transcription factor Tbx20 by
inducing its promoter activity through a Smad binding site
(111). In turn, cardiomyocyte-specific Tbx20 gain of function,
beginning in fetal development, maintains cardiomyocytes in
an immature proliferative status, characterized by fetal gene
expression and smaller, cycling,mononucleated cells, by inducing
BMP2/pSmad1/5/8 and to a lesser extent PI3K/AKT/GSK3β/β-
catenin (107). Importantly, intramyocardial injection of BMP10
increases cell cycle activity of adult cardiomyocytes, and its
delivery by a sponge scaffold for 12-weeks in an infarcted rat
model enhances cardiomyocyte progression to the S-phase, cell
re-entry and cytokinesis, and improves cardiac function (112).
Other BMP ligands, such as BMP14 and BMP7, were suggested as
positive regulators of cardiac repair, even though the documented
effects are independent of cardiomyocyte proliferation. In
vivo ablation of BMP14 (also known as GDF5) results in
increased cardiomyocyte apoptosis, fibrosis and adverse cardiac
remodeling after myocardial infarction in adult mice (113).
BMP7 exerts anti-inflammatory and anti-fibrotic properties (114,
115) [reviewed by Aluganti Narasimhulu and Singla (77)].
Conversely, other BMPs appear to exert an opposite role. It is
the case of BMP4, which induces hypertrophy and apoptosis in
cultured cardiomyocytes (116).

TGFβ1, TGFβ2, and TGFβ3, pleiotropic factors belonging
to the transforming growth factor beta (TGFβ) superfamily,
have emerged as crucial mediators of multiple cellular responses

in the infarcted myocardium, including cardiac reparative,
inflammatory, angiogenic, and fibrotic responses [reviewed
by Frangogiannis (117), Hanna and Frangogiannis (118) and
Sorensen and colleagues (119)]. The inhibition of TGFβ receptor
1 (TGFBR1) activity by SB-431542 was reported to reduce the
number of proliferating cardiomyocytes in zebrafish embryos
(120). Intriguingly, robust activation of TGFβ/SMAD3 signaling
has been documented during zebrafish heart regeneration, as
evidenced by upregulation of TGF ligands (tgfb1a, tgfb1b, tgfb2,
and tgfb3), receptors (alk5a known as Tgfbr1, and alk5b known
as Tgfbr1b) and the downstream effector SMAD3 (10, 121).
Furthermore, inhibition of TGFβ/SMAD3 signaling reduces
cardiomyocyte cell cycle activity and abolishes heart regeneration
in adult zebrafish upon cardiac injury (10, 121). Interestingly,
opposite results have been obtained in mammals. Indeed, the
administration of TGFβ has been documented to inhibit the
proliferation of neonatal rat cardiomyocytes and suppress the
mitogenic effect of growth factors such as bFGF or IGFs
(122). Transgenic mice overexpressing TGFβ1 display increased
cardiomyocyte size and cardiac hypertrophy accompanied by
interstitial fibrosis (123). Moreover, administration of TGFβ
inhibitor (SB-431542) robustly induces the proliferation of
human iPS-derived cardiomyocytes, if combined with a Wee1
inhibitor, and overexpression of CDK4 and cyclin D1 (47).
Another member of the TGFβ superfamily, known asMyostatin,
was found able to inhibit proliferation of dividing fetal and
neonatal rat cardiomyocyte by blocking the G1-S phase transition
(124). The opposite role of TGFβ signaling in the modulation of
cardiomyocyte replication of lower vertebrates versus mammals
deserves further investigation.

Sonic hedgehog (Shh) is a ligand of the hedgehog
family, which has been mainly implicated in the formation
of coronary vasculature and reported to modulate cardiac
regeneration and repair [reviewed by Wang and colleagues
(125)]. In zebrafish embryos, administration of Shh agonist
(SAG) or antagonists (CyA), respectively increases or decreases
the number of proliferating cardiomyocytes (120). Moreover,
hedgehog signaling is required for myocardial regeneration in
zebrafish, further increasing cardiomyocyte proliferation (120).
Shh ligand expression and activation of downstream pathways
are observed during heart regeneration after cardiac injury in
neonatal mice, but not 1 week after birth, when mice are no
longer able to regenerate their hearts (126). Finally, genetic or
pharmacological augmentation of Shh signaling within the first
week of postnatal life in the mouse model has been shown to
improve heart regeneration, whereas its inhibition impairs the
regenerative response (126). Even if cardiomyocyte proliferation
has not been analyzed, gene therapy with Shh after acute
and chronic myocardial ischemia in adult mammals results in
enhanced neovascularization, reduced fibrosis, and augmented
cardiac function (127).

Several pro-inflammatory cytokines, such as Interleukin-1β
(IL1β), Interleukin-33 (IL33), Interleukin-6 (IL6), Oncostatin
(OSM) and TNF-related weak inducer of apoptosis (TWEAK),
can induce cardiomyocyte dedifferentiation and/or proliferation,
in most cases promoting a beneficial effect in the short run.
Indeed, cardiomyocyte dedifferentiation physiologically protects

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 October 2021 | Volume 8 | Article 750604

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bongiovanni et al. Direct Cardiogenesis Strategies

the heart after acute damage. However, in the long run, pro-
inflammatory cytokines lead to chronic inflammation, fibrotic
disorders, adverse remodeling and/or heart failure. For example,
the administration of IL1β, which is upregulated upon cardiac
injury in neonatal mice (128), induces neonatal cardiomyocyte
proliferation (89, 129). However, IL1β is also responsible for
profibrotic signaling and cardiomyocyte apoptosis. Its blockage,
through platelet microparticles armed with selective antibodies,
prevents adverse cardiac remodeling inhibiting cardiomyocyte
apoptosis (130). In contrast, IL33, another member of the IL-1
superfamily, is among the pro-regenerative factors produced by
Treg cells (described in the “Maternal factors” section).

In addition, pro-inflammatory cytokines of the IL6 family,
including IL6 and Oncostatin M (OSM), were found elevated
in the acute response to cardiac injury. OSM triggers
dedifferentiation of cardiomyocytes, as demonstrated by
the reduction of sarcomere structure and reactivation of fetal
sarcomere components (such as alpha-SMA) and stem cell
markers (such as Runx1 and Dab2) (131), physiologically
protecting the heart after acute damage. However, in the long
run, OSM-induced cardiomyocyte dedifferentiation leads
to adverse remodeling and heart failure (131) [reviewed by
Fontes and colleagues (132)]. Intriguingly, OSM administration,
acting through its receptor (OSMR) and the co-receptor gp130
(glycoprotein 130), also induces cardiomyocyte proliferation
in neonatal mice, and synergizes with other mitogenic stimuli
such as fibroblast growth factor 2 (FGF2) or adenovirus-induced
E2F2 (131). Conditional overexpression of gp130, triggers
cardiomyocyte replication and heart regeneration in juvenile
and adult mice, via Src-mediated YAP activation (73). IL6
knock out neonatal mice fail to regenerate the heart, whereas
IL6 overexpression results in enhanced proliferation of neonatal
cardiomyocytes (128, 133). Mechanistically, the pro-regenerative
effect of IL6 appears mediated by STAT3 signaling, which also
is required for neonatal heart regeneration in mice (128, 133).
However, no study thus far evaluated the potential ability of IL6
in inducing cardiomyocyte replication and heart regeneration in
the adult stage.

Inflammatory cytokines of the tumor necrosis factor (TNF)
ligand family, including Tnfsf11 (also known as RANKL), a
cytokine secreted by Tregs already described in the “Maternal
factors” section and Tnfsf12 (also known as TWEAK), were
also found to positively regulate cardiomyocyte proliferative
ability. TWEAK has been enlightened as a positive regulator of
neonatal rat cardiomyocyte mitosis through fibroblast growth
factor-inducible molecule 14 (FN14) receptor. However, early
postnatal downregulation of FN14 restrains TWEAK mitogenic
potential in adult cardiomyocytes (134). Nevertheless, adenoviral
expression of FN14 enables efficient induction of cell cycle re-
entry in adult cardiomyocytes after TWEAK stimulation (134).

A few anti-inflammatory cytokines, such as Interleukin-4
(IL4, which is secreted by M2 macrophages described in the
section entitled “Cardiac cell populations”) and Interleukin-
13 (IL13, a cytokine with anti-inflammatory activities but
mediator of allergic inflammation), were suggested to exert
a positive effect on cardiomyocyte proliferation. Interleukin-
13 (IL13) stimulates neonatal cardiomyocyte replication

in vitro by activation of IL13Ra1, and to a lesser extent
IL4Ra, and downstream pathways, such as STAT6 and
STAT3/Periostin (135), ERK and AKT (136). Furthermore,
IL13 knock out mice display reduced cardiomyocyte cell
cycle activity and impaired cardiac regeneration upon
cardiac apex resection at the neonatal stage (136). However,
the potential ability of IL13 in inducing cardiomyocyte
proliferation and cardiac regeneration in the adult stage
remains unexplored.

As described in the “Maternal factors” section, other cytokines
secreted by Tregs, including Cystatin F (Cst7), and Fibrinogen-
like 2 (Fgl2), were demonstrated to trigger cardiomyocyte
proliferation and heart regeneration (50).

Administration of Follistatin-like 1 (FSTL1), an epicardial-
secreted cardiac mitogen, through an epicardial patch, improves
survival, and sustains cardiac function in infarcted mouse and
swine models, by promoting cell cycle re-entry and division of
pre-existing cardiomyocytes (137). Some angiogenic factors were
also demonstrated to induce myocyte proliferation. For example,
cardiac overexpression of VEGF (vascular endothelial growth

factor) paralog Vegfaa induces cardiac muscle hyperplasia in
adult zebrafish, although inhibiting regeneration after injury,
suggesting that spatio-temporal control of this factor is required
(138). Overexpression of VEGF and angiopoietin-1 (Ang1)

by adeno-associated viral vectors, in addition to improve
angiogenesis, promotes cardiomyocyte cell cycle re-entry in
infarcted swine models (139).

Finally, mutation of theCiliary Neurotrophic Factor (CNTF)
has been reported to impair cardiomyocyte proliferative response
in injured zebrafish hearts, whereas CNTF injection facilitates
cardiac regeneration (140).

Extracellular Matrix
The cardiac extracellular matrix (ECM) is a highly dynamic
network of fibers comprised of matrix proteins in which
cardiac cells, including cardiomyocytes, reside. It is continuously
remodeled in response to environmental stimuli, aging, and
pathological conditions, to support a wide variety of cellular
responses. During the early postnatal development, the cardiac
matrix changes its mechanical properties from a high hydrated
structure, enriched with fibronectin, hyaluronic acid, and
proteoglycans, to a stiffer structural network, enriched with
collagen I, and laminin, thus supporting the strength of the
cardiac muscle (141). Importantly, the increased rigidity of
the heart after birth mechanically influences cardiomyocyte
morphology and behavior, contributing to their cell cycle
withdrawal. Indeed, rigid substrates interfere with rat and
mouse cardiomyocyte cytokinesis, without affecting karyokinesis
(nuclear division), thus leading to binucleation (142). On the
other hand, softer substrates trigger cardiomyocyte rounding
and cell division, coupled with a partial cardiomyocyte
dedifferentiation process as documented by downregulation of
sarcomere proteins (142).

A key pathway in matrix-stiffness mechano-transduction is
the Hippo pathway, a well-known regulator of organ growth
(143, 144). Importantly, the Hippo pathway has emerged as
a key regulator of heart regeneration. If activated in the
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cardiac tissue, it drives phosphorylation of YAP (Yes-associated

protein), thus preventing its translocation into the nucleus, in
turn restraining cardiomyocyte proliferation in postnatal life
[reviewed by Wang and colleagues (145)]. Inactivation of the
Hippo signaling, by deletion of scaffold proteins, such as Sav1
(Salvador homologue 1 protein), or downstream mediators,
such as Lats1 and Lats2 (large tumor suppressor homologue

1 and 2), or alternatively constitutive expression of active
YAP, in adult cardiomyocytes, have been shown to stimulate
cardiomyocyte proliferation, reduce the scar size, and improve
heart function in infarcted mouse models (146–149) [reviewed
by Wang and colleagues (145)].

The stiffness is not the only way by which the extracellular
matrix may impact on cardiomyocyte replicative and
regenerative ability. Indeed, it has been demonstrated in the
mouse model that the changes in the composition of the cardiac
extracellular matrix during the early postnatal period influence
cardiomyocyte growth and differentiation. For example, the
proteoglycan Agrin is physiologically downregulated during
the early postnatal cardiac development, contributing to the
loss of cardiomyocyte proliferative potential (150). Agrin
interacts with the dystrophin-glycoprotein complex (DGC),
connecting the ECM to the F-actin cytoskeleton, through
Dag1 (dystroglycan 1). Administration of Agrin following
myocardial infarction in juvenile and adult mice is sufficient
to destabilize the cardiomyocyte cytoskeleton and facilitate
cell cycle re-entry and cell division in the peri-infarcted region
by activating downstream mediators such as the extracellular

signal-regulated kinase (ERK) signaling and destabilizing
YAP-Dag1 interaction, leading to YAP release and translocation
into the nucleus (150). A single local delivery of recombinant
human Agrin has been documented to enhance cardiomyocyte
proliferation, improve cardiac function and reduce adverse
remodeling, fibrosis, and infarct size in preclinical swine models
(151).

Some members of the fibronectin 1 family (fn1 and fn1b),
the main components of the extracellular matrix, are produced
and deposited after cardiac damage in the zebrafish model and
are essential for the regenerative process (152). Fibronectin
1 (Fn1) and collagen III, produced by embryonic fibroblasts
(described in the “Cardiac cell populations” section), have also
been shown to induce mammalian cardiomyocyte proliferation
(80). β1-integrin appears to be required for the proliferative
response induced by embryonic fibroblast-secreted factors, and
ventricular cardiomyocyte-specific deletion of β1-integrin in
mice reduces myocardial proliferation and impairs ventricular
compaction (80).

Periostin, a secreted extracellular matrix protein, promotes
adult rat cardiomyocyte proliferation via activation of αV,
β1, β3, and β5 integrins and downstream activation of
PI3K/AKT (but not ERK) pathway (153). After myocardial
infarction in adult rats, Periostin induces cardiomyocyte cell
cycle re-entry and mitosis, improves ventricular remodeling
and reduces infarct size (153). However, Periostin is also
responsible for the recruitment of activated fibroblasts in the
mouse model (154) and promotes extensive cardiac fibrosis
in remote regions in infarcted swine models (155), thus its

administration as a strategy for inducing cardiac regeneration
is dampened.

Connective tissue growth factor (CTGF), also known as
communication network factor 2a (Ccn2a), is a matricellular
protein that is synthesized and secreted from endocardial cells
after cardiac injuries (156). In zebrafish, CTGF has been reported
necessary for heart regeneration by inducing cardiomyocyte
proliferation and infiltration (156). CTGF triggers cardiomyocyte
cell cycle activity also in neonatal mammals (135), however, its
potential impact on adult cardiomyocyte proliferation and heart
regeneration has not been explored thus far.

Finally, the extracellular matrix protein Matrilin2 (Matn2)

is among the factors secreted by Tregs that trigger cardiac
proliferation and heart regeneration (50) (described in the
“Maternal factors” section). Thus, administration of extracellular
matrix components, or modulation of the downstream signaling
pathways, might be a promising approach for heart regeneration.

Cell-to-Cell Contact
Notch ligands are transmembrane proteins, therefore the
signaling is activated when the cell expressing the ligand is
adjacent to the cell expressing the notch receptor. Ligand
binding leads to cleavage and release of the Notch intracellular
domain (NICD), which then travels to the nucleus to regulate
transcriptional complexes. The Notch signaling plays an essential
role for trabeculation of the ventricular myocardium during
mammalian cardiac development, as well as in heart health (157)
[reviewed by MacGrogan and colleagues (158)]. The inhibition
of Notch signaling has been shown to suppress the proliferation
and to induce apoptosis of mammalian immature neonatal
cardiomyocytes, highly expressing the notch receptor Notch1.
However, Notch 1 expression levels decline during cardiac
maturation (159). Enforced activation of the Notch signaling
by constitutive expression of the active intracellular domain of
Notch1 (N1 ICD), or stimulation with the ligand Jagged1, boosts
the proliferation of immature cardiomyocytes (159).

Systemic Hormones
Hormones are signaling molecules that act distant from their
site of production. Interestingly, some hormones belonging
to steroid, eicosanoid, amino acid-derived, and protein
subclasses have been investigated for their ability to modulate
cardiomyocyte proliferation and heart regeneration.

Steroid hormones can be grouped into types according
to the receptors to which they bind, namely glucocorticoids,
mineralocorticoids, androgens, estrogens, progestogens and
Vitamin D derivatives. Glucocorticoids and mineralocorticoids
are typically synthesized in the adrenal cortex (hence they are also
known as corticosteroids), whereas androgens, estrogens, and
progestogens are sex steroids, typically synthesized in the gonads
or placenta. All of them are released into the circulatory system.

Glucocorticoids (GCs) exert most of their actions through
the Glucocorticoid Receptor (GR), and in some tissues or
conditions through Mineralocorticoid Receptor (MR). In
zebrafish, stress-induced cortisol secretion blocks cardiomyocyte
proliferation and cardiac regeneration after cryoinjury (160). In
mammals, circulating active glucocorticoid levels physiologically
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rise shortly before birth in preparation for postnatal life by
promoting the maturation of the lungs and other organs. During
late gestation, endogenous glucocorticoids were shown to induce
the maturation of fetal cardiomyocytes via activation of GR
receptor (161), whereas their impact on fetal cardiomyocyte
proliferation is currently controversial (162, 163). A few studies
reported the adverse side-effects of synthetic glucocorticoid
therapy in preterm infants resulting from impaired
cardiomyocyte proliferation and endowment (164–166).
Importantly, a role for physiological glucocorticoids in postnatal
cardiomyocyte growth and regenerative plasticity has been
recently suggested in the mouse model. Indeed, a physiological
increase in GR activation by endogenous glucocorticoids in the
early postnatal development concurs to restrain the proliferative
ability of neonatal cardiomyocytes [pre-publication by Pianca
and colleagues (167)]. Cardiomyocyte-specific GR ablation
(GR-cKO) appears sufficient to boost neonatal cardiomyocyte
proliferation and to delay the early postnatal transition from
hyperplastic to hypertrophic growth along with the maturation
of myofibrils-mitochondria organization [pre-publication by
Pianca and colleagues (167)]. Further analysis unveiled that
GR ablation increases cardiomyocyte replication by regulating
the energetic metabolism, favoring glucose catabolism over
fatty acid oxidation [pre-publication by Pianca and colleagues
(167)]. However, in later stages of postnatal life, no differences
in cardiomyocyte proliferation rate were reported in GR ablated
compared to control mice (168). Nevertheless, upon myocardial
infarction, cardiomyocytes in GR ablated juvenile and adult mice
are facilitated to re-enter into the cell cycle and divide, leading
to regeneration of the lost cardiac tissue along with reduced
scar formation [pre-publication by Pianca and colleagues (167)].
Altogether these results support a model where increased
activation of GCs/GR axis restrains the regenerative plasticity
of cardiomyocytes.

The lower incidence of cardiovascular disease and mortality
rate in women compared to men of similar age, along with
the increased occurrence in women after menopause, have
suggested that gender-related differences in sex steroid

hormones (in particular estradiol) play a key role in
the development and evolution of cardiovascular disease
[reviewed by Vitale and colleagues (169)]. Studies on lower
vertebrates have demonstrated that sexual dimorphism
reflects also a dimorphic cardiac regenerative response.
Indeed, female zebrafish display higher rates of cycling
cardiomyocytes in both cryoinjured and uninjured regenerating
hearts compared to males (170). Furthermore, exposure
to estrogen accelerates male zebrafish regeneration after
damage, by enhancing cardiomyocyte dedifferentiation and
proliferation. Instead, exposure to tamoxifen, an estrogen
receptor antagonist, delays female heart regeneration (170).
Nevertheless, the role of estrogens in cardiac regenerative
plasticity in mammals remains so far unknown. Recently,
progesterone has emerged as a mediator of sex-dependent
transcriptional programs during cardiomyocyte maturation
(171). Interestingly, progesterone supplementation has been
suggested to increase cardiomyocyte proliferation and heart
regeneration after myocardial infarction in a progesterone

receptor-dependent manner, by increasing YAP expression and
signaling (172).

Vitamin D has been reported to regulate cardiomyocyte
proliferation both in zebrafish and mouse models. In
zebrafish, Vitamin D promotes cardiomyocyte cycling and
tissue regeneration, and this process requires intact Erbb2
signaling (173). In contrast, the administration of Vitamin D to
culturedmouse cardiomyocytes has been reported to induce both
anti-proliferative (168, 174–176) and pro-proliferative effects
(173). Furthermore, the deletion of the Vitamin D receptor
appears not sufficient to prolong the postnatal cardiomyocyte
proliferative window in the mouse model (168). A potential
explanation of these conflicting results could be that the effects
of Vitamin D on cell proliferation may be context-dependent
and/or concentration-dependent. Despite these discrepancies,
Vitamin D supplementation was proved to reduce ventricular
remodeling and improve cardiac function in heart failure
patients [metanalysis of several clinical trials by Zhao and
colleagues (177)].

Among eicosanoid hormones, Prostaglandin E2 (PGE2),
a principal mediator of inflammation, is upregulated in the
injured zebrafish heart and the suppression of its production
by administration of Cox2 inhibitors reduces cardiomyocyte
proliferation in response to cardiac injuries (178).

Among amino acid-derived hormones, thyroid hormones,
namely triiodothyronine (T3) and thyroxine (T4), gained
attention in the context of cardiomyocyte proliferative ability.
The analysis of 41 different species unveiled an inverse
correlation between cardiomyocyte diploid content (index of
mitogenic potential) and plasma T4 levels. Interestingly, T4
levels raise soon after birth, coincident with cardiomyocyte
withdrawal from the cell cycle and binucleation/polyploidization.
Moreover, inactivation or cardiomyocyte-specific ablation of
thyroid hormone receptor-α (TRα) counteracts mammalian
cardiomyocyte polyploidization, increasing the number of
diploid proliferating cells and therefore the regenerative potential
(179). Furthermore, T3 administration to fetal cardiomyocytes
promotes their maturation while suppressing their proliferation
(180, 181) and reduces cardiomyocyte replication at the
neonatal stage (122). In contrast, a surge in T3 levels has
also been reported to initiate a brief but intense proliferative
burst of predominantly binuclear cardiomyocytes during pre-
adolescence (182), although the existence of this burst was
disproved (183, 184).

Melatonin, an amino acid-derived hormone produced by
the pineal gland, exerting a protective role against oxidative
stress, apoptosis, and inflammation after cardiac injury, has also
been documented to induce cardiomyocyte proliferation after
myocardial infarction in the mouse model (185). The suggested
mechanism involves the activation of the melatonin receptor and
regulation of the miR-143-YAP axis (185) (further described in
“miRNAs” section).

Among protein hormones, insulin-like growth factor
signaling has been demonstrated to play a role in cardiomyocyte
regenerative ability. During embryonic heart development,
Insulin-like growth factor 2 (IGF2) appears to be the
most prominent mitogen made by epicardial cells (186).
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The expression of the zebrafish homolog Igf2b was found
upregulated during zebrafish heart regeneration, and inhibition
of its receptor IGF1R blocks cardiomyocyte proliferation during
heart development and regeneration (187). Administration
of IGF signaling agonist (NBI-31772) or antagonist (NVP)
respectively boosts or reduces cardiomyocyte proliferation in
zebrafish embryos (120). Furthermore, IGF signaling is required
for cardiomyocyte replication during myocardial regeneration in
zebrafish (120). As described in the “Maternal factors” section,
IGF2 is among the factors secreted by maternal Treg cells during
gestation, inducing cardiomyocyte proliferation and heart
regeneration in adult mice (50).

The administration of low-dose IGF1 induces beneficial effects
on remodeling in post-infarct patients, despite not improving
heart function (188). Intramyocardial delivery of Insulin-like
growth factor 1 (IGF1) together with Hepatocyte growth

factor (HGF), through hydrogel or saline injection, enables
endogenous cardiac repair on infarcted swine hearts, leading to
the generation of new immature cardiomyocytes (189). In this
regard, intracoronary administration of adenovirus carrying the
HGF gene modestly reduces heart dilation and improves heart
function in heart failure patients (190).

Signaling Cascades
A large number of growth factors and cytokines transduce
their effects via the RAS-mitogen activated protein (MAP)
kinase signaling (also known as Ras-Raf-MEK-ERK pathway).
The key role of ERK signaling in triggering cardiomyocyte
dedifferentiation and proliferation has emerged in multiple
studies, for example, downstream to NRG1/ERBB2 axis (102),
Agrin (150), OSM (131), IL13 (136), and IGF signaling (186).
Intriguingly, the suppression of Dual specificity phosphatase

6 (DUSP6), which antagonizes the activation of the MAPK
cascade, results in increased myocyte proliferation during
embryonic and early postnatal development, as well as enhanced
cardiac regeneration in zebrafish (191) and mice (192).

Proinflammatory cytokines (such as IL-1 and TNF-α),
some mitogens, cellular stress (including UV irradiation,
heat shock, and high osmotic stress), lipopolysaccharide,
and protein synthesis inhibitors, may activate P38 mitogen-

activated protein (MAP) kinase signaling, which has been
enlightened as a negative regulator of cardiomyocyte division.
P38 inversely correlates with cardiac growth during mammalian
embryonic development (89). Its in vivo activation inhibits fetal
cardiomyocyte DNA synthesis, whereas cardiac-specific ablation
of p38α enables neonatal cardiomyocyte proliferation (89).
Furthermore, pharmacological inhibition of p38 is sufficient to
stimulate replication of adult ventricular cardiomyocytes (from
12-weeks-old rats), upregulating genes involved in cell cycle
progression, mitosis and cytokinesis (including cyclin A2, cyclin
B and aurora B) (89). P38 inhibition also boosts the mitogenic
effect of growth factors, such as FGF1, NRG1 and IL1β (89,
90). After myocardial infarction in adult mice, combinatorial
therapy with p38 inhibitor and FGF1 has been shown to induce
cardiomyocyte proliferation and cardiac tissue regeneration,
reduce scar formation and improve cardiac function (90).
Interestingly, p38 MAP kinase inhibition alone is not able to

boost heart function despite increased cardiomyocyte mitosis
(90). A clinical trial to assess the safety and efficacy of
losmapimod, a p38 inhibitor, has been initiated, however, it was
stopped when non-encouraging trials of the Tumor Necrosis
Factor-α (TNF-α)-targeting [whose cardio-depressant action is
induced by activation of p38 (193)] in heart failure patients were
reported (194) [reviewed by Javed and Murtaza (195)].

In the mouse model, ablation of cardiac troponin I-

interacting protein kinase (TNNI3K), a cardiomyocyte-specific
MAPKKK, results in an increase of mononuclear diploid
cardiomyocytes, facilitating heart regeneration after injury (196,
197). On the other hand, TNNI3K overexpression in zebrafish
induces cardiomyocyte polyploidization and impairs heart
regeneration (196).

Several cytokines activate the Jak-STAT signaling, which
plays an important role in the maintenance of cardiac
homeostasis and takes part in the acute inflammation occurring
after heart injuries [reviewed by Barry and colleagues (198)].
In zebrafish, Jak1/STAT3 pathway is activated after cardiac
injury (199). Furthermore, cardiomyocyte-specific deletion of
STAT3, a downstream effector of inflammatory cytokines, such
as IL6 and OSM, reduces cardiomyocyte proliferation during the
injury-induced cardiac regenerative response in zebrafish (199)
and neonatal mice (128). Thus, STAT3 is essential for heart
regeneration. In addition, therapeutic activation of STAT3 by
IL11 administration was shown to reduce fibrosis and attenuate
cardiac dysfunction after myocardial infarction (200).

The administration of a Glycogen synthase kinase 3

beta (GSK3β) inhibitor, which leads to β-catenin nuclear
accumulation, stimulates neonatal and adult cardiomyocyte
dedifferentiation and proliferation (201). Moreover, germ-
line deletion of GSK3β results in hyperproliferation of
cardiomyocytes (202). However, in the latter model, no
difference in β-catenin localization could be observed, suggesting
that GSK3β may modulate cardiomyocyte replication in
a β-catenin independent manner. Furthermore, inducible
cardiomyocyte-specific deletion of GSK3-β stimulates
cardiomyocyte mitogenesis and exhibits a protective role
against cardiac remodeling after myocardial infarction
(203). The administration of N-cadherin antibodies, which
induce the release of sequestered β-catenin from adherent
junctions, promotes cardiomyocyte cell cycle re-entry (204).
Similarly, adenoviral induced overexpression of β-catenin
in the cardiac tissue results in increased cardiomyocyte
cell cycle activity and reduced myocardial infarct size, even
if cardiomyocyte binucleation and hypertrophy, without
an evident increase in cardiomyocyte number, have been
documented (205). Intriguingly, the accumulation of β-catenin
has been observed upon constitutive activation of ERBB2
signaling, specifically mediating cardiomyocyte dedifferentiation
(102). Ablation of lipoprotein-related receptor protein

LRP6 (a coreceptor interacting with Frizzled receptor in
Wnt/β-catenin signaling) in infarcted mouse hearts stimulates
robust regenerative processes through the proliferation of
pre-existing cardiomyocytes via a β-catenin independent
mechanism, involving ING5 (inhibitor of growth family

member 5)/p21 (206).
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Finally, knockdown of the E3 ubiquitin ligases Cbl and Itch

induces neonatal rat cardiomyocyte proliferation in vitro (207).

Transcription Factors
The decline of the proliferative and regenerative ability of
cardiomyocytes in early postnatal development has been reported
to be regulated by several transcription factors.

GATA4 (GATA binding protein 4) expression increases in
cycling cardiomyocytes during heart regeneration in zebrafish
(13). In neonatal mice ablation of GATA4 impairs cardiomyocyte
proliferation and cardiac regeneration (92, 208). Furthermore,
GATA abundance in the murine cardiac tissue decreases in the
early postnatal period, and its overexpression by adenoviral gene
transfer improves cardiac regeneration in 7-day-old mice (208).
A suggestedmechanism by which GATA4 exerts this regenerative
effect is the increased expression of regenerative growth factors
and cytokines, such as IL13 or FGF16, although the latter one is
controversial (92, 208).

Meis1 (myeloid ecotropic viral integration site 1), whose
abundance in the cardiac tissue modestly raises in the early
postnatal period, is a crucial mediator of cardiomyocyte cell cycle
arrest (209). Indeed, cardiomyocyte-specific deletion of Meis1
extends their proliferation, whereas its overexpression limits
neonatal heart regeneration following myocardial infarction
by upregulating cyclin-dependent kinase (CDK) inhibitors
p15, p16 and p21 (209). Double knockout of Meis1 and
Hoxb13 (Homeobox B13), a cofactor of Meis1, reactivates
cell cycle activity in adult cardiomyocytes, induces sarcomere
disassembly and improves cardiac function following myocardial
infarction (210).

Recently, combinatorial knockdown of Meis2 (a member of
the same family) and Retinoblastoma (Rb1), through hydrogel-
based delivery of small interfering RNAs in adult rats, was
reported to significantly increase cardiomyocyte proliferation,
to reduce infarct size and to improve cardiac function post-
myocardial infarction (211).

Pitx2 (Paired-like homeodomain 2) has been reported to
exert a key role in myocardial regeneration of neonatal and adult
mice. Indeed, it is required for neonatal cardiac regeneration
and sufficient to trigger adult myocardial regeneration in the
mouse model (212). Mechanistically, it has been shown that Pitx2
promotes the expression of ROS scavengers, protecting cells from
oxidative damage (212). Interestingly, Pitx2 is induced during
heart regeneration triggered by Hippo deficiency (212) and its
expression is stimulated by the transcription factorNrf2 (nuclear
factor erythroid 2–related factor 2), whose ablation also impairs
neonatal cardiac regeneration (212).

Multiple studies over time have pointed out the role in
mammalian cardiac regeneration of E2F family members,
transcription factors known to regulate cell cycle progression.
Adenoviral delivery of E2F1 triggers S-phase entry of adult
rat cardiomyocytes in vitro, however, stimulating cell death
(213, 214). Interestingly, p53 ablation boosts E2F1-induced
cardiomyocyte proliferation, despite not preventing apoptosis
(214). Overexpression of E2F2, E2F3, and E2F4 is sufficient
to enhance the proliferation of neonatal cardiomyocytes in
vitro (215) and, in the case of E2F2, also in terminally

differentiated cardiomyocytes in vivo (216). Similar to E2F1,
E2F3 overexpression was also associated with cell death (215).
Instead, contrasting data have been obtained for the apoptotic
response induced by E2F2 and E2F4, with initial studies
demonstrating a reduction in cell death upon E2F2 and E2F4
overexpression in cultured neonatal cardiomyocytes (215), and
more recent studies describing an increase in apoptosis of
cultured adult mammalian cardiomyocytes (217). Interestingly,
co-expression of E2F2 and BEX1 [Brain Expressed X-Linked
(Bex)] was demonstrated as a strategy to induce cardiomyocyte
cell cycle activity, without cell death (217).

The transcriptional repressor REST (transcriptional

repressor element-1 silencing transcription factor) can also
trigger the proliferation of cultured cardiomyocytes (218). REST
is required for normal embryonic cardiac development and
neonatal regeneration upon injury, sustaining cardiomyocyte
cell cycle activity by repressing the cell cycle inhibitor gene
p21 (218).

Recently Klf1 (Krüppel-like factor 1) has been reported
to be required for heart regeneration in zebrafish stimulating
epigenetic and metabolic remodeling (219).

Other transcription factors that emerged as regulators of
cardiomyocyte regenerative potential, such as YAP, GR, HIF1α,
SMADs, Tbx20, p53, and Jarid2were described in other sections
of this review.

Epigenetic Regulations
The remodeling of the epigenetic landscape has also been
linked to cardiomyocyte regenerative ability. RNA sequencing
analysis of cardiomyocytes unveiled a differential transcriptomic
framework at various stages of postnatal life in healthy and
infarcted mammals (220). The epigenetic modulation of
specific genes, in particular those involved in chromatin
compaction and cell cycle, has been suggested to contribute
to the proliferative inability of terminally differentiated
cardiomyocytes (220). Furthermore, chromatin-remodeling
proteins contributing to mantain a fetal-like status are
switched off in adult cardiomyocytes. It is the case of Brg1

(Brahma-related gene-1), which promotes proliferation
of embryonic mammalian cardiomyocytes by maintaining
Bmp10 expression and repressing p57 (221). In addition, by
interaction with HDAC (histone deacetylase) and PARP (poly
ADP-ribose polymerase), Brg1 represses Myh6 (α-myosin
heavy chain, mainly expressed in adult cardiomyocytes) and
activates Myh7 (β-myosin heavy chain, mainly expressed in
embryonic cardiomyocytes), thus controlling myosin heavy-
chain switching during embryonic/neonatal development, as
well in adulthood under cardiac stress-induced hypertrophy
(221). Interestingly, transgenic inhibition of Brg1 in the zebrafish
model impairs cardiomyocyte proliferation and myocardial
regeneration by repressing CDK inhibitors, such as cdkn1a and
cdkn1c (222).

Recent studies have unveiled a role in cardiomyocyte
regeneration for ALKBH5 (α-ketoglutarate-dependent

dioxygenase alkB homolog 5), a N6-methyladenosine eraser
of messenger RNAs. Indeed, ALKBH5 expression levels
decline in postnatal development and its overexpression
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promotes cardiomyocyte replication and cardiac regeneration
following myocardial infarction in juvenile and adult mice,
by increasing YAP translation (223). In contrast, knock out of
methyltransferase-like 3 (METTL3), a N6-methyladenosine
writer, whose expression levels raise postnatally, induces
cardiomyocyte cell cycle re-entry, reduces scar size and boosts
cardiac function after myocardial infarction, by regulating the
miR-143-YAP axis (224).

Finally, ablation of the DNA methylase Dnmt3a, which
is significantly downregulated after injury-induced cardiac
regeneration, triggers neonatal rat cardiomyocyte proliferation in
vitro (207).

miRNAs
Several miRNAs were found to regulate cardiomyocyte
proliferative and regenerative ability. High-throughput screening
in neonatal rat cardiomyocytes led to the identification of 40
miRNAs able to stimulate karyokinesis and cytokinesis in
neonatal cardiomyocytes (225). In vitro administration of two
of them, miR-590 and miR-199a, is sufficient to enhance the
proliferation of adult rat cardiomyocytes (225). Importantly,
cardiomyocyte proliferation was also observed after their delivery
in vivo by intracardiac injection of lipid transfection complexes
or by adenoviral vectors, leading to cardiac regeneration after
myocardial infarction in the mouse model (225). The pro-
regenerative efficacy of miR-199a has been also validated in
larger animal models upon cardiac injury (infarcted swine),
however, arrhythmic death after the persistent expression was
reported (226).

miR-1825 has been reported to induce a pro-mitotic effect
on adult cultured rat cardiomyocytes, along with alterations in
the electron transport chain, and a decrease in mitochondrial
numbers, oxygen species and DNA damage (227). Importantly,
intra-cardiac delivery of miR-1825 enhances the proliferation
of adult cardiomyocytes in the peri-infarcted region. Multiple
pathways seem to mediate the pro-regenerative effects of miR-
1825, including the upregulation of miR-199a, which in turn
repress its targets p16, Rb1, and Meis2 (227).

A few miRNAs, includingmiR-548c,miR-509, andmiR-23b,

have been documented to stimulate the proliferation of adult
cardiomyocytes through inhibition of Meis1 (228).

Overexpression of members of miR-17-92 cluster, such
as miR-17-92 (by employing α-MHC-Cre transgenic mice)
(229) and miR-19a/19b (delivered through adeno-associated
viruses) (230), is sufficient to enhance the proliferation of
embryonic, postnatal, and adult cardiomyocytes (229). Intra-
cardiac injection of miR-19a/19b promotes a robust regeneration
process of the infarcted cardiac tissue and boosts heart
function (230). Among the suggested mechanisms for the pro-
proliferative/regenerative effects of miR-17-92 members, it has
been suggested the targeting of the oncosuppressor PTEN and
the repression of the immune and inflammatory injury-induced
response (229).

miR302-367 has been shown to regulate the cell cycle of
adult cardiomyocytes by repressing Mst and Lats kinases of
Hippo signaling, as well as by altering differentiation and by
down-regulating genes involved in fatty acid metabolism (231).

Transient expression of miR302-367 promotes mouse cardiac
regeneration, avoiding the adverse dedifferentiation and reduced
function observed in long-term induction (231).

Interestingly, the pro-proliferative effects induced by several
miRNAs, including miR-590, miR-302d, miR-302c, miR-373,
miR-1825, miR-1248, miR-18a, miR-33b, miR-30e andmiR-199a,
were suggested to rely on YAP nuclear translocation, as well as
actin polymerization by downregulation of Cofilin2 (67).

Transgenic mice with cardiac overexpression of miRNA-204

exhibit cardiomyocyte replication in the embryonic and adult
stages. Mechanistically, miRNA-204 induces the degradation of
Jarid2 (jumonji), in turn promoting the expression of several
cyclins. Overexpression of Jarid2 impairs cardiomyocyte pro-
mitotic effect of miRNA-204 overexpression (232) and reduces
embryonic cardiomyocyte proliferation by repressing cyclin D1
expression (233, 234).

Physical exercise has been demonstrated to induce
cardiogenesis. Indeed, 2-months-old mice undergoing
voluntary wheel running exhibited a greater ability to
generate new cardiomyocytes at a projected annual rate
of 7.5% compared to 1.63% in sedentary conditions (235).
Interestingly, a higher frequency of diploid/mononucleated and
proliferating cardiomyocytes was observed in the border zone
of post-infarcted mice in exercise (235). The exercise-induced
cardiogenesis has been suggested to be mediated by miR-222,
which increases in response to exercise, and whose inhibition
suppresses the mitogenic response (235).

Other miRNAs, including miR-31a-5p and miR-708, have
been found crucial for neonatal cardiomyocyte replication in
vitro (236, 237). Furthermore, in vivo delivery of miR-708 in
lipid nanoparticles was documented to confer cardiomyocyte
protection against stress-induced apoptosis, although its role on
cardiac regeneration remains unexplored (236).

Some miRNAs may negatively affect cardiomyocyte
replication, thus their inhibition may be used to boost cardiac
regeneration ability. For example, it has been demonstrated that
miR-99/100 and let-7 are downregulated upon cardiac injury
to facilitate cardiac regeneration in zebrafish (238). In contrast,
their expression remains stable in mammals following cardiac
damage. Anti-miR-99/100 and anti-let-7 in vivo delivery in
infarcted mice results in cardiomyocyte dedifferentiation and
proliferation, leading to reduced scar size and improved cardiac
function (238).

miR-195, a member of the miR-15 family, has been identified
as a positive mediator of cardiomyocyte cell cycle arrest
by blocking the progress through the G2 checkpoint (239).
Inhibition of miR-195, via administration of locked nucleic
acid (LNA)-modified anti-miRs, from the early postnatal period
until adulthood, extends the proliferative window of endogenous
cardiomyocytes, regenerating the infarcted heart (239, 240).

Delivery of miR-34a, whose expression rises to
adult levels within the first postnatal week, suppresses
cardiomyocyte proliferation and regeneration in
neonatal infarcted hearts (241). Conversely, anti-
miR-34a treatment improves cardiomyocyte cell cycle
activity and cardiac remodeling post-injury in adult
mice (241).
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Cardiac-specific overexpression of miR-128 impairs neonatal
and adult cardiomyocyte replication, whereas its ablation allows
post-mitotic cardiomyocytes to re-enter the cell cycle driving
epigenetic remodeling of pro-mitotic genes, including the
chromatin modifier SUZ12, which ultimately triggers repression
of CKI p27 (242).

Recently melatonin administration or METTL3 ablation have
been shown to downregulate miR-143, in turn enhancing the
expression of YAP, thus leading to neonatal cardiomyocyte
proliferation (185) and heart regeneration (224).

Finally, anti-miR-29a, anti-miR-30a, and anti-miR-141

increase neonatal cardiomyocyte cell cycle activity (243).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In recent years, multiple approaches were suggested to reactivate
the cell cycle machinery and regeneration of endogenous
cardiomyocytes in the perspective of repairing the damaged
myocardium and boosting cardiac function after severe cardiac
injuries. In some cases, pre-clinical studies in larger animal
models (swine) and clinical trials on post-infarct and/or heart
failure patients were also performed, and promising results were
documented. In this regard, combinatorial strategies deserve
further investigation since they may be more effective. However,
several of the suggested approaches still exhibit some limitations
and require some precautions. To begin with, some treatments
may have a differential response and/or side effects among
mammals (for example miR-199a induced arrhythmia in large
animals, but not in mice). Furthermore, the tissue specificity
of the therapy is quite important to avoid potential side
effects. More selective delivery systems are being developed,
such as those based on biomaterials (cardiac patches, sponges,
hydrogels, etc.), although further improvement in tolerance to
immunogenic host responses is required [reviewed by Bar and
Cohen (244) and Mei and colleagues (245)].

The delivery system may also have safety issues that
should be carefully evaluated (for example, long-term effects
induced by adenoviral vectors). Another important issue is
the functionality and tissue integration of newly generated
myocytes, especially in the strategies resulting in consistent
dedifferentiation processes that may lead to altered cardiac
function, if persisted. To this end, the duration of the stimulus
that promotes cardiomyocyte proliferation is likely a key factor,
which requires careful calibration. Additionally, strategies that
facilitate re-differentiation of newly generated cardiomyocytes
have also been suggested, for example by enhancing cell-cell
coupling via overexpression of connexin 43 (246). Other safety
issues include a careful evaluation of potential cancerogenic
effects, especially for strategies employing genes that are known
to play a major role in cancer development. Increased specificity
to the cardiac tissue and the transient nature of the stimulus may
likely reduce or avoid this problem.

Thus, induction of endogenous cardiomyocyte proliferation
represents a promising and flourishing research approach to
induce cardiac regeneration after major injuries, although further
investigations are required to increase its efficacy and safety.
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