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1 | INTRODUCTION

In middle- and high-income countries, health expenditure has steadily increased over time, making its containment a major 
issue for governments: policymakers must control healthcare resources to efficiently address population aging and public 
budget constraints. Risk-adjustment schemes are one such tool for managing the efficiency and fairness of healthcare spend-
ing (Cid et al., 2016). The primary statistical purpose of risk-adjustment models, both in a health plan payment or provider 
reimbursement, is to accurately predict individual healthcare costs. When designing a risk-adjustment program, policymakers 
should aim to optimize the choice of statistical methods based on their data availability in the short-medium term, pending a 
longer-term investment to expand the range of variables and level of detail.

The performance of a risk-adjustment algorithm depends not only on the model or functional form, but also on the under-
lying data. In a setting with decentralized data administration, differences in data collection – and thus in the data available 
for prediction – stem from several sources, including: the accessibility of distinct databases (inpatient, pharmaceutical, outpa-
tient services), the range of data elements collected, the ability to merge information at an individual level (due to privacy 
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Abstract
The Italian National Healthcare Service relies on per capita allocation for healthcare 
funds, despite having a highly detailed and wide range of data to potentially build a 
complex risk-adjustment formula. However, heterogeneity in data availability limits 
the development of a national model. This paper implements and ealuates machine 
learning (ML) and standard risk-adjustment models on different data scenarios that 
a Region or Country may face, to optimize information with the most predictive 
model. We show that ML achieves a small but generally statistically insignifi-
cant improvement of adjusted R 2 and mean squared error with fine data granular-
ity compared to linear regression, while in coarse granularity and poor range of 
variables scenario no differences were observed. The advantage of ML algorithms 
is greater in the coarse granularity and fair/rich range of variables set and limited 
with fine granularity scenarios. The inclusion of detailed morbidity- and pharma-
cy-based adjustors generally increases fit, although the trade-off of creating adverse 
economic incentives must be considered.
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regulations), and different quality standards or level of detail in data collection (rudimentary vs. advanced information systems) 
according to the local context (we refer to the level of detail or aggregation as the “granularity” of the data).

The Italian National Healthcare Service (NHS) is an example of a healthcare system with substantial heterogeneity in data 
collection. With its decentralized units (21 health regions) all subject to the same national legislation regarding data collection 
duties, the Italian NHS has the potential for using a highly detailed and wide-ranging set of information to predict individual 
health expenditure. However, data collection takes place at the local level, where there are differing capacities to combine 
healthcare administrative databases, heterogeneous information systems, and variability in data granularity and quality control 
(Skrami et  al.,  2019). Thus, despite this potential richness of individual health information, the allocation of Italian NHS 
resources to Regions is still based on age-weighted capitation. Per capita allocation using synthetic indices methods or actuarial 
cells formulas is common among national health systems (e.g., Spain, Denmark, Scotland, Portugal) to distribute resources in 
a large geographical area for its simplicity of construction and low cost information (Cid et al., 2016). However, person-based 
formulae are increasingly used as an alternative method (e.g., United Kingdom), and they offer considerable scope for ensuring 
equitable allocations of health budgets to geographical areas (Radinmanesh et al., 2021; Smith, 2006).

In this paper, we develop a framework for designing an effective risk-adjustment algorithm to predict total healthcare 
expenditure by using routinely available, person-based Italian data on health needs. We explore different data scenarios by 
examining how the predictive performance of conventional and machine learning (ML) risk-adjustment estimation varies across 
by data granularity and range of variables settings.

Our primary contribution is to develop general guidelines for policymakers who have various scenarios of data granularity 
and/or range of variables and to provide a set of applicable statistical tools. For countries with national health systems this 
study may serve as a basis for budget setting using person-based regression models, which are more predictive than synthetic 
indices methods or actuarial cells formulas because they capture more variability in patient needs (Ellis, 2007). Countries with 
data constraints may use our framework to optimize the information available to improve efficiency and fairness in allocating 
resources or to reduce incentives for risk-selection (Henríquez at al., 2020). Countries with less limiting data constraints can 
implement more sophisticated ML techniques to improve predictive performances and fit efficiency (Geruso & McGuire, 2016; 
Kronick & Welch, 2014; Rose, 2016).

2 | EMPIRICAL FRAMEWORK

In Table 1 we present six typical data scenarios to predict total healthcare expenditure, which varies in two dimensions: range of 
variables (the number of health databases), and data granularity (the detail of the information in each database). These scenarios 
are based on real-world implementations of risk-adjustment programs and data collection; it is common to begin with age-sex 
cells, then add in hospitalization information, and finally pharmaceutical data. Similarly, a coarser level of detail may be more 
amenable to basic data collection and simpler prediction methods. The Italian health information system is theoretically located 
in the cell at the bottom right (fine data/rich range of variables), but as long as the reliability and consistency of the administra-
tive databases is uncertain, the first cell at the top left (coarse data/poor range of variables) could be the first plausible scenario 
in the transition from synthetic indices methods to more predictive models.

We use “range of variables” to refer to the data availability with respect to different health areas, and with “data granularity” 
we refer to the detail available. Age and sex are optimal exogenous risk-adjusters because they cannot be influenced by health 
providers' actions. However, they do not accurately reflect the epidemiological variability and health needs among geograph-
ical areas (Atella et al., 2018). Since the late 1990s, the United States (US) and many European health systems expanded the 
range of variables to reduce risk selection with increasingly sophisticated risk-adjustment formulas, including socio-economic, 
pharmacy- and diagnosis-based indicators (Ellis et al., 2018). Diagnosis information may be endogenous to some extent but 
is generally far more predictive than age and sex alone. In the UK, factors capturing demography, morbidity, deprivation, and 
unavoidable cost of providing services in different areas have been included in a complex person-based formula to improve the 
allocation of the “fair share” for each area (Dixon et al., 2011).

Early studies in the US demonstrated the inclusion of diagnosis cost groups (DCGs) improved the R 2 of the demographic 
model (age-sex data) by 40% points in a concurrent model and by 10% points in a prospective model (Ellis et al., 1996; Pope 
et al., 2000). A study for allocating commissioning funds to general practices in England, showed that from a model with age 
and sex only, adding diagnostic-related variables improved predictive power from 3.7% to 12.6% at individual level (Dixon 
et al., 2011).

In 2002, the Dutch health system was the first to expand the range of variables with pharmaceutical data through the 
Pharmacy-based Cost Group (PCG), a risk-adjuster based on pharmaceutical use, which increased the R 2 from 4% in the 
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demographic model to almost 9% (Lamers, 1999). In 2017, the sophisticated prospective Dutch risk-adjustment model reached 
an R 2 of almost 32% (van Kleef et al., 2018).

Other countries with competitive insurance markets have introduced morbidity indicators in their risk adjustment modeling, 
albeit with some limitations. Switzerland introduced PCGs into risk-adjustment modeling after a study found that the inclusion 
of pharmaceutical indicators in the Swiss prospective formula increases the R 2 by 13% points (Schmid & Beck, 2016), while 
diagnostic information is still incorporated as a dummy variable (yes/no prior hospitalizations). Germany uses pharmaceutical 
data to validate or impute missing diagnoses, while the Netherlands does not include outpatient diagnoses in the risk-adjustment 
systems (Bauhoff et al., 2017). Most US risk-adjustment systems do not use pharmaceutical data as predictors for health care 
expenditure (except Marketplaces), although Wagner et al. showed the DxCG system (supported by Verisk, a commonly used 
proprietary risk adjustment systems for cost data), which computes risk score using pharmacy and hospital data, increased the 
R 2 estimates by 8 to 20% points compared to the base models without pharmacy data (Wagner et al., 2016).

Despite the development of indicators based on diagnosis and pharmaceutical data, which have substantially improved the 
predictive performance of risk-adjustment algorithms over the past 2 decades, data constraints are still present in many coun-
tries. In Italy, approximately 35% (outpatient service and half of hospital expenditure) of the Italian National Health Fund is 
distributed to Regions based on an age-weighting system, while the remainder is allocated based on the unweighted resident 
population (Ferre et al., 2014). Ireland's health system relies on age, gender, and level of coverage as risk adjusters to deter-
mine transfers under risk equalization (Armstrong, 2018); Australian and Chilean risk equalization formulas are based on age, 
gender, and location (Paolucci et al., 2018; Velasco et al., 2018).

3 | NEW RISK-ADJUSTMENT ESTIMATION TECHNIQUES

Ordinary least squares (OLS) is the tool most commonly used in practice to predict healthcare spending (Ellis et al., 2018; 
Iezzoni, 2012). Recent literature has explored deploying ML methods, particularly in health systems with fine data and rich 
range of variables. The exponential growth of the size and complexity of electronic health information and the advancement 

IOMMI et al.

Poor range of variables Fair range of variables Rich range of variables

Demographic (DEM)
DEM + hospital discharge records 
(HDR)

DEM + HDR + pharmacy database 
(PD)

Coarse granularity 
(sparse detail)

Total health care costs = f (sex * 
age groups)

Total health care costs = f (sex * age 
groups + n. of hospitalizations)

Total health care costs = f (sex * age 
groups + n. of hospitalizations + n. 
of drug prescriptions) 

Age groups: 0, 1–4, 5-year classes 
up to 90, 90+

HDR: N. of hospitalizations HDR: N. of hospitalizations

PD: N. of prescriptions

Fine granularity (high 
detail)

Total health care 
costs = f (sex * age 
groups + citizenship + degree 
of urbanization + income)

Total health care costs = f (sex * age 
groups + citizenship + municipality 
of residence + income + group of 
ICD-9 codes) 

Total health care costs = f (sex * age 
groups + citizenship + municipality 
of residence + income + group of 
ICD-9 codes+ group of ATC codes)

Age groups: 0, 1–4, 5-year classes 
up to 90, 90+

Citizenship: Italian (yes/no) HDR: ICD-9-CM codes which can be 
classified into diagnosis-related 
groups a

HDR: ICD-9-CM codes; may be 
classified into DCGs

Degree of urbanization: Urban, 
peri-urban, rural

PD: ATC codes; may be classified into 
PCGs b

Income: low, medium-low, 
medium high, high

Abbreviations: ESRD, End-Stage Renal Disease; HCC, Hierarchical Condition Category; HDR, hospital discharge records; PD, pharmacy database; RxHCC, 
Prescription Drug Hierarchical Condition Category.
 aFor example, possible coding classification systems include the Clinical Classifications Software for ICD-9-CM (https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.
jsp) or the 2015 Risk Adjustment model software HCC, RxHCC, ESRD of Centers for Medicare & Medicaid Services (https://www.cms.gov/Medicare/Health-Plans/
MedicareAdvtgSpecRateStats/Risk-Adjustors) or the DCG.
 bFor example, Pharmacy Cost-Group (PCG).

T A B L E  1  Data setting scenarios to predict total health care expenditure
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in computational capacity has shifted the attention of health statisticians and econometricians towards newer techniques 
(Rose, 2016). These techniques allow for the automated investigation of all possible covariates available and to leverage the 
complex structure of population-level health data (Kan et al., 2019).

Rose (2016) compared OLS with 8 ML algorithms (lasso, ridge, elastic net, neural net, single tree, random forests (RF), and 
a discrete and weighted super learner (SL)) using the inputs of the official US individual Marketplace risk-adjustment formula, 
including age, sex, geographic area, 5 inpatient diagnosis categories, and 74 Hierarchical Condition Category (HCC) variables, 
to predict total annual expenditures in a prospective formula. The results highlighted the minor improvement in performance of 
the SL with respect to cross-validated R 2, but also showed that reducing the number of covariates to 10 only marginally reduced 
the predictive performance, providing preliminary evidence that few variables could yield effective plan payment risk-adjust-
ment. McGuire, Zink, and Rose (McGuire et al., 2020) examined payment system fit with a concurrent formula in the setting 
of the US individual Marketplaces. The study found a penalized regression with age and sex cells and 30 HCCs performed 
similarly to the baseline linear regression with age and sex cells and 90+ HCC-based variables, while pharmaceutical covariates 
did not improve fit over the diagnosis-based risk adjustors. In recent work, Kan et al. (2019) compared OLS and penalized linear 
regressions for predicting Medicare Advantage health care expenditure (patients aged ≥65 years). The authors emphasized the 
advantages of penalized regressions, particularly the lasso, which yielded improvements over OLS in a single year of data and 
a 4-year pooled-data setting.

In non-US settings, exploration of interaction terms has been common. Buchner et  al. employed a regression tree 
analysis to improve the German risk-adjustment formula with significant interactions between variables (Buchner 
et al., 2017). The inclusion of morbidity interaction terms showed a marginal improvement of R 2, with an insubstantial 
loss in accuracy. Examining the 2014 Dutch risk-adjustment formula, van Veen et al. (van Veen et al., 2018) found that a 
similar approach improved the adjusted R 2, but concluded it may also increase the possibility of risk-selection for some 
subgroups.

4 | DATA

Our study population was drawn from the 2016 administrative databases of Emilia, a Northern Italian Region with about 4.4 
million beneficiaries with universal access to the Italian NHS.

The main databases used were:

1.  Hospital Discharge Records: Admissions and discharge dates; primary and up to five secondary diagnoses and up to six 
interventions (ICD-9-CM coding system) are included. Expenditure is registered using the diagnosis-related group tariffs 
system since 1995 (Emilia-Romagna, 2014).

2.  Outpatient Pharmaceutical Database (OPD): Contains drugs reimbursed by the NHS (prescribed by the primary care physi-
cian or a specialist, or directly dispensed by the hospital pharmacies) and details on substance name, Anatomical Therapeu-
tic Chemical (ATC) classification system code-V.2013, brand name, date of prescription filling, number of unit doses and 
number of packages and prescribers.

3.  Outpatient Speciality Database (OSD): Contains individual expenditures of laboratory test and specialistic visits.

The linkage among these databases was possible through a unique anonymized patient identifier. We include only individ-
uals who were residents in 2016 of one of the 8 Local Health Authorities of Emilia-Romagna.

4.1 | Socio-demographic covariates

We included gender, age (divided into 20 classes: 0, 1-4, 5-year classes up to 90 years and a class open over 90 years), citizen-
ship (dichotomous variable: Italian yes/no), the degree of urbanization of residence (classified using the Eurostat's Degree of 
Urbanization (DEGURBA) (Eurostat, 2014) classification system into sparsely populated areas, intermediate density areas, and 
densely populated areas) and the income derived from the exemptions (if an individual presented more than one exemption they 
were assigned to the lowest income class).

IOMMI et al.
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4.2 | Hospital covariates

The hospital covariates included the total number of hospitalization and ICD-9-CM codes, which were grouped into DCGs. 
This method, originally proposed by Ash and colleagues (Ash et al., 1989; Ellis & Ash, 1995), first aggregates the diagnostic 
codes into 78 clinically homogeneous subgroups, then further aggregates these subgroups into 9 large groups on the basis of 
their equivalence in terms of resource absorption. Individuals with multiple diagnoses were classified only in their most expen-
sive DCG while individuals without any diagnoses were grouped into DCG 0. Appendix Table A contains the full list of DCGs.

4.3 | Pharmacy covariates

From the OPD, we included the total number of drug prescriptions and ATC codes, which we grouped into PCGs. Through 
the ATC coding system, individuals with pharmaceutical prescriptions in 1 year are marked with a medical condition, which 
is then used as risk adjuster for the distribution of the resources thereafter. For the construction of the PCGs, we combined the 
Dutch model and other approaches that use the ATC codes to identify patients with chronic condition from the pharmaceutical 
databases defining 36 distinct classes (Chini et al., 2011; Corrao et al., 2017; Trottmann et al., 2010; Trottmann et al., 2015). An 
individual is classified into a PCG if the year amount of defined daily doses (DDD) in a given pharmaceutical class was greater 
than 180 DDD (cancer drugs required only >15 DDD). The full list of PCGs is shown Appendix Table B.

4.4 | Dependent variable

The outcome of interest is annual total expenditure, calculated by summing up the expenditures of hospital, pharmaceutical, and 
outpatient care services provided to residents of Emilia-Romagna Region during 2016.

We implemented a concurrent risk-adjustment approach: health care expenditure was predicted by individual characteristics 
from the same year. The concurrent method, compared to the prospective, reduces the data burden by using only a single year 
of data and does not require a separate formula for individuals with no information from the prior year. Concurrent risk models 
generally yield higher predictive power than prospective models. The compromise of this higher predictiveness is a reduced 
incentive to control healthcare spending and a longer timeline for payment, adding uncertainty, administrative burdens, and 
planning challenges (Geruso & McGuire, 2016).

4.5 | Characteristics of the population

A summary of socio-demographic variables is presented in Table 2. There were slightly more women than men in the sample 
(52%) and the largest age groups were 50–54 (9.2%) and 45–49 (9.1%). Mean total healthcare expenditure was 834€. Women 
had a slightly lower mean expenditure compared to men (832 vs. 841€) but a much higher median expenditure (114 vs. 59€). 
Italians had higher mean expenditure than non-Italians (861 vs. 530€) and people who lived in rural areas had higher expend-
iture (876€) than those living in urban (858€) or peri-urban areas (796€). Low-income exempted individuals had the highest 
mean and median expenditure (1161 and 226€) compared with other income groups. Average spending increased with more 
hospitalizations or prescriptions. Similarly, individuals with DCG were more expensive (5631€) than individuals with no DCG 
(227€), as well for individuals with at least one PCG (1729 €) compared to those with no PCG (406 €).

5 | STATISTICAL ANALYSIS

5.1 | Model specifications

As our baseline method, we implemented an OLS regression. To account for the highly skewed distribution of healthcare 
spending, we also estimated generalized linear models, using the frequently applied log-link function and two distribution 
families (Gaussian and Gamma; Jones, 2010).

IOMMI et al.
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1373IOMMI et al.

Total expenditure in 2016

N % Col Mean S. D. 25 th perc Median 75 th perc

Observations 4,262,982 100% 834.0 3306.0 13 87 405

Male 2,054,695 48.2% 838.2 3618.0 6 59 344

Female 2,208,287 51.8% 829.8 2986.9 24 114 460

Age groups

 0 48,632 1.1% 1358.1 4832.4 128 340 416

 1–4 119,804 2.8% 234.6 1875.0 11 30 82

 5–9 157,598 3.7% 167.7 1339.2 7 21 65

 10–14 153,215 3.6% 201.9 1448.7 6 29 99

 15–19 144,999 3.4% 244.1 1873.1 5 24 98

 20–24 148,695 3.5% 286.8 1870.2 3 22 91

 25–29 184,774 4.3% 322.5 1795.3 4 26 111

 30–34 225,961 5.3% 358.4 1730.4 5 31 131

 35–39 279,342 6.6% 374.3 1925.0 5 31 138

 40–44 353,249 8.3% 384.8 2267.9 2 32 141

 45–49 389,168 9.1% 424.2 2359.5 4 48 172

 50–54 391,461 9.2% 528.0 2883.7 4 57 223

 55–59 313,161 7.3% 743.2 3579.0 18 103 337

 60–64 266,900 6.3% 1008.0 3978.9 40 172 497

 65–69 273,682 6.4% 1378.1 4351.7 101 318 809

 70–74 224,178 5.3% 1771.5 4675.0 173 459 1145

 75–79 226,081 5.3% 2077.4 5020.8 237 568 1414

 80–84 173,644 4.1% 2277.6 4929.6 287 638 1690

 85–89 116,705 2.7% 2325.1 4592.5 275 617 2082

 90+ 71,733 1.7% 2225.8 4002.1 205 506 2713

Italian citizenship

 No 351,815 8.3% 529.9 2761.0 8 50 220

 Yes 3,911,167 91.7% 861.2 3349.5 13 92 425

Degree of urbanization

 Urban 1,548,231 36.3% 857.8 3418.7 11 84 406

 Peri-urban 1,896,501 44.5% 796.1 3191.1 13 83 385

 Rural 818,250 19.2% 875.9 3350.3 17 102 450

Income

 Exempt low income 1,746,677 41.0% 1161.1 3576.4 54 226 735

 Exempt middle-low income 583,624 13.7% 720.9 2767.8 24 114 378

 Exempt middle-high income 98,832 2.3% 696.8 2777.1 17 94 334

 Exempt high income 397,233 9.3% 797.9 3817.2 0 38 235

 Exempt other reason 1,436,616 33.7% 501.2 2994.1 1 22 119

No. of hospitalization

 0 3,777,073 88.6% 226.3 728.4 9 61 245

 1 380,626 8.9% 3768.6 5440.2 1362 2297 4272

 2 71,425 1.7% 9101.3 8904.1 3974 6841 11,434

 3+ 33,858 0.8% 18,174.6 15,304.0 9145 14,355 22,410

No. of pharmaceutical prescription

 0 931,697 21.9% 205.5 1726.9 0 21 75

T A B L E  2  Description of the study population (n = 4,262,982)

(Continues)
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We deployed the following ML algorithms: penalized regressions (lasso, ridge, and elastic net penalties), a generalized 
additive model (GAM), RF, and, finally, we constructed a SL, an ensembling method that takes a weighted average of predicted 
values from underlying candidate algorithms (such as penalized regressions, GAMs, and RFs) to produce a single best predic-
tion function. (M. J. van der Laan & Rose, 2011; Mark J. van der Laan et al., 2007). For further background on these methods 
and their application to risk adjustment we refer the interested reader to Rose (2016).

5.2 | Model performance

We randomly sampled 100,000 observations from our total sample. We divided this subset a training set (70%), to develop and 
validate the algorithms, and test set (30%) to evaluate the performance of the models (Appendix C reports summary statistics 
for the train and test sets). To choose the optimal tuning parameters of the penalized linear regressions, 10-fold cross-validation 
was used within the training set. For the RF, 500 trees were produced (node size = 250) and p/3 predictors, for each specifica-
tion formula, were randomly chosen at each step of the tree-building.

Model fit was judged using the adjusted-R 2 and mean squared error (MSE). Predictive Ratios (PR) were computed as the 
ratio between mean predicted spending and mean observed spending in each observed quintile. We also calculated mean under/
overcompensation, computed as the difference between mean predicted spending and the mean observed spending in each 
quintile. For MSE, a smaller value indicates better performance. An adjusted-R 2 a value closer to one indicates more explan-
atory power, while PR values between 0.9 and 1.1 are considered reasonable prediction accuracy (Kautter et al., 2012). The 
Relative Efficiency (RE) of each algorithm compared to OLS, with respect to both cross-validated MSE (RE = cv MSEOLS/cv 
MSEk, k = other algorithms) and R 2 values (RE = cv R 2k/cv R 2OLS, k = other algorithms), was evaluated. A total of 54 models 
were estimated to predict healthcare expenditure (based on six data scenarios and nine algorithms). Statistical analyses were 
performed using SAS Enterprise Guide (version 7.1) and R (version 3.6.3).

6 | RESULTS

6.1 | Evaluation of the models: Adjusted-R 2 and MSE

Tables 3 and 4report the best and worst performing models compared to OLS according to adjusted-R 2 and MSE, respectively. 
In all scenarios, SL displayed the best performance, except in the coarse granularity/poor range of variables setting, in which 
the lasso model performed best (in both adjusted-R 2 and MSE measures). However, in this setting, the performance difference 
between models was trivial, such that the RE was 1 across all models. Focusing on the adjusted-R 2, the gain in relative effi-
ciency compared to OLS was higher in the coarse granularity/rich range of variables setting (SL adj.-R 2 = 49.9%) and in the 
fine granularity/poor range of variables (SL adj.-R 2 = 4.6%), but in both these settings there was no gain in RE. In the fine 
granularity/fair and rich range of variables scenarios, the SL RE was 1.0, with an adjusted-R 2 of 43.6% and 45.1% when DCG 
and DCG+PCG were added, respectively. We obtained inconsistent values (the predictions were so poor that the adjusted-R 2 

IOMMI et al.

T A B L E  2  (Continued)

Total expenditure in 2016

N % Col Mean S. D. 25 th perc Median 75 th perc

 1 876,850 20.6% 158.3 1244.2 0 5 28

 2 326,076 7.6% 350.6 1895.8 15 34 116

 3+ 2,128,359 49.9% 1461.3 4313.9 115 322 904

Diagnostic cost group (DCG)

 No 3,784,039 88.8% 226.7 730.9 9 61 245

 Yes 478,943 11.2% 5631.1 8194.2 1614 3033 6466

Pharmacy cost group (PCG)

 No 2,884,260 67.7% 406.0 2302.7 5 34 131

 Yes 1,378,722 32.3% 1728.8 4639.1 186 446 1109

Abbreviations: DCG, Diagnostic cost group; PCG, Pharmacy cost group.
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were negative and the MSEs were extremely high) for the GLMs, denoting their poor performances. The lowest adjusted-R 2 
of OLS was 4.3% in the coarse granularity/poor range of variables data while the highest was 48.5%, obtained in the coarse 
granularity/rich range of variables data.

Concerning MSE, in the coarse granularity/poor range of variables and fine granularity/fair and rich range of variables 
scenarios, there were no gains in RE of using SL compared to OLS. ML technique produced slight gain in the coarse granular-
ity/fair range and rich range of variables scenarios, where SL reduced the MSE by 2.1% (MSE = 5,705,097; RE = 1.02) and 
by 2.6% (MSE = 5,583,558; RE = 1.03). The GLMs yielded extremely high MSE values and the worst performance in many 
scenarios. The worst MSE of OLS was in the coarse granularity/poor range of variables data (MSE = 10,657,875) while the 
best was in the coarse granularity/rich range of variables data (MSE = 5,734,502).

We carried out further analyses, in which we compared the performance of the ML models, estimated on a subsample of 
the population as above, with that of the OLS model, estimated on the entire population of 4,262,982 individuals (“OLS total”). 
The results are presented in the appendix D and E. In the coarse and fine granularity/poor range of variables scenarios, OLS 
total outperformed the best ML algorithm for both adjusted-R 2 and MSE. Concerning MSE, the gap between the best ML 
model and the OLS total model narrows, until it reverses the sign in the fine granularity/rich range of variables scenario.

6.2 | Under/overcompensation and predictive ratios

Figure 1 shows the mean under/overcompensation by observed spending quintile. Complete tables for each data scenario of 
mean under/overcompensation and PRs are reported in Appendix F and G. In the coarse granularity/poor range of variables 
scenario all models highly overcompensate the expenditure of the individuals in the 80 th percentile group (best: ridge = 822.8; 
worst: OLS = 826.5) as well as in the fine granularity/poor range of variables (best: SL = 859.7; worst: OLS = 868.9). In the 
99 th percentile all models highly undercompensate. In contrast, the 99 th percentile group is (in a lesser extent) overcompensated 
in the fair and rich range of variables settings, for both coarse and fine granularity. Finally, in the coarse granularity/rich range 
of variables setting we also see the lowest under/overcompensation relative to the other scenarios for the 20 th percentile.

IOMMI et al.

  Poor range of variables Fair range of variables Rich range of variables

Models ranking Adj. R 2 RE Models ranking Adj. R 2 RE Models ranking Adj. R 2 RE

Coarse 
granularity

Lasso 4.3% 1.0 SL 48.8% 1.0 SL 49.9% 1.0

ElNet 4.3% 1.0 GAM 48.0% 1.0 RF 49.1% 1.0

RF 4.3% 1.0 OLS 47.6% 1.0 GAM 48.9% 1.0

SL 4.3% 1.0 Lasso 47.6% 1.0 OLS 48.5% 1.0

GLM l-g 4.3% 1.0 ElNet 47.6% 1.0 Lasso 48.5% 1.0

GLM l-n 4.3% 1.0 RF 47.5% 1.0 ElNet 48.5% 1.0

OLS 4.3% 1.0 Ridge 47.3% 1.0 Ridge 48.2% 1.0

GAM 4.3% 1.0 GLM l-n Inc. value - GLM l-n Inc. value -

Ridge 4.3% 1.0 GLM l-g Inc. value - GLM l-g Inc. value -

Models ranking Adj. R 2 RE Models ranking Adj. R 2 RE Models ranking Adj. R 2 RE

Fine granularity SL 4.6% 1.0 SL 43.6% 1.0 SL 45.1% 1.0

GLM l-n 4.6% 1.0 GLM l-n 43.2% 1.0 Lasso 44.9% 1.0

RF 4.5% 1.0 Lasso 43.2% 1.0 ElNet 44.9% 1.0

Lasso 4.5% 1.0 ElNet 43.2% 1.0 OLS 44.9% 1.0

ElNet 4.5% 1.0 OLS 43.2% 1.0 GAM 44.9% 1.0

OLS 4.5% 1.0 GAM 43.2% 1.0 Ridge 44.8% 1.0

GAM 4.5% 1.0 Ridge 43.0% 1.0 GLM l-n 44.6% 1.0

Ridge 4.5% 1.0 RF 42.8% 1.0 RF 44.5% 1.0

GLM l-g 4.5% 1.0 GLM l-g 6.6% 0.2 GLM l-g Inc. value -

Abbreviations: GAM, generalized additive model; MSE, mean squared error; OLS, Ordinary least squares; RF, random forest; SL, super learner.

T A B L E  3  Adjusted-R 2 of the models compared to OLS
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7 | DISCUSSION

The recent developments in ML techniques to estimate healthcare spending have shown promising results, although as imple-
mented in this study their performance is not uniformly dominant compared to OLS. The goal of this study is to provide a 
framework and toolkit for policymakers, therefore we selected well-established ML algorithms that required minimal tuning or 
could be implemented “off the shelf.” ML methods are still relatively unfamiliar for many policymakers, and some algorithms, 
like those based on neural networks, suffer from problems of interpretability that may limit their application (Kan et al., 2019). 
This study provided an in-depth analysis of the advantages and disadvantages of implementing ML techniques compared to 
standard regression (OLS) considering various scenarios of data granularity and range of variables and making use of health-
care administrative dataset from a large, unselected Italian population.

Our findings show that ML techniques, particularly SL, outperformed OLS in all data scenarios, although the adjusted-R 2 
RE ranges between 0.02% points in the coarse granularity/poor range of variables scenario and 2.8% points in the coarse 
granularity/rich range of variables scenarios, indicating no statistically significant gain in our sample of 100,000 observations. 
Performance based on MSE also showed consistent results.

Concerning under/overcompensation measures, OLS showed the least, albeit negligible, overcompensation compared to 
ML techniques in the lowest observed spending percentiles in the coarse granularity/poor and fair range of variables setting. 
The top 1% spenders are better predicted with GAM or SL, except in the coarse granularity/poor range of variables and fine 
granularity/rich range of variables settings, where OLS was superior. The mean under/overcompensation also highlighted how 
the increase in the range of variables can considerably reduce the overestimation of the group of individuals in the 20 th percen-
tile and at the same time reduce the gap of the underestimation for the top of the spending distribution.

However, the gap between the best ML and OLS is relatively narrow, indicating that the implementation of more complex 
and sophisticated models does not lead to a significant increase in under/overcompensation reduction.

Unlike prior, US-based studies (McGuire et al., 2020; Rose, 2016), we did not find a consistent relationship between the 
increase in data granularity and/or range of variables and the advantage of ML over OLS. However, our most detailed data 
scenario (fine granularity, rich range of variables) included only 9 diagnosis-based risk adjustors, suggesting the ability of ML 

IOMMI et al.

  Poor range of variables Fair range of variables Rich range of variables

Models ranking MSE RE Models ranking MSE RE Models ranking MSE RE

Coarse 
granularity

Lasso 10,657,793 1.0 SL 5,705,097 1.0 SL 5,583,558 1.0

ElNet 10,657,794 1.0 GAM 5,791,326 1.0 RF 5,663,559 1.0

RF 10,657,813 1.0 OLS 5,830,424 1.0 GAM 5,689,220 1.0

SL 10,657,862 1.0 Lasso 5,830,718 1.0 OLS 5,734,502 1.0

OLS 10,657,875 1.0 ElNet 5,830,867 1.0 Lasso 5,735,406 1.0

GAM 10,657,875 1.0 RF 5,842,105 1.0 ElNet 5,735,468 1.0

GLM l-n 10,657,875 1.0 Ridge 5,863,916 1.0 Ridge 5,766,763 1.0

GLM l-g 10,657,875 1.0 GLM l-n 13,446,690 0.4 GLM l-n 41,287,682 0.1

Ridge 10,658,065 1.0 GLM l-g Inc. value - GLM l-g Inc. value -

Models ranking MSE RE Models ranking MSE RE Models ranking MSE RE

Fine granularity SL 10,618,384 1.0 SL 6,272,971 1.0 SL 6,100,482 1.0

GLM l-n 10,620,560 1.0 GLM l-n 6,324,134 1.0 Lasso 6,130,363 1.0

RF 10,629,964 1.0 Lasso 6,328,133 1.0 ElNet 6,130,485 1.0

Lasso 10,632,277 1.0 ElNet 6,328,270 1.0 OLS 6,130,908 1.0

ElNet 10,632,394 1.0 OLS 6,328,300 1.0 GAM 6,130,908 1.0

OLS 10,632,491 1.0 GAM 6,328,300 1.0 Ridge 6,141,734 1.0

GAM 10,632,491 1.0 Ridge 6,344,566 1.0 GLM l-n 6,164,559 1.0

Ridge 10,632,648 1.0 RF 6,371,412 1.0 RF 6,175,096 1.0

GLM l-g 10,633,779 1.0 GLM l-g 10,397,454 0.6 GLM l-g Inc. value

Abbreviations: GAM, generalized additive model; MSE, mean squared error; OLS, Ordinary least squares; RF, random forest; SL, super learner.

T A B L E  4  Average cross-validated MSE of the models compared to OLS
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algorithms to outperform OLS with fewer variables may be limited to settings with even more granular diagnosis groupings, 
such as the US formulas that use 90+ diagnosis-based risk adjustors.

Increasing the range of variables produced a significant improvement in the ability of all models (excepting the GLMs) 
to predict healthcare expenditure, more so in the coarse than fine granularity scenarios. The jump in the adjusted-R 2 from the 
coarse granularity/poor range of variables to the coarse granularity/fair range of variables due the addition of the number of 
hospitalizations in the risk-adjustment formula is greater than the increase moving to the fine granularity/rich range of variables 
scenario where PCG and DCG are added. We expected this result because the number of hospitalizations is much more predic-
tive than demographic variables and it is highly correlated with the total expenditure in the concurrent approach. However, we 
encourage caution regarding its use in risk-adjustment models since it may lead to inappropriate treatment decisions (Geruso 
& Layton, 2015). Furthermore, the underfunding of high-cost morbidities that do not require hospitalization (e.g., outpatient 
dialysis for chronic kidney disease patients) may still present a challenge for policymakers.

Similar to McGuire, Zink, and Rose (McGuire et al., 2020), we find the addition of pharmaceutical-based indicators (moving 
from fair to rich range of variables in either granularity level) does not have a large impact on the adjusted-R 2. Although the fine 
granularity variables DCG and PCG reduce the adjusted-R 2, they may be regarded as reasonable trade-offs since they gener-
ally increase efficiency and fairness, and also reduce incentives for risk selection by including more risk-classes and are better 
predictors in prospective approaches.

Nevertheless, in addition to the upcoding behavior that morbidity-based indicators may induce, Geruso and McGuire (Geruso 
& McGuire, 2016) observed that HCC-based concurrent risk-adjustment systems increase fit but at the same time they reduce 
the power (the term power describes the share of costs at the margin born by the health plan (Geruso & McGuire, 2016) in cost 
containment by about 30%, meaning that concurrent diagnosis-based risk-adjusters weaken incentives for cost control. The 
inclusion of pharmaceutical-based indicators in the risk-adjustment model may incentivize health care providers to prescribe 
unnecessary medication (van Kleef et al., 2014) but, in the long-term, PCGs may direct providers' effort to cost-containing 
innovations (Beck et al., 2010).

IOMMI et al.

F I G U R E  1  Under/overcompensation by quintiles for each data scenario. The ridge and elastic net mean compensations are not shown 
because they were very similar to lasso. GLMs are not shown because some of their mean compensation's values were completely out of range. Top 
1% spenders were not included in the graph representation due to the higher range of values compared to quintiles (mean under compensation range 
from −24,971 to −14,606 €) [Colour figure can be viewed at wileyonlinelibrary.com]
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We note some specific limitations to our study. There were many alternative fine granularities diagnosis risk-adjustors 
that we could have selected for this comparison. We limited our choice to DCG and PCG because they are well known in the 
risk-adjustment literature and commonly adopted for utilization and cost outcomes. However, we believe the methods we pres-
ent can guide future comparisons of other risk-adjustors. Similarly, many other ML algorithms could be compared, for example, 
neural networks, other decision tree-based methods, or different choices could have been made regarding the tuning parameters 
(Hastie et al., 2009; James et al., 2013). Ultimately, our choice of algorithms was driven by a desire for both interpretability and 
potential familiarity for practitioners. Concerning data sources, the OPD includes only drug dispensations that are reimbursed 
by the NHS. The same caveat holds for OSD. Thus, we did not capture healthcare use paid by patients either directly or funded 
by private insurers. Finally, we relied on combining multiple data sources to select our base population, because we lacked 
access to the central Resident's Registry.

The choice of the model depends crucially on the performance measures; thus, it is of foremost importance to compare vari-
ous measures of fit and interpret the results very carefully. It is more appropriate to rely on the adjusted-R 2 and MSE to maxi-
mize the variance explained and reduce the overall prediction error. However, if the primary goal is to minimize the differences 
between the predicted values and the observed values in specific subgroups that may be at risk of selection and to incentivize 
cost control, then the under/overcompensation or the PR are more targeted measures.

Policymakers should consider other evaluation criteria in designing the risk-adjustment model in addition to models' predic-
tive performance, such as time/computing power, availability of data or appropriateness for incentives for risk selection and 
efficiency (van Veen et al., 2015).

Generally, ML techniques – particularly the SL – out-performed OLS. From an operational perspective, we suggest imple-
menting ML methods to increase variance explained by the model in predicting the expenditure to further decrease risk selec-
tion, to reduce upcoding actions by selecting a subset of variables over all possible covariates, and to explore possible interaction 
terms with automatic processes (Rose, 2016). Retaining only a small number of important variables could reduce the oppor-
tunities to inflate the number of diagnosis and facilitate care management by emphasizing key risk-factors (Kan et al., 2019; 
Kronick & Welch, 2014). Conversely, if algorithm performance differences on the desired evaluation metrics are considered 
negligible and the investment in these tools too onerous in terms of computational time, OLS may be used with large popula-
tions. In our further analyses, when the entire population is considered rather than a subsample to estimate the OLS model, we 
indeed observed a narrowing of the gap in the MSE measure between ML models and the OLS.

To summarize, it is well known that in designing a risk-adjustment model it is important to evaluate not only the predictive 
performance but also the trade-offs with adverse economic behaviors (e.g., risk selection, moral hazard, cost containment). Our 
analysis shows a similar trade-off when deciding between the investment in increasing the range of variables and the granular-
ity of the data, and in the search of the more appropriate statistical techniques to implement in conjunction with a given data 
scenario.
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