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A B S T R A C T   

Climate change and rapid expansion of urban areas are expected to increase pluvial flood hazard and risk in the 
near future, and particularly so in large developed areas and cities. Therefore, large-scale and high-resolution 
pluvial flood hazard mapping is required to identify hotspots where mitigation measures may be applied to 
reduce flood risk. Depressions or low points in urban areas where runoff volumes can be stored are prone to 
pluvial flooding. The standard approach based on estimating synthetic design hyetographs assumes, in a given 
depression, that the T-year design storm generates the T-year pluvial flood. In addition, urban areas usually 
include several depressions even linked or nested that would require distinct design hyetographs instead of using 
a unique synthetic design storm. In this paper, a stochastic methodology is proposed to address the limitations of 
this standard approach, developing large-scale ~ 2 m-resolution pluvial flood hazard maps in urban areas with 
multiple depressions. The authors present an application of the proposed approach to the city of Pamplona in 
Spain (68.26 km2). The Safer_RAIN fast-processing algorithm based on digital elevation models (DEMs) is 
compared with the IBER 2D hydrodynamic model in four real storms by using 10-min precipitation fields. 
Precipitation recorded at rainfall-gauging stations was merged with continuous fields obtained from a meteo-
rological radar station. Given the hydrostatic limitations of Safer_RAIN, the benchmarking results are adequate in 
terms of water depths in depressions. A long set of 10 000 synthetic storms that maintain the statistical properties 
of observations in Pamplona is generated. Safer_RAIN is used to simulate runoff response, and filling and spilling 
processes, in depressions for the 10 000 synthetic storms, obtaining the probability distribution of water depths 
in each cell. Maps of pluvial flood hazards are developed in the Pamplona metropolitan area for 10 return periods 
in the range from two to 500 years from such pixel-based series of simulated water depths. Bivariate return- 
period curves are estimated in a set of cells, showing that several storms can generate a given T-year pluvial 
flood with an increasing precipitation with storm duration that depends on the draining catchment soil char-
acteristics. The methodology proposed is useful to develop maps of pluvial flood hazards in large multi- 
depression urban areas in reasonable computation times, identifying the main pluvial flood hotspots.   

* Corresponding author. 
E-mail addresses: luis.mediero@upm.es (L. Mediero), e.soriano@upm.es (E. Soriano), poriai@aemet.es (P. Oria), stefano.bagli@gecosistema.com (S. Bagli), 

attilio.castellarin@unibo.it (A. Castellarin), l.garrote@upm.es (L. Garrote), paolo.mazzoli@gecosistema.com (P. Mazzoli), jaroslav.mysiak@cmcc.it (J. Mysiak), 
pasetti@meeo.it (S. Pasetti), simone.persiano@unibo.it (S. Persiano), david.santillan@upm.es (D. Santillán), kai.schroeter@gfz-potsdam.de (K. Schröter).  
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1. Introduction 

Pluvial floods are usually generated by high-intensity and short- 
duration storms. Climate change projections point to an increase in 
the intensity and frequency of such extreme rainfall events (Kundzewicz 
et al., 2014). Furthermore, the expansion of urban areas and the 
increasing density of assets in cities have amplified the economic and 
human consequences associated with pluvial floods (Kaspersen et al., 
2017; Bulti and Abebe, 2020). Pluvial flood hazards are usually assessed 
by using synthetic design storms (Krvavica and Rubinić, 2020) and two- 
dimensional (2D) hydrodynamic models. In this study, a stochastic 
methodology is proposed to estimate pluvial flood hazards in urban 
areas, overcoming some of the major limitations of deterministic 
approaches. 

Synthetic design storms neglect the influence of both hyetograph 
shapes and spatial and temporal distributions of rainfall on water 
depths. In addition, such an approach assumes that the design storm for 
a given return period (T) generates the T-year pluvial flood. However, 
the T-year pluvial flood should be obtained by using a threshold in a 
variable that characterises flood hazardousness, such as water depths. 
Moreover, a high degree of uncertainty is associated with design hye-
tograph estimates, propagating it through rainfall-runoff simulations 
and pluvial flood hazard calculations, as catchment response times are 
usually estimated with empirical formulae that may not be valid in areas 
with different conditions from those of the regions used to obtain them, 
as well as the results can differ by up to 500 % depending on the formula 
used (Grimaldi et al., 2012; Gericke and Smithers, 2014; Tuyls et al., 
2018). Consequently, urban drainage systems could be over- or under- 
estimated depending on the empirical formula used in each case. In 
addition, urban areas are usually composed of multiple depressions 
prone to pluvial flooding that can be even linked and nested. Each 
depression should be analysed independently when using an approach 
based on synthetic design storms, as varying catchment response times 
will lead to varying design hyetograph durations. Therefore, multiple 
simulations are required, increasing the complexity of pluvial flood 
hazard mapping at the scale of a city or municipality. 

The limitations of the standard approach based on synthetic design 
hyetographs can be improved by using a stochastic analysis that con-
siders the runoff response in a large set of storms, maintaining the sta-
tistical properties of real rainfall events observed in a given area. First, 
design hyetograph estimates are not required, as the complete proba-
bility distribution of water depths at any point will be obtained, 
addressing the assumption that the T-year storm generates the T-year 
pluvial flood. Second, the method can be applied to larger scales with 
multiple depressions, as it is independent of catchment response times at 
each depression. Third, a stochastic analysis avoids the uncertainties 
associated with catchment response time estimates by using empirical 
formulae. Consequently, a stochastic approach will be more adequate 
for pluvial flood hazard mapping in urban areas with multiple de-
pressions. However, a rapid tool for simulating the water depths 
generated by a large set of storms is required for conducting such a 
stochastic approach. 

2D hydrodynamic models are recognised to simulate pluvial floods in 
urban areas accurately (Henonin et al., 2013), based on solving the 2D 
shallow-water equations (SWEs) by using numerical methods. There-
fore, they require high computation times. Furthermore, studies that use 
long sets of stochastic synthetic rainfall events are unusual for the 
delineation of pluvial flood hazard maps (Apel et al., 2016), as they are 
not affordable with the computation times required by 2D hydrody-
namic models. Either simplified hydrodynamic models are used to 
reduce simulation times (Nuswantoro et al., 2016) or a reduced set of 
simulations are considered, such as 45 simulations (Simoes et al., 2015) 
and 160 simulations per probability (Apel et al., 2016). 

Recently, computation times of 2D hydrodynamic models have been 
reduced with parallel computing techniques and graphic processing 
units (GPUs) (Guidolin et al., 2016), such as the LISFLOOD-FP and 

P–DWave models (Neal et al., 2009; Leandro et al., 2014); with topog-
raphy simplifications by using sub-grid models (Yu and Lane, 2006; 
Neelz and Pender, 2007), and focusing on cells with low porosity values 
that tend to reduce computational efficiencies (Guinot et al., 2017; 
Bruwier et al., 2017). In addition, the solving complexity of 2D WSEs has 
been reduced by approximating or neglecting inertial and advection 
terms (Bates et al., 2010), and by using the cellular automata (CA) 
approach (Ghimire et al., 2013; Guidolin et al., 2016). However, such 
approaches would not be enough for conducting probabilistic analyses 
(Bernini and Franchini, 2013). Furthermore, artificial neural networks 
(ANNs) can be trained with a reduced set of 2D hydrodynamic model 
outputs (Bermúdez et al., 2018; Berkhan et al., 2019), though they are 
unable to interpolate between the rainfall events used to train the 
network; a set of hybrid models has been also developed (Chang et al., 
2010; Pan et al., 2011), and approaches based on support vector ma-
chines have been offered (Lin et al., 2013; Jhong et al., 2017; Bermúdez 
et al., 2019). Therefore, a technique based on a 2D hydrodynamic model 
with short enough computation times and satisfactory results is not 
available yet. 

Rapid flood models (RFMs) have been developed to shorten the 
computation times in contrast to 2D hydrodynamic models. They iden-
tify depressions from a digital elevation model (DEM), considering a set 
of storage reservoirs connected through links. The water balance equa-
tion is used to simulate depression filling and spilling processes (Bulti 
and Abebe, 2020). Therefore, high-resolution DEMs can be used with 
small pre-processing computation times. RFMs can reduce computation 
times to few minutes or even seconds, up to 1000 times compared with 
hydrodynamic models (Teng et al., 2007). Consequently, RFMs are 
adequate for conducting probabilistic analyses. Some RFMs are the 
Rapid Flood Spreading Model (RFSM) (Bernini and Franchini, 2013), the 
flood-connected domain calculation (FCDC) method (Zhang et al., 
2014), the rapid urban flood inundation and damage assessment model 
(RUFIDAM) model (Jamali et al., 2018), and the cellular automata fast 
flood evaluation (CA-ffé) model (Jamali et al., 2019). Hierarchical 
filling-and-spilling algorithms (HFSAs) or puddle-to-puddle dynamic 
filling-and-spilling approaches (P2Ps) have been recognised as prom-
ising techniques for characterising pluvial floods (Chu et al., 2013; 
Zhang and Pan, 2014). In this respect, the Safer_RAIN tool has been 
developed recently (Samela et al., 2020). Safer_RAIN is a HFSA that can 
simulate detailed spatially distributed infiltration processes with the 
Green-Ampt model, supplying flood depths and extents. 

Probabilistic approaches are more correct than deterministic ap-
proaches based on T-year design events, as design event estimates have 
significant uncertainties and 2D models are not perfect (Di Baldassarre 
et al., 2010). Probabilistic approaches based on continuous simulation 
needs a long period of rainfall time series (Nuswantoro et al., 2014). 
Semi-continuous simulation approaches have been proposed to reduce 
simulation times (Lawrence et al., 2014; Jamali et al., 2020). However, 
stochastic approaches can generate larger samples of storms that can 
extend the available time series of observed rainfall events. 

In this study, a stochastic methodology is proposed to delineate 
probabilistic pluvial flood hazard maps across large urban areas and 
cities with ~ 2-m horizontal resolution. The fast-processing DEM-based 
Safer_RAIN algorithm (Samela et al., 2020) is used, benefiting from its 
computational efficiency and low runtimes, as well as from its ability to 
simulate spatially distributed infiltration processes. Therefore, the 
limited number of simulations that can be considered by using a 2D 
hydrodynamic model (Simoes et al., 2015; Apel et al., 2016) is overcome 
by using such a RFM. In addition, the Safer_RAIN algorithm does not 
need to be coupled to a rainfall-runoff model. The stochastic approach 
proposed can generate a long set of synthetic rainfall events with similar 
statistical properties to real rainfall events by using a methodology 
based on copulas, extending the usual length of rainfall time series uti-
lised in continuous and semi-continuous approaches. In addition, the 
limitations of using a deterministic approach based on a single synthetic 
design storm (Krvavica and Rubinić, 2020) are improved by considering 
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such a large set of storms. The probability distribution of water depths is 
obtained in each cell of the domain. Furthermore, flood depths and 
extents for given return periods are estimated from the water depth 
series obtained in each cell. In addition, bivariate return-period curves 
are estimated, analysing the relationship between the variables that 
characterise storms and pluvial flood water depths in a given depression. 
The methodology has been applied to the Pamplona metropolitan area 
in Spain. 

This study is structured as follows. Section 2 presents the case study 
and the models used in the analysis. Section 3 offers the methodology 
proposed for the delineation of pluvial flood hazard maps at munici-
pality scales. Section 4 presents the application of the methodology to 
the case study of the Pamplona metropolitan area. Section 5 discusses 
the results and limitations of the methodology proposed. Section 6 
summarises the main conclusions of the study. 

2. Case study and models 

First, this section presents the Pamplona metropolitan area case 
study, as well as the data available. Second, the models used are 
described: The Safer_RAIN algorithm, the 2D IBER hydrodynamic 
model, and the infiltration equation used to simulate rainfall losses. 

2.1. Pamplona case study 

Pamplona is located in the Navarre Region in the northern part of 
Spain (Fig. 1). The Pamplona metropolitan area is 68.26 km2 and has 
around 335 000 inhabitants, including the municipalities of Barañáin, 
Burlada, Cendea de Olza, Cizur, Huarte, Orcoyen, Pamplona, Villava and 
Zizur Mayor (Fig. 2). It is subject to pluvial floods mainly in the summer 
months. The municipalities of Barañáin and Zizur Mayor have the 
highest pluvial flood losses according to the database provided by the 
Spanish Consorcio de Compensación de Seguros that compensates the 
damages produced by natural hazards in Spain. For the 20 July 2010 
pluvial flood event that is the greatest in the Pamplona metropolitan 
area in the period 1996–2020, such a database supplies a total flood loss 
of 3.319 M€ updated to the year 2020. 70.7 % of the flood losses were 
concentrated in Zizur Mayor and Barañáin areas: 1.687 M€ in Zizur 
Maryor and 0.66 M€ in Barañáin and the closest postal code of Pamplona 
to Barañáin. Therefore, such areas have been selected for the Safer_RAIN 
benchmark activities described in Section 3.1. 

The 2-m DEM considered in the study was supplied by the Spanish 
National Geographic Institute (Instituto Geográfico Nacional, IGN, in 
Spanish). Precipitation data at four gauging stations were supplied by 
the real-time Automatic Hydrological Information System (Sistema 

Automático de Información Hidrológica, SAIH, in Spanish) of the River 
Ebro Basin Authority, the Spanish State Meteorological Agency (Agencia 
Estatal de Meteorología, AEMET, in Spanish), the Regional Government of 
Navarre, and the Universidad Pública de Navarra (UPNA, in Spanish) (see 
Table 1). 

Three real pluvial flood events have been identified in the Barañáin 
and Zizur Mayor municipalities in recent years (Table 2). First, the day 
of occurrence of the main flood events in the Pamplona metropolitan 
area were extracted from the database supplied by the Spanish Consorcio 
de Compensación de Seguros. Such events can be either fluvial or pluvial. 
Therefore, the type of flood for each event was identified by checking 
streamflow and precipitation observations, as well as pieces of news in 
the Diario de Navarra newspaper. Finally, the three main pluvial flood 
events in the Pamplona metropolitan area were selected. 

The return period for each event in Table 2 has been estimated from 
the intensity–duration–frequency (IDF) curve for the storm duration by 
using the total storm precipitation depth. The 20 July 2010 event had a 
rainfall of 42.6 mm and a peak intensity of 66.4 mm/h in 15 min at the 
rain-gauging station P1, with a return period estimate of 14.3 years. On 
18 September 2019, two storms were identified: a 37.8 mm storm with a 
peak intensity of 74.4 mm/h in 10 min at the P4 station in the morning, 
which corresponds to a return period of 16.3 years, and a small-scale 
25.9 mm storm with a peak intensity of 73.2 mm/h in 10 min at the 
P4 station in the afternoon associated with a return period of 4.37 years. 
The storm of 25 April 2020 was highly localised at the Barañáin mu-
nicipality and characterised by using the precipitation fields described 
in Section 2.1.1, with a peak rainfall of 12 mm in 10 min in the area of 
Zizur Mayor and Barañáin. 

2.1.1. Quantitative precipitation estimation fields in the Pamplona 
metropolitan area 

Optimised and high-resolution quantitative precipitation estimations 
(QPEs) are required for identifying where localised heavy or torrential 
storms may take place, coping with pluvial flood events properly (Zhang 
et al., 2016). The combination of surface and remote sensing-based 
radar data can generate a merged product that reduces the errors ob-
tained by using only either rain-gauging interpolation or radar data, as 
radar data cover large areas and capture better the spatial variability of 
rainfall fields (McKee and Binns, 2016). A variety of techniques is 
available for the merging process (Ochoa-Rodríguez et al., 2019), 
though geostatistical methods provide the most satisfactory results, such 
as the kriging with external drift (KED) technique (Sharon and Gaussiat, 
2015). KED is an extension of kriging that uses external variables, in this 
case radar QPEs, as auxiliary information in the interpolation process. 
Linear weights employed in the interpolation of point-gauge values are 
further constrained by the spatial association between radar and rain- 
gauge values. In addition, the real-time semivariogram model is ob-
tained with real-time radar data, describing the spatial correlation be-
tween data. 

QPEs with a 10-min time step are obtained in the metropolitan area 
of Pamplona for the four storms included in Table 2 (Fig. 3). Precipi-
tation recorded at automatic weather stations (AWSs) from different 
organisms, such as AEMET, the Regional Government of Navarre, and 
crowdsourced networks, are merged with raw continuous fields ob-
tained from the AEMET Zaragoza regional radar that supplies 10-min 
surface rainfall intensity (SRI) based on the 0.5◦ elevation radar reflec-
tivity by using the C band (5.6 GHz). The number of rain-gauging sta-
tions used in each event depends on the data availability. Crowdsourced 
real-time rainfall data is acquired from the Weather Underground 
network that is fed by a global community of people connecting data 
from personal weather stations. For example, rainfall data was available 
for 10 crowdsourced stations in the 25 April 2020 event. Radar data 
quality is good enough, despite the signal attenuation and the high beam 
elevation, as Zaragoza is located 150 km from Pamplona. Furthermore, 
raw radar data are post-processed with ground clutter identification, 
correction for vertical profile of reflectivity (VPR) and reflectivity-to- Fig. 1. Location of the Pamplona metropolitan area in Spain.  
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rain-rate conversion by using the Marshall–Palmer Z–R relationship 
(Marshall and Palmer, 1948). While radar fields are generated with a 
time step of 10 min, rainfall gauging stations collects data with a time 
step of five to ten minutes. Therefore, at-site rainfall data are 
synchronised with radar scan time, minimising the uncertainty from 
signal mismatches by using advection schemes (Tabary, 2007; Shapiro 
et al., 2010). 

In addition, the linear relationship between primary and auxiliary 
variables in KED may not remain valid for the whole range of rainfall 
intensities, especially in the case of heavy precipitation events. The 
expected value of the primary variable is the estimated precipitation. 
KED adds information about the secondary or auxiliary fields that may 
contribute to a better prediction of the geospatial field of precipitation, 
as they are related to the primary variable. The radar-based SRI data are 
utilised as auxiliary fields. In addition, logarithmic transformations of 
the variables are tested to improve the results in the case of dominant 

non-linear relationships between primary and secondary variables, such 
as in heavy or torrential storms. Therefore, QPE fields are selected 
among four options automatically via cross-validation in real time: (i) 
only SRI-based QPE; (ii) KED with linear variables in both the primary 
and auxiliary variables; (iii) KED with the logarithm of the primary 
variable; and (iv) KED with logarithms in both variables. 

2.2. Models 

The Safer_RAIN algorithm (Samela et al., 2020) has been developed 
within the SaferPlaces project. Safer_RAIN is implemented in the Safe-
rPlaces platform (https://platform.saferplaces.co), in order to assess 
pluvial, fluvial and coastal flood hazard and risk in urban environments 
under current and future climates. 

In this paper, Safer_RAIN is used to estimate water depths and flood 
extensions in the stochastic methodology. In addition, the 2D hydro-
dynamic IBER model (Bladé et al., 2014) was used for the Safer_RAIN 
benchmarking with the four storms selected in Table 2. Both models 
consider the Green-Ampt infiltration equation for simulating rainfall 
losses (Green and Ampt, 1911). 

2.2.1. Safer_RAIN algorithm 
Safer_RAIN is a fast-processing HFSA that identifies pluvial-flooded 

areas on the basis of nested surface depressions extracted from high- 
resolution LIDAR DEMs and a given rainfall depth, considering 
spatially distributed rainfall inputs and infiltration processes (Samela 
et al., 2020). Its main simplifying assumption consists of neglecting 
overland flow dynamics. Consequently, net-rainfall volumes accumulate 
in the system of nested depressions according to their capacity and hi-
erarchical structure. 

Safer_RAIN consists of two main steps. In the first, DEM pre- 
processing aims to identify the hierarchy-tree of nested depressions 
that defines the sequence of depression filling and spilling, as well as the 
filling volumes in each one. In the second, depression flooding identifies 
flooded areas and simulates corresponding water depths. The flooding 
phase implemented in Safer_RAIN is original in three senses. In the first, 
a bottom-up level-set method is applied for quantifying partial filling in 
nested higher-level depressions (for more details, see Samela et al., 
2020). In the second, either uniform or spatially variable (i.e. gridded) 
rainfall depths can be used as input rainfall volume. And in the third, 
infiltration losses can be simulated with a pixel-based adaptation of the 
event-based Green-Ampt infiltration model (Green and Ampt, 1911). 

Samela et al. (2020) reported the first applications of Safer_RAIN to 

Fig. 2. Metropolitan area of Pamplona with the location of the municipalities (blue lines), the extents of the Barañáin and Zizur Mayor case studies for the 
benchmarking activities (black squares), and location of the four rain-gauging stations considered in the study (red points). Source of background layer: IGN. 

Table 1 
Rain-gauging stations considered in the study.  

Code Location Period Time step 
(min) 

Institution 

P1 Echauri 1997–2020 15 SAIH of the River Ebro 
Basin Authority 

P2 Pamplona GN 1999–2018 10 Regional Government of 
Navarre 

P3 Noáin Airport 2010–2020 10 AEMET 
P4 Pamplona 

UPNA 
2004–2020 10 UPNA  

Table 2 
Rainfall, duration, and peak intensity of the four storms selected as case studies. 
The four values included in each cell correspond to the observations at P1, P2, P3 
and P4 rainfall-gauging stations of Table 1.  

Date Rainfall (mm) Duration 
(hour) 

Peak intensity 
(mm/h) 

20 July 2010 42.6/7.83/ 
6.8/4.8 

1.75/2.17/ 
1.5/1.33 

66.4/26.6/ 
23.4/14.4 

18 September 2019 (Storm 
1 – morning) 

15.6/19.9/ 
31.7/37.8 

2.25/2.33/ 
2.33/2.17 

26.4/42/58.8/ 
74.4 

18 September 2019 (Storm 
2 – afternoon) 

0.8/25.9/0.2/ 
11.4 

1/1.33/0.33/2 0.8/73.2 /0.6/ 
30 

25 April 2020 1.2/9.1/3.8/ 
4.2 

1.25/3.2/ 
2.33/2.67 

1.6/19.2/4.2/ 
3.6  
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two case studies in northern Italy, where it was benchmarked with a 2D 
hydrodynamic model. The results showed an agreement of 53 % for the 
flooded area in Lignano Sabbiadoro and accuracy values in the range of 
0.96–0.99 with the accuracy correlation coefficient (ACC) in Rimini. 
These applications highlighted the fast computation of flooded areas 
guaranteed by Safer_RAIN, as the pre-processing phase can be run once 
for a given study area. In addition, the results revealed the effectiveness 
in identifying pluvial-hazard hotspots with spatially distributed rainfall 
and different land-use scenarios, though the simulations are hydrostatic 
and Safer_RAIN cannot consider flow dynamic effects. 

2.2.2. 2D IBER hydrodynamic model 
Flood extensions and water depths are obtained for the four storms 

shown in Table 2 by using numerical simulations with the IBER code 
(Bladé et al., 2014; Cea et al., 2007). IBER is free software that solves the 
2D depth-averaged SWEs by using a finite volume scheme, with the 
domain being discretized with both structured and unstructured trian-
gular or quadrilateral elements (Cueto-Felgueroso et al., 2019; Santillán 
et al., 2020). It solves the mass conservative equation (Eq. (1)) and the 
momentum balance equations in conservative form with source terms 
(Eq. (2) and Eq. (3)): 

∂h
∂t

+
∂hVx

∂x
+

∂hVy

∂y
= 0 (1)  

∂hVx

∂t
+

∂
∂x

(
hV2

x

)
+

∂
∂y

(
hVxVy

)
= − gh

∂zb

∂x
−

τb,x

ρ (2)  

∂hVy

∂t
+

∂
∂x

(
hV2

x

)
+

∂
∂y

(
hVyVx

)
= − gh

∂zb

∂x
−

τb,y

ρ (3) 

where h is the water depth, Vi is the depth average velocity along the 
ith direction, ρ is the water density, zb is the height of the river bed, τb,i is 
the bed friction term along the ith direction, and g is the gravitational 
acceleration. 

2.2.3. Green-Ampt infiltration equation 
The Green-Ampt infiltration equation is considered in both Safer_RAIN 

and IBER models. They consider a pixel-based adaptation of the event- 
based Green-Ampt infiltration model (Green and Ampt, 1911) that 
assumes that water infiltrates into relatively dry soil as a sharp wetting 
front, computing the infiltration or rainfall loss with Eq. (4). 

ft = Ks

(

1+
(φ − θi)Ψ

Ft

)

(4) 

where ft is the infiltration rate or rainfall loss rate at time step t (mm/ 
h), Ks is the saturated hydraulic conductivity (mm/h), φ is the soil 
porosity (-), θi is the initial water content (-), Ψ is the wetting front 
suction (mm), and Ft is the cumulative infiltration or rainfall loss at time 
step t (mm). 

Water infiltrates in soils until the rainfall rate exceeds the soil-limited 
infiltration rate. Therefore, the time to ponding (tp) is considered. Spe-
cifically, in a given pixel with homogeneous land-cover and soil-type 
characteristics, the Green-Ampt module applied in Safer_RAIN com-
putes the overall infiltration depth F at the end of the rainfall event (t =
d) with Eq. (5). 

F =

⎧
⎪⎨

⎪⎩

i⋅d, if d ≤ tp

i⋅tp + Ks⋅
(
d − tp

)
+ Ψ⋅Δθ⋅ln

(
Ψ⋅Δθ + F

Ψ⋅Δθ + i⋅tp

)

, if d > tp
(5) 

where i is rainfall intensity (mm/h), Δθ is defined as φ − θi, d is the 

Fig. 3. Spatial distribution of cumulative rainfall depths (mm) in the Barañáin municipality for the four storms selected as case studies.  
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storm duration, and tp can be computed with Eq. (6). 

tp =

⎧
⎪⎨

⎪⎩

∞, if i ≤ k
Ψ⋅Δθ⋅Ks

i⋅(i − Ks)
, if i > k

(6) 

Land-use and lithology layers have been used to identify soil types in 
the Pamplona metropolitan area. Values of the Green-Ampt parameters 
for each soil type have been obtained from literature based on previous 
experiences (see e.g., Chow et al., 1988). 

3. Methodology 

The methodology consists of six steps (Fig. 4). The first step of the 
methodology consists of benchmarking the Safer_RAIN algorithm with 
the IBER model in the Barañáin and Zizur Mayor municipalities by using 
the precipitation fields for the four storms selected in Table 2. The 
second involves identifying a set of real rainfall events that can generate 
pluvial flood events in Pamplona extracted from the time series recorded 
at the four gauging stations considered in the study. In the third, the 
copula-based stochastic generator of rainfall storms that maintain the 
statistical characteristics of the real storms identified in the previous 
step is described. In the fourth, the methodology to estimate T-year 
water depths in each cell of the Pamplona metropolitan area is offered. 
In the fifth, the methodology to compare the results of the stochastic 
methodology with the standard approach is presented. In the sixth, and 
last step, the methodology to assess the uncertainty of T-year water 
depth estimates is shown. 

3.1. Benchmarking of Safer_RAIN 

The Safer_RAIN algorithm outputs are benchmarked in the Barañáin 
and Zizur Mayor municipalities (Fig. 2) with the 2D hydrodynamic IBER 
model. The 10-min QPE fields generated for the four storms included in 
Table 2 are used as input data in both models. There are no observations 
available about flood extents and water depths for such four pluvial 
events. Therefore, the outputs of the 2D hydrodynamic model are 
considered as the gold standard truth. For the sake of simplicity, the 
urban drainage system is not considered in either model. 

While IBER is a 2D hydrodynamic model, the Safer_RAIN tool is 
hydrostatic and can only simulate water depths and flood extents in 
depressions where water is stored. Therefore, maximum water depths 

simulated by IBER cannot be used in the comparison and the IBER model 
is run until six hours after the end of the storm when hydrodynamic 
processes are expected to be smoothed. Water depth outputs of the IBER 
model at six hours after the end of the storm are compared with outputs 
of the Safer_RAIN algorithm. 

The errors between the models are quantified by using a set of 
objective functions (Bennett et al., 2013; Falter et al., 2013; Berkhahn 
et al., 2019; Samela et al., 2020). A given cell is considered as flooded 
when its water depth is equal or greater than 10 cm. First, the bias and 
root-mean-square error (RMSE) between water depths in the flooded 
area are calculated. Second, the critical success index (CSI) is used to 
quantify the agreement between the two models in terms of flood ex-
tents, measuring the fraction of cells that were correctly modelled and 
penalizing both misses and false alarms. The probability of detection, hit 
rate or true positive rate (RTP) calculates the number of flooded agree-
ments among the flooded areas in the gold standard truth simulation, 
quantifying the model sensitivity. The true negative rate (RTN), or 
specificity, counts the number of non-flooded agreements among the 
non-flooded cells in the benchmark simulation. The accuracy correlation 
coefficient (ACC) quantifies the number of correct assessments between 
the simulations. Lastly, the Mathews correlation coefficient (MCC) 
measures the correlation between the binary classification in the 
simulations. 

CSI =
TP

TP + FP + FN
(7)  

RTP =
TP

TP + FN
(8)  

RTN =
TN

TN + FP
(9)  

ACC =
TN + TP

TN + TP + FN + FP
(10)  

MCC =
TP⋅TN − FP⋅FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (11) 

where TP (true positive or hints) is the number of cells where both 
models delineate them as flooded, FP (false positive or false alarms) is 
the number of cells that Safer_RAIN simulates as flooded and IBER 
simulates as non-flooded, TN (true negative) is the number of cells 

Fig. 4. Methodology flowchart.  
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where both models agree in delineating them as non-flooded, and FN 
(false negative or misses) is the number of cells that Safer_RAIN simu-
lates as non-flooded and IBER simulates as flooded. 

CSI can adopt values of between zero and one. While a value of one 
points to a perfect simulation of Safer_RAIN, a value of zero indicates 
that none of the flooded cells simulated by Safer_RAIN are flooded in the 
IBER simulation. MCC can provide values between − 1 that would mean 
a complete disagreement between Safer_RAIN and IBER and one that 
would point to a perfect simulation of Safer_RAIN. A value of zero in-
dicates that the Safer_RAIN output would not be better than a random 
prediction. 

In addition, the Nash-Sutcliffe efficiency coefficient (NSE) is calcu-
lated in each cell for the four pluvial flood events (Eq. (12)). 

NSE = 1 −

∑n
i=1

(
WDSafer RAIN,i − WDIBER,i

)2

∑n
i=1

(
WDIBER,i − WDIBER

)2 (12) 

where WDSafer_RAIN,i is the water depth simulated by Safer_RAIN in 
the ith pluvial flood event, WDIBER,i is the water depth simulated by IBER 
in the ith pluvial flood event, WDIBER is the mean value of the water 
depths simulated by IBER in the n flood events, and n is the number of 
flood events considered. In cells with a negative value of NSE, WDIBER 

would be a better prediction than the Safer_RAIN output. 
NSE has been calculated in the cells with WDIBER greater than 0.1 m, 

as smaller values of WDIBER can lead to an excessively small value of the 
denominator in Eq. (12), resulting in unusual high negative values of 
NSE, despite small differences between Safer_RAIN and IBER 
simulations. 

3.2. Extraction of rainfall events 

Rainfall events that can drive pluvial floods in the metropolitan area 
of Pamplona are identified. In this study, a peak-over-threshold (POT) 
approach is selected to consider a larger set of rainfall events that exceed 
a given threshold, regardless of when they occurred. In a POT series, the 
arrival of rainfall events that exceed the threshold can be characterised 
by a Poisson process (Madsen et al., 1997) (Eq. (13)). 

P(m = k) =
λk

k!
e− k (13) 

where P(m = k) is the probability of having a number of exceedances 
m equal to an integer number k in a given period of t years, k is an integer 
number equal or higher than zero (k = 0, 1, 2, …), and λ is the mean 
annual number of exceedances that is obtained with Eq. (14). 

λ =
m
t

(14) 

where m is the number of exceedances over the threshold in a period 
of t years. 

Pluvial floods are generated by high-intensity events in short dura-
tions. Consequently, long events with high rainfall amounts and low 
intensities should not be considered in this analysis. The POT threshold 
for pluvial floods is usually selected in terms of rainfall intensity. The 
Extreme-Rainfall Alert (ERA) establishes a threshold that depends on the 
storm duration: 30 mm in 1 h, 40 mm in 3 h, and 50 mm in 6 h (Hurford 
et al., 2012). Apel et al. (2016) selected a threshold of 18 mm in 1 h. 
Blanc et al. (2012) identified a decreasing mean rainfall intensity 
threshold with storm duration, from around 3 mm/h in 1 h to 2 mm/h in 
10–24 h. Mailhot et al. (2013) selected a threshold between 2 and 10 
mm in 30 min depending on the calendar day. In this study, a threshold 
of 10 mm in 30 min that corresponds to a rainfall intensity of 20 mm/h is 
selected, considering the characteristics of the storms that have gener-
ated pluvial floods in Pamplona (Table 2). 

3.3. Stochastic generation of rainfall events 

A stochastic methodology to generate synthetic rainfall events that 
maintain the statistical properties of the rainfall events identified in 
Section 3.2 is presented. Storms are characterised by rainfall depth and 
duration, which are the input data of the Safer_RAIN algorithm. Syn-
thetic pairs of rainfall depth and storm duration can be generated by 
using bivariate copulas (Palla et al., 2018). In this exploratory analysis, 
for the sake of simplicity some simplifications have been introduced. 
Though Safer_RAIN can consider spatial distributions of rainfall and QPE 
fields have been considered in the benchmarking analysis to simulate 
four real pluvial flood events accurately, precipitation fields have not 
been considered in the stochastic rainfall generator to reduce the 
computation times required for calibrating the rainfall generator, 
simulating the precipitation fields, and running the Safer_RAIN algo-
rithm. Therefore, the stochastic method will consider uniform rainfalls 
and durations in the Pamplona metropolitan area and a longer set of 10 
000 synthetic rainfall events will be examined in the study. 

The procedure consists of two steps. In the first, the observed storms 
that exceed the threshold of 10 mm in 30 min at the four rainfall-gauging 
stations are aggregated in a unique synthetic gauging site, in order to 
obtain a larger time series and reduce estimate uncertainties. This ag-
gregation is justified considering that the distance between the rainfall 
gauging sites is small enough (Fig. 2) to assume that they have similar 
characteristics. In addition, gauging sites are far enough to record 
varying storm rainfall depths, intensities and durations for a given 
pluvial flood event, given that such events are characterised by a high 
spatial variability. 

In the second, a bivariate approach is used to generate synthetic 
rainfall events. In this case, the first step consists of fitting the marginal 
distributions of rainfall depth and duration for the aggregated set of 
storms that exceed the threshold. The magnitude of exceedances over a 
threshold are usually characterised by a generalised Pareto (GP) distri-
bution function (Madsen et al., 1997; Lang et al., 1999), as it is a limiting 
distribution for a series of values that exceed a threshold and it has 
threshold stability (Martins and Stedinger, 2001). The parameters of the 
GP distribution are estimated by using the L-moments method (Hosking 
and Wallis 1993; 1997). 

The second step of the bivariate approach consists of using a copula 
to characterise the dependence between storm rainfall depths and du-
rations (Sklar, 1959). In this study, three Archimedean copula families 
are considered: Clayton, Frank, and Gumbel. In addition, the Gumbel 
copula belongs to the extreme value family. The Cramér-von Mises 
statistic (Sn) is selected as the goodness-of-fit test to identify the copula 
that can represent better the dependence structure between rainfall 
depths and durations (Eq. (15)), as Genest et al. (2009) found that Sn led 
to the best results for all copula models (Requena et al., 2013). 

Si
n =

∑ni

j=1

{

Ci
n

(
Rij

ni + 1
,

Sij

ni + 1

)

− Ci
(

Rij

ni + 1
,

Sij

ni + 1
; θ̂

i
cop

)}2

, i = 1 : N,

(15) 

where Ci
n(u1, u2) is the empirical copula at site i, Rij and Sij are the 

ranks associated with xij and yij, θ̂
i
cop are the estimated parameters of the 

fitted parametric copula Ci at site i; and ni the record length at site i. 
Ci

n(u1, u2) is expressed by Eq. (16). 

Ci
n(u1, u2) =

1
ni

∑ni

j=1
1
(

Rij

ni + 1
≤ u1,

Sij

ni + 1
≤ u2

)

; u1, u2 ∈ [0, 1]; i = 1

: N,

(16) 

where 1(E) is the indicator function of the set E (valued 1 inside E or 
0 outside), and n is the observed record length. 

In addition, the p-value associated with a given goodness-of-fit test is 
crucial in determining if a given copula model is suitable to characterise 
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the dependence between two variables (Genest and Rémillard, 2008). 
Therefore, first the p-value is used to reject a given copula model when it 
is smaller than 0.05. Then, the value of the Sn statistic is used to select 
the best copula among the non-rejected ones. The lowest value of Sn 
indicates the best fitting to observations (Salvadori and De Michele, 
2011). Consequently, the selected copula should have the lowest value 
of Sn with a p-value greater than 0.05. Lastly, a long set of N synthetic 
storms characterised by rainfall-duration pairs are generated randomly 
by using the best copula identified. 

3.4. Delineation of pluvial flood hazard maps 

The series of N synthetic rainfall-duration pairs generated by using 
the methodology described in Section 3.3 are the Safer_RAIN input data, 
considering infiltration processes with the aforementioned Green-Ampt 
infiltration equation (Section 2.2.3). A constant initial soil water content 
was considered to avoid varying the Green-Ampt parameter layers in the 
sequential simulation with Safer_RAIN. The outputs of Safer_RAIN are 
processed to obtain a long set of N water depths in each cell. Then, the T- 
year water depth is estimated by using a frequency analysis in each cell. 

Flood hazard maps are usually obtained for a set of return periods 
that represent the expected exceedance probability in a given year. 
However, the N synthetic rainfall-duration pairs represent the storms 
expected to exceed the threshold of 10 mm in 30 min with a mean value 
of λ exceedances per year (Eq. (14)). Consequently, the N water depths 
in each cell do not represent the annual maximum water depths ex-
pected in N years, though the water depths that are expected to exceed a 
threshold in N/λ years. The relationship between the return period in an 
annual maximum series analysis (Ta) and the return period in a POT 
series (Tp) is given by Eq. (17) (Stedinger et al., 1992). 

Tp = −
1

ln
(

1 − 1
Ta

) (17) 

where Tp is the return period in a POT series and Ta is the return 
period in an AMS. Clearly, Tp will be smaller than Ta, as more than one 
event is expected to exceed the threshold per year in a POT series. 

3.5. Comparison with the standard approach 

The next step of the methodology consists of a comparison between 
the results of the stochastic methodology proposed in this study with the 
standard approach based on catchment response times used in practice. 
The standard approach assumes that the T-year pluvial flood in a given 
depression is generated by the T-year storm with a duration equal to the 
time of concentration of the draining catchment to such a depression. 

Three depressions identified in the Safer_RAIN pre-processing phase 
in the Pamplona metropolitan area have been selected for the compar-
ison: a motorway depression at Zizur Mayor and two depressions in the 
Echavacóiz neighbourhood and at Soto Aizoáin street at an industrial 
estate at Orcoyen (Fig. 5). 

The time of concentration of the draining catchment to each 
depression is estimated by using the velocity method that estimates 
travel times along the hydraulically most distant flow path (NRCS, 
2010). Then, the design storms estimated for a duration equal to the 
time of concentration are used as input data of the Safer_RAIN algo-
rithm, comparing the outputs with the results of the stochastic meth-
odology in a set of cells selected in each such depression. 

3.6. T-year Water depth estimate uncertainty assessment 

The last step of the methodology consists of quantifying the uncer-
tainty of the T-year water depth estimates obtained with the stochastic 
methodology proposed in this study. In Section 3.4, T-year water depths 
are estimated from outputs of the Safer_RAIN algorithm by using a given 
set of N storm rainfall-duration pairs generated by the copula fitted to 
the observations (Section 3.3). Therefore, such water depth quantiles 
could be conditioned by the set of rainfall-duration pairs used in each 
case. 

Therefore, the stochastic methodology has been replicated ten times, 
generating ten sets of N storm rainfall-duration pairs with the copula 
fitted to the observations. The Safer_RAIN algorithm is run by using each 
set of N rainfall-duration pairs as input data. For each set of N rainfall- 
duration pairs, T-year water depths are estimated in each cell of the 
Pamplona metropolitan area by using the frequency analysis described 
in Section 3.4. 

The uncertainty analysis has been limited to the draining catchment 
to the Orcoyen depression delineated in Section 3.5 (Fig. 5) to reduce the 

Fig. 5. Contributing catchment areas (green) to the three depressions considered for the validation between the stochastic methodology and the standard approach. 
Source of background layer: IGN. 
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computation times of the Safer_RAIN algorithm. The stochastic meth-
odology uncertainty is assessed by analysing the dispersion of the ten T- 
year water depth estimates for each return period in five cells located in 
the Orcoyen depression (Fig. 12c). 

4. Results 

This involves six steps. First, the results of the benchmarking activ-
ities to validate the outputs of the Safer_RAIN model with the hydro-
dynamic simulations of IBER in four real storms are presented. Second, 
the application of the stochastic methodology to generate synthetic 
rainfall events that maintain the statistic properties of real rainfall 
events which exceed a given threshold is offered. Third, the results of 
pluvial flood hazard mapping in the Pamplona metropolitan area are 
shown. Fourth, the results obtained from the comparison between the 
stochastic methodology and the standard approach are presented. Fifth, 
bivariate return-period curves are estimated in a set of cells located in 
three depression of the Pamplona metropolitan area. Sixth, and lastly, 
the uncertainty in T-year water depth estimates is assessed in five cells 
located in the Orcoyen depression. 

4.1. Safer_RAIN benchmarking in Pamplona 

The outputs of the Safer_RAIN algorithm are compared with water 
depths simulated by the IBER hydrodynamic model six hours after the 
end of the rainfall event in the Barañáin and Zizur Mayor municipalities, 
considering the precipitation fields in four real storms (Table 2). The 
first storm of 18 September 2019 is not considered in the Barañáin 
municipality as it did not affect the area significantly (Fig. 3). Fig. 6 
shows the outputs of the Safer_RAIN algorithm and the IBER 2D 

hydrodynamic model for the pluvial flood event of 20 July 2010 in the 
Barañáin municipality. Such a figure confirms that Safer_RAIN correctly 
identifies the main depressions prone to flooding in pluvial flood events. 
The results obtained from the other two storms in Barañáin and the four 
storms in Zizur Mayor are included in the supplementary material 
(Fig. S1–S6). 

Fig. S7 and Fig. S8 show the errors in water depths between the 
outputs of Safer_RAIN and IBER. Most of the pixels show yellow and 
orange colours that point to a generally slightly lower estimate of water 
depths by Safer_RAIN. It can be explained by the hydrostatic assump-
tions of Safer_RAIN that neglects backwater dynamic curves in overland 
flows. 

Fig. 7 shows the NSE values in Barañáin and Zizur Mayor (Eq. (12)). 
The highest NSE values (blue areas) are obtained in the main de-
pressions, pointing to a good prediction of Safer_RAIN in the areas prone 
to pluvial flooding where water is stored and water depths are greater. 
On the contrary, negative values of NSE (red areas) are usually located in 
zones with small water depths. Fig. 8 shows the histograms of NSE in 
terms of the magnitude of WDIBER (WD in the figure legend) in Barañáin 
and Zizur Mayor. In Barañáin, most of cells have high values of NSE 
regardless the magnitude of water depths. In addition, 50 % of cells with 
WDIBER greater than 1 m have a NSE value greater than 0.6. In Zizur 
Mayor, the percentage of cells with high values of NSE increases with 
water depths. For small water depths with values of WDIBER between 0.1 
and 0.2 m, 30 % of cells have NSE values between − 0.6 and − 1 and only 
10 % between 0.6 and 1. However, for the greatest water depths with 
WDIBER values greater than 1 m, almost 80 % of cells have NSE values 
greater than 0.6. Consequently, Safer_RAIN supplies good predictions in 
depressions where greater water depths are expected, though it supplies 
worse predictions in zones with small water depths. 

Fig. 6. Comparison between hydrostatic simulations with Safer_RAIN (left column) and hydrodynamic simulations with IBER (right column) in the Barañáin mu-
nicipality for the pluvial flood event of 20 July 2010. Source of background layer: IGN. 

L. Mediero et al.                                                                                                                                                                                                                                



Journal of Hydrology 608 (2022) 127649

10

The bias, RMSE, CSI, RTP, RTN, ACC, and MCC objective functions are 
used to quantify the differences in water depths between IBER and 
Safer_RAIN outputs (Table 3). 

In Barañáin, the bias is between − 2 and 4 cm that points to small 
errors in water depths. Such values close to zero mean that Safer_RAIN 
compensates positive and negative errors and does not tend either to 
overestimate or underestimate water depths at Barañáin. The RMSE 
values are greater, between 19 and 25 cm, as they do not account for 

compensation between positive and negative errors. In terms of flood 
extents, the CSI values are 0.42 and 0.45 for the 2010 and 2020 events, 
respectively, and close to 0.3 for the second storm of 2019, indicating 
that Safer_RAIN represents correctly the 30–40 % of the flood extent 
simulated by IBER. RTP is 0.5 for the events of 2010 and 2020 and 0.38 
for the second storm of 2019, meaning that Safer_RAIN correctly simu-
lates 50 % and 38 %, respectively, of the flooded cells simulated by IBER. 
These results may show good agreement between the models, 

Fig. 7. NSE values between Safer_RAIN and hydrodynamic simulations with IBER calculated for the four pluvial flood events: a) Barañáin; b) Zizur Mayor. Source of 
background layer: IGN. 

Fig. 8. Histogram of NSE values between Safer_RAIN and hydrodynamic simulations with IBER calculated for the four pluvial flood events in terms of water depths: 
a) Barañáin; b) Zizur Mayor. Source of background layer: IGN. 
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accounting for the limitations of the hydrostatic assumptions of Safe-
r_RAIN regarding the hydrodynamic simulations of IBER. RTN and ACC 
are close to one in the three events, proving that the percentage of 
agreements in cells is high, either flooded or non-flooded, and in line 
with that observed in Samela et al (2020). Lastly, MCC values are be-
tween 0.45 and 0.63, meaning that Safer_RAIN provides a good pre-
diction of the IBER simulations. 

At Zizur Mayor, the bias is between − 21 and 16 cm with a value close 
to zero in the second storm of 18 September 2019. The RMSE values are 
between 0.26 and 0.28 in the 18 September 2019 flood event. The event 
of 20 July 2020 provides a RMSE value of 0.48. Therefore, at Zizur 
Mayor, Safer_RAIN tends to underestimate water depths, with greater 
RMSE values for the highest rainfall magnitude. CSI values are between 
0.24 and 0.38 which indicates that 24–38 % of the flood extents simu-
lated by IBER are predicted correctly by Safer_RAIN. RTP values are 
between 0.32 and 0.46, revealing agreement of 32–46 % of Safer_RAIN 
with the flooded cells of IBER. As stated above, these results provide 
agreement of Safer_RAIN and account for hydrostatic limitations. RTN 
and ACC are close to one in the four flood events considered at Zizur 
Mayor. Therefore, the percentage of agreements in cells, either flooded 
or non-flooded, is also high. MCC values are equal to 0.52 and 0.57 in 
the 20 July 2010 and, respectively, the second storm of 18 September 
2019 flood events. The MCC values are smaller for the first storm of 18 
September 2019 with a value close to 0.4. Therefore, it is clear that 
Safer_RAIN provides a good prediction of the IBER simulations in terms 
of flood extents, mainly in the flood events of 20 July 2010 and the 
second storm of 18 September 2019. 

Comparing the results in Pamplona (Spain) with those obtained in 
Rimini (Italy) (Samela et al., 2020), sensitivity (RTP) is up to 71 % in 
Rimini and up to 50 % in Pamplona. However, at Pamplona specificity 
(RTN) is slightly greater with values of 99 % in all the cases. Accuracy 
values obtained from ACC are similar. Samela et al. (2020) found that 
while sensitivity increases with storm precipitation, accuracy decreases 
slightly. The return periods of the four real storms considered in the 
benchmark analysis in Pamplona are below 20 years. Therefore, the 
smaller sensitivity values may be explained by smaller precipitations in 
the storms considered in Pamplona. 

In summary, small CSI values indicates that flood extents predicted 
by Safer_RAIN are usually smaller than expected. However, high NSE 
values for the greatest water depths point to a good prediction in the 
main depressions with the highest water depths and the greatest flood 
hazards. Therefore, the Safer_RAIN tool offers adequate results at Bar-
añáin and Zizur Mayor, considering the hydrostatic assumptions of 
Safer_RAIN regarding the hydrodynamic behaviour of IBER and the high 
reduction of computation times from hours to around one minute. 

4.2. Stochastic generation of rainfall events 

The first step in stochastic generation of rainfall events consists of the 
extraction of real storms that exceed the threshold of 10 mm in 30 min. 
Cumulative precipitation in two consecutive time steps is considered in 
the 15–min rainfall time series and in three consecutive time steps in the 
10-min rainfall time series (Fig. S9). In a given storm, several consecu-
tive time steps could have a cumulative precipitation over the threshold. 

Therefore, the beginning and ending time steps of storms were 
identified. 

Table 4 shows that the four rain-gauging stations have similar values 
of λ, indicating an analogous rainfall behaviour with a similar proba-
bility of storm arrival exceeding the threshold of 10 mm in 30 min at the 
four stations. Therefore, the storms can be aggregated in a unique series 
of 138 rainfall events, as rainfall-gauging sites are close enough to have a 
similar rainfall behaviour, though far enough to record different storms 
in pluvial flood events that are characterised by precipitations with high 
spatial variability. The mean annual number of exceedances over the 
threshold for the aggregated data is calculated as the weighted mean of λ 
by the record length at each station, obtaining a value of 2.03 exceed-
ances per year. 

The marginal distributions of storm rainfall depth and duration are 
obtained by using a GP distribution with the L-moments method (Fig. 9). 
The rainfall depth frequency curve has a lower bound of 10 mm that 
corresponds to the POT threshold, guaranteeing that the synthetic 
rainfall events generated by the copula-based approach will have a 
precipitation equal or higher to such a threshold and avoiding the 
generation of events with smaller precipitation that could not drive 
pluvial floods. The duration frequency curve has a lower bound of 30 
min, which also agrees with the POT threshold, and an upper bound 
close to 3.5 h. Therefore, the synthetic rainfall events will have dura-
tions between 0.5 and 3.5 h, avoiding the generation of excessively short 
or long storms that could not drive pluvial floods. 

The Clayton, Frank, and Gumbel family copulas were fitted to the 
aggregated 138 precipitation-duration pairs (Fig. 10). The Sn goodness- 
of-fit test and p-value were obtained by using 10 000 parametric boot-
strap samples for each copula family (Table 5). The results show that the 
Clayton and Frank copulas have a p-value lower than 0.05, indicating 
that they are unable to characterise the dependence relationship be-
tween precipitation and duration pairs. As only the Gumbel copula ob-
tained a p-value higher than 0.05, it cannot be rejected. In addition, the 
Gumbel copula also leads to the lowest value of the Sn statistic. Conse-
quently, the Gumbel copula is the most appropriate when characterising 
the dependence structure of the 138 precipitation-duration pairs of real 
rainfall events that can drive pluvial floods in the Pamplona metropol-
itan area. 

4.3. Pluvial flood hazard maps in Pamplona 

A set of 10 000 random precipitation-duration pairs was generated 
with the Gumbel copula fitted in Section 4.2, obtaining short durations 

Table 3 
Results obtained from the comparison between the Safer_RAIN outputs and the IBER simulations six hours after the end of the storm.  

Location Pluvial flood event Bias (m) RMSE (m) CSI (-) RTP (-) RTN (-) ACC (-) MCC (-) 

Barañáin 20 July 2010  − 0.024  0.245  0.453  0.505  0.993  0.967  0.626 
18 September 2019 – Storm 1  –  –  –  –  –  –  – 
18 September 2019 – Storm 2  0.039  0.193  0.294  0.384  0.994  0.982  0.454 
25 April 2020  0.032  0.192  0.421  0.507  0.992  0.975  0.589 

Zizur Mayor 20 July 2010  − 0.218  0.480  0.309  0.321  0.998  0.970  0.524 
18 September 2019 – Storm 1  0.158  0.262  0.238  0.456  0.997  0.995  0.386 
18 September 2019 – Storm 2  0.026  0.278  0.376  0.425  0.998  0.991  0.567 
25 April 2020  − 0.004  0.285  0.343  0.366  0.999  0.985  0.550  

Table 4 
Main characteristics of POT series that exceed a threshold of 10 mm in 30 min in 
the four rain-gauging stations considered in the study: t is the period length 
(years), m is the number of exceedances over the threshold in the period t, and λ 
is the mean annual number of exceedances over the threshold.  

Rainfall-gauging station t (years) m λ 

P1 23 48  2.09 
P2 19 40  2.11 
P3 10 24  2.4 
P4 16 26  1.63  
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between 0.5 and 3.5 h and rainfall depths equal or greater than 10 mm 
required to generate pluvial floods in Pamplona (Fig. 10c). The Safer_RAIN 
algorithm was run with the 10 000 synthetic storms and considered 
infiltration processes with the Green-Ampt model. The Safer_RAIN 

algorithm is embedded in the SaferPlaces platform in Pamplona (htt 
ps://platform.saferplaces.co). However, a Jupiter Notebook script in 
Google Colaboratory was used to run such a long number of simulations 
iteratively. The Safer_RAIN pre-process was run once in the Pamplona 

Fig. 9. GP distribution functions fitted to the rainfall depth (left) and duration (right) of the 138 real storms that exceed the threshold of 10 mm in 30 min at the four 
gauging sites considered in the study. 

Fig. 10. Comparison between the precipitation-duration pairs of the 138 real rainfall events extracted in Pamplona (black points) and 10 000 random simulations 
generated by the fitted copula (dark grey points): a) Clayton copula, b) Frank copula; c) Gumbel copula. 
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metropolitan area for 121.40 s. The flooding phases (i.e. the filling and 
spilling processes) were simulated in around 45 s for each event, supplying 
water depths in each cell. 

In a given cell, the water-depth distribution can include several zeros 
that represent the storms that do not generate enough water accumu-
lation in the depression to flood the cell. In addition, it can show an 
upper bound that represents 100 % filling water depth in the depression. 
Therefore, no distribution function could fit such data adequately. In 
each cell, T-year water depths were estimated empirically from the 
sorted series of 10 000 water depths, by using the Weibull plotting po-
sition formula and considering the return periods in a POT analysis (Tp) 
(Eq. (17)). Seven return periods are considered: two, five, 10, 25, 50, 
100 and 500 years. Fig. 11 shows the pluvial flood hazard maps for the 
two-, 10-, 100- and 500-year return periods. The hazard maps for other 
three return periods (five, 25 and 50 years) are included in the supple-
mentary material (Fig. S10-S12). 

The main pluvial flood hotspots in Pamplona could be identified 
from such maps (Fig. 11b): (i) the motorway depression at Zizur Mayor; 
(ii) the Soto Aizoáin street at the industrial estate of Orcoyen, driven by a 
building with three industrial units that obstructs a former stream; (iii) 
Echavacóiz neighbourhood, driven by a levee to protect the area from 
River Elorz fluvial floods; (iv) depression at the Miluze and Ermitagaña 
crossroads; (v) railway underpass at San Jorge; (vi) a depression at the 
Sadar street; (vii) a depression between Txantrea and Burlada, and (viii) 
a depression at the Burlada sports centre, driven by a levee to protect the 
area from River Arga fluvial floods. 

4.4. Comparison with the standard approach 

The results of the stochastic methodology with Safer_RAIN are 
compared with the standard approach that considers the T-year storm 
precipitation for a duration equal to the draining catchment response 
time. A time of concentration of 25 min was estimated at the motorway 
depression at Zizur Mayor, 50 min at the Echavacóiz neighbourhood, 
and 75 min at the Orcoyen industrial area, by using the velocity method 
that estimates travel times along the hydraulically most distant flow 
path (NRCS, 2010). Table 6 includes the T-year storm precipitations 
considered in each depression. A set of cells have been selected in each 
zone to compare the distribution of 10 000 water depths obtained by 
using the stochastic methodology with the standard approach results 
(Fig. 12). The cells for the comparison have been selected, scattered in 
main depressions where water is stored to characterise adequately the 
filling processes. In this case, 10 return periods are used for the com-
parison: two, five, 10, 20, 25, 30, 50, 100, 200 and 500 years. 

Fig. 13 shows the results for the two cells considered in the motorway 
depression at Zizur Mayor. The distribution of water depths obtained 
with the stochastic methodology adequately fits the water depths ob-
tained by the standard approach. 

Both approaches agree about when the depression begins to fill in 
Cell 2 at a return period of below two years. However, in Cell 1 the filling 
process begins for the 10-year return period for the stochastic method-
ology and between two and five years for the standard approach. In the 
filling process, water depths are similar in each approach, though water 
depths are greater for the standard approach for low return periods. The 
differences in water depths between the approaches are reduced as the 
return period increases in Cell 1. In Cell 2, water depths for the 

Table 5 
Estimated value of the copula parameter (θn), Cramér-von Mises goodness-of-fit 
test (Sn), and p-value with 10 000 parametric bootstrap samples for the Clayton, 
Frank, and Gumbel copulas.  

Copula Θn Sn p-value 

Clayton  1.202  0.9995  0.023 
Frank  4.054  0.993  0.032 
Gumbel  1.486  0.632  0.089  

Fig. 11. Pluvial flood hazard maps developed with the Safer_RAIN stochastic 
methodology for selected return periods in years: a) two; b) 10; c) 100; and d) 
500. Source of background layer: IGN. 
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stochastic methodology are slightly greater for the highest return 
periods. 

In the Echavacóiz neighbourhood, both methods provide agreement 
regarding the beginning of the filling process of between two and five 
years in Cell 1 and five and ten years in Cell 3 (Fig. 14). In Cell 2, the 
filling process begins for the two-year return period for the standard 
approach and between two and five years for the stochastic methodol-
ogy. In this case, the stochastic methodology simulates the filling process 
faster than the standard approach in the three cells, as the return period 
for the 100 % depression filling is smaller for the stochastic methodol-
ogy. However, distributions show a similar shape for each methodology 
and water depth differences for given return periods are small in the 
range of 10 cm. 

In the Orcoyen commercial area (Fig. 15), water-depth distributions 
show similar shapes and point to an adequate simulation of the 
depression filling processes in each case, though the standard approach 
estimates slightly greater water depths. The filling process in the 
depression begins at lower return periods in the standard approach. The 
greatest differences between water depths for given return periods are 
for the lowest return periods, with the differences becoming smaller for 
high return periods. 

4.5. Bivariate pluvial flood return periods 

In addition, the stochastic methodology can supply information 
about the relationship between the variables that characterise storms 
and pluvial flood water depths in a given depression (Mediero et al., 
2010). Specifically, the set of storms that generate water depths higher 
than the T-year water depths estimated empirically in Section 4.3 can be 
identified in a given depression, obtaining the bivariate return-period 
curves of pluvial floods in the three depressions selected as case 
studies in Section 3.5. Fig. 16 shows that the T-year water depth in a 
given depression is not driven by a unique storm, such as the design 
storm, rather than by a set of storms with different combinations of 
precipitation and storm duration. For example, the five-year water depth 
in Cell 5 of the Orcoyen depression (boundary between green and blue 
colours in Fig. 16c) is generated by a set of storms: 16.6 mm in 30 min, 
23.3 mm in one hour, 27.5 mm in 1.5 h and 30.5 mm in two hours, 
among others. Consequently, the bivariate return-period curve for a 
given return period T identifies the possible combinations of precipita-
tion and storm duration that generate the T-year pluvial flood. 

Bivariate return-period curves show that precipitation increases with 
storm duration for a given return period, though the relationship is not 
linear. Such an increasing relationship is related to both the mean 
rainfall intensity and precipitation losses generated by infiltration pro-
cesses in a given storm. For a given bivariate return-period curve, while 
the precipitation increases with storm duration, the mean rainfall in-
tensity decreases with storm duration. This indicates that a shorter storm 

with a higher mean rainfall intensity can generate the same water depth 
than a longer storm with a smaller mean rainfall intensity. 

In addition, rainfall water volumes increase with storm precipitation, 
with greater water depths being expected. However, for a given storm 

Table 6 
T-year storm precipitations considered in the three depressions selected to 
compare the stochastic methodology with the standard approach.  

Return 
period 
(years) 

Precipitation (mm) 

Motorway depression 
at Zizur Mayor (D =
25 min) 

Echavacóiz 
neighbourhood (D =
50 min) 

Orcoyen 
industrial area 
(D = 75 min) 

2  13.92  17.22  18.79 
5  20.42  24.16  25.90 
10  24.73  28.76  30.61 
20  28.86  33.17  35.13 
25  30.17  34.56  36.56 
30  31.23  35.70  37.72 
50  34.21  38.87  40.97 
100  38.21  43.15  45.35 
200  42.20  47.41  49.72 
500  47.47  53.04  55.48  

Fig. 12. Cells selected for the comparison between the stochastic methodology 
and the standard approach (black dots). Blue areas represent the depressions. 
Shaded areas represent the draining catchments. a) two points selected at the 
motorway depression at Zizur Mayor; b) three points selected at the Echavacóiz 
neighbourhood, and c) five points selected at the Orcoyen industrial area. 
Source of background layer: IGN. 
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precipitation, water runoff volume decreases as storm duration increases 
because infiltration processes give place to greater rainfall losses. Higher 
rainfall losses are generated in rural catchments with high infiltration 
rates. Nevertheless, smaller rainfall losses are expected in urban 

catchments where soils are mostly sealed and infiltration rates are lower. 
Therefore, bivariate return-period curves will have steeper slopes in 
rural catchments than in urban catchments. Furthermore, return-period 
curves could even be horizontal in a catchment with soils completely 

Fig. 13. Comparison between the distribution of 10 000 water depths obtained by using the stochastic methodology (blue diamonds) with the design water depths 
estimated by using the standard approach (red dots) in the motorway depression at Zizur Mayor. 

Fig. 14. Comparison between the distribution of 10 000 water depths obtained by using the stochastic methodology (blue diamonds) with the design water depths 
estimated by using the standard approach (red dots) at the Echavacóiz neighbourhood. 
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sealed where no rainfall losses will be generated. 
In the three depressions selected in Section 3.5, the draining catch-

ment at the Orcoyen depression is mostly rural, the catchment in 
Echavacóiz is a mixture of rural and urban areas, and the Zizur Mayor 
motorway depression has a draining catchment that is mostly urban. 
Therefore, the Zizur Mayor depression will have the mildest bivariate 

return-period curve slope, as its draining catchment is mostly urban and 
rainfall losses are smaller, smoothing the increasing relationship be-
tween precipitation and storm duration for a given bivariate return- 
period curve. However, the Orcoyen depression will show the steepest 
bivariate return-period curve, as its mostly rural draining catchment 
increases rainfall losses. 

Fig. 15. Comparison between the distribution of 10 000 water depths obtained by using the stochastic methodology (blue diamonds) with the design water depths 
estimated by using the standard approach (red dots) at the Orcoyen industrial area. 
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4.6. Uncertainty in T-year water depth estimates 

Finally, the uncertainty in T-year water depth estimates is assessed. 
Ten sets of 10 000 storm rainfall-duration pairs are generated with the 
Gumbel copula fitted to the observations in Section 4.2. The Safer_RAIN 
algorithm is run with the ten sets of rainfall-duration pairs in the 
draining catchment to the Orcoyen depression (Fig. 5). Five cells are 
selected for assessing the uncertainty of T-year water depth estimates 
(Fig. 12c), by plotting the dispersion of the ten T-year water depth es-
timates in each cell by using boxplots (Fig. 17). 

Fig. 17 shows that uncertainty increases with decreasing water 
depths. Boxplots are greater in Cells 1 and 4, where water depths are 
smaller. In addition, uncertainty increases with the return period. In 
Cells 2, 3 and 5, the greatest uncertainties are found for the highest 
return periods. Furthermore, in Cells 2, 3 and 5, high uncertainties are 
also found for the lowest return periods with smaller water depths. This 
agrees with the findings of the benchmarking activities (Section 4.1), 
where higher errors in the Safer_RAIN algorithm outputs were found 
when water depths are small. 

Therefore, the most reliable estimates are found for return periods 
between 10 and 100 years, where almost all the ten T-year water depth 
estimates agree. In addition, for high return periods, the uncertainty 
increases for small water depths. Therefore, the stochastic methodology 
supplies more reliable results in the lowest cells of the main depressions 
where greater water depths are expected. 

5. Discussion 

It can be argued that the standard approach used for pluvial flood 
hazard mapping in practice and based on design storms has certain 
drawbacks. One could be that design storms may not be feasible when 
considering the real storms that can arrive at the area studied. Another 
would be that such an approach assumes that the T-year storm generates 
the T-year pluvial flood event. And lastly, another would be that 
empirical formulae used to estimate catchment response times and du-
rations of design storms present significant uncertainties when in 
practice. 

The stochastic methodology proposed in this study considers the 
return-period concept as an exceeding water depth threshold identified 
from a large set of 10 000 storms with frequencies, rainfall depths and 
durations similar to the observations at rain-gauging stations. Therefore, 
such a methodology improves the standard approach, as it estimates T- 
year water depths regardless of catchment response times (avoiding the 
uncertainties by using empirical formulae) and design storms that could 
not be realistic. In addition, the stochastic methodology shows that the 
T-year water depth in a given depression can be generated by a set of 
storms with varying combinations of storm precipitation and duration, 
instead of by a single design storm. Consequently, the stochastic meth-
odology can be considered sounder that the standard approach. More-
over, the stochastic methodology can easily be applied to multi- 
depression urban areas, as it does not need to estimate a design hyeto-
graph in each depression in terms of catchment response times. How-
ever, a drawback of the proposed methodology could be the need to 
repeat the simulations when a mitigation measure is applied, changing 
flood hazards. Nevertheless, the DTM can be clipped focusing in the area 
where flood hazards change with the new mitigation measure, reducing 
the computation time of the new simulations considerably. 

The benchmarking results between the Safer_RAIN algorithm outputs 
and the IBER 2D hydrodynamic simulations show that Safer_RAIN sup-
plies adequate results in terms of water depths, considering its hydro-
static assumptions. Safer_RAIN supplies better predictions of water 
depths in depressions prone to pluvial flooding where the greatest water 
depths are expected, in terms of both water depth magnitude and un-
certainty. However, Safer_RAIN shows some limitations to reproduce 
flood hazards in zones where small water depths are expected. Conse-
quently, T-year water depth estimates in lower points of the main 

Fig. 16. Bivariate return periods (T) of pluvial floods in: a) Cell 2 in the Zizur 
Mayor motorway depression; b) Cell 2 in the depression at the Echavacóiz 
neighbourhood; and c) Cell 5 in the depression at the Orcoyen commercial area. 
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Fig. 17. Uncertainty in T-year water depths obtained by using the stochastic methodology. Red lines represent the median. Blue boxes represent 25th and 75th 
percentiles. Red crosses represent outliers. 
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depression are more reliable than T-year estimates in areas with small 
water depths, where such estimates should be taken with caution. 

In addition, the exploratory analysis presented in this study has 
considered some simplifying assumptions. The first is that synthetic uni-
form spatial rainfall events have been considered, though the Safer_RAIN 
tool can consider precipitation fields with heterogeneous spatial distri-
bution. Such a simplification avoids the complexity and computation times 
required for calibrating a spatially distributed rainfall generator and for 
simulating Safer_RAIN with precipitation fields for such a long set of 
storms. The second is that a constant initial soil water content in the Green- 
Ampt model has been considered and the urban drainage system in the 
Pamplona metropolitan area could not be considered, as the current 
version of the SaferPlaces platform does not include such functionalities 
yet. Lastly, the main limitation of the stochastic methodology proposed 
arises from the hydrostatic behaviour of the Safer_RAIN algorithm that 
cannot consider overland flow dynamics. However, the reduction in 
computation times obtained from such an assumption compared with 2D 
hydrodynamic models is from several hours to around one minute, 
allowing pluvial flood hazard maps at multi-depression cities or munici-
palities at spatial scales to be generated in reasonable times. Such a sto-
chastic approach would be unaffordable with 2D hydrodynamic models. 
Moreover, not only T-year water depths are obtained in each cell but also 
the complete probability distribution of water depths and bivariate return- 
period curves in terms of precipitation and storm duration. 

6. Conclusions 

A stochastic methodology to delineate pluvial flood hazard maps in 
urban areas by using the fast-processing and DEM-based Safer_RAIN 
algorithm is presented. The methodology was applied to the metropol-
itan area of Pamplona in Spain (68.26 km2). The Safer_RAIN algorithm 
was benchmarked with the IBER 2D hydrodynamic model at the Bar-
añáin and Zizur Mayor municipalities, considering 10-min precipitation 
QPE fields for four real storms that generated pluvial floods in the last 
years. The benchmarking results showed that the Safer_RAIN algorithm 
offers adequate results in terms of water depths considering its hydro-
static simplifications. In addition, Safer_RAIN offers better predictions in 
depressions where greater water depths are expected than in flatter 
areas with smaller water depths. 

A set of 138 real storms in which each one exceeds a threshold of 10 
mm in 30 min was identified from the observations at four rainfall- 
gauging stations. The Gumbel copula was selected as the most suitable 
to represent the dependence between the 138 real storm precipitation- 
duration pairs. A large set of 10 000 synthetic storms with similar sta-
tistical characteristics to the real storms was generated randomly and 
used as input data in the Safer_RAIN algorithm, considering infiltration 
processes with the Green-Ampt model. The Safer_RAIN pre-process was 
run once in 121.40 s and the flooding phase was simulated in around 45 
s for each event. Therefore, the computation time was reduced from 
some hours to around one minute for each event, regarding 2D hydro-
dynamic modelling. In each cell, T-year water depths were estimated 
empirically from the series of 10 000 simulated water depths. Pluvial 
flood hazard maps were developed in Pamplona for 10 return periods in 
the range from two to 500 years, identifying the main pluvial flood 
hotspots in the urban area. 

The stochastic methodology was compared with the standard 
approach based on T-year design storms. Several points at three de-
pressions in Pamplona were selected for the comparison, concluding 
that both methodologies supply similar results in the control points. 
However, the stochastic methodology proposed in this paper addresses 
the drawbacks of the standard approach. First, the stochastic method-
ology avoids the uncertainties associated with catchment response time 
estimates with empirical formulae. Second, the stochastic methodology 
does not need to consider varying storm durations in terms of the 
catchment response time for each depression and can be easily imple-
mented in multi-depression areas. Third, the assumption that states that 

the T-year storm generates the T-year pluvial flood is improved by 
obtaining the complete probability distribution of water depths in each 
cell. In addition, bivariate return periods can be estimated, showing that 
a given T-year pluvial flood can be generated by a set of storms with 
varying combinations of precipitation and duration. Bivariate return- 
period curves show that precipitation increases with storm duration 
for a given return period. In a given depression, the slope exhibited by 
such curves will depend on infiltration rates at its draining catchment. 
Higher infiltration rates will generate greater rainfall losses and smaller 
runoff volumes, leading to a higher increase in precipitation with storm 
duration. Therefore, rural catchments will have steeper bivariate return- 
period curves than urban catchments. 

In this first exploratory analysis, spatially uniform precipitations 
have been considered. The results are limited by the hydrostatic 
assumption of the Safer_RAIN tool, identifying water depths only in 
depressions where runoff water volumes tend to accumulate. However, 
the stochastic methodology proposed in this study benefits from the 
reduced computation times required by the fast-processing DEM-based 
Safer_RAIN algorithm, overcoming the limitations associated with the 
high computation times required by two-dimensional hydrodynamic 
models. Therefore, the methodology proposed is a promising technique 
to develop consistent pluvial flood hazard maps in urban areas at large- 
scale and multi-depression cities or municipalities. 
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