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Submanifolds of fixed degree in graded
manifolds for perceptual completion?

G. Citti1, G. Giovannardi2, M. Ritoré2, and A. Sarti3

1 Department of Mathematics, University of Bologna
2 Department of Mathematics, University of Granada

3 CAMS, EHESS, Paris

Abstract. We extend to a Engel type structure a cortically inspired
model of perceptual completion initially proposed in the Lie group of
positions and orientations with a sub-Riemannian metric. According to
this model, a given image is lifted in the group and completed by a
minimal surface. The main obstacle in extending the model to a higher
dimensional group, which can code also curvatures, is the lack of a good
definition of codimension 2 minimal surface. We present here this notion,
and describe an application to image completion.

Keywords: perceptual completion· graded structures· fixed degree sur-
faces· area formula· degree preservig variations .

1 Introduction

Mathematical models of the visual cortex expressed in terms of differential ge-
ometry were proposed for the first time by Hoffman in [17], Mumford in [23],
August Zucker in [2] to quote only a few. Petitot and Tondut in 1999 in [26]
described the functional architecture of area V1 by a contact structure, and
described the propagation in the cortex by a constrained Lagrangian operator.
Only in 2003 Sarti and Citti in [6] and J. Petitot in [24] recognized that the
geometry of the cortex is indeed sub-Riemannian. In [6], the functional archi-
tecture of V1 is described as a Lie group with a sub-Riemannian geometry: if
the visual stimulus is corrupted, it is completed via a sub-Riemannian minimal
surface. A large literature has been provided on sub-Riemannian models both
for image processing or cortical modelling (we refer to the monograph [25] for a
list of references). In section 2 we will present the model [6], and its extension
in the Engel group provided in [25][1].

The notion of minimal surface in a sub-Riemannian setting as critical points
of the first variation of the area functional is well known for co-dimension 1
surfaces (see [12], [11] for the area formula, and [9], [7], [16], [18] for the first
variation). For higher codimension very few results are available: the notion of
area has been introduced in [10], [20], [19], but the first variation, well-known
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for curves (see [21]), was studied for surfaces only very recently in [4], [5], [13].
We will devote section 3 to the description of these results.

We conclude this short presentation with an application of this result to the
completion model in the Engel group, contained in section 4.

2 A subriemannian model of the visual cortex

The primary visual cortex is the first part of the brain processing the visual
signal coming from the retina. The receptive profile (RP) ψ(ξ) is the function
that models the activation of a cortical neuron when a stimulus is applied to a
point ξ = (ξ1, ξ2) of the retinal plane. The hypercolumnar structure organizes the
cortical cells of V1 in columns corresponding to different features. As a results
we will identify cells in the cortex by means of two parameters (x, f), where
x = (x1, x2) is the position of the point, and f a vector of extracted features.
We will denote F the set of features, and consequently the cortical space will be
identified with R2 × F . In the presence of a visual stimulus I = I(ξ) the whole
hypercolumn fires, giving rise to an output

OF (x, f) =

ˆ
I(ξ)ψ(x,f)(ξ)dξ. (1)

It is clear that the same image, filtered with a different family of cells, produces
a different output.

For every cortical point, the cortical activity, suitably normalized, can be
considered a probability density. Hence its maximum over the fibre F can be
considered the most probable value of f , and can be considered the feature
identified by the system (principle of non maxima suppression):

|OF (x, fI(x))| = max
f
|OF (x, f)|. (2)

The output of a family of cells is propagated in the cortical space R2 × F via
the lateral connectivity.

2.1 Orientation and curvature selectivity

In [6] the authors considered only simple cells sensible to a direction θ ∈ S1.
Hence the set F becomes in this case S1 and the underlying manifold reduces
to N := R2 × S1 with a subriemannian metric. The image I is lifted by the
procedure (2) to a graph is this structure. If it is corrupted, it is completed via
a subriemannian minimal surface.

The geometric description of the cortex was extended by Citti-Petitot-Sarti
to a model of orientation and curvature selection, appeared in [25]. In this case
the non maxima suppression process (2) selects a function

Ψ : R2 → N2 = R2 × S1 × R, Ψ(x) = (x, fI(x)) = (x, θ(x), k(x)).
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Level lines of the input I are lifted to integral curves in N of the vector fields

X1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ k

∂

∂θ
, X2 =

∂

∂k
(3)

where x = (x1, x2). The vector fields define an Hörmander type manifold since
the whole space is spanned at every point by the vectors X1, X2 and their
commutators

X3 := [X1, X2] = − ∂

∂θ
, X4 := [X1, X3] = − sin θ

∂

∂x1
+ cos θ

∂

∂x2
. (4)

These commutation conditions identify the structure of and Engel-type algebra.
Integral curves of this model allow better completion of more complex images.
In the image below we represent a grouping performed in [1] with an eigenvalue
method in the sub-Riemannian setting. Precisely for every point xi of the curves,
we compute the orientation θi and the curvature ki, and obtain a point pi =
(xi, θi, ki) in R2 × S1 × R. Calling d the subriemannian distance induced by
the choice of vector fields, we can compute the affinity matrix A, with entries
aij = d(pi, pj). The eigenvalues of this matrix, reprojected on R2 can be identified
with the perceptual units present in the image. In figure 1 (from [1] the same
curve is segmented in the geometry dependent only on orientation, and in the
geometry of orientation and curvature: the second method correctly recovers the
logarithmic spirals.

Fig. 1: grouping using orientation (left), or orientation and curvature (right).

It could be nice to see if it is possible to extend in this setting also the
minimal surface algorithm for image completion [6]. The main obstacle in doing
this was the fact that the notion of area and curvature was not well defined for
codimension two surfaces in a sub-Riemannian metric, and that characterizing
admissible variations presents intrinsic difficulties.

3 Graded structures

In the next section we will present the results obtained in [4], [5], [13] to define
the notion of area of high codimension surfaces and its first variation in the
setting of a graded structure. A graded structure is defined as following
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Definition 31. Let N be a smooth manifold and let H1 ⊂ . . . ⊂ Hs be an
increasing filtration of sub-bundles of the tangent bundle TN s.t.

X ∈ Hi, Y ∈ Hj ⇒ [X,Y ] ∈ Hi+j and Hs
p = TpN for all p

We will say that the fibration H1 ⊂ . . . ⊂ Hs is equiregular if dim(Hj) is
constant in N . For such a manifold, we can define an homogeneous dimension

Q =
∑s

i=1 i
(
dim(Hi) − dim(Hi−1)

)
. We will say that a basis (X1, . . . , Xn) of

the tangent plane at every point is an adapted basis if X1, . . . , Xn1 generate H1,
X1, . . . , Xn1

, Xn1+1, . . . , Xn2
generate H2, and so on. The presence of a filtration

naturally allows to define the degree of a vector field and of an m-vector. In
particular, we say that a vector v ∈ Tp(M) has degree l, and we denote it
deg(v) = l, if v ∈ HlrHl−1. Given m < n, a multi-index J = (j1, · · · , jm), with
1 ≤ j1 < . . . < jm ≤ n, and an m-vector field XJ = Xj1 ∧ . . . ∧Xjm we define
deg(XJ) = deg(Xj1) + . . .+ deg(Xjm).

If a Riemannian metric g is defined on the graded manifold N we can in-
troduce an orthogonal decomposition of the tangent space, which respects the
grading, as follows: K1

p := H1
p, Ki+1

p := (Hi
p)⊥ ∩ Hi+1

p , 1 ≤ i ≤ (s − 1) So
that TpN = K1

p ⊕K2
p ⊕ · · · ⊕ Ks

p.

Example 1. A Carnot manifold with a bracket generating distribution is a
graded manifold.

The interest of graded manifolds, is that a submanifold of a sub-Riemannian
manifold, is not in general a sub-Riemannian manifold, but submanifolds of
graded manifolds are graded.

3.1 Regular submanifolds

Given an immersion Φ : M̄ → N, M = Φ(M̄). the manifold M inherits the
graded structure H̃i

p = TpM ∩Hi
p ⊂ · · · ⊂ . The pointwise degree (introduced in

[14]) or local homogenous dimension is defined by

degM (p) =

s∑
i=1

idim(H̃i(p)− H̃i−1(p))

For submanifolds, it is not possible in general to assume that the local homoge-
neous dimension is constant so that we will define the degree of M

d := deg(M) = max
p∈M

degM (p).

Given a graded manifold N with a Riemannian metric g, we are able to
introduce a notion of area, as a limit of the corresponding riemannian areas. To
begin with we define a family of Riemannian metrics gr, adapted to the grading
of the manifold as follows:

gr|Ki =
1

ri−1
g|Ki , i = 1, . . . , s, for any r > 0
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Now we assume that M is a submanifold of degree d = deg(M), defined by a
parametrization Φ : (M̄, µ)→ N . Also assume that µ is a Riemannian metric on
M̄ . For each M ′ ⊂ M̄ we consider the Riemannian area, weighted by its degree

r
d−m

2

ˆ
M ′
|E1 ∧ . . . ∧ Em|grdµ(p),

where E1, . . . , Em a µ-orthonormal basis of TpM . If the limit as r → 0 exists,
we call it the d-area measure. It can be explicitly expressed as

Ad(M ′) =

ˆ
M ′
| (E1 ∧ . . . ∧ Em)d |g dµ(p).

where (·)d the projection onto the space of m-vectors of degree d:

(E1 ∧ . . . ∧ Em)d =
∑

XJ ,deg(XJ )=d

〈E1 ∧ . . . ∧ Em, XJ〉XJ

The same formula had been already established by [19].

3.2 Admissible variations

It would be natural to define the curvature as the first variation of the area.
However in this case the area functional depends on the degree of the manifold.
Hence we need to ensure that the degree does not change during variation, and
we define degree preserving variations

Definition 32. A smooth map Γ : M̄ × (−ε, ε)→ N is said to be an admissible
variation of Φ if Γs : M̄ → N , defined by Γs(p̄) := Γ (p̄, s), satisfies

(i) Γ0 = Φ,
(ii) Γs(M̄) is an immersion of the same degree as Φ(M̄) for small enough s,

(iii) Γs(p̄) = Φ(p̄) for p̄ outside a given compact subset of M̄ .

We can always choose an adapted frame to a submanifold manifold M .
First we choose a tangent basis (E1, · · · , Em), then we complete it to a basis of
the space Xm+1, · · · , Xn, where Xm+1, · · · , Xm+k have degree less or equal to
deg(E1) while Xm+k+1, · · · , Xn have degree bigger than deg(E1).

Definition 33. With the previous notation we define the variational vector field
W as

W (p̄) =
∂Γ (p̄, 0)

∂s

It is always possible to assume that W has no tangential components, so that
it will be represented as

W (p̄) =

m+k∑
i=m+1

hiXi +

n∑
r=m+k+1

vrXr = H + V,

where H =
∑m+k

i=m+1 hiXi and V =
∑n

r=m+k+1 vrXr.
Using the fact that if Γ is an admissible variation, which means that the

degree of Γs(M̄) is constant with respect to s, it is possible to prove the following
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Proposition 1. (see [5]) If W is an admissible vector field, then there exist
matrices A,B such that

E(V ) +BV +AH = 0, where E is the tangent basis. (5)

This property suggests the following definition

Definition 34. We say that a compactly supported vector field W is admissible
when it satisfies the admissibility system E(V ) +BV +AH = 0.

3.3 Variation for submanifolds

The phenomenon of minima which are isolated and do not satisfy any geodesic
equation n (abnormal geodesic) was first discovered by Montgomery [22] for
geodesic curves. In 1992 Hsu [15] proved a characterization of integrable vector
fields along curves. We obtained in [4] a partial analogous of the previous result
for manifolds of dimension bigger than one. Precisely we defined

Definition 35. Φ : M̄ → N is strongly regular at p̄ ∈ M̄ if A(p̄) has full rank,
where A is defined in Proposition 1.

Theorem 1. [4] Φ : M̄ → (N,H1 ⊂ . . . ⊂ Hs) with a Riemannian metric g.
Assume that Φ of degree d is strongly regular at p̄. Then there exists an open
neighborhood Up̄ of p̄ such every admissible vector field W with compact support
on Up̄ is integrable.

The following properties are satisfied

Remark 1. The admissibility of a vector field is independent of the Riemannian
metric g.

Remark 2. All hypersurfaces in a sub-Riemannian manifold are deformable.

4 Application to visual perception

Let us go back to the model of orientation and curvature introduced in Section
2.1. The underlying manifold is then N = R2 × S1 ×R. Let us call g the metric
which makes the vector fields X1, X2, X3, X4 in (3) and (4) an orthonormal basis.
Let us consider a submanifold M defined by the parametrization

Φ : R2 ⊃ M̄ → R2 × S1 × R, M = Φ(M̄)

In particular the surfaces obtained by non maxima suppression are expressed in
the form

Φ(x) = (x, θ(x), κ(x))

If we impose the constraint κ = X1(θ) the tangent vectors to M become
X1 +X1(κ)X2, X4 −X4(θ)X3 +X4(κ)X2, and the area functional reduces to

A4(M) =

ˆ
M̄

√
1 +X1(κ)2 dx. (6)
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We will denote X̄1 and X̄4 the projection of the vector fields X1, X4 onto
M̄ . Then the admissibility system for a variational vector field W = h2(X2 −
X1(κ)X1) + v3X3 is given by

X̄1(v3) = −X̄4(θ)v3 −Ah2, where A = (1 + (X̄2
1 (θ))2)

Since rank(A) = 1 we deduce by Theorem 1 that for this type of surfaces each
admissible vector is integrable, which implies that the minimal surfaces can be
obtained via variational methods.

This property is quite important, since in [5] the authors proved that the
manifold {(0, 0, θ, k)} do not admit degree preserving variation, so that it is
isolated. This provides a generalization of the notion of abnormal geodesic.

4.1 Implementation and results

We directly implement the Euler Lagrangian of the functional (6). Since it is
non linear, we compute a step 0 image with Euclidean Laplacian. After that,
we compute at each step, orientation and curvature of level lines of the image
at the previous step, update curvature and orientation via the linearized Euler
Lagrangian equation and complete the 2D image diffusing along the vector field
X̄1. We provide here a result in the simplified case with non corrupted points
in the occluded region, and a preliminary result for the impainting problem.
We plan to study the convergence of the algorithm and compare with existing
literature in a forthcoming paper.

Fig. 2: Two examples of completion using the proposed algorithm.

.
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15. L. Hsu, Calculus of variations via the Griffiths formalism, J. Diff. Geom., 36(3),
551-589, 1992.

16. R. K. Hladky, S. D. Pauls. Constant mean curvature surfaces in sub-Riemannian
geometry. J. Diff. Geom., 79(1), 111-139, 2008.

17. W. Hoffman, Higher visual perception as prolongation of the basic lie transfor-
mation group. Mathematical Biosciences, 6, 437 -471, 1970.
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