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Abstract
Weconsider in this paper an area functional definedon submanifolds of fixeddegree immersed
into a graded manifold equipped with a Riemannian metric. Since the expression of this area
depends on the degree, not all variations are admissible. It turns out that the associated
variational vector fields must satisfy a system of partial differential equations of first order
on the submanifold. Moreover, given a vector field solution of this system, we provide a
sufficient condition that guarantees the possibility of deforming the original submanifold
by variations preserving its degree. As in the case of singular curves in sub-Riemannian
geometry, there are examples of isolated surfaces that cannot be deformed in any direction.
When the deformability condition holds we compute the Euler–Lagrange equations. The
resulting mean curvature operator can be of third order.

Mathematics Subject Classification 49Q05 · 53C42 · 53C17

1 Introduction

The aim of this paper is to study the critical points of an area functional for submanifolds of
given degree immersed in an equiregular gradedmanifold. This can be defined as the structure
(N ,H1, . . . ,Hs), where N is a smooth manifold and H1 ⊂ H2 ⊂ · · · ⊂ Hs = T N is a
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flag of sub-bundles of the tangent bundle satisfying [Hi ,H j ] ⊂ Hi+ j when i, j ≥ 1 and
i + j ≤ s, and [Hi ,H j ] ⊂ Hs when i, j ≥ 1 and i + j > s. The considered area depends
on the degree of the submanifold. The concept of pointwise degree for a submanifold M
immersed in a graded manifold was first introduced by Gromov [28] as the homogeneous
dimension of the tangent flag given by

TpM ∩H1
p ⊂ · · · ⊂ TpM ∩Hs

p.

Thedegree of a submanifold deg(M) is themaximumof the pointwise degree among all points
in M . An alternative way of defining the degree is the following: on an open neighborhood
of a point p ∈ N we can always consider a local basis (X1, . . . , Xn) adapted to the filtration
(Hi )i=1,...,s , so that each X j has a well defined degree. Following [36] the degree of a simple
m-vector X j1 ∧ . . . ∧ X jm is the sum of the degree of the vector fields of the adapted basis
appearing in the wedge product. Since we can write a m-vector tangent to M with respect to
the simple m-vectors of the adapted basis, the pointwise degree is given by the maximum of
the degree of these simple m-vectors.

We consider a Riemannian metric g = 〈·, ·〉 on N . For any p ∈ N , we get an orthogonal
decomposition TpN = K1

p⊕ . . .⊕Ks
p . Then we apply to g a dilation induced by the grading,

which means that, for any r > 0, we take the Riemannian metric gr making the subspaces
Ki

p orthogonal and such that

gr |Ki = 1

r i−1 g|Ki .

WheneverH1 is a bracket generating distribution the structure (N , gr ) converges in Gromov-
Hausdorff sense to the sub-Riemannian structure (N ,H1, g|H1) as r → 0. Therefore an
immersed submanifold M ⊂ N of degree d has Riemannian area measure A(M, gr ) with
respect to the metric gr . We define area measure Ad of degree d by

Ad(M) := lim
r↓0 r (deg(M)−dim(M))/2A(M, gr ) (1.1)

when this limit exists and it is finite. In (3.7) we stress that the area measure Ad of degree d
is given by integral of the norm the g-orthogonal projection onto the subspace ofm-forms of
degree equal to d of the orthonormalm-vector tangent to M . This area formula was provided
in [35,36] for C1 submanifolds immersed in Carnot groups and in [19] for intrinsic regular
submanifolds in the Heisenberg groups.

Given a submanifold M ⊂ N of degree d immersed into a graded manifold (N , (Hi )i ),
we wish to compute the Euler–Lagrange equations for the area functional Ad . The problem
has been intensively studied for hypersurfaces, and results appeared in [2,8,9,12,15,16,22,
30,31,33,37,46,48]. For submanifolds of codimension greater than one in a sub-Riemannian
structure only in the case of curves has been studied. In particular it is well know that there
exists minimizers of the length functional which are not solutions of the geodesic equation:
these curves, discovered by Montgomery in [38,39] are called abnormal geodesics. In this
paper we recognize that a similar phenomenon can arise while studying the first variational
of area for surfaces immersed in a graded structure: there are isolated surfaces which does
not admit degree preserving variations. Consequently we focus on smooth submanifolds of
fixed degree, and admissible variations, which preserve it. The associated admissible vector
fields, V = ∂�t

∂t

∣
∣
t=0 satisfies the system of partial differential equations of first order (5.3) on

M . So we are led to the central question of characterizing the admissible vector fields which
are associated to an admissible variation.
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The analogous integrability problem for geodesics in sub-Riemannian manifolds and,
more generally, for functionals whose domain of definition consists of integral curves of an
exterior differential system, was posed by Cartan [7] and studied by Griffiths [26], Bryant [3]
andHsu [32]. These one-dimensional problems have been treated by considering a holonomy
map [32] whose surjectivity defines a regularity condition implying that any vector field
satisfying the system (5.3) is integrable. In higher dimensions, there does not seem to be an
acceptable generalization of such an holonomymap. However, an analysis of Hsu’s regularity
condition led the authors to introduce a weaker condition named strong regularity in [11].
This condition can be generalized to higher dimensions and provides a sufficient condition to
ensure the local integrability of any admissible vector field on M , see Theorem 7.2. Indeed,
in this setting the admissibility system (5.3) in coordinates is given by

m
∑

j=1

C j ( p̄)E j (F)( p̄) + B( p̄)F( p̄) + A( p̄)G( p̄) = 0, (1.2)

where C j , B, A are matrices, F are the vertical components of the admissible vector field, G
are the horizontal control components and p̄ ∈ M . Since the strong regularity tells us that the
matrix A( p̄) has full rank we can locally write explicitly a part of the controls in terms of the
vertical components and the other part of the controls, then applying the Implicit Function
Theorem we produce admissible variations.

In Remark 7.6 we recognize that our definition of strongly regular immersion general-
izes the notion introduced by [28] of regular horizontal immersions, that are submanifolds
immersed in the horizontal distribution such that the degree coincides with the topological
dimension m. In [27], see also [43], the author shows a deformability theorem for regular
horizontal immersions by means of Nash’s Implicit Function Theorem [41]. Our result is in
the same spirit but for immersions of general degree.

For strongly regular submanifolds it is possible to compute the Euler–Lagrange equations
to obtain a sufficient condition for stationary points of the area Ad of degree d . This naturally
leads to a notion of mean curvature, which is not in general a second order differential
operator, but can be of order three. This behavior doesn’t show up in the one-dimensional
case where the geodesic equations for regular curves have order less than or equal to two,
see [11, Theorem 7.2] or [32, Theorem 10].

These tools can be applied to mathematical model of perception in the visual cortex: Citti
and Sarti [12] showed that 2 dimensional minimal surfaces in the three-dimensional sub-
Riemannian manifold SE(2) play an important role in the completion process of images,
taking orientation into account. Adding curvature to the model, a four dimensional Engel
structure arises, see § 1.5.1.4 in [17,45] and § 4.3 here. The previous 2D surfaces, lifted in
this structure are codimension 2, degree four strongly regular surfaces in the sense of our
definition. On the other hand we are able to show that there are isolated surfaces which do
not admit degree preserving variations. Indeed, in Example 7.8 we exhibit an isolated plane,
immersed in the Engel group, whose only admissible normal vector field is the trivial one.
Moreover, in analogy with the one-dimensional result by [4], Proposition 7.9 shows that this
isolated plane is rigid in the C1 topology, thus this plane is a local minimum for the area
functional. Therefore we recognized that a similar phenomenon to the one of existence of
abnormal curves can arise in higher dimension. Finally we conjecture that a bounded open
set � contained in this isolated plane is a global minimum among all possible immersed
surfaces sharing the same boundary ∂�.

We have organized this paper into several sections. In the next one notation and basic
concepts, such as graded manifolds, Carnot manifolds and degree of submanifolds, are intro-
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duced. In Sect. 3 we define the area of degree d for submanifolds of degree d immersed in
a graded manifold (N ,Hi ) endowed with a Riemannian metric. This is done as a limit of
Riemannian areas. In addition, an integral formula for this area in terms of a density is given
in formula (3.6). Section 4 is devoted to provide examples of submanifolds of certain degrees
and the associated area functionals. In Sects. 5 and 6 we introduce the notions of admissible
variations, admissible vector fields and integrable vector fields andwe study the systemof first
order partial differential equations defining the admissibility of a vector field. In particular,
we show the independence of the admissibility condition for vector fields of the Riemannian
metric in § 6.2. In Sect. 7 we give the notion of a strongly regular submanifold of degree d ,
see Definition 7.1. Then we prove in Theorem 7.2 that the strong regularity condition implies
that any admissible vector vector is integrable. In addition, we exhibit in Example 7.8 an
isolated plane whose only admissible normal vector field is the trivial one. Finally in Sect. 8
we compute the Euler–Lagrange equations of a strongly regular submanifold and give some
examples.

2 Preliminaries

Let N be an n-dimensional smooth manifold. Given two smooth vector fields X , Y on N ,
their commutator or Lie bracket is defined by [X , Y ] := XY − Y X . An increasing filtration
(Hi )i∈N of the tangent bundle T N is a flag of sub-bundles

H1 ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · · ⊆ T N , (2.1)

such that

(i) ∪i∈NHi = T N
(ii) [Hi ,H j ] ⊆ Hi+ j , for i, j ≥ 1,

where [Hi ,H j ] := {[X , Y ] : X ∈ Hi , Y ∈ H j }. Moreover, we say that an increasing
filtration is locally finite when

(iii) for each p ∈ N there exists an integer s = s(p), the step at p, satisfying Hs
p = TpN .

Then we have the following flag of subspaces

H1
p ⊂ H2

p ⊂ · · · ⊂ Hs
p = TpN . (2.2)

A graded manifold (N , (Hi )) is a smooth manifold N endowed with a locally finite
increasing filtration, namely a flag of sub-bundles (2.1) satisfying (i),(ii) and (iii). For the
sake of brevity a locally finite increasing filtration will be simply called a filtration. Setting
ni (p) := dimHi

p , the integer list (n1(p), · · · , ns(p)) is called the growth vector of the
filtration (2.1) at p. When the growth vector is constant in a neighborhood of a point p ∈ N
we say that p is a regular point for the filtration. We say that a filtration (Hi ) on a manifold
N is equiregular if the growth vector is constant in N . From now on we suppose that N is
an equiregular graded manifold.

Given a vector v in TpN we say that the degree of v is equal to � if v ∈ H�
p and v /∈ H�−1

p .
In this case we write deg(v) = �. The degree of a vector field is defined pointwise and can
take different values at different points.

Let (N , (H1, . . . ,Hs)) be an equiregular graded manifold. Take p ∈ N and consider an
open neighborhood U of p where a local frame {X1, · · · , Xn1} generating H1 is defined.
Clearly the degree of X j , for j = 1, . . . , n1, is equal to one since the vector fields X1, . . . , Xn1
belong to H1. Moreover the vector fields X1, . . . , Xn1 also lie in H2, we add some vector

123



Variational formulas for submanifolds of fixed degree Page 5 of 44 233

fields Xn1+1, · · · , Xn2 ∈ H2 \ H1 so that (X1)p, . . . , (Xn2)p generate H2
p . Reducing U if

necessary we have that X1, . . . , Xn2 generate H2 in U . Iterating this procedure we obtain a
basis of T M in a neighborhood of p

(X1, . . . , Xn1 , Xn1+1, . . . , Xn2 , . . . , Xns−1+1, . . . , Xn), (2.3)

such that the vector fields Xni−1+1, . . . , Xni have degree equal to i , where n0 := 0. The basis
obtained in (2.3) is called an adapted basis to the filtration (H1, . . . ,Hs).

Given an adapted basis (Xi )1≤i≤n , the degree of the simple m-vector field X j1 ∧ . . .∧ X jm
is defined by

deg(X j1 ∧ . . . ∧ X jm ) :=
m
∑

i=1

deg(X ji ).

Any m-vector X can be expressed as a sum

X p =
∑

J

λJ (p)(X J )p,

where J = ( j1, . . . , jm), 1 ≤ j1 < · · · < jm ≤ n, is an ordered multi-index, and X J :=
X j1 ∧ . . .∧ X jm . The degree of X at p with respect to the adapted basis (Xi )1≤i≤n is defined
by

max{deg((X J )p) : λJ (p) �= 0}.
It can be easily checked that the degree of X is independent of the choice of the adapted basis
and it is denoted by deg(X).

If X = ∑

J λJ X J is an m-vector expressed as a linear combination of simple m-vectors
X J , its projection onto the subset of m-vectors of degree d is given by

(X)d =
∑

deg(X J )=d

λJ X J , (2.4)

and its projection over the subset of m-vectors of degree larger than d by

πd(X) =
∑

deg(X J )≥d+1

λJ X J .

In an equiregular graded manifold with a local adapted basis (X1, . . . , Xn), defined as in
(2.3), the maximal degree that can be achieved by an m-vector, m ≤ n, is the integer dmmax
defined by

dmmax := deg(Xn−m+1) + · · · + deg(Xn). (2.5)

2.1 Degree of a submanifold

Let M be a submanifold of class C1 immersed in an equiregular graded manifold
(N , (H1, . . . ,Hs)) such that dim(M) = m < n = dim(N ). Then, following [34,36], we
define the degree of M at a point p ∈ M by

degM (p) := deg(v1 ∧ . . . ∧ vm),

where v1, . . . , vm is a basis of TpM . Obviously, the degree is independent of the choice of
the basis of TpM . Indeed, if we consider another basis B′ = (v′1, · · · , v′m) of TpM , we get

v1 ∧ · · · ∧ vm = det(MB,B′) v′1 ∧ · · · ∧ v′m,
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where MB,B′ denotes the change of basis matrix. Since det(MB,B′) �= 0, we conclude that
degM (p) is well-defined. The degree deg(M) of a submanifold M is the integer

deg(M) := max
p∈M degM (p).

We define the singular set of a submanifold M by

M0 = {p ∈ M : degM (p) < deg(M)}. (2.6)

Singular points can have different degrees between m and deg(M) − 1.
In [28, 0.6.B] Gromov considers the flag

H̃1
p ⊂ H̃2

p ⊂ · · · ⊂ H̃s
p = TpM, (2.7)

where H̃ j
p = TpM ∩H j

p and m̃ j = dim(H̃ j
p). Then he defines the degree at p by

D̃H (p) =
s

∑

j=1

j(m̃ j − m̃ j−1),

setting m̃0 = 0. It is easy to check that our definition of degree is equivalent to Gromov’s
one, see [23, Chapter 2.2]. As we already pointed out, (M, (H̃ j ) j∈N) is a graded manifold.

Let us check now that the degree of a vector field and the degree of points in a submanifold
are lower semicontinuous functions.

Lemma 2.1 Let (N , (H1, . . . ,Hs)) be a graded manifold regular at p ∈ N. Let V be a
vector field defined on a open neighborhood U1 of p. Then we have

lim inf
q→p

deg(Vq) ≥ deg(Vp).

Proof As p ∈ N is regular, there exists a local adapted basis (X1, . . . , Xn) in an open
neighborhood U2 ⊂ U1 of p. We express the smooth vector field V in U2 as

Vq =
s

∑

i=1

ni∑

j=ni−1+1

ci j (q)(X j )q (2.8)

on U2 with respect to an adapted basis (X1, · · · , Xn), where ci j ∈ C∞(U2). Suppose that
the degree deg(Vp) of V at p is equal to d ∈ N. Then, there exists an integer k ∈ {nd−1 +
1, · · · , nd} such that cdk(p) �= 0 and ci j (p) = 0 for all i = d + 1, · · · , s and j = ni−1 +
1, · · · , ni . By continuity, there exists an open neighborhood U ′ ⊂ U2 such that cdk(q) �= 0
for each q in U ′. Therefore for each q in U ′ the degree of Vq is greater than or equal to the
degree of V (p),

deg(Vq) ≥ deg(Vp) = d.

Taking limits we get

lim inf
q→p

deg(Vq) ≥ deg(Vp).

��
Remark 2.2 In the proof of Lemma 2.1, deg(Vq) could be strictly greater than d in case there
were a coefficient ci j with i ≥ d + 1 satisfying ci j (q) �= 0.
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Proposition 2.3 Let M beaC1 immersed submanifold in agradedmanifold (N , (H1, . . . ,Hs)).
Assume that N is regular at p ∈ M. Then we have

lim inf
q→p,q∈M degM (q) ≥ degM (p).

Proof The proof imitates the one of Lemma 2.1 and it is based on the fact that the degree
is defined by an open condition. Let τM = ∑

J τJ X J be a tangent m-vector in an open
neighborhoodU of p, where a local adapted basis is defined. The functions τJ are continuous
onU . Suppose that the degree degM (p) at p in M is equal to d . This means that there exists a
multi-index J̄ such that τ J̄ (p) �= 0 and deg((X J̄ )p) = d . Since the function τ J̄ is continuous
there exists a neighborhood U ′ ⊂ U such that τ J̄ (q) �= 0 in U ′. Therefore, deg(τM (q)) ≥ d
and taking limits we have

lim inf
q→p

degM (q) ≥ degM (p).

��
Corollary 2.4 Let M be a C1 submanifold immersed in an equiregular graded manifold. Then

1. degM is a lower semicontinuous function on M.
2. The singular set M0 defined in (2.6) is closed in M.

Proof The first assertion follows from Proposition 2.3 since every point in an equiregular
graded manifold is regular. To prove 2, we take p ∈ M � M0. By 1, there exists a open
neighborhoodU of p in M such that each point q inU has degree degM (q) equal to deg(M).
Therefore we have U ⊂ M � M0 and hence M � M0 is an open set. ��

2.2 Carnot manifolds

Let N be an n-dimensional smooth manifold. An l-dimensional distributionH on N assigns
smoothly to every p ∈ N an l-dimensional vector subspace Hp of TpN . We say that a
distributionH compliesHörmander’s condition if any local frame {X1, . . . , Xl} spanningH
satisfies

dim(L(X1, . . . , Xl))(p) = n, for all p ∈ N ,

whereL(X1, . . . , Xl) is the linear span of the vector fields X1, . . . , Xl and their commutators
of any order.

A Carnot manifold (N ,H) is a smooth manifold N endowed with an l-dimensional
distributionH satisfyingHörmander’s condition.We refer toH as the horizontal distribution.
We say that a vector field on N is horizontal if it is tangent to the horizontal distribution
at every point. A C1 path is horizontal if the tangent vector is everywhere tangent to the
horizontal distribution. A sub-Riemannian manifold (N ,H, h) is a Carnot manifold (N ,H)

endowed with a positive-definite inner product h onH. Such an inner product can always be
extended to a Riemannian metric on N . Alternatively, any Riemannian metric on N restricted
to H provides a structure of sub-Riemannian manifold. Chow’s Theorem assures that in a
Carnot manifold (N ,H) the set of points that can be connected to a given point p ∈ N by
a horizontal path is the connected component of N containing p, see [40]. Given a Carnot
manifold (N ,H), we have a flag of subbundles

H1 := H ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · · ⊂ T N , (2.9)
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defined by

Hi+1 := Hi + [H,Hi ], i ≥ 1,

where

[H,Hi ] := {[X , Y ] : X ∈ H, Y ∈ Hi }.
The smallest integer s satisfying Hs

p = TpN is called the step of the distribution H at the
point p. Therefore, we have

Hp ⊂ H2
p ⊂ · · · ⊂ Hs

p = TpN .

The integer list (n1(p), · · · , ns(p)) is called the growth vector of H at p. When the growth
vector is constant in a neighborhood of a point p ∈ N we say that p is a regular point for the
distribution. This flag of sub-bundles (2.9) associated to a Carnot manifold (N ,H) gives rise
to the graded structure (N , (Hi )). Clearly an equiregular Carnot manifold (N ,H) of step s
is an equiregular graded manifold (N ,H1, . . . ,Hs). In particular a Carnot group turns out
to be an equiregular graded manifold.

Given a connected sub-Riemannian manifold (N ,H, h), and a C1 horizontal path γ :
[a, b] → N , we define the length of γ by

L(γ ) =
∫ b

a

√

h(γ̇ (t), γ̇ (t)) dt . (2.10)

By means of the equality

dc(p, q) := inf{L(γ ) : γ is a C1 horizontal path joining p, q ∈ N }, (2.11)

this length defines a distance function (see [5, § 2.1.1,§ 2.1.2]) usually called the Carnot-
Carathéodory distance, or CC-distance for short. See [40, Chapter 1.4] for further details.

3 Area for submanifolds of given degree

In this section we shall consider a graded manifold (N ,H1, . . . ,Hs) endowed with a Rie-
mannian metric g, and an immersed submanifold M of dimension m.

We recall the following construction from [28, 1.4.D]: given p ∈ N , we recursively define
the subspaces K1

p := Hp , Ki+1
p := (Hi

p)
⊥ ∩ Hi+1

p , for 1 ≤ i ≤ (s − 1). Here ⊥ means
perpendicular with respect to the Riemannianmetric g. Therefore we have the decomposition
of TpN into orthogonal subspaces

TpN = K1
p ⊕K2

p ⊕ · · · ⊕Ks
p. (3.1)

Given r > 0, a unique Riemannianmetric gr is defined under the conditions: (i) the subspaces
Ki are orthogonal, and (ii)

gr |Ki =
1

r i−1 g|Ki , i = 1, . . . , s. (3.2)

When we consider Carnot manifolds, it is well-known that the Riemannian distances of
(N , gr ) uniformly converge to the Carnot-Carathéodory distance of (N ,H, h), [28, p. 144].

Working on a neighborhood U of p where a local frame (X1, . . . , Xk) generating the
distribution H is defined, we construct an orthonormal adapted basis (X1, . . . , Xn) for the
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Riemannian metric g by choosing orthonormal bases in the orthogonal subspaces Ki , 1 ≤
i ≤ s. Thus, the m-vector fields

X̃r
J =

(

r
1
2 (deg(X j1 )−1)X j1

)

∧ . . . ∧
(

r
1
2 (deg(X jm )−1)X jm

)

, (3.3)

where J = ( j1, j2, . . . , jm) for 1 ≤ j1 < · · · < jm ≤ n, are orthonormal with respect to the
extension of the metric gr to the space of m-vectors. We recall that the metric gr is extended
to the space of m-vectors simply defining

gr (v1 ∧ . . . ∧ vm, v′1 ∧ . . . ∧ v′m) = det
(

gr (vi , v
′
j )
)

1≤i, j≤m, (3.4)

for v1, . . . , vm and v′1, . . . , v′m in TpN . Observe that the extension is denoted the same way.

3.1 Area for submanifolds of given degree

Assume now that M is an immersed submanifold of dimension m in a equiregular graded
manifold (N ,H1, . . . ,Hs) equipped with the Riemannian metric g. We take a Riemannian
metric μ on M . For any p ∈ M we pick a μ-orthonormal basis e1, . . . , em in TpM . By the
area formula we get

A(M ′, gr ) =
∫

M ′
|e1 ∧ . . . ∧ em |gr dμ(p), (3.5)

where M ′ is a bounded measurable subset of M and A(M ′, gr ) is the m-dimensional area of
M ′ with respect to the Riemannian metric gr .

Now we express

e1 ∧ . . . ∧ em =
∑

J

τJ (p)(X J )p =
∑

J

τ̃ rJ (p)(X̃
r
J )p, r > 0.

From (3.3) we get X̃r
J = r

1
2 (deg(X J )−m)X J , and so τ̃J = r− 1

2 (deg(X J )−m)τJ . Moreover, as
{X̃r

J } is an orthonormal basis for gr , we have

|e1 ∧ . . . ∧ em |2gr =
∑

J

(τ̃ rJ (p))
2 =

∑

J

r−(deg(X J )−m)τ 2J (p).

Therefore, we have

lim
r↓0 r

1
2 (deg(M)−m) |e1 ∧ . . . ∧ em |gr = lim

r↓0

(
∑

J

r (deg(M)−deg(X J ))τ 2J (p)

)1/2

=
⎛

⎝
∑

deg(X J )=deg(M)

τ 2J (p)

⎞

⎠

1/2

.

By Lebesgue’s dominated convergence theorem we obtain

lim
r↓0

(

r
1
2 (deg(M)−m)A(M ′, gr )

)

=
∫

M ′

⎛

⎝
∑

deg(X J )=deg(M)

τ 2J (p)

⎞

⎠

1
2

dμ(p). (3.6)
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Definition 3.1 If M is an immersed submanifold of degree d in an equiregular graded mani-
fold (N ,H1, . . . ,Hs) endowed with a Riemannian metric g, the degree d area Ad is defined
by

Ad(M
′) := lim

r↓0

(

r
1
2 (d−m)A(M ′, gr )

)

,

for any bounded measurable set M ′ ⊂ M .

Equation (3.6) provides an integral formula for the area Ad . An immediate consequence
of the definition is the following

Remark 3.2 Setting d := deg(M) we have by Eq. (3.6) and the notation introduced in (2.4)
that the degree d area Ad is given by

Ad(M
′) =

∫

M ′
| (e1 ∧ . . . ∧ em)d |g dμ(p). (3.7)

for any bounded measurable set M ′ ⊂ M . When the ambient manifold is a Carnot group this
area formula was obtained by [36]. Notice that the d area Ad is given by the integral of the
m-form

ωd(v1, . . . , vm)(p) = 〈v1 ∧ . . . ∧ vm,
(e1 ∧ . . . ∧ em)d

|(e1 ∧ . . . ∧ em)d |g 〉, (3.8)

where v1, . . . , vm is a basis of TpM .
In a more general setting, an m-dimensional submanifold in a Riemannian manifold is an

m-current (i.e., an element of the dual of the space ofm-forms), and the area is themass of this
current (for more details see [18]). Similarly, a natural generalization of an m-dimensional
submanifold of degree d immersed in a graded manifold is an m-current of degree d whose
mass should be given by Ad . In [19] the authors studied the theory of H-currents in the
Heisenberg group. Their mass coincides with our area (3.7) on intrinsic C1 submanifolds.
However in (3.8) we consider all possible m-forms and not only the intrinsic m-forms in the
Rumin’s complex [1,42,49].

Corollary 3.3 Let M be an m-dimensional immersed submanifold of degree d in a graded
manifold (N ,H1, . . . ,Hs) endowed with a Riemannian metric g. Let M0 ⊂ M be the closed
set of singular points of M. Then Ad(M0) = 0.

Proof Take an orthonormal basis v1, . . . , vm of M at p and express v1 ∧ . . . ∧ vm =
∑

J τJ (p)(X J )p . When p is a singular point, deg(v1 ∧ . . . ∧ vm) < deg(M) = d and
so τJ (p) = 0 whenever deg(X J ) ≥ d .

Since M0 is measurable, from (3.6) we obtain

Ad(M0) =
∫

M0

⎛

⎝
∑

deg(X J )=d

τ 2J (p)

⎞

⎠

1
2

dμ(p)

and so Ad(M0) = 0. ��

Remark 3.4 Another easy consequence of the definition is the following: ifM is an immersed
submanifold of degree d in graded manifold (N ,H1, . . . ,Hs) with a Riemannian metric,
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then Ad ′(M ′) = ∞ for any open set M ′ ⊂ M when d ′ < d . This follows easily since in the
expression

r
1
2 (d ′−m) |e1 ∧ . . . ∧ em |gr

we would have summands with negative exponent for r .

In the following example, we exhibit a Carnot manifold with two different Riemannian
metrics that coincide when restricted to the horizontal distribution, but yield different area
functionals of a given degree

Example 3.5 We consider the Carnot group H
1 ⊗ H

1, which is the direct product of two
Heisenberg groups. Namely, let R

3×R
3 be the 6-dimensional Euclidean space with coordi-

nates (x, y, z, x ′, y′, z′). We consider the 4-dimensional distribution H generated by

X = ∂x − y

2
∂z, Y = ∂y + x

2
∂z,

X ′ = ∂x ′ − y′

2
∂z′ Y ′ = ∂y′ + x ′

2
∂z′ .

The vector fields Z = [X , Y ] = ∂z and Z ′ = [X ′, Y ′] = ∂z′ are the only non trivial
commutators that generate, together with X , Y , X ′, Y ′, the subspaceH2 = T (H1⊗H

1). Let
� be a bounded open set of R

2 and u a smooth function on � such that ut (s, t) ≡ 0. We
consider the immersed surface

� : � −→ H
1 ⊗ H

1,

(s, t) �−→ (s, 0, u(s, t), 0, t, u(s, t)),

whose tangent vectors are

�s = (1, 0, us, 0, 0, us) = X + us Z + us Z
′,

�t = (0, 0, 0, 0, 1, 0) = Y ′.

Thus, the 2-vector tangent to M is given by

�s ∧ �t = X ∧ Y ′ + us(Z ∧ Y ′ + Z ′ ∧ Y ′).

When us(s, t) is different from zero the degree is equal to 3, since both Z ∧ Y ′ and
Z ′ ∧Y ′ have degree equal to 3. Points of degree 2 corresponds to the zeroes of us . We define
a 2-parameter family gλ,ν of Riemannian metrics on H

1 ⊗ H
1, for (λ, μ) ∈ R

2, by the
conditions (i) (X , Y , X ′, Y ′) is an orthonormal basis of H, (ii) Z , Z ′ are orthogonal to H,
and (iii) g(Z , Z) = λ, g(Z ′, Z ′) = μ and g(Z ′, Z) = 0. Therefore, the degree 3 area of �

with respect to the metric gμ,ν is given by

A3(�) =
∫

�

us(λ + ν) dsdt .

As we shall see later, these different functionals will not have the same critical points, that
would depend on the election of Riemannian metric.
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4 Examples

4.1 Degree of a hypersurface in a Carnot manifold

Let M be a C1 hypersurface immersed in an equiregular Carnot manifold (N ,H), where H
is a bracket generating l-dimensional distribution. Let Q be the homogeneous dimension of
N and p ∈ M .

Let us check that deg(M) = Q − 1. The pointwise degree of M is given by

degM (p) =
s

∑

j=1

j(m̃ j − m̃ j−1),

where m̃ j = dim(H̃ j
p) with H̃ j

p = TpM ∩ H j
p . Recall that ni = dim(Hi

p). As TpM is a

hyperplane of TpN we have that either H̃i
p = Hi

p and m̃i = ni , or H̃i
p is a hyperplane ofHi

p
and m̃i = mi − 1. On the other hand,

m̃i − m̃i−1 ≤ ni − ni−1.

Writing

ni − ni−1 = m̃i − m̃i−1 + zi ,

for non-negative integers zi and adding up on i from 1 to s we get

s
∑

i=1

zi = 1,

since m̃s = n−1 and ns = n. We conclude that there exists i0 ∈ {1, . . . , s} such that zi0 = 1
and z j = 0 for all j �= i0. This implies

m̃i = ni , i < i0,

m̃i = ni − 1, i ≥ i0.

If i0 > 1 for all p ∈ M , then H ⊂ T M , a contradiction since H is a bracket-generating
distribution. We conclude that i0 = 1 and so

deg(M) =
s

∑

i=1

i (m̃i − m̃i−1) = 1 · m̃1 +
s

∑

i=2

i (m̃i − m̃i−1)

= 1 · (n1 − 1) +
s

∑

i=2

i (ni − ni−1) = Q − 1.

4.2 A2n+1-area of a hypersurface in a (2n+ 1)-dimensional contact manifold

A contact manifold is a smooth manifold M2n+1 of odd dimension endowed with a one form
ω such that dω is non-degenerate when restricted to H = ker(ω). Since it holds

dω(X , Y ) = X(ω(Y )) − Y (ω(X)) − ω([X , Y ]),
for X , Y ∈ H, the distribution H is non-integrable and satisfies Hörmander rank condition
by Frobenius theorem. When we define a horizontal metric h on the distribution H then
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(M,H, h) is a sub-Riemannian structure. It is easy to prove that there exists an unique vector
field T on M so that

ω(T ) = 1, LT (X) = 0,

where L is the Lie derivative and X is any vector field on M . This vector field T is called the
Reeb vector field. We can always extend the horizontal metric h to the Riemannian metric g
making T a unit vector orthogonal to H.

Let 
 be a C1 hypersurface immersed in M . In this setting the singular set of 
 is given
by


0 = {p ∈ 
 : Tp
 = Hp},
and corresponds to the points in 
 of degree 2n. Observe that the non-integrability of H
implies that the set 
 � 
0 is not empty in any hypersurface 
.

Let N be the unit vector field normal to 
 at each point, then on the regular set 
 � 
0

the g-orthogonal projection Nh of N onto the distributionH is different from zero. Therefore
out of the singular set 
0 we define the horizontal unit normal by

νh = Nh

|Nh | ,

and the vector field

S = 〈N , T 〉νh − |Nh |T ,

which is tangent to 
 and belongs toH2. Moreover, Tp
 ∩ (H2
p �H1

p) has dimension equal
to one and Tp
 ∩ H1

p equal to 2n − 1, thus the degree of the hypersurface 
 out of the
singular set is equal to 2n+1. Let e1, . . . , e2n−1 be an orthonormal basis in Tp
∩H1

p . Then
e1, . . . , e2n−1, Sp is an orthonomal basis of Tp
 and we have

e1 ∧ . . . ∧ e2n−1 ∧ S = 〈N , T 〉e1 ∧ . . . ∧ e2n−1 ∧ νh − |Nh |e1 ∧ . . . ∧ e2n−1 ∧ T .

Hence we obtain

A2n+1(
) =
∫




|Nh |d
. (4.1)

In [20] Galli obtained this formula as the perimeter of a set that has C1 boundary 
 and in
[50] Shcherbakova as the limit of the volume of a ε-cylinder around 
 over its height equal
to ε. This formula was obtain for surfaces in a 3-dimensional pseudo-hermitian manifold in
[9] and by S. Pauls in [44]. This is exactly the area formula independently established in
recent years in the Heisenberg group H

n , that is the prototype for contact manifolds (see for
instance [9,10,15,30,47]).

Example 4.1 (The roto-translational group) Take coordinates (x, y, θ) in the 3-dimensional
manifold R

2 × S
1. We consider the contact form

ω = sin(θ)dx − cos(θ)dy,

the horizontal distribution H = ker(ω), is spanned by the vector fields

X = cos(θ)∂x + sin(θ)∂y, Y = ∂θ ,

and the horizontal metric h that makes X and Y orthonormal.
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Therefore R
2 × S

1 endowed with this one form ω is a contact manifold. Moreover (R2 ×
S
1,H, h) has a sub-Riemannian structure which is also a Lie group known as the roto-

translational group. A mathematical model of simple cells of the visual cortex V1 using the
sub-Riemannian geometry of the roto-translational Lie group was proposed by Citti and Sarti
(see [13,14]). Here the Reeb vector field is given by

T = [X , Y ] = sin(θ)∂x − cos(θ)∂y .

Let � be an open set of R
2 and u : � → R be a function of class C1. When we consider a

graph 
 = Graph(u) given by the zero set level of the C1 function

f (x, y, θ) = u(x, y) − θ = 0,

the projection of the unit normal N onto the horizontal distribution is given by

Nh = X(u)X − Y
√

1+ X(u)2 + T (u)2
.

Hence the 3-area functional is given by

A3(
, λ) =
∫

�

(

1+ X(u)2
) 1
2 dxdy.

4.3 A4-area of a ruled surface immersed in an Engel structure

Let E = R
2 × S

1 × R be a smooth manifold with coordinates p = (x, y, θ, k). We set
H = span{X1, X2}, where

X1 = cos(θ)∂x + sin(θ)∂y + k∂θ , X2 = ∂k . (4.2)

Therefore (E,H) is a Carnot manifold, indeedH satisfy the Hörmander rank condition since
X1 and X2

X3 = [X1, X2] = −∂θ

X4 = [X1, [X1, X2]] = − sin(θ)∂x + cos(θ)∂y
(4.3)

generate all the tangent bundle. Here we follow a computation developed by Le Donne and
Magnani [34] in the Engel group. Let � be an open set of R

2 endowed with the Lebesgue
measure. Since we are particularly interested in applications to the visual cortex (see [23],
[45, 1.5.1.4] to understand the reasons) we consider the immersion � : � → E given by
� = (x, y, θ(x, y), κ(x, y)) and we set 
 = �(�). The tangent vectors to 
 are

�x = (1, 0, θx , κx ), �y = (0, 1, θy, κy). (4.4)

In order to know the dimension of Tp
 ∩Hp it is necessary to take in account the rank
of the matrix

B =

⎛

⎜
⎜
⎝

1 0 θx κx
0 1 θy κy

cos(θ) sin(θ) κ 0
0 0 0 1

⎞

⎟
⎟
⎠

. (4.5)

Obviously rank(B) ≥ 3, indeed we have

det

⎛

⎝

1 0 κx
0 1 κy
0 0 1

⎞

⎠ �= 0.
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Moreover, it holds

rank(B) = 3 ⇔ det

⎛

⎝

cos(θ) sin(θ) κ

1 0 θx
0 1 θy

⎞

⎠ = 0

⇔ κ − θx cos(θ) − θy sin(θ) = 0

⇔ κ = X1(θ(x, y)).

(4.6)

Since we are inspired by the foliation property of hypersurface in the Heisenberg
group and roto-translational group, in the present work we consider only surface 
 =
{(x, y, θ(x, y), κ(x, y))} verifying the foliation condition κ = X1(θ(x, y)). Thus, we have

�x ∧ �y =(cos(θ)κy − sin(θ)κx )X1 ∧ X2 − (cos(θ)θy − sin(θ)θx )X1 ∧ X3

+ X1 ∧ X4 + (θxκy − θyκx − κ(cos(θ)κy − sin(θ)κx ))X2 ∧ X3

+ (sin(θ)κy + cos(θ)κx )X2 ∧ X4

+ (κ − sin(θ)θy − cos(θ)θx )X3 ∧ X4.

(4.7)

By the foliation condition (4.6) we have that the coefficient of X3 ∧ X4 is always equal to
zero, then we deduce that deg(
) ≤ 4. Moreover, the coefficient of X1 ∧ X4 never vanishes,
therefore deg(
) = 4 and there are not singular points in 
. When κ = X1(θ) a tangent
basis of Tp
 adapted to 2.7 is given by

e1 = cos(θ)�x + sin(θ)�y = X1 + X1(κ)X2,

e2 = − sin(θ)�x + cos(θ)�y = X4 − X4(θ)X3 + X4(κ)X2.
(4.8)

When we fix the Riemannian metric g1 that makes (X1, . . . , X4) orthonormal we have
that the A4-area of 
 is given by

A4(
, g) =
∫

�

(

1+ X1(κ)2
) 1
2 dxdy =

∫

�

(

1+ X2
1(θ)2

) 1
2 dxdy. (4.9)

When we fix the Euclidean metric g0 that makes (∂1, ∂2, ∂θ , ∂k) we have that the A4-area of

 is given by

A4(
, g0) =
∫

�

(

1+ κ2 + X1(κ)2
) 1
2 dxdy. (4.10)

5 Admissible variations for submanifolds

Let us consider an m-dimensional manifold M̄ and an immersion � : M̄ → N into an
equiregular graded manifold endowed with a Riemannian metric g = 〈·, ·〉. We shall denote
the image �(M̄) by M and d := deg(M). In this setting we have the following definition

Definition 5.1 A smooth map � : M̄ × (−ε, ε) → N is said to be an admissible variation
of � if �t : M̄ → N , defined by �t ( p̄) := �( p̄, t), satisfies the following properties

(i) �0 = �,
(ii) �t (M̄) is an immersion of the same degree as �(M̄) for small enough t , and
(iii) �t ( p̄) = �( p̄) for p̄ outside a given compact subset of M̄ .
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Definition 5.2 Given an admissible variation �, the associated variational vector field is
defined by

V ( p̄) := ∂�

∂t
( p̄, 0). (5.1)

The vector field V is an element of X0(M̄, N ): i.e., a smooth map V : M̄ → T N such
that V ( p̄) ∈ T�( p̄)N for all p̄ ∈ M̄ . It is equal to 0 outside a compact subset of M̄ .

Let us see now that the variational vector field V associated to an admissible variation
� satisfies a differential equation of first order. Let p = �( p̄) for some p̄ ∈ M̄ , and
(X1, · · · , Xn) an adapted frame in a neighborhood U of p. Take a basis (ē1, . . . , ēm) of
Tp̄ M̄ and let e j = d� p̄(ē j ) for 1 ≤ j ≤ m. As �t (M̄) is a submanifold of the same degree
as �(M̄) for small t , there follows

〈

(d�t ) p̄(e1) ∧ . . . ∧ (d�t ) p̄(em), (X J )�t ( p̄)
〉 = 0, (5.2)

for all X J = X j1 ∧ . . . ∧ X jm , with 1 ≤ j1 < · · · < jm ≤ n, such that deg(X J ) > deg(M).
Taking the derivative with respect to t in equality (5.2) and evaluating at t = 0 we obtain the
condition

0 = 〈e1 ∧ . . . ∧ em,∇V (p)X J 〉 +
m
∑

k=1

〈e1 ∧ . . . ∧ ∇ek V ∧ . . . ∧ em, X J 〉

for all X J such that deg(X J ) > deg(M). In the above formula, 〈·, ·〉 indicates the scalar
product in the space of m-vectors induced by the Riemannian metric g. The symbol ∇
denotes, in the left summand, the Levi–Civita connection associated to g and, in the right
summand, the covariant derivative of vectors in X(M̄, N ) induced by g. Thus, if a variation
preserves the degree then the associated variational vector field satisfies the above condition
and we are led to the following definition.

Definition 5.3 Given an immersion � : M̄ → N , a vector field V ∈ X0(M̄, N ) is said to be
admissible if it satisfies the system of first order PDEs

0 = 〈e1 ∧ . . . ∧ em,∇V (p)X J 〉 +
m
∑

k=1

〈e1 ∧ . . . ∧ ∇ek V ∧ . . . ∧ em, X J 〉 (5.3)

where X J = X j1 ∧ . . . ∧ X jm , deg(X J ) > d and p ∈ M . We denote by A�(M̄, N ) the set
of admissible vector fields.

It is not difficult to check that the conditions given by (5.3) are independent of the choice
of the adapted basis.

Thus we are led naturally to a problem of integrability: given V ∈ X0(M̄, N ) such that the
first order condition (5.3) holds, we ask whether an admissible variation whose associated
variational vector field is V exists.

Definition 5.4 We say that an admissible vector field V ∈ X0(M̄, N ) is integrable if there
exists an admissible variation such that the associated variational vector field is V .

Proposition 5.5 Let � : M̄ → N be an immersion into a graded manifold. Then a vector
field V ∈ X0(M̄, N ) is admissible if and only if its normal component V⊥ is admissible.

Proof Since the Levi–Civita connection and the covariant derivative are additive we deduce
that the admissibility condition (5.3) is additive in V . We decompose V = V� + V⊥ in its
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tangent V� and normal V⊥ components and observe that V� is always admissible since the
flow of V� is an admissible variation leaving �(M̄) invariant with variational vector field
V�. Hence, V⊥ satisfies (5.3) if and only if V verifies (5.3). ��

6 The structure of the admissibility system of first order PDEs

Let us consider an open set U ⊂ N where a local adapted basis (X1, . . . , Xn) is defined.
We know that the simple m-vectors X J := X j1 ∧ . . . ∧ X jm generate the space �m(U ) of
m-vectors. At a given point p ∈ U , its dimension is given by the formula

dim(�m(U )p) =
(
n

m

)

.

Given two m-vectors v,w ∈ �m(U )p , it is easy to check that deg(v + w) ≤
max{deg v, degw}, and that deg λv = deg v when λ �= 0 and 0 otherwise. This implies
that the set

�d
m(U )p := {v ∈ �m(U )p : deg v ≤ d}

is a vector subspace of �m(U )p . To compute its dimension we let vi := (Xi )p and we check
that a basis of �d

m(U )p is composed of the vectors

vi1 ∧ . . . ∧ vim such that
im∑

j=i1

deg(v j ) ≤ d.

To get an m-vector in such a basis we pick any of the k1 vectors in H1
p ∩ {v1, . . . , vn} and,

for j = 2, . . . , s, we pick any of the k j vectors on (H j
p � H j−1

p ) ∩ {v1, . . . , vn}, so that

• k1 + · · · + ks = m, and
• 1 · k1 + · · · + s · ks ≤ d .

So we conclude, taking n0 = 0, that

dim(�d
m(U )p) =

∑

k1+···+ks=m,
1·k1+···+s·ks≤d

( s
∏

i=1

(
ni − ni−1

ki

))

.

When we consider two simple m-vectors vi1 ∧ . . . ∧ vim and v j1 ∧ . . . ∧ v jm , their scalar
product is 0 or ±1, the latter case when, after reordering if necessary, we have vik = v jk for
k = 1, . . . ,m. This implies that the orthogonal subspace �d

m(U )⊥p of �d
m(U )p in �m(U )p

is generated by the m-vectors

vi1 ∧ . . . ∧ vim such that
im∑

j=i1

deg(v j ) > d.

Hence we have

dim(�d
m(U )⊥p ) =

∑

k1+···+ks=m,
1·k1+···+s·ks>d

( s
∏

i=1

(
ni − ni−1

ki

))

, (6.1)

with n0 = 0. Since N is equiregular, � = dim(�d
m(U )⊥p ) is constant on N . Then we can

choose an orthonormal basis (X J1 , . . . , X J� ) in �d
m(U )⊥p at each point p ∈ U .
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6.1 The admissibility systemwith respect to an adapted local basis

In the same conditions as in the previous subsection, let � = dim(�d
m(U )⊥p ) and

(X J1 , . . . , X J� ) an orthonormal basis of �d
m(U )⊥p . Any vector field V ∈ X(M̄, N ) can be

expressed in the form

V =
n

∑

h=1

fh Xh,

where f1, . . . , fn ∈ C∞(�−1(U ), R). We take p̄0 ∈ �−1(U ) and, reducing U if necessary,
a local adapted basis (Ei )i of T M̄ in �−1(U ). Hence the admissibility system (5.3) is
equivalent to

m
∑

j=1

n
∑

h=1

ci jh E j ( fh) +
n

∑

h=1

βih fh = 0, i = 1, . . . , �, (6.2)

where

ci jh( p̄) = 〈e1 ∧ . . . ∧
( j)

(Xh)p ∧ . . . ∧ em, (X Ji )p〉, (6.3)

and

βih( p̄) = 〈e1 ∧ . . . ∧ em,∇(Xh )p X Ji 〉+

+
m
∑

j=1

〈e1 ∧ . . . ∧ ∇e j Xh ∧ . . . ∧ em, (X Ji )p〉

=
m
∑

j=1

〈e1 ∧ . . . ∧ [E j , Xh](p) ∧ . . . ∧ em, (X Ji )p〉.

(6.4)

In the above equationwe have extended the vector fields Ei in a neighborhood of p0 = �( p̄0)
in N , denoting them in the same way.

Definition 6.1 Let m̃α(p) be the dimension of H̃α
p = TpM ∩Hα

p , α ∈ {1, . . . , s}, where we
consider the flag defined in (2.7). Then we set

ι0(U ) = max
p∈U min

1≤α≤s{α : m̃α(p) �= 0}.

and

ρ := nι0 = dim(Hι0) ≥ dim(H1) = n1. (6.5)

Remark 6.2 In the differential system (6.2), derivatives of the function fh appear only when
some coefficient ci jh( p̄) is different from 0. For fixed h, notice that ci jh( p̄) = 0, for all
i = 1, . . . , �, j = 1, . . . ,m and p̄ in �−1(U ) if and only if

deg(e1 ∧ · · · ∧
( j)

(Xh)p ∧ · · · ∧ em) ≤ d, for all 1 ≤ j ≤ m, p ∈ �−1(U ).

This property is equivalent to

deg((Xh)p) ≤ deg(e j ), for all 1 ≤ j ≤ m, p ∈ �−1(U ).

So we have ci jh = 0 in �−1(U ) for all i, j if and only if deg(Xh) ≤ ι0(U ).
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We write

V =
ρ

∑

h=1

gh Xh +
n

∑

r=ρ+1

fr Xr ,

so that the local system (6.2) can be written as

m
∑

j=1

n
∑

r=ρ+1

ci jr E j ( fr ) +
n

∑

r=ρ+1

bir fr +
ρ

∑

h=1

aihgh = 0, (6.6)

where ci jr is defined in (6.3) and, for 1 ≤ i ≤ �,

aih = βih, bir = βir , 1 ≤ h ≤ ρ, ρ + 1 ≤ r ≤ n, (6.7)

where βi j is defined in (6.4). We denote by B the � × (n − ρ) matrix whose entries are bir ,
by A the �× ρ whose entries are aih and for j = 1, . . . ,m we denote by C j the �× (n− ρ)

matrix C j = (ci jh)
i=1,...,�
h=ρ+1,...,n . Setting

F =
⎛

⎜
⎝

fρ+1
...

fn

⎞

⎟
⎠ , G =

⎛

⎜
⎝

g1
...

gρ

⎞

⎟
⎠ (6.8)

the admissibility system (6.2) is given by

m
∑

j=1

C j E j (F) + BF + AG = 0. (6.9)

6.2 Independence on themetric

Let g and g̃ be two Riemannian metrices on N and (Xi ) be orthonormal adapted basis with
respect to g and (Yi ) with respect to g̃. Clearly we have

Yi =
n

∑

j=1

d ji X j ,

for some square invertible matrix D = (d ji )
i=1,...,n
j=1,...,n of order n. Since (Xi ) and (Yi ) are

adapted basis, D is a block matrix

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D11 D12 D13 . . . D1s

0 D22 D23 . . . D2s

0 0 D33 . . . D3s

0 0 0
. . .

...

0 0 0 0 Dss

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where Dii for i = 1, . . . , s are square matrices of orders ni . Let ρ be the integer
defined in (6.1), then we define Dh = (d ji )i, j=1,...,ρ , Dv = (d ji )i, j=ρ+1,...,n and Dhv =
(d ji )

i=ρ+1,...,n
j=1,...,ρ . Let us express V as a linear combination of (Yi )

V =
ρ

∑

h=1

g̃hYh +
n

∑

r=ρ+1

f̃r Yr ,
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then we set

F̃ =
⎛

⎜
⎝

f̃ρ+1
...

f̃n

⎞

⎟
⎠ , G̃ =

⎛

⎜
⎝

g̃1
...

g̃ρ

⎞

⎟
⎠

and F and G as in (6.8).
Given I = (i1, . . . , im) with i1 < . . . < im , we have

YI = Yi1 ∧ · · · ∧ Yim =
n

∑

j1=1

· · ·
n

∑

jm=1

d j1i1 · · · d jmim X j1 ∧ · · · ∧ X jm

=
∑

j1<...< jm

λ
j1... jm
i1...im

X j1 ∧ · · · ∧ X jm =
∑

J

λJ I X J .

Since the adapted change of basis preserves the degree of the m-vectors, the square matrix
� = (λJ I ) of order

(n
m

)

acting on the m-vector is given by

� =
(

�h �hv

0 �v

)

, (6.10)

where �h and �v are square matrices of order
(n
m

)−� and � respectively and �hv is a matrix
of order

((n
m

)− �
) × �. Moreover the matrix � is invertible since both {X J } and {YI } are

basis of the vector space of m-vectors.

Remark 6.3 One can easily check that the inverse of � is given by the block matrix

�−1 =
(

�−1
h −�−1

h �hv�
−1
v

0 �−1
v

)

.

Setting G̃ = (g̃(XI , X J )) we have

G̃ =
(

G̃h G̃hv

(G̃hv)
t G̃v

)

= (�−1)t (�−1).

Thus it follows

G̃v = (�−1
v )t�−1

v + (�−1
v )t�t

hv(�
−1
h )t �−1

h �hv�
−1
v ,

G̃hv = −(�−1
h )t�−1

h �hv�
−1
v ,

G̃h = (�−1
h )t�−1

h .

Let Ã be the associated matrix

Ã =
(

g̃
(

YJi ,

m
∑

j=1

E1 ∧ . . . ∧ [E j , Yh](p) ∧ . . . ∧ Em

))h=1,...,ρ

i=1,...,�
.

Setting

ωJr =
m
∑

j=1

g(X J , E1 ∧ · · · ∧ [E j , Xr ] ∧ · · · ∧ Em),
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and � = (

�h �v

) = (ωJr )
r=1,...,n
deg(J )≤d , a straightforward computation shows

Ã = (�hv)
t

⎛

⎝G̃h �h Dh + G̃hv A Dh + G̃h

m
∑

j=1

C j E j (Dh)

⎞

⎠

+ (�v)
t

⎛

⎝(G̃hv)
t �h Dh + G̃v A Dh + (G̃hv)

t
m
∑

j=1

C j E j (Dh)

⎞

⎠

By Remark 6.3 we obtain

Ã = (�hv)
t
(

(�−1
h )t�−1

h (�h Dh +
m
∑

j=1

C j E j (Dh))

− (�−1
h )t�−1

h �hv�
−1
v A Dh

)

−
(

�t
hv(�

−1
h )t�−1

h (�h Dh +
m
∑

j=1

C j E j (Dh))
)

+
(

�−1
v + �t

hv(�
−1
h )t �−1

h �hv�
−1
v

)

A Dh

= �−1
v A Dh .

(6.11)

Preliminary we notice that if h = 1, . . . , ρ we have

c̃i jh = g̃(YJi , E1 ∧ . . . ∧
( j)
Yh ∧ . . . ∧ Em)

=
∑

I

∑

deg(J )≤d

ρ
∑

k=1

λI Ji g̃(XI , X J )cJ jk dkh

=
∑

deg(I )≤d

∑

deg(J )≤d

ρ
∑

k=1

λI Ji g̃(XI , X J )cJ jk dkh+

+
∑

deg(I )>d

∑

deg(J )≤d

ρ
∑

k=1

λI Ji g̃(XI , X J )cJ jk dkh .

(6.12)

Therefore, setting

C̃ H
j =

(

g̃(YJ , E1 ∧ . . . ∧
( j)
Yh ∧ . . . ∧ Em)

)h=1,...,ρ

deg(J )≤d
and

C̃0
j =

(

g̃(YJi , E1 ∧ . . . ∧
( j)
Yh ∧ . . . ∧ Em)

)h=1,...,ρ

i=1,...,�
,

by (6.12) we gain

C̃0
j = (�t

hvG̃h + �t
v(G̃hv)

t )(CH
j Dh) = 0.

Let C̃ j be the associated matrix

C̃ j =
(

g̃(YJi , E1 ∧ . . . ∧
( j)
Yh ∧ . . . ∧ Em)

)h=ρ+1,...,n

i=1,...,�
.
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Setting

C̃ HV
j =

(

g̃(YJ , E1 ∧ . . . ∧
( j)
Yh ∧ . . . ∧ Em)

)h=ρ+1,...,n

deg(J )≤d ,

it is immediate to obtain the following equality

C̃ j = (�hv)
t
(

G̃h(C
H
j Dhv + CHV

j Dv) + G̃hvC j Dv

)

+ (�v)
t
(

(G̃hv)
t (CH

j Dhv + CHV
j Dv) + G̃vC j Dv

)

= �−1
v C j Dv.

(6.13)

Let B̃ be the associated matrix

B̃ =
(

g̃
(

YJi ,

m
∑

j=1

E1 ∧ . . . ∧ [E j , Yh] ∧ . . . ∧ Em

))h=ρ+1,...,n

i=1,...,�
.

A straightforward computation shows

B̃ = (�hv)
t
(

G̃h(�h Dhv + �vDv +
m
∑

j=1

CH
j E j (Dhv) + CHV

j E j (Dh))

+ G̃hv(ADhv + BDv +
m
∑

j=1

C j E j (Dv))
)

+ (�v)
t
(

G̃t
hv(�h Dhv + �vDv +

m
∑

j=1

CH
j E j (Dhv) + CHV

j E j (Dh))

+ G̃v(ADhv + BDv +
m
∑

j=1

C j E j (Dv))
)

By Remark 6.3 we obtain

B̃ = �−1
v A Dhv + �−1

v BDv +
m
∑

j=1

�−1
v C j E j (Dv). (6.14)

Finally, we have G = DhG̃ + Dhv F̃ and F = Dv F̃ .

Proposition 6.4 Let g and g̃ be two different metrics, then a vector fields V is admissible
w.r.t. g if and only if V is admissible w.r.t. g̃.

Proof We remind that an admissible vector field

V =
ρ

∑

i=1

gi Xi +
n

∑

i=ρ+1

fi Xi

w.r.t. g satisfies

m
∑

j=1

C j E j (F) + BF + AG = 0. (6.15)
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By (6.11), (6.14) and (6.13) we have

m
∑

j=1

C̃ j E j (F̃) + B̃ F̃ + ÃG̃ = �−1
v

⎛

⎝

m
∑

j=1

C j (DvE j (F̃) + E j (Dv)F̃)

+A Dhv F̃ + A DhG̃ + BDv F̃
)

= �−1
v

⎛

⎝

m
∑

j=1

C j E j (F) + BF + AG

⎞

⎠

(6.16)

In the previous equation we used that G = DhG̃ + Dhv F̃ , F = Dv F̃ and

E j (Dv)D
−1
v + DvE j (D

−1
v ) = 0,

for all j = 1, . . . ,m, that follows by DvD−1
v = In−ρ . Then the admissibility system (6.15)

w.r.t. g is equal to zero if and only if the admissibility system (6.16) w.r.t. g̃. ��
Remark 6.5 When the metric g is fixed and (Xi ) and (Yi ) are orthonormal adapted basis w.r.t
g, the matrix D is a block diagonal matrix given by

D =
(

Dh 0
0 Dv

)

,

where Dh and Dv are square orthogonal matrices of orders ρ and (n−ρ), respectively. From
equations (6.11), (6.14), (6.13) it is immediate to obtain the following equalities

F̃ = D−1
v F,

G̃ = D−1
h G,

Ã = �−1
v A Dh,

B̃ = �−1
v BDv +

m
∑

j=1

�−1
v C j E j (Dv),

C̃ j = �−1
v C j Dv.

(6.17)

6.3 The admissibility systemwith respect to the intrinsic basis of the normal space

Let � be the dimension of �d
m(U )⊥p and (X J1 , . . . , X J� ) an orthonormal basis of simple

m-vector fields. Let p̄0 be a point in M̄ and �( p̄0) = p0. Let e1, . . . , em be an adapted
basis of Tp0M that we extend to adapted vector fields E1, . . . , Em tangent to M on U . Let
vm+1, . . . , vn be a basis of (Tp0M)⊥ that we extend to vector fields Vm+1, . . . , Vn normal to
M on U , where we possibly reduced the neighborhood U of p0 in N . Then any vector field
in X(�−1(U ), N ) is given by

V =
m
∑

j=1

ψ j E j +
n

∑

h=m+1

ψhVh,

where ψ1, . . . , ψn ∈ Cr (�−1(U ), R). By Proposition 5.5 we deduce that V is admissible
if and only if V⊥ = ∑n

h=m+1 ψhVh is admissible. Hence we obtain that the system (5.3) is
equivalent to

m
∑

j=1

n
∑

h=m+1

ξi jh E j (ψh) +
n

∑

h=m+1

β̂ihψh = 0, i = 1, . . . , �, (6.18)
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where

ξi jh( p̄) = 〈e1 ∧ . . . ∧ ( j)
vh ∧ . . . ∧ em, (X Ji )p〉 (6.19)

and

β̂ih( p̄) = 〈e1 ∧ . . . ∧ em,∇vh X Ji 〉+

+
m
∑

j=1

〈e1 ∧ . . . ∧ ∇e j Vh ∧ . . . ∧ em, (X Ji )p〉

=
m
∑

j=1

〈e1 ∧ . . . ∧ [E j , Vh](p) ∧ . . . ∧ em, (X Ji )p〉.

(6.20)

Definition 6.6 Let ι0(U ) be the integer defined in 6.1. Then we set k := nι0 − m̃ι0 .

Assume that k ≥ 1, and write

V⊥ =
m+k
∑

h=m+1

φh Vh +
n

∑

r=m+k+1

ψr Vr ,

and the local system (6.18) is equivalent to

m
∑

j=1

n
∑

r=ρ+1

ξi jr E j (ψr ) +
n

∑

r=ρ+1

βir ψr +
m+k
∑

h=m+1

αih φh = 0, (6.21)

where ξi jr is defined in (6.19) and, for 1 ≤ i ≤ �,

αih = β̂ih, βir = β̂ir , m + 1 ≤ h ≤ m + k, m + k + 1 ≤ r ≤ n. (6.22)

We denote by B⊥ the �× (n −m − k) matrix whose entries are βir , by A⊥ the �× k whose
entries are αih and for every j = 1, · · ·m by C⊥

j the � × (n − m − k) matrix with entries

(ξi jh)
i=1,...,�
h=m+k+1,...,n Setting

F⊥ =
⎛

⎜
⎝

ψm+k+1
...

ψn

⎞

⎟
⎠ , G⊥ =

⎛

⎜
⎝

φm+1
...

φm+k

⎞

⎟
⎠ (6.23)

the admissibility system (6.2) is given
m
∑

j=1

C⊥
j E j (F

⊥) + B⊥F⊥ + A⊥G⊥ = 0. (6.24)

Remark 6.7 We can define the matrices A�, B�, C� with respect to the tangent projection
V� in a similar way to the matrices A⊥, B⊥, C⊥. First of all we notice that the entries

ξ�i jν( p̄) = 〈e1 ∧ . . . ∧ ( j)
eν ∧ . . . ∧ em, (X Ji )p〉

for i = 1, . . . , � and j, ν = 1, . . . ,m are all equal to zero. Therefore the matrices C� and
B� are equal to zero. On the other hand, A� is the (� × m)-matrix whose entries are given
by

α�
iν( p̄) =

m
∑

j=1

〈e1 ∧ . . . ∧ [E j , Eν](p) ∧ . . . ∧ em, (X Ji )p〉
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for i = 1, . . . , � and ν = 1, . . . ,m. Frobenius Theorem implies that the Lie brackets [E j , Eν]
are all tangent to M for j, ν = 1, . . . ,m, and so all the entries of A� are equal to zero.

7 Integrability of admissible vector fields

In general, given an admissible vector field V , the existence of an admissible variation with
associated variational vector field V is not guaranteed. The next definition is a sufficient
condition to ensure the integrability of admissible vector fields.

Definition 7.1 Let � : M̄ → N be an immersion of degree d of an m-dimensional manifold
into a graded manifold endowed with a Riemannian metric g. Let � = dim(�d

m(U )⊥q ) for all

q ∈ N and ρ = nι0 set in (6.1). When ρ ≥ � we say that � is strongly regular at p̄ ∈ M̄ if

rank(A( p̄)) = �,

where A is the matrix appearing in the admissibility system (6.9).

The rank of A is independent of the local adapted basis chosen to compute the admissi-
bility system (6.9) because of Eq. (6.17). Next we prove that strong regularity is a sufficient
condition to ensure local integrability of admissible vector fields.

Theorem 7.2 Let � : M̄ → N be a smooth immersion of an m-dimensional manifold into
an equiregular graded manifold N endowed with a Riemannian metric g. Assume that the
immersion � of degree d is strongly regular at p̄. Then there exists an open neighborhood
Wp̄ of p̄ such every admissible vector field V with compact support on Wp̄ is integrable.

Proof Let p = �( p̄). First of all we consider an open neighborhoodUp ⊂ N of p such that
an adapted orthonormal frame (X1, . . . , Xn) is well defined. Since � is strongly regular at
p̄ there exist indexes h1, . . . , h� in {1, . . . , ρ} such that the submatrix

Â( p̄) =
⎛

⎜
⎝

a1h1( p̄) · · · a1h�
( p̄)

...
. . .

...

a�h1( p̄) · · · a�h�
( p̄)

⎞

⎟
⎠

is invertible. By a continuity argument there exists an open neighborhood Wp̄ ⊂ �−1(Up)

such that det( Â(q̄)) �= 0 for each q̄ ∈ Wp̄ .
We can rewrite the system (6.9) in the form

⎛

⎜
⎝

gh1
...

gh�

⎞

⎟
⎠ = − Â−1

⎛

⎜
⎝

m
∑

j=1

C j E j (F) + BF + Ã

⎛

⎜
⎝

gi1
...

giρ−�

⎞

⎟
⎠

⎞

⎟
⎠ , (7.1)

where i1, . . . , iρ−� are the indexes of the columns of A that do not appear in Â and Ã is
the � × (ρ − �) matrix given by the columns i1, . . . , iρ−� of A. The vectors (Ei )i form an
orthonormal basis of T M̄ near p̄.

On the neighborhood Wp̄ we define the following spaces

1. Xr
0(Wp̄, N ), r ≥ 0 is the set of Cr vector fields compactly supported onWp̄ taking values

in T N .
2. Ar

0(Wp̄, N ) = {Y ∈ Xr
0(Wp̄, N ) : Y = ∑ρ

s=1 gs Xs}.
3. Ar

1,0(Wp̄, N ) = {Y ∈ Ar
0(Wp̄, N ) : Y = ∑�

i=1 ghi Xhi }.
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4. Ar
2,0(Wp̄, N ) = {Y ∈ Ar

0(Wp̄, N ) : 〈Y , X〉 = 0 ∀ X ∈ Ar
1,0(Wp̄, N )}.

5. Vr
0(Wp̄, N ) = {Y ∈ Xr (Wp̄, N ) : 〈Y , X〉 = 0 ∀X ∈ Ar

0(Wp̄, N )} = Ar
0(Wp̄, N )⊥.

6. �r
0(Wp̄, N ) = {∑�

i=1 fi X Ji : fi ∈ Cr
0(Wp̄)}.

Given r ≥ 1, we set

E := Ar−1
2,0 (Wp̄, N ) × Vr

0(Wp̄, N ),

and consider the map

G : E ×Ar−1
1,0 (Wp̄, N ) → E × �r−1

0 (Wp̄, N ), (7.2)

defined by

G(Y1, Y2, Y3) = (Y1, Y2,F(Y1 + Y2 + Y3)),

where �v is the projection in the space of m-forms with compact support in Wp̄ onto
�r (Wp̄, N ), and

F(Y ) = �v (d�(Y )(e1) ∧ . . . ∧ d�(Y )(em)) ,

where �(Y )(p) = exp�(p)(Yp). Observe thatF(Y ) = 0 if and only if the submanifold �(Y )

has degree less or equal to d . We consider on each space the corresponding || · ||r or || · ||r−1

norm, and a product norm.
Then

DG(0, 0, 0)(Y1, Y2, Y3) = (Y1, Y2, DF(0)(Y1 + Y2 + Y3)),

where we write in coordinates

Y1 =
ρ−�
∑

t=1

git Xit , Y2 =
�

∑

i=1

ghi Xhi , and Y3 =
n

∑

r=ρ+1

fr Xr .

Following the same argument we used in Sect. 5, taking the derivative at t = 0 of (5.2), we
deduce that the differential DF(0)Y is given by

DF(0)Y =
�

∑

i=1

⎛

⎝

m
∑

j=1

n
∑

r=ρ+1

ci jr E j ( fr ) +
n

∑

r=ρ+1

bir fr +
ρ

∑

h=1

aihgh

⎞

⎠ X Ji .

Oberve that DF(0)Y = 0 if and only if Y is an admissible vector field, namely Y solves
(7.1).
Our objective now is to prove that the map DG(0, 0, 0) is an isomorphism of Banach spaces.

Indeed suppose that DG(0, 0, 0)(Y1, Y2, Y3) = (0, 0, 0). This implies that Y1 and Y2
are equal zero. By the admissible Eq. (7.1) we have that also Y3 is equal to zero, then
DG(0, 0, 0) is injective. Thenfix (Z1, Z2, Z3), where Z1 ∈ Ar−1

2,0 (Wp̄, N ), Z2 ∈ Vr
0(Wp̄, N ),

Z3 ∈ �r−1
0 (Wp̄, N ) we seek Y1, Y2, Y3 such that DG(0, 0, 0)(Y1, Y2, Y3) = (Z1, Z2, Z3).

We notice that DF(0)(Y1 + Y2 + Y3) = Z3 is equivalent to
⎛

⎜
⎝

z1
...

z�

⎞

⎟
⎠ =

⎛

⎜
⎝

m
∑

j=1

C j E j (F) + BF + Ã

⎛

⎜
⎝

gi1
...

giρ−�

⎞

⎟
⎠+ Â

⎛

⎜
⎝

gh1
...

gh�

⎞

⎟
⎠

⎞

⎟
⎠ ,
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where with an abuse of notation we identify Z3 = ∑�
i=1 zi X Ji and

∑�
i=1 zi Xhi . Since Â is

invertible we have the following system
⎛

⎜
⎝

gh1
...

gh�

⎞

⎟
⎠ = − Â−1

⎛

⎜
⎝

m
∑

j=1

C j E j (F) + BF + Ã

⎛

⎜
⎝

gi1
...

giρ−�

⎞

⎟
⎠+

⎛

⎜
⎝

z1
...

z�

⎞

⎟
⎠

⎞

⎟
⎠ . (7.3)

Clearly Y1 = Z1 fixes gi1 , . . . , giρ−�
in (7.3), and Y2 = Z2 fixes the first and second term of

the right hand side in (7.3). Since the right side terms are given we have determined Y3, i.e.
gh1 , . . . , gh�

, such that Y3 solves (7.3). Therefore DG(0, 0, 0) is surjective. Thus we have
proved that DG(0, 0, 0) is a bijection.

Let us prove now that DG(0, 0, 0) is a continuous and open map. Letting
DG(0, 0, 0)(Y1, Y2, Y3) = (Z1, Z2, Z3), we first notice DG(0, 0, 0) is a continuous map
since identity maps are continuous and, by (7.3), there exists a constant K such that

‖Z3‖r−1 ≤ K

⎛

⎝

m
∑

j=1

‖∇ j Y2‖r−1 + ‖Y2‖r−1 + ‖Y1‖r−1 + ‖Y3‖r−1

⎞

⎠

≤ K (‖Y2‖r + ‖Y1‖r−1 + ‖Y3‖r−1).

Moreover, DG(0, 0, 0) is an open map since we have

‖Y3‖r−1 ≤ K

⎛

⎝

m
∑

j=1

‖∇ j Z2‖r−1 + ‖Z2‖r−1 + ‖Z1‖r−1 + ‖Z3‖r−1

⎞

⎠

≤ K (‖Z2‖r + ‖Z1‖r−1 + ‖Z3‖r−1).

This implies that DG(0, 0, 0) is an isomorphism pf Banach spaces.
Let now us consider an admissible vector field V with compact support on Wp . We consider
the map

G̃ : (−ε, ε) × E ×Ar−1
0,1 (Wp̄, N ) → E × �r−1

0 (Wp̄, N ),

defined by

G̃(s, Y1, Y3, Y2) = (Y1,F(sV + Y1 + Y3 + Y2)).

The map G̃ is continuous with respect to the product norms (on each factor we put the natural
norm, the Euclidean one on the intervals and || · ||r and || · ||r−1 in the spaces of vectors on
�(M̄)). Moreover

G̃(0, 0, 0, 0) = (0, 0),

since � has degree d . Denoting by DY the differential with respect to the last three variables
of G̃ we have that

DY G̃(0, 0, 0, 0)(Y1, Y2, Y3) = DG(0, 0, 0)(Y1, Y2, Y3)

is a linear isomorphism. We can apply the Implicit Function Theorem to obtain unique maps

Y1 : (−ε, ε) → Ar−1
0,2 (Wp̄, N ),

Y2 : (−ε, ε) → Vr
0(Wp̄, N ),

Y3 : (−ε, ε) → Ar−1
0,1 (Wp̄, N ),

(7.4)
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such that G̃(s, Y1(s), Y2(s), Y3(s)) = (0, 0). This implies that Y1(s) = 0, Y2(s) = 0, Y3(0) =
0 and that

F(sV + Y3(s)) = 0.

Differentiating this formula at s = 0 we obtain

DF(0)

(

V + ∂Y3
∂s

(0)

)

= 0.

Since V is admissible we deduce

DF(0)
∂Y3
∂s

(0) = 0.

Since ∂Y3
∂s (0) = ∑�

i=1 ghi Xhi , where ghi ∈ Cr−1
0 (Wp̄), Eq. (7.1) implies ghi ≡ 0 for each

i = 1, . . . , �. Therefore it follows ∂Y3
∂s (0) = 0.

Hence the variation �s( p̄) = �(sV + Y3(s))( p̄) coincides with �(q̄) for s = 0 and
q̄ ∈ Wp̄ , it has degree d and its variational vector fields is given by

∂�s

∂s

∣
∣
∣
∣
s=0

= V + ∂Y3
∂s

(0) = V .

Moreover, supp(Y3) ⊆ supp(V ). Indeed, if q̄ /∈ supp(V ), the unique vector field Y3(s), such
F(Y3(s)) = 0, is equal to 0 at q̄. ��
Remark 7.3 In Proposition 5.5 we stressed the fact that a vector field V = V� + V⊥ is
admissible if and only if V⊥ is admissible. This follows from the additivity in V of the
admissibility system (5.3) and the admissibility of V�. Instead of writing V with respect
to the adapted basis (Xi )i we consider the basis E1, . . . , Em, Vm+1, . . . , Vn described in
Sect. 6.3.

Let A⊥, B⊥,C⊥ be the matrices defined in (6.22), A� be the one described in Remark 6.7
and A be the matrix with respect to the basis (Xi )i defined in (6.7). When we change only the
basis for the vector field V by (6.11) we obtain Ã = ADh . Since A� is the null matrix and
Ã = (A�| A⊥) we conclude that rank(A( p̄)) = rank(A⊥( p̄)). Furthermore � is strongly
regular at p̄ if and only if rank(A⊥( p̄)) = � ≤ k, where k is the integer defined in 6.6.

7.1 Some examples of regular submanifolds

Example 7.4 Consider a hypersurface 
 immersed in an equiregular Carnot manifold N ,
then we have that 
 always has degree d equal to dn−1

max = Q − 1, see 4.1. Therefore the
dimension �, defined in Sect. 6, of �d

m(U )p is equal to zero. Thus any compactly supported
vector field V is admissible and integrable.When the Carnotmanifold N is a contact structure
(M2n+1,H = ker(ω)), see 4.2, the hypersurface
 has always degree equal to d2nmax = 2n+1.

Example 7.5 Let (E,H) be the Carnot manifold described in Sect. 4.3 where (x, y, θ, k) ∈
R
2 × S

1 × R = E and the distribution H is generated by

X1 = cos(θ)∂x + sin(θ)∂y + k∂θ , X2 = ∂k .

Clearly (X1, . . . , X4) is an adapted basis forH. Moreover the others no-trivial commutators
are given by

[X1, X4] = −kX1 − k2X3

[X3, X4] = X1 + kX3.
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Let � ⊂ R
2 be an open set. We consider the surface 
 = �(�) where

�(x, y) = (x, y, θ(x, y), κ(x, y))

and such that X1(θ(x, y)) = κ(x, y). Therefore the deg(
) = 4 and its tangent vectors are
given by

ẽ1 =X1 + X1(κ)X2,

ẽ2 =X4 − X4(θ)X3 + X4(κ)X2.

Let g = 〈·, ·〉 be the metric that makes orthonormal the adapted basis (X1, . . . , X4). Since
(�4

2(N ))⊥ = span{X3 ∧ X4} the only no-trivial coefficient c11r , for r = 3, 4 are given by

〈X3 ∧ ẽ2, X3 ∧ X4〉 = 1, and 〈X4 ∧ ẽ2, X3 ∧ X4〉 = X4(θ).

On the other hand c12h = 〈ẽ1 ∧ Xk, X3 ∧ X4〉 = 0 for each h = 1, . . . , 4, since we can not
reach the degree 5 if one of the two vector fields in the wedge has degree one. Therefore the
only equation in (6.2) is given by

ẽ1( f3) + X4(θ)ẽ1( f4) +
4

∑

h=1

(〈X3 ∧ X4, ẽ1 ∧ [ẽ2, Xh] + [ẽ1, Xh] ∧ ẽ2〉) fh = 0. (7.5)

Since deg(ẽ1 ∧ [ẽ2, Xh]) ≤ 4 we have 〈X3 ∧ X4, e1 ∧ [ẽ2, Xh]〉 = 0 for each h = 1, . . . , 4.
Since [uX , Y ] = u[X , Y ] − Y (u)X for each X , Y ∈ X(N ) and u ∈ C∞(N ) we have

[ẽ1, Xh] = [X1, Xh] + X1(κ)[X2, Xh] − Xh(X1(κ))X2

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−X1(κ)X3 − X1(X1(κ))X2 h = 1

X3 − X2(X1(κ))X2 h = 2

X4 − X3(X1(κ))X2 h = 3

−κX1 − κ2X3 − X4(X1(κ))X2 h = 4.

Thus, we deduce

〈X3 ∧ X4, [ẽ1, Xh] ∧ ẽ2〉 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−X1(κ) h = 1

1 h = 2

X4(θ) h = 3

−κ2 h = 4.

Hence the Eq. (7.5) is equivalent to

ẽ1( f3) + X4(θ)ẽ1( f4) − X1(κ) f1 + f2 − X4(θ) f3 − κ2 f4 = 0 (7.6)

Since ι0(�) = 1, we have ρ = n1 = 2, where ρ is the natural number defined in (6.1). In
this setting the matrix C is given by

C = (

1 0 X4(θ) 0
)

,

Then the matrices A and B are given by

A = (−X1(κ) 1
)

,

B = (−X4(θ) −κ2
)

.

Since rank(A(x, y)) = 1 and the matrix Â(x, y), defined in the proof of Theorem 7.2, is
equal to 1 for each (x, y) ∈ � we have that � is strongly regular at each point (x, y) in �
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and the open set W(x,y) = �. Hence by Theorem 7.2 each admissible vector field on � is
integrable.

On the other hand we notice that k = n1 − m̃1 = 1. By the Gram-Schmidt process an
orthonormal basis with respect to the metric g is given by

e1 = 1

α1
(X1 + X1(κ)X2),

e2 = 1

α2

(

X4 − X4(θ)X3 + X4(κ)

α2
1

(X2 − X1(κ)X1)

)

,

v3 = 1

α3
(X3 + X4(θ)X4),

v4 = α3

α2α1

(

(−X1(κ)X1 + X2) + X4(κ)

α2
3

(X4(θ)X3 − X4)

)

,

where we set

α1 =
√

1+ X1(κ)2, α3 =
√

1+ X4(θ)2

α2 =
√

1+ X4(θ)2 + X4(κ)2

(1+ X1(κ)2)
=

√

α2
1α

2
3 + X4(κ)2

α1
.

Since it holds

〈v3 ∧ e2, X3 ∧ X4〉 = α3

α2
,

〈v4 ∧ e2, X3 ∧ X4〉 = 0,

〈[e1, v3] ∧ e2, X3 ∧ X4〉 = X4(θ)(1− κ2)

α1α2α3
,

〈[e1, v4] ∧ e2, X3 ∧ X4〉 = α3

α2

(

1+ X4(κ)2

α2
1α

2
3

)

= α2

α3
,

then a vector field V⊥ = ψ3(x, y) v3 +ψ4(x, y) v4 normal to 
 is admissible if and only if
ψ3, ψ4 ∈ Cr

0(�) verify

α3

α2
e1(ψ3) + X4(θ)(1− κ2)

α1α2α3
ψ3 + α2

α3
ψ4 = 0.

That is equivalent to

X̄1(ψ3) + b⊥ ψ3 + a⊥ ψ4 = 0, (7.7)

where X̄1 = cos(θ(x, y))∂x + sin(θ(x, y))∂y and

b⊥ = X4(θ)(1− X1(θ)2)

1+ X4(θ)2
,

a⊥ = α1

(

1+ X4(κ)2

α2
1α

2
3

)

.

In particular, since a⊥(x, y) > 0 we have that rank(a⊥(x, y)) = 1 for all (x, y) ∈ �. Along
the integral curve γ ′(t) = X̄1 on � the Eq. (7.7) reads

ψ ′
3(t) + b⊥(t)ψ3(t) + a⊥(t)ψ4(t) = 0,
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where we set f (t) = f (γ (t)) for each function f : � → R.

Remark 7.6 Let (N ,H) be a Carnot manifold such that H = ker(θ) where θ is a R
n−� one

form. Following [28,43] we say that an immersion � : M̄ → N is horizontal when the
pull-back �∗θ = 0 and, given a point p ∈ �(M̄), the subspace TpM ⊂ Hp is regular if the
map

V → (ιV dθ)|TpM (7.8)

is onto for each horizontal vector V on M̄ . Let X be an horizontal extension of V on N and
Y be another horizontal vector field on N , then

dθ(X , Y ) = X(θ(Y )) − Y (θ(X)) − θ([X , Y ]) = −θ([X , Y ])
Assume that the local frame E1, . . . , Em generate TpM at p then the map (7.8) is given by
θ([X , E j ](p)), for each j = 1, . . . ,m. In [24, Section 3] the author notice that there exist
special coordinates adjusted to the admissibility system such that the entries of the control
matrix A are ai jh = 〈Vi , [E j , Vh]〉, where Vm+1, . . . , Vn are vector fields in the normal
bundle. In this notation the surjectivity of this map coincides with the pointwise condition of
maximal rank of the matrix (ai jh). Since by Eq. (6.17) the rank of A is independent of the
metric g we deduce that this regularity notion introduced by [27,28] is equivalent to strongly
regularity at p̄ (Definition 7.1) for the class of horizontal immersions.

7.2 An isolated plane in the Engel group

Definition 7.7 We say that an immersion � : M̄ → N in an equiregular graded manifold
(N ,H1 ⊂ . . . ⊂ Hs) is isolated if the only admissible variation normal to M = �(M̄) is
the trivial one.

Here we provide an example of isolated surface immersed in the Engel group.

Example 7.8 Let N = R
4 and H = span{X1, X2}, where
X1 = ∂x1 , X2 = ∂x2 + x1∂x3 + x3∂x4

and X3 = ∂x3 and X4 = ∂x4 . We denote by E
4 the Engel group given by (R4,H). Let

ϒ : � ⊂ R
2 → E

4 be the immersion given by

ϒ(v, ω) = (v, 0, ω, 0).

Since ϒv ∧ ϒw = X1 ∧ X3 the degree deg(
) = 3, where 
 = ϒ(�) is a plane. An
admissible vector field V = ∑4

k=1 fk Xk verifies the system (6.2) that is given by

4
∑

h=1

∂ fh
∂x1

〈Xh ∧ X3, X Ji 〉 +
∂ fh
∂x3

〈X1 ∧ Xh, X Ji 〉+

+ fh
(〈[X1, Xh] ∧ X3, X Ji 〉 + 〈X1 ∧ [X3, Xh], X Ji 〉

) = 0,

(7.9)

for X J1 = X1 ∧ X4, X J2 = X2 ∧ X4 and X J3 = X3 ∧ X4. Therefore (7.9) is equivalent to
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂ f4
∂x3

+ f2 = 0

0 = 0

−∂ f4
∂x1

= 0.
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Let K = supp(V ). First of all we have ∂ f4
∂x1

= 0. Since f4 ∈ C∞(�) there follows

∂ f2
∂x1

= − ∂2 f4
∂x3∂x1

= 0.

Then let (x1, x2) ∈ K we consider the curve

γ : s �→ (x1 + s, x3)

along which f4 and f2 are constant. Since f4 and f2 are compactly supported at the end
point, (x1 + s0, x3) ∈ ∂K we have f4(x1 + s0, x3) = f2(x1 + s0, x3) = 0. Therefore we
gain f4 = f2 ≡ 0. Therefore the only admissible vector fields f1X1 + f3X3 are tangent to

. Assume that there exists an admissible variation �s for ϒ , then its associated variational
vector field is admissible. However we proved that the only admissible vector fields are
tangent to 
, therefore the admissible variation �s has to be tangent to 
 and the only
normal one a trivial variation, hence we conclude that the plane 
 is isolated.

Moreover, we have that k = 1 and the matrix A⊥ defined in 7.1 is given by

A(u, w) =
⎛

⎝

−1
0
0

⎞

⎠ .

Since rank(A) = 1 < 3 we deduce that ϒ is not strongly regular at any point in �.

In analogy with the rigidity result by [4], here we prove that 
 is isolated without using
the admissibility system. This also implies that the plane 
 is rigid in the C1 topology.

Proposition 7.9 Let E
4 be the Engel group given by (R4,H), where the distribution H is

generated by

X1 = ∂x1 , X2 = ∂x2 + x1∂x3 + x3∂x4 .

Let � ⊂ R
2 be a bounded open set. Then the immersion ϒ : � → E

4 of degree 3 given by

ϒ(v,w) = (v, 0, w, 0)

is isolated.

Proof An admissible normal variation �s of ϒ has to have the same degree of ϒ and has
to share the same boundary ϒ(∂�) = ∂
, where clearly 
 = ϒ(�). For a fix s, we can
parametrize �s by

� : � → E
4, �(v,w) = (v, φ(v,w),w,ψ(v,w)),

where φ,ψ ∈ C1
0 (�, R). Since deg(�(�)) = 3 we gain

⎧

⎪⎨

⎪⎩

〈�v ∧ �w, X1 ∧ X4〉 = 0

〈�v ∧ �w, X2 ∧ X4〉 = 0

〈�v ∧ �w, X3 ∧ X4〉 = 0,

(7.10)

where

�v = ∂1 + φv∂2 + ψv∂4 = X1 + φv(X2 − vX3 + wX4) + ψvX4

and

�w = φw∂2 + ∂3 + ψw∂4 = φw(X2 − vX3 + wX4) + X3 + ψwX4.
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Denoting by π4 the projection over the 2-vectors of degree larger than 3, we have

π4(�v ∧ �w) = (ψw + wφw)X1 ∧ X4 + φv(ψw + wφw)X2 ∧ X4

− vφv(ψw + wφw)X3 ∧ X4 + φw(ψv + wφv)X4 ∧ X2

+ (1− vφw)(ψv + wφv)X4 ∧ X3.

Therefore (7.10) is equivalent to
⎧

⎪⎨

⎪⎩

ψw + wφw = 0

φvψw − ψvφw = 0

v(φvψw − ψvφw) − (ψv + wφv) = 0.

(7.11)

The second equation implies that (7.11) is equivalent to
⎧

⎪⎨

⎪⎩

ψw + wφw = 0

φvψw − ψvφw = 0

ψv + wφv = 0.

(7.12)

Then we notice that the first and the third equations implies the second one as it follows

φvψw − ψvφw = −φvwφw + wφvφw = 0.

Therefore the immersion � has degree three if and only if
{

ψw = −wφw

ψv = −wφv.
(7.13)

Only when the compatibility conditions ([29, Eq. (1.4), Chapter VI]) for linear system of
first order are given we have a solution of this system. However the compatibility condition
is given by

0 = ψwv − ψvw = φv

Since φ ∈ C1
0(�) we obtain φ ≡ 0. Therefore also ψv = 0, then ψ ≡ 0. Hence � = ϒ . ��

8 First variation formula for submanifolds

In this section we shall compute a first variation formula for the area Ad of a submanifold
of degree d . We shall give some definitions first. Assume that � : M̄ → N is an immersion
of a smooth m-dimensional manifold into an n-dimensional equiregular graded manifold
endowed with a Riemannian metric g. Let μ = �∗g. Fix p̄ ∈ M̄ and let p = �( p̄). Take a
μ-orthonormal basis (ē1, . . . , ēm) in Tp̄ M̄ and define ei := d� p̄(ēi ) for i = 1, . . . ,m. Then
the degree d area density � is defined by

�( p̄) := |(e1 ∧ . . . ∧ em)d | =
⎛

⎝
∑

deg(X J )=d

〈e1 ∧ . . . ∧ em, (X J )p〉2
⎞

⎠

1/2

, (8.1)

where (X1, . . . , Xn) is an orthonormal adapted basis of T N . Then we have

Ad(M) =
∫

M̄
�( p̄)dμ( p̄).
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Assume now that V ∈ X(M̄, N ), then we set

(divd
M̄
V )( p̄) :=

m
∑

i=1

〈e1 ∧ . . . ∧ ∇ei V ∧ . . . ∧ em, (e1 ∧ . . . ∧ em)d〉. (8.2)

Finally, define the linear function f by

f (Vp̄) :=
∑

deg(X J )=d

〈e1 ∧ . . . ∧ em,∇Vp̄ X J 〉〈e1 ∧ . . . ∧ em, (X J ) p̄〉. (8.3)

Then we have the following result

Theorem 8.1 Let � : M̄ → N be an immersion of degree d of a smooth m-dimensional
manifold into an equiregular graded manifold equipped with a Riemannian metric g. Assume
that there exists an admissible variation � : M̄ × (−ε, ε) → N with associated variational
field V with compact support. Then

d

dt

∣
∣
∣
∣
t=0

Ad(�t (M̄)) =
∫

M̄

1

�( p̄)

(

(divd
M̄
V )( p̄) + f (Vp̄)

)

dμ( p̄). (8.4)

Proof Fix a point p̄ ∈ M̄ . Clearly, Ei (t, p̄) = d�( p̄,t)(ēi ), i = 1, . . . ,m, are vector fields
along the curve t �→ �( p̄, t). Therefore, the first variation is given by

d

dt

∣
∣
∣
∣
t=0

A(�t (M̄)) =
∫

M̄

d

dt

∣
∣
∣
∣
t=0

| (E1(t) ∧ . . . ∧ Em(t))d |dμ( p̄)

=
∫

M̄

d

dt

∣
∣
∣
∣
t=0

⎛

⎝
∑

deg(X J )=d

〈E1(t) ∧ . . . ∧ Em(t), X J 〉2
⎞

⎠

1
2

dμ( p̄).

The derivative of the last integrand is given by

1

|(e1 ∧ . . . ∧ em)d |
∑

deg(X J )=d

〈e1 ∧ . . . ∧ em, (X J )p〉 ×

×
(

〈e1 ∧ . . . ∧ em,∇Vp̄ X J 〉 +
m
∑

i=1

〈e1 ∧ . . . ∧ ∇ei V ∧ . . . ∧ em, (X J )p〉
)

.

Using (8.2) and (8.3) we obtain (8.4). ��

Definition 8.2 Let � : M̄ → N be an immersion of degree d of a smooth m-dimensional
manifold into an equiregular graded manifold equipped with a Riemannian metric g. We say
that � is Ad -stationary, or simply stationary, if it is a critical point of the area Ad for any
admissible variation.

Proposition 8.3 Let � : M̄ → N be an immersion of degree d of a smooth m-dimensional
manifold into an equiregular graded manifold equipped with a Riemannian metric g. Let �t

be admissible variation whose variational field V = V� is compactly supported and tangent
to M = �(M̄). Then we have

d

dt

∣
∣
∣
∣
t=0

Ad(�t (M̄)) = 0.
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Proof Since �t (M̄) ⊂ �(M) for all t , the vector field V̄p = d�−1
p̄ (Vp̄) is tangent to M̄ and

we have

d

dt

∣
∣
∣
∣
t=0

Ad(M) =
∫

M̄
(V̄ (�) + � divM̄ V̄ ) dμ =

∫

M̄
divM̄ (�V̄ ) dμ = 0.

��

Lemma 8.4 Let f , g ∈ C∞(M)and X be a tangential vector field in C∞(M, T M). Then
there holds,

(i) f divM (X) + X( f ) = divM ( f X),
(ii) gX( f ) = divM ( f gX) − g f divM (X) − f X(g).

Proof By the definition of divergence we obtain (i) as follows

divM ( f X) =
m
∑

i=1

〈∇ei ( f X), ei 〉 =
m
∑

i=1

ei ( f )〈X , ei 〉 + f 〈∇ei (X), ei 〉.

To deduce (ii) we apply twice (i) as follows

divM (g f X) − f X(g) = g divM ( f X) = gX( f ) + g f divM (X).

��

Theorem 8.5 Let � : M̄ → N be an immersion of degree d of a smooth m-dimensional
manifold into an equiregular graded manifold equipped with a Riemannian metric g. Assume
that there exists an admissible variation � : M̄ × (−ε, ε) → N with associated variational
field V with compact support. Then

d

dt

∣
∣
∣
∣
t=0

Ad(�t (M̄)) =
∫

M̄
〈V ,Hd〉dμ, (8.5)

where Hd is the vector field

−
n

∑

j=m+1

m
∑

i=1

divM
(

ξi j Ei
)

N j .

+
n

∑

j=m+1

m
∑

i=1

〈E1 ∧ . . . ∧ ∇Ei N j ∧ . . . ∧ Em,
(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉 N j

+
n

∑

j=m+1

f (N j )

�
N j .

(8.6)

In this formula, (Ei )i is a local orthonormal basis of T M and (N j ) j a local orthonormal
basis of T M⊥. The functions ξi j are given by

ξi j = 〈E1 ∧ . . .∧ (i)
N j ∧ . . . ∧ Em,

(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉. (8.7)

Proof Since our computations are local and immersions are local embeddings, we shall
identify locally M̄ and M to simplify the notation.
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We decompose V = V� + V⊥ in its tangential V� and perpendicular V⊥ parts. Since
divd

M̄
and the functional f defined in (8.3) are additive, we use the first variation formula

(8.4) and Proposition 8.3 to obtain

d

dt

∣
∣
∣
∣
t=0

Ad(�t (M̄)) =
∫

M̄

1

�( p̄)

(

(divd
M̄
V⊥)( p̄) + f (V ⊥̄

p )
)

dμ( p̄).

To compute this integrand we consider a local orthonormal basis (Ei )i in T M around p
and a local orthonormal basis (N j ) j of T M⊥ with (N j ) j . We have

V⊥ =
n

∑

j=m+1

〈V , N j 〉N j .

We compute first

divd
M̄
V⊥

�
=

m
∑

i=1

〈E1 ∧ . . . ∧ ∇Ei V
⊥ ∧ . . . ∧ Em,

(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉

as
m
∑

i=1

n
∑

j=m+1

〈E1 ∧ . . . ∧ (∇Ei 〈V , N j 〉N j
) ∧ . . . ∧ Em,

(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉,

that it is equal to
m
∑

i=1

n
∑

j=m+1

(

Ei
(〈V , N j 〉

)〈E1 ∧ . . .∧ (i)
N j ∧ . . . ∧ Em,

(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉

+ 〈V , N j 〉〈E1 ∧ . . .∧ (i)∇Ei N j ∧ . . . ∧ Em,
(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉
)

.

(8.8)

The group of summands in the second line of (8.8) is equal to 〈V ,H2〉, where

H2 =
m
∑

i=1

n
∑

j=m+1

〈E1 ∧ . . .∧ (i)∇Ei N j ∧ . . . ∧ Em,
(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉 N j .

To treat the group of summands in the first line of (8.8) we use (ii) in Lemma 8.4. recalling
(8.7) we have

Ei
(〈V , N j 〉

)

ξi j = divM
(〈V , N j 〉ξi j Ei

)− 〈V , divM
(

ξi j Ei
)

N j 〉,
so that applying the Divergence Theorem we have that the integral in M of the first group of
summands in (8.8) is equal to

∫

M
〈V ,H1〉dμ,

where

H1 = −
m
∑

i=1

n
∑

j=m+1

divM
(

ξi j Ei
)

N j .

We treat finally the summand

f (V⊥)

�
=

n
∑

i=m+1

〈V , N j 〉 f (N j )

�
= 〈V ,H3〉,
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where

H3 =
n

∑

j=m+1

f (N j )

�
N j .

This implies the result since Hd = H1 +H2 +H3. ��
In the following result we obtain a slightly different expression for the mean curvature

Hd in terms of Lie brackets. This expression is sometimes more suitable for computations.

Corollary 8.6 Let � : M̄ → N be an immersion of degree d of a smooth m-dimensional
manifold into an equiregular graded manifold equipped with a Riemannian metric g, M =
�(M̄). We consider an extension (Ei )i of a local orthonormal basis of T M and respectively
an extension (N j ) j of a local orthonormal basis of T M⊥ to an open neighborhood of N.
Then the vector field Hd defined in (8.6) is equal to

Hd =
n

∑

j=m+1

(

divM
(

�N j −
m
∑

i=1

ξi j Ei

)

+

+ N j (�) +
m
∑

i=1

n
∑

k=m+1

ξik〈[Ei , N j ], Nk〉
)

N j ,

(8.9)

where ξi j is defined in (8.7).

Proof Keeping the notation used in the proof of Theorem 8.5 we consider

H2 =
m
∑

i=1

n
∑

j=m+1

〈E1 ∧ . . .∧ (i)∇Ei N j ∧ . . . ∧ Em,
(E1 ∧ . . . ∧ Em)d

|(E1 ∧ . . . ∧ Em)d | 〉 N j .

Writing

∇Ei N j =
m
∑

ν=1

〈∇Ei N j , Eν〉Eν +
m
∑

k=m+1

〈∇Ei N j , Nk〉Nk, (8.10)

we gain

H2 =
n

∑

j=m+1

(

divM (N j ) |(E1 ∧ . . . ∧ Em)d | +
m
∑

i=1

n
∑

k=m+1

ξik〈∇Ei N j , Nk〉
)

N j .

Let us consider

H3 =
n

∑

j=m+1

∑

deg(X J )=d

(

〈E1 ∧ . . . ∧ Em,∇N j X J 〉 〈E1 ∧ . . . ∧ Em, X J 〉
|(E1 ∧ . . . ∧ Em)d |

)

N j . (8.11)

Since the Levi–Civita connection preserves the metric, we have

〈E1 ∧ . . . ∧ Em,∇N j X J 〉 = N j (〈E1 ∧ . . . ∧ Em, X J 〉) − 〈∇N j (E1 ∧ · · · ∧ Em), X J 〉.
(8.12)

Putting the first term of the right hand side of (8.12) in (8.11) we obtain

∑

deg(X J )=d

N j (〈E1 ∧ . . . ∧ Em, X J 〉) 〈E1 ∧ . . . ∧ Em, X J 〉
|(E1 ∧ . . . ∧ Em)d | = N j (�).
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On the other hand writing

∇N j Ei =
m
∑

ν=1

〈∇N j Ei , Eν〉Eν +
m
∑

k=m+1

〈∇N j Ei , Nk〉Nk

we deduce
m
∑

i=1

∑

deg(X J )=d

〈E1 ∧ . . .∧ (i)∇N j Ei ∧ . . . ∧ Em, X J 〉 〈E1 ∧ . . . ∧ Em, X J 〉
|(E1 ∧ . . . ∧ Em)d | =

=
m
∑

i=1

n
∑

k=m+1

〈∇N j Ei , Nk〉ξik .

Therefore we obtain

H3 =
n

∑

j=m+1

(

N j (�) −
m
∑

i=1

n
∑

k=m+1

〈∇N j Ei , Nk〉ξik
)

N j .

Since the Levi–Civita connection is torsion-free we have

H2 +H3 =
n

∑

j=m+1

(

divM (N j )� + N j (�) +
m
∑

i=1

n
∑

k=m+1

ξik〈[Ei , N j ], Nk〉
)

.

Since divM (N j )� = divM (� N j ) we conclude that Hd = H1 +H2 +H3 is equal to (8.9).
��

8.1 First variation formula for strongly regular submanifolds

Definition 8.7 Let� : M̄ → N be a strongly regular immersion (see § 7) at p̄, vm+1, . . . , vn
be an orthonormal adapted basis of the normal bundle and k be the integer defined in 6.6.
Let Nm+1, . . . , Nn be a local adapted frame of the normal bundle so that (N j )p = v j . By
Remark 7.3 the immersion� is strongly regular at p̄ if and only if rank(A⊥) = �. Then there
exists a partition of {m+1, . . . ,m+k} into sub-indices h1 < . . . < h� and i1 < . . . < im+k−�

such that the matrix

Â⊥( p̄) =
⎛

⎜
⎝

α1h1( p̄) · · · α1h�
( p̄)

...
. . .

...

α�h1( p̄) · · · α�h�
( p̄)

⎞

⎟
⎠ (8.13)

is invertible. The mean curvature vector of degree d defined in Theorem 8.5 is given by

Hd =
n

∑

j=m+1

H j
d N j .

Then we decompose Hd into the following three components

Hv
d =

⎛

⎜
⎝

Hm+k+1
d

...

Hn
d

⎞

⎟
⎠

t

, Hh
d =

⎛

⎜
⎜
⎝

Hh1
d
...

Hh�

d

⎞

⎟
⎟
⎠

t

, and Hι
d =

⎛

⎜
⎜
⎝

Hi1
d
...

Him+k−�

d

⎞

⎟
⎟
⎠

t

(8.14)

with respect to Nm+1, . . . , Nn .
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Theorem 8.8 Let� : M̄ → N be a strongly regular immersion at p̄ in an equiregular graded
manifold. Then �(M̄) is a critical point of Ad if and only if the immersion � verifies

Hι
d −Hh

d( Â
⊥)−1 Ã⊥ = 0, (8.15)

and

Hv
d −Hh

d( Â
⊥)−1B⊥ −

m
∑

j=1

E∗
j

(

Hh
d ( Â⊥)−1C⊥

j

)

= 0, (8.16)

where E∗
j is the adjoint operator of E j for j = 1, . . . ,m and Hv

d , H
h
d and Hι

d are defined

in (8.14), B⊥, C⊥
j in 6.3, Â⊥ in (8.13) and Ã⊥ is the � × (m + k − �) matrix given by the

columns i1, . . . , im+k−� of A⊥.

Proof Since � : M̄ → N is a normal strongly regular immersion then by Theorem 7.2 each
normal admissible vector field

V⊥ =
m+k
∑

i=m+1

φi Ni +
n

∑

r=m+k+1

ψr Nr

is integrable. Keeping in mind the sub-indices in Definition 8.7, we set

� =
⎛

⎜
⎝

ψm+k+1
...

ψn

⎞

⎟
⎠ , � =

⎛

⎜
⎝

φh1
...

φh�

⎞

⎟
⎠ and ϒ =

⎛

⎜
⎝

φi1
...

φim+k−�

⎞

⎟
⎠ . (8.17)

Since the immersion � : M̄ → N is strongly regular, the admissibility condition (6.24) for
V⊥ is equivalent to

� = −( Â⊥)−1
( m
∑

j=1

C⊥
j E j (�) + B⊥� + Ã⊥ϒ

)

. (8.18)

By Theorem 8.5 the first variational formula is given by

d

dt

∣
∣
∣
∣
t=0

Ad(�t (M̄)) =
∫

M̄
〈V⊥,Hd〉

=
∫

M̄
Hv

d � +Hι
d ϒ +Hh

d�

=
∫

M̄
Hv

d � +Hι
d ϒ −Hh

d ( Â⊥)−1
( m
∑

j=1

C⊥
j E j (�) + B⊥� + Ã⊥ϒ

)

=
∫

M̄

(

Hι
d −Hh

d( Â
⊥)−1 Ã⊥

)

ϒ+

+
∫

M̄

(

Hv
d −Hh

d( Â
⊥)−1B⊥ −

m
∑

j=1

E∗
j

(

Hh
d ( Â⊥)−1C⊥

j

))

�,

for every � ∈ C∞
0 (Wp̄, R

n−m−k), ϒ ∈ C∞
0 (Wp̄, R

k−�). By the arbitrariness of � and ϒ ,
the immersion � is a critical point of the area Ad if and only if it satisfies Eqs. (8.15) and
(8.16) on Wp̄ . ��

123



233 Page 40 of 44 G. Citti et al.

Example 8.9 (First variation for a hypersurface in a contact manifold) Let (M2n+1, ω) be a
contact manifold such that H = ker(ω), see § 4.2. Let T be the Reeb vector associated to
this contact geometry and g the Riemannian metric on M that extends a given metric on H
and makes T orthonormal to H. Let ∇ be the Riemannian connection associated to g.

Let us consider a hypersurface 
 immersed in M . As we showed in § 4.2, the degree
of 
 is maximum and equal to 2n + 1, thus each compactly supported vector field V on

 is admissible. Following § 4.2, we consider the unit normal N to 
 and its horizontal
projection Nh . As in § 4.2, we consider the vector fields νh = Nh|Nh | , and e1, . . . , e2n−1 an
orthonormal basis of Tp
 ∩ Hp . A straightforward computation, contained in [25], shows
that the mean curvature Hd deduced in (8.9) coincide with

Hd = − divh
(νh) + 〈[νh, T ], T 〉. (8.19)

When 〈[νh, T ], T 〉 = 0we obtainwell known horizontal divergence of the horizontal normal.
This definition of mean curvature for an immersed hypersurface was first given by S.Pauls
[44] for graphs over the x, y-plane inH

1, later extended byCheng et al. [9] in a 3-dimensional
pseudo-hermitian manifold. In a more general setting this formula was deduced in [15,30].
For more details see also [6,20,21,47,48,50].

Example 8.10 (First variation for ruled surfaces in an Engel Structure) Here we compute the
mean curvature equation for the surface 
 ⊂ E of degree 4 introduced in Sect. 4.3. In (4.8)
we determined the tangent adapted basis

Ẽ1 = cos(θ)�x + sin(θ)�y = X1 + X1(κ)X2,

Ẽ2 = − sin(θ)�x + cos(θ)�y = X4 − X4(θ)X3 + X4(κ)X2

A basis for the space (T M)⊥ is given by

Ñ3 = X4(θ)X4 + X3

Ñ4 = X1(κ)X1 − X2 + X4(κ)X4

By the Gram-Schmidt process we obtain an orthonormal basis with respect to the metric g
as follows

E1 = Ẽ1

|Ẽ1|
= 1

α1
(X1 + X1(κ)X2),

E2 = 1

α2

(

X4 − X4(θ)X3 + X4(κ)

α2
1

(X2 − X1(κ)X1)

)

N3 = 1

α3
(X3 + X4(θ)X4)

N4 = α3

α2α1

(

(−X1(κ)X1 + X2) + X4(κ)

α2
3

(X4(θ)X3 − X4)

)

where we set

α1 =
√

1+ X1(κ)2, α3 =
√

1+ X4(θ)2

α2 =
√

1+ X4(θ)2 + X4(κ)2

(1+ X1(κ)2)
=

√

α2
1α

2
3 + X4(κ)2

α1
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and

Nh = −X1(κ)X1 + X2, νh = 1

α1
(−X1(κ)X1 + X2)

Since the degree of 
 is equal to 4 we deduce that

(E1 ∧ E2)4 = 1

α1α2
(X1 ∧ X4 + X1(κ)X2 ∧ X4),

then it follows |(E1 ∧ E2)4| = α−1
2 and

(E1 ∧ E2)4

|(E1 ∧ E2)4| =
1

α1
(X1 ∧ X4 + X1(κ)X2 ∧ X4).

A straightforward computation shows that ξi3 for i = 1, 2 defined in (8.9) are given by

ξ13 =
〈

N3 ∧ E2,
(E1 ∧ E2)4

|(E1 ∧ E2)4|
〉

= 0,

ξ23 =
〈

E1 ∧ N3,
(E1 ∧ E2)4

|(E1 ∧ E2)4|
〉

= X4(θ)

α3
,

ξ14 =
〈

N4 ∧ E2,
(E1 ∧ E2)4

|(E1 ∧ E2)4|
〉

= 0,

ξ24 =
〈

E1 ∧ N4,
(E1 ∧ E2)4

|(E1 ∧ E2)4|
〉

= − X4(κ)

α1α2α3

Since we have

1

α2
N3 − X4(θ)

α3
E2 = α3

α2
X3 − X4(θ)X4(κ)

α1α2α3
νh .

and

1

α2
N4 + X4(κ)

α1α2α3
E2 = 1

α2
2

(
α3

α1

(

Nh + X4(κ)

α2
3

(X4(θ)X3 − X4)

)

+ X4(κ)

α1α3

(

− X4(θ)X3 + X4 − X4(κ)

α2
1

Nh

))

= 1

α2
2α1

(α3Nh + X4(κ)2

α3α
2
1

Nh) = 1

α1α3
Nh

= 1

α3
νh

it follows that the third component of Hd is equal to

H3
d = − divM

(
α3

α2
X3 − X4(θ)X4(κ)

α1α2α3
νh

)

− N3(α
−1
2 )

+ X4(θ)

α3
〈[N3, E2], N3〉 − X4(κ)

α3α2α1
〈[N3, E2], v4〉

and the fourth component of Hd is equal to

H4
d = − divM

(
νh

α3

)

− N4(α
−1
2 ) + X4(θ)

α3
〈[N4, E2], N3〉 − X4(κ)

α3α2α1
〈[N4, E2], N4〉.
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Then first variation formula is given by

Ad(�t (�)) =
∫

�

〈V⊥,Hd 〉 =
∫

�

H3
d ψ3 + H4

d ψ4 (8.20)

for each ψ3, ψ4 ∈ C∞
0 satisfying (7.7). Following Theorem 7.2 for each ψ3 ∈ C∞

0 we
deduce

ψ4 = − X̄1(ψ3) + b⊥ψ3

a⊥
, (8.21)

since a⊥ > 0.

Lemma 8.11 Keeping the previous notation. Let f , g : � → R be functions in C1
0 (�) and

X̄1 = cos(θ(x, y))∂x + sin(θ(x, y))∂y,

X4 = − sin(θ(x, y))∂x + cos(θ(x, y))∂y

Then there holds
∫

�

gX̄1( f ) +
∫

�

f g X̄4(θ) = −
∫

�

f X̄1(g).

By Lemma 8.11 and the admissibility Eq. (8.21) we deduce that (8.20) is equivalent to

∫

�

(

H3
d − b⊥

a⊥
H4
d + X̄1

(

H4
d

a⊥

)

+ X4(θ)
H4
d

a⊥

)

ψ3,

for each ψ3 ∈ C∞
0 (�). Therefore a straightforward computation shows that minimal (θ, κ)-

graphs for the area functional A4 verify the following third order PDE

X̄1(H
4
d ) + a⊥H3

d +
(
X4(θ)

α2
3

[X1, X4](θ) − 1

a⊥
X̄1

(

a⊥
))

H4
d = 0. (8.22)
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