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AN EXTENDED GFFIT STATISTIC DEFINED ON ORTHOGONAL COMPONENTS OF

PEARSON’S CHI-SQUARE

Abstract

The Pearson and likelihood ratio statistics are commonly used to test goodness of

fit for models applied to data from a multinomial distribution. The goodness-of-fit test

based on Pearson’s chi-squared statistic is sometimes considered to be a global test that

gives little guidance to the source of poor fit when the null hypothesis is rejected, and it

has also been recognized that the global test can often be outperformed in terms of

power by focused or directional tests. For the cross-classification of a large number of

manifest variables, the GFfit statistic focused on second-order marginals for variable

pairs i, j has been proposed as a diagnostic to aid in finding the source of lack of fit

after the model has been rejected based on a more global test. When data are from a

table formed by the cross-classification of a large number of variables, the common

global statistics may also have low power and inaccurate Type I error level due to

sparseness in the cells of the table. The sparseness problem is rarely encountered with

the GFfit statistic because it is focused on the lower-order marginals. In this paper, a

new and extended version of the GFfit statistic is proposed by decomposing the Pearson

statistic from the full table into orthogonal components defined on marginal

distributions and then defining the new version, GFfit(ij)⊥ , as a partial sum of these

orthogonal components. While the emphasis is on lower-order marginals, the new

version of GFfit(ij)⊥ is also extended to higher-order tables so that the GFfit⊥

statistics sum to the Pearson statistic. As orthogonal components of the Pearson X2

statistic, the GFfit(ij)⊥ have advantages over other lack-of-fit diagnostics that are

currently available for cross-classified tables: the GFfit(ij)⊥ have higher power to detect



lack of fit while maintaining good Type I error control even if the joint frequencies are

very sparse, as will be shown in simulation results; theoretical results will establish that

the GFfit(ij)⊥ have known degrees of freedom and are asymptotically independent

statistics with known joint distribution, a property which facilitates less conservative

control of false discovery rate (FDR) or familywise error rate (FWER) in a

high-dimensional table which would produce a large number of bivariate lack-of-fit

diagnostics. GFfit(ij)⊥ are also computationally stable. The extended GFfit(ij)⊥ statistic

can be applied to a variety of models for cross-classified tables. An application of the

new GFfit statistic as a diagnostic for a latent variable model is presented.

Key Words: multivariate discrete distribution, overlapping cells, orthogonal

components, composite null hypothesis
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1. Introduction

The fit of a multinomial model is often assessed by testing the composite null hypothesis
Ho : πππ = πππ(βββ), where πππ is a T -dimensional vector of multinomial probabilities, and πππ(βββ) is a
vector of the multinomial probabilities as a function of unique model parameters in the
g-dimensional vector βββ . For q variables, each with c categories, T = cq. When the model
parameters βββ are unknown and estimated, the null hypothesis Ho : πππ = πππ(βββ) is often tested with
the Pearson-Fisher statistic:

X2
PF = n

∑
s

z2s , (1.1)

where
zs = (πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
, s = 1, . . . , cq, (1.2)

and where

p̂s =
ns

n
is element s of p̂, the vector of multinomial proportions,

ns = element s of n, the vector of observed frequencies,

n = total sample size =
T∑

s=1

ns,

β̂ββ = parameter estimator vector,

πs(βββ) = the expected proportion for cell s, and

πs(β̂ββ) = estimated expected proportion for cell s .

The goodness-of-fit test based on Pearson’s chi-squared statistic is sometimes considered to
be a global test that gives little guidance to the source of poor fit when the null hypothesis is
rejected, and it has also been recognized that the global test can often be outperformed in terms of
power by focused or directional tests. For a multidimensional contingency table, Joreskog and
Moustaki (2001) proposed the following GFfit statistic focused on second-order marginals for
variable pairs i, j as a diagnostic to aid in finding the source of model lack of fit after the model
has been rejected based on a more global test:

n
∑
ab

(p̂
(ij)
ab − π̂

(ij)
ab )2

π̂
(ij)
ab

(1.3)

where i = 1, . . . , q − 1; j = i+ 1, . . . , q; a = 1, . . . , c; b = 1, . . . , c; p̂(ij)ab is the observed
proportion for cell a, b in the i, j marginal table; and π̂(ij)

ab is the expected or fitted proportion for
cell a, b in the i, j marginal table. Cagnone and Mignani (2007) worked with a somewhat different
formulation of the GFfit(ij) statistic, which is reviewed in Section 4, and obtained the
asymptotic distribution of the statistic when applied to ordinal variables. To avoid possible
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confusion, the 2001 version in expression 1.3 will be referred to as X2
ij in the remainder of this

paper. If a GFfit statistic is too large, it suggests that the association between variables i and j is
not well fit by the model. The focus on second-order marginals for cross-classified tables is
supported by the findings of Salomaa (1990).

In this paper, a new and extended version of the GFfit statistic is proposed and validated. Our
approach, in the tradition of Lancaster (1969), Miralev (1987), and Rayner and Best (1989),
decomposes the Pearson statistic from a full cross-classified table, where variables have c ≥ 2

categories, into orthogonal components. The new version of the statistic, GFfit(ij)⊥ , is defined as
a partial sum of orthogonal components obtained on marginal distributions of the cross-classified
table. The new version is also extended to higher-order tables, and GFfit⊥ statistics are shown to
sum to the Pearson statistic. As orthogonal components of the Pearson X2 statistic, the GFfit(ij)⊥
have advantages over other lack-of-fit diagnostics that are currently available for cross-classified
tables: the GFfit(ij)⊥ have higher power to detect lack of fit while maintaining good Type I error
control even if the joint frequencies are very sparse, as will be shown in simulation results;
theoretical results will establish that the GFfit(ij)⊥ have known degrees of freedom and are
asymptotically independent statistics with known joint distribution, a property which facilitates
less conservative control of false discovery rate (FDR) or familywise error rate (FWER) in a
high-dimensional table which would produce a large number of bivariate lack-of-fit diagnostics.
GFfit

(ij)
⊥ are also computationally stable.

When data are a table of counts formed by the cross-classification of a large number of
variables, Pearson’s chi-square and the likelihood ratio statistic may have low power and
inaccurate Type I error level due to sparseness (Koehler, 1986; Koehler & Larntz, 1980; Agresti &
Yang, 1987). In order to overcome the effects of sparse frequencies, several omnibus statistics
have been proposed that focus on lower-order marginal distributions of the joint variables rather
than the full joint distribution. Reiser (1996, 2008) developed omnibus test statistics focused on
lower-order marginals for models fit to cross-classified binary variables by using orthogonal
components of the Pearson-Fisher statistic. We also extend Reiser’s test statistics for binary
variables to the case of cross-classified tables with c ≥ 2 categories, and we show that the
GFfit

(ij)
⊥ statistics are orthogonal components of these omnibus statistics on lower-order

marginals. While a test for a model based on lower-order marginals is more focused than X2
PF , it

is still omnibus in the sense that an entire set of lower-order marginals is included, and there still
may be a lack of guidance to the source of poor fit when the null hypothesis is rejected. The
GFfit⊥ statistics may be employed as a diagnostic on bivariate tables after a model is rejected by
a test using the global X2

PF or after if it is rejected by an omnibus test on lower-order marginals.
The sparseness problem is rarely encountered with the new GFfit

(ij)
⊥ statistic itself because it is

also focused on the lower-order marginals.

The new version of GFfit is a member of a class of lack-of-fit diagnostics derived from an
underlying multinomial distribution that can be applied to a variety of models for
multidimensional contingency tables, including item response models, latent class models,
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log-linear models, and longitudinal models. Other members of this class of diagnostics include
Mij (Maydue-Olivares and Joe, 2006), ¯̄X

2

ij (Muthén & Asparouhov (2010), and X2
ij , the Pearson

X2 statistic applied to bivariate marginal tables. X2
ij is the same statistic as the original GFfit(ij).

Liu & Maydeu-Olivares (2014) advocate the need for a goodness-of-fit diagnostic to be well
approximated by a known reference distribution when the fitted model is correctly specified.
GFfit

(ij)
⊥ , Mij , and ¯̄X

2

ij have known asymptotic distributions, although X2
ij does not. In addition,

the joint distribution of a set of diagnostics should be considered for the purpose of maintaining
Type I error level when assessing a set of diagnostics for a model. While we will show that
GFfit

(ij)
⊥ has known joint distribution function, the joint distribution of ¯̄X

2

ij is unknown, and the
joint distribution of Mij has not been given.

We compare the performance of GFfit(ij)⊥ to these other three diagnostics in terms of Type I
error and power. Results for both asymptotic power and simulations are presented, and an
application of the new GFfit statistic as a diagnostic for a latent variable model is also presented.
Orthogonal components of Pearson’s statistic have a sequential nature. In the application we
demonstrate that occasionally it may be possible to use substantive theory to select an order that
will moderately increase power for the first few GFfit

(ij)
⊥ , but power results using theory and

simulations show that an arbitrary order has modest, if any, effect on the power of GFfit(ij)⊥ to
detect lack of fit when compared to other diagnostics that are not order dependent. Furthermore,
we will demonstrate that the correction for multiple testing to maintain Type I error level is much
more conservative for the diagnostics that have unknown joint distribution function compared to
the adjustment that can be used for GFfit(ij)⊥ .

2. Linear Combinations of Joint Frequencies

A traditional goodness-of-fit approach for a multinomial model fit to a cross-classified table
uses the joint frequencies to calculate a test statistic. This section presents a transformation from
joint proportions or frequencies to marginal proportions which are used to develop statistics on
lower-order marginals and the new version of GFfit which is presented in Section 4.1.

2.1. Marginal Probabilities

Marginal proportions for a contingency table can be obtained by a linear combination of the
joint proportions. The relationship can be shown by using zeros and 1’s to code the levels of
categorical response variables, Yi, i = 1, 2, . . . , q, where q ≥ 2 and Yi has c ≥ 2 response
categories. A q(c− 1)-dimensional vector of zeros and 1’s, can indicate a specific cell from the
contingency table formed by the cross-classification of q response variables. Then a
T = cq-dimensional set of response patterns can be generated by varying the levels of the qth

variable most rapidly, the qth − 1 variable next, etc. Define VVV as the T by q(c− 1) matrix with
response patterns as rows.
For q = 3 and c = 2, VVV is familiar:
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VVV =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


. (2.1)

For q = 3 and c = 3,

VVV 27 x 6 =



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 0 1 0 0 1
...

...
...

...
...

...

0 1 0 0 0 0

0 1 0 0 0 1

0 1 0 0 1 0
...

...
...

...
...

...

1 0 0 1 0 0

1 0 0 1 0 1

1 0 0 1 1 0



. (2.2)

Although the order of the columns of VVV is arbitrary, the ordering described above is a natural
ordering that will produce rows such that the binary numbers represented by the patterns are in
ascending order. More detail on generating the matrix VVV is given in Appendix A.

Formal definitions of first- and second-order marginal proportions are given in Section 9.1 of
Appendix A. The summation across the frequencies associated with the response patterns to
obtain the marginal proportions represents a linear transformation of the frequencies in the
multinomial vector πππ which can be implemented via multiplication by a certain incidence matrix,
denoted here generically by the symbol H. The symbol H[t] denotes the transformation matrix
that would produce marginals of order t. The symbol H[t:u], t ≤ u ≤ q, denotes the
transformation matrix that would produce marginals from order t up to and including order u.
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Furthermore, H[t] ≡H[t:t], and H ≡H[t:u] . More detail on generating the matrix H is given in
Appendix A. For first-order marginal proportions, H[1] = VVV ′.

For higher-order marginal proportions, the rows of H can be obtained as Hadamard products
among the columns of VVV , as shown in Section 9.3 of Appendix A. The second-order marginal
proportions for variables Yi and Yj can be obtained by employing the matrix H[2], and the
third-order marginal proportions for variables Yi, Yj , and Yk can be obtained by employing the
matrix H[3]. Then, for example,

H[1:3] =



H[1]

. . .

H[2]

. . .

H[3]


. (2.3)

A general matrix H[t:u] to obtain marginals of any order can be defined in a similar fashion by
using Hadamard products among the columns of VVV . H[1:q] gives a mapping from the cq joint
proportions to the set of (cq − 1) linearly independent marginal proportions:

ΠΠΠ = H[1:q]πππ, (2.4)

where

ΠΠΠ = (π(1)(2), π(1)(3), . . . , π(1)(c), π(2)(2), π(2)(3), . . . , π(2)(c), . . . , π(q)(c),

π(12)(2, 2), π(12)(2, 3), . . . π(q−1,q)(c, c), π(1,1,2)(2, 2, 2), . . . , π(q−2,q−1,q)(c, c, c)

. . . π(1,2,3...q)(c, c, c, . . . c))′
(2.5)

is the vector of linearly independent marginal proportions (Bartholomew, 1987). As constructed,
the first column of H[1:q] is a column of 0’s, and can be omitted along with the first element of πππ .
So define Ḧ[1:q] = (h2 h3 · · ·hcq) and π̈ππ = (π2, π3, · · · , πcq), where hf is column
f, f = 2, · · · , cq, from H[1:q], and πf is element f of πππ . Ḧ[1:q] is now a cq − 1 by cq − 1 full rank
matrix. The location of the column of 0’s in H[1:q] is arbitrary, but it appears in column 1 under
the ordering defined above. Then

ΠΠΠ = Ḧ[1:q]π̈ππ (2.6)

is equivalent to expression 2.4, and the transformation from joint proportions to marginal
proportions can be seen to be a one-to-one transformation from <cq−1 −→ <cq−1. Throughout
this paper, H[1:q]πππ could be replaced by Ḧ[1:q]π̈ππ .
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3. Orthogonal Components of X2
PF

Orthogonal components of X2
PF defined on marginal proportions were presented by Reiser

(2008) for q ≥ 3 categorical variables with c = 2 categories. In this section, we extend those
results to the case where c ≥ 2 categories. This extension of orthogonal components to variables
with multiple categories is straightforward.

3.1. Equivalence of X2
PF and a Quadratic Form on Marginals

Define the unstandardized residual rs = p̂s − πs(β̂ββ), and denote the T -dimensional vector of
unstandardized residuals as rrr with element rs. A vector of simple residuals for marginals of any
order may be defined such that eee = H(p̂− πππ(β̂ββ)) = Hrrr. Let X2

T−g−1 be a quadratic form statistic
defined on marginal proportions. As mentioned earlier, g is the number of model parameters to be
estimated. This section gives the conditions under which X2

T−g−1 is equivalent to X2
PF . Define

the two quadratic form statistics as follows:

X2
PF = nrrr′D(πππ(β̂ββ))−1rrr, and (3.1)

X2
T−g−1 = nrrr′H′Ω̂−1e Hrrr = eee′Σ̂ΣΣ

−1
eee eee (3.2)

where,

n
1
2 rrr

d→MVN(0,ΩΩΩrrr) (3.3)
ΩΩΩrrr = (D(πππ)− ππππππ ′ −G(A′A)−1G′) (3.4)
ΩΩΩeee = HΩΩΩrrrH′ (3.5)

D(πππ) = diagonal matrix with (s, s) element equal to πs(βββ) (3.6)

A = D(πππ)−1/2
∂πππ(βββ)

∂βββ
, G =

∂πππ(βββ)

∂βββ
, (3.7)

Σ̂ΣΣeee = n−1Ω̂e, and Ω̂e = Ωe evaluated at π̂ππ and πππ(β̂ββ). See Haberman (1993) for (3.3) and (3.4).
H = HT−g−1, is a T − g − 1 by cq partition of H[1:q], as defined in Section 2, with g rows deleted
in order to render Σ̂ΣΣeee full rank by accounting for estimated parameters of the model πππ(βββ). For
some models, any g rows can be deleted. For other models, such as a hierarchical log-linear
model where some marginals are exactly fit, the g rows to be deleted are determined in whole or
in part by features of the model. Alternatively, it is possible to define and calculate X2

T−g−1

without deleting rows from H[1:q], but then a generalized inverse would be needed for Σ̂ΣΣeee. More
details on deleting rows are given in Section 4.1. We use the expected information matrix (A′A)
because we are interested in components of the X2

PF statistic.
Consider the full rank matrix H = HT−g−1, as defined above. Then define H∗ = FFF ′H,

where FFF is the upper triangular matrix such that FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the



PSYCHOMETRIKA SUBMISSION February 25, 2022 11

Cholesky factor of ΩΩΩeee . Premultiplication by (CCC ′)−1 orthonormalises the matrix H relative to the
matrix (D(πππ)− ππππππ ′ −G(A′A)−1G′). H∗ has full row rank.

Then from Reiser (2008),

X2
T−g−1 = nrrr′H′F̂F̂−1Ω̂−1e (F̂′)−1F̂′Hrrr = nrrr′H′F̂(F̂′Ω̂eF̂)−1F̂′Hrrr = nrrr′(Ĥ∗)′Ĥ∗rrr, (3.8)

where Ĥ∗ = H∗(β̂ββ). Reiser (2008) proves that X2
PF = X2

T−g−1 if H is a T − g − 1 by T matrix
with rank= (T − g − 1) for the case T = 2q. H[1:q] with g rows removed as specified above
satisfies this rank condition. For extending results on components to the case c ≥ 2, the proof for
X2

PF = X2
T−g−1 remains valid when T = cq. If H = H[T−g−1], then the null hypotheses

Ho : πππ = πππ(βββ) and Ho : Hπππ = Hπππ(βββ) are equivalent, and Ho : πππ = πππ(βββ) becomes
Ho : ΠΠΠ = ΠΠΠ(βββ), where ΠΠΠ is the vector of marginal proportions as defined in Section 2. If g rows
are not removed from H[1:q] and a generalized inverse is used for Σ̂ΣΣeee , then g of the elements of
Ĥ∗rrr will be identically equal to zero.

3.2. Orthogonal Components

Define
γ̂γγ = n−

1
2 F̂FF
′
Hrrr = n−

1
2 Ĥ∗rrr (3.9)

where F̂FF is the matrix FFF evaluated at βββ = β̂ββ . Then from expression 3.8,

X2
T−g−1 = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
`=1

γ̂2` . (3.10)

From properties of the Cholesky factor, γ̂2` , ` = 1, . . . , (T − g − 1), are orthogonal components of
X2

PF when c ≥ 2, and they have a sequential property. Orthonormalization of goodness-of-fit
diagnostics using the Cholesky factor has been considered for other statistical models. Houseman
et al. (2004), Jacqmin-Gadda et al. (2007), and Verbeke and Molenberghs (2009) have proposed
and studied the Cholesky residual. Ĥ∗rrr is essentially a vector of Cholesky residuals on the
marginals.

Under the regularity conditions given by Birch (1964), and assuming the model πππ(βββ) is
identified, nΣ̂ΣΣeee

P→ΩΩΩeee and eee d→MVN(ξξξ,ΣΣΣeee), where ξξξ = H(πππ − πππ(βββ)). Then, since eee is a linear
combination of the elements of rrr, Ĥ∗rrr has asymptotic covariance matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1, and
the elements γ̂2`

d→ χ2
1 and are asymptotically independent random variables. Consequently,

partial sums of of the γ̂2` have an asymptotic chi-square distribution with degrees of freedom equal
to the number of non-zero components in the sum. However, as with X2

PF , the asymptotic
distribution for γ̂2` may fail if the marginal frequencies used to calculate γ̂2` are sparse.

nΣ̂ΣΣeee is estimated from the fitted joint proportions. In the sparseness case, which may be
present if q is large relative to n, an important result from Simonoff (1986) is applicable to the



12 February 25, 2022 PSYCHOMETRIKA SUBMISSION

distribution of γ̂2` on lower-order marginals (Reiser, 2019). Simonoff (1986) defines the sparse
asymptotic framework as n,K →∞, with 0 < ν1 < n/K < ν2 <∞, and ∃M ∈ (1,∞) such
that 0 < (MK)−1 < πs < M/K < 1 ∀ s. Assuming β̂ββ P→ βββ , β̂ββ = βββ +Op(n

− 1
2 ); if πππ(βββ) has

bounded second partial derivatives with respect to βββ , sups
∣∣∣πs(β̂ββ)/πs − 1

∣∣∣ = Op(n
− 1

2 ). So, even

under sparseness conditions for the joint frequencies, πs(β̂ββ)
P→ πs, πππ(β̂ββ)

P→ πππ , nΣ̂ΣΣeee
P→ΩΩΩeee , as

required for the theoretical result on the asymptotic distribution. Then in the case of sparse joint
frequencies, the asymptotic distribution of γ̂2` from lower-order marginals that are not sparse is
still χ2

1. The result is relevant because with a simpler estimator for ΣΣΣeee using observed proportions,
as in Christoffersson (1975), the asymptotic distribution for a statistic on lower-order marginals
will fail in the sparseness condition (Reiser and Vandenberg, 1994).

A computational method from Reiser (2008) produces very reliable results by obtaining
orthogonal components as the sequential sum of squares from a weighted orthogonal regression.
The method is applicable when c ≥ 2 and is used to calculate components for the simulations in
Section 6 and the application in Section 7. The regression coefficients themselves have no
meaning, and the regression is simply a method to obtain orthogonal components, an alternative
to applying the Cholesky factor or Gram-Schmidt orthogonalization.

3.3. A Lower-Order Omnibus Test Statistic Based Orthogonal Components of X2
PF

Given the traditional null hypothesis Ho : πππ = πππ(βββ), linear combinations of πππ may be tested
under the null hypothesis Ho : Hπππ = Hπππ(βββ), where H contains coefficients for the linear
combinations and may specify combinations that form marginal proportions as defined in
Section 2. If H has rank less than R = T − g − 1, then Ho : Hπππ = Hπππ(βββ) might specify a test
that is more focused such as test on lower-order marginals. For example, the null hypothesis
Ho : H[2]πππ = H[2]πππ(βββ) would specify a test that is focused on the second-order marginals but still
omnibus in the sense that it would incorporate all of the second-order marginals. Such a focused
test may be used for the purpose of higher power, and it also may be used for a test on lower-order
marginals when joint frequencies are sparse because the asymptotic chi-square approximation for
the test statistic is still valid for a test on lower-order marginals that are not sparse.

Consider the test statistic X2
[t:u] from Reiser (2008), but now for c ≥ 2 categories, an

extension that only requires incorporating an H matrix for c ≥ 2 categories as defined in
Section 2. X2

[t:u] is a test statistic that can be computed from the partial sum of orthogonal
components for marginals from order t to order u. For example, if H = H[2],

X2
[2] =

`=(q
2)(c−1)2∑
`=1

γ̂2` (3.11)

is sum of the components for second-order marginals. The null hypothesis Ho : H[2]πππ = H[2]πππ(βββ)
would be tested using the statistic X2

[2]. Section 3.2 discusses deleting g rows from H[1:q] in order
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to show that X2
PF is equivalent to X2

T−g−1. Deleting rows of H[1:q] is not relevant for X2
[2] because

the definition uses only the H[2] partition of H[1:q], which means that more than g rows have
already been deleted from H[1:q]. No additional rows are deleted unless a bivariate table happens
to be exactly fit by the model, which has an extremely low probability of occurring by chance. If
a bivariate table is exactly fit and appropriate rows are not deleted, then some components will be
identically equal to zero.

Under the null hypothesis stated above, an asymptotic central chi-square distribution for
X2

[t:u] follows from results in Section 3.2. Degrees of freedom are determined from the number of
nonzero components in the partial sum that produces the statistic. Components identically equal
to zero may be produced by restrictions on the marginals included in X2

[t:u] or linear dependencies
of rows in H[t:u] on the model matrix for πππ(βββ), both of which would be known from theory.
Degrees of freedom, then, are known from theory and do not need to be estimated. More details
on the degrees of freedom are given in Reiser (2008). In Section 4.1, we will show that X2

[t:u]

statistics are sums of certain GFfit⊥ statistics. Other test statistics on lower-order marginals have
been developed by Bartholomew & Leung (2002), Tollenaar and Mooijaart (2003), and
Maydeu-Olivares and Joe (2005, 2006), but these statistics are not components of the
Pearson-Fisher statistic. Statistical tests using lower-order marginals have very good performance
for Type I error rate when the full data table is sparse.

Although the topic of this paper is the GFfit statistic, a small Monte Carlo simulation study
for X2

[2] using the generalized linear latent variable model (GLLVM) is presented in Appendix B
because X2

[2] calculated from orthogonal components applied to ordinal variables has not been
previously studied. Results show that X2

[2] has Type I error at the nominal level when applied to
multi-category variables even when joint frequencies are sparse and has high power to reject a
false null hypothesis when lack of fit is in the second-order marginals.

X2
[t:u] is essentially a version of the score statistic from Rayner and Best (1989). Glas (1988)

developed omnibus test statistics specific to the Rasch model based on the underlying
multinomial model for the response patterns. His R2 statistic focused on second-order marginals,
and Maydeu-Olivares and Montano (2013) compared R2 to the M2 statistic from
Maydeu-Olivares and Joe (2006).

4. GFfit(ij)

Joreskog and Moustaki (2001) proposed the GFfit statistic as a lack-of-fit diagnostic to be
employed after a global goodness-of-fit test indicates that a proposed model does not fit. Joreskog
and Moustaki had X2

PF in mind as the global test statistic, but a lack-of-fit diagnostic might also
be useful if the model does not fit by a lower-order omnibus statistic such as X2

[2]. Cagnone and
Mignani (2007) defined GFfit(ij) as a special case of X2

[t:u], which is a somewhat different
formulation than Joreskog and Moustaki (2001) because it incorporates the covariance matrix.
Instead of H[2], Cagnone and Mignani define GFfitij using a c2q(q − 1)/2 by T matrix M [2].
Details of generating M [2] are given in Appendix A.
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Then using MMM [2], the Cagnone and Mignani version of GFfit(ij) is

GFfit(ij) = eee′(Σ̂ΣΣ
(ij)

eee )+eee (4.1)

where BBB+ indicates the Moore-Penrose generalized inverse of matrix BBB , and Σ̂ΣΣ
(ij)

eee = n−1ΩΩΩij
eee with

ΩΩΩ
(ij)
eee evaluated at the MLE β̂ββ , and now

ΩΩΩ
(ij)
eee = MMM

(ij)
[2] (D(πππ)− ππππππ ′ −G(A′A)−1G′)(MMM

(ij)
[2] )′, (4.2)

where M
(ij)
[2] is a partition of the general matrix MMM [2] such that

M
(ij)
[2] =


mmm′d+1

mmm′d+2
...

mmm′d+c2


[2]

(4.3)

where d = (q(i− 1)− i(i− 1)/2)c2.
Linear dependencies exist among the rows of MMM [2]; H[2] consists of the linearly independent

rows of MMM [2] such that H[2] = AAAMMM [2], where matrix A is given in Appendix A.

4.1. Extended GFfit(ij)⊥ Statistic Using Orthogonal Components

Returning to the full row-rank matrix H, the new version GFfit(ij)⊥ can be defined using the
H[2] partition of H. Define

H
(ij)
[2] =


hhh′d+1

hhh′d+2
...

hhh′d+(c−1)2


[2]

(4.4)

where now d = (q(i− 1)− i(i− 1)/2)(c− 1)2, and now define an orthogonal components version
of GFfit(ij) as the sum of second-order components pertaining to variable i and variable j:

GFfit
(ij)
⊥ =

`=d+(c−1)2∑
`=d+1

γ̂2` . (4.5)
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Since the γ̂2` are asymptotically independent χ2
1, GFfit(ij)⊥ are asymptotically distributed

chi-square on (c− 1)2 degrees of freedom, assuming that no marginal in the c× c table is exactly
fit by the model. GFfit(ij)⊥ can be defined and calculated directly without decomposing X2

PF into
T − g − 1 components:

GFfit
(ij)
⊥ = n−1rrr′Ĥ

′∗(ij)
[2] Ĥ

∗(ij)
[2] rrr, (4.6)

where H∗[2] is calculated from ΩΩΩeee[2] = H[2]ΩΩΩrrrH′[2]. So, deleting rows of H[1:q] is not an issue for

GFfit
(ij)
⊥ because the definition uses only H[2], which means that more than g rows have already

been deleted from H[1:q]. No additional rows are deleted unless a bivariate table happens to be
exactly fit by the model.

X2
[t:u] statistics from Section 3.3 are sums of GFfit⊥ statistics. For second-order marginals,

X2
[2] =

`=(q
2)(c−1)2∑
`=1

γ̂2` =

i=q−1∑
i=1

j=q∑
j=i+1

GFfit
(ij)
⊥ , (4.7)

and the GFfit(ij)⊥ statistics are orthogonal components of X2
[2]. The extension to higher-order

dimensions is straightforward. Define

GFfit
(ijk)
⊥ =

`=d+(c−1)3∑
`=d+(c−1)2+1

γ̂2` , (4.8)

where d = (i− 1)(c− 1)2 + (j − 2)(c− 1)2, with similar definitions for GFfit(ijkm)
⊥ to

GFfit
(ijk,··· ,v,w)
⊥ .

The relationship between X2
PF and GFfit⊥ in a cross-classified table is given in Result 4.1:

Result 4.1 Assuming the model πππ(βββ) is identified for q ≥ 3 and g ≥ q(c− 1), with at least
(c− 1) unknown intercept or first-order parameters for each variable in the cross-classified table,
and that q(c− 1) of the orthogonal components for first-order marginals are fixed at zero by
eliminating the H[1] partition from H, then

X2
PF =

∑
i

∑
j

GFfit
(ij)
⊥ +

∑
i

∑
j

∑
k

GFfit
(ijk)
⊥ + · · ·

+
∑
i

∑
j

· · ·
∑
v

GFfit
(i,j,...,v)
⊥ +GFfit

(i,j,...,v,w)
⊥ ,

(4.9)

where (i, j, . . . , v) is the (q − 1) - order of cross-classification.
The result follows because the GFfit⊥ are partial sums of the non-zero T − g − 1

components of X2
PF . Since expression 4.9 decomposes the entire X2

PF statistic into components,
rows of H that correspond to estimated parameters of the model πππ(βββ) should be considered, as
mentioned in Section 3.1. The joint proportions of a cq table can be transformed to cq − 1
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marginal proportions, but g of these marginal proportions will be exactly fit under a model with g
estimated parameters, and the orthogonal components for the Pearson-Fisher statistic on these
marginals will be identically equal to zero. So for Result 4.1, while H[1] has been deleted from
H[1:q], the γ̂2` may contain additional components that are identically equal to zero, but the
components that are identically equal to zero can be eliminated from γ̂γγ be deleting a total of g
linearly independent rows from H[1:q], as discussed further below. Then,

X2
PF = γ̂γγ ′ γ̂γγ =

`=T−(g−q(c−1))−1∑
`=1

γ̂2` =

`=(q
2)(c−1)2∑
`=1

γ̂2` +

`=(q
2)(c−1)2+(q

3)(c−1)3∑
`=(q

2)(c−1)2+1

γ̂2` + · · ·

+

`=
∑q−1

k=2 (q
k)(c−1)k∑

`=
∑q−2

k=2 (q
k)(c−1)k+1

γ̂2` +

`=T−(g−q(c−1))−1∑
`=

∑q−1
k=2 (q

k)(c−1)k+1

γ̂2`

(4.10)

Each GFfit(ij) statistic is comprised of (c− 1)2 orthogonal components, and there are
(
q
2

)
GFfit(ij) statistics, hence ∑

i

∑
j

GFfit
(ij)
⊥ =

`=(q
2)(c−1)2∑
`=1

γ̂2` ; (4.11)

next, each GFfit(ijk) statistic is composed of (c− 1)3 orthogonal components, and there are
(
q
3

)
GFfit(ijk) statistics, hence

∑
i

∑
j

∑
k

GFfit
(ijk)
⊥ =

`=(q
2)(c−1)2+(q

3)(c−1)3∑
`=(q

2)(c−1)2+1

γ̂2` ; (4.12)

etc., until T − g − 1 non-zero components have been accounted for. If H includes more than
T − g − 1 linearly independent rows, any components beyond the first T − g − 1 non-zero
components would be identically equal to zero. Then the GFfit⊥ statistics are components of
X2

PF . Result 4.1 also means that components of X2
PF can be used to also form GFfit⊥

diagnostics that are asymptotic independent chi-square statistics for higher-order marginal tables
from cross-classified multi-category variables.

As mentioned above, expression 4.9 decomposes the entire X2
PF statistic, so rows of H[1:q]

corresponding to estimated parameters need further discussion. If a model has no parameters to
be estimated, then no rows would be eliminated from H. In the theory presented above, the
assumption is stated that the partition for H[1] has been eliminated from H as part of g rows to be
deleted under a composite null hypothesis for the purpose of rendering ΣΣΣeee full rank. If the X2

[1]

components are fixed at zero in this model and thus excluded from γ̂γγ , g− q(c− 1) additional rows
would need to be deleted from H in order to maintain full rank ΣΣΣeee in the complete decomposition
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of X2
PF . By default the last (g − q(c− 1)) components would be identically equal to zero and

excluded. Then the upper limit of the sum in expression 4.9 would be ` = T − g − 1. It is not
necessary to delete any rows from H under a composite null hypothesis, but then a generalized
inverse would be needed for ΣΣΣeee and some components would be identically equal to zero. If rows
are to be deleted from H to eliminate components identically equal to zero, the preferred choice of
rows will be self-evident from the model πππ(βββ). In some models for a composite null hypothesis,
fixing the components of X2

[1] at zero by deleting the partition for H[1] from H is necessary if ΣΣΣeee
is to be full rank. For example, under a simple log-linear independence model for cross-classified
variables, the first-order marginals would be exactly fit, so X2

[1] ≡ 0 in that case, and deleting H[1]

from H produces a full rank ΣΣΣeee . A condition that could be checked for log-linear models is that
the rows of matrix H must be linearly independent of the columns of the model matrix for the
model πππ(βββ). On theory, in other models, any g rows could be deleted. For example, in the 2 PL
item response (IRT) model using the marginal likelihood, no marginals for response variables are
exactly fit and any g rows can be deleted from H in order to obtain full rank ΣΣΣeee .

In an application with a composite null hypothesis, the H[1] partition would virtually always
be deleted from H when constructing X2

[t:u] because X2
[1] contributes very little to the power for

detecting poor fit with a composite null hypothesis since it consists of components that do not
reflect variable associations. Also in an application, the complete decomposition of X2

PF into
components would rarely be done because the focus would be on lower-order marginals, and as
discussed previously, X2

[2] and GFfit(ij)⊥ are calculated from the H[2] partition of H[1:q] so more
than g rows have already been deleted, and no additional rows would be deleted unless a bivariate
table happens to be exactly fit by the model.

A lack-of-fit diagnostic such as GFfit⊥ is very focused and would be employed after a more
omnibus test result indicates that the hypothesized model does not fit. The testing procedure
would be similar to testing a global null hypothesis of no difference among groups in an analysis
of variance and then partitioning the sum of squares into orthogonal components for testing
contrasts across groups. Each GFfit(ij)⊥ is composed of (c− 1)2 components, and if a particular
GFfit

(ij)
⊥ is unduly large, the individual 1 d.f. components of that GFfit(ij)⊥ may be examined

for the purpose of obtaining more detail on lack of fit within the marginal table. A large number
of variables produces a large number of GFfit statistics, and a multiple decision rule should be
used to assess significance levels. Since the GFfit(ij)⊥ are asymptotically independent, control of
the false discovery rate or familywise error rate is facilitated in comparison to other diagnostics.
GFfit

(ij)
⊥ is an orthogonal version of the original GFfit(ij) statistic with the added features that

the GFfit(ij)⊥ are independent and sum to X2
[2]. As with the original GFfit(ij) statistic, it is

proposed as a lack-of-fit diagnostic for variable pairs. Because of the sequential nature of the
orthogonal components, the GFfit⊥ in expression 4.9 have a sequential property and are order
dependent. In the literature on orthogonal components of Pearson’s X2 statistic (Lancaster, 1969;
Raynor and Best, 1989; Miralev, 1987; Eubank, 1997), components are sequential by nature
because they are obtained by an application of the Cholesky factor or Gram-Schmidt
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orthogonalization. In many applications, such as educational testing, the order of the response
variables, and hence the order of the GFfit(ij)⊥ will be arbitrary. Simulation results to be
presented in Section 6 will show that an arbitrary order may have modest, if any, effect on power
of GFfit(ij)⊥ to detect sources of lack of fit. Occasionally, it is possible to use an ordering among
the variables to an advantage, as will be demonstrated in application to symptoms of
psychological depression. In any case, GFfit(ij)⊥ will reliably have higher probability to detect
existing lack of fit than other diagnostics after correction for multiple testing, as demonstrated in
Section 7.

Calculation of GFfit(ij)⊥ is computationally intensive when the number of response variables
is large. The computational issues for a large number of binary variables are discussed in detail by
Reiser (2019). The dimensions of H and r increase exponentially with the number of variables,
i.e, cq, but these are sparse matrices in the sense that most of the entries are zeros. Computations
done using the R software environment can take advantage of the sparsematrix function to
substantially reduce the memory required to hold and perform calculations with these matrices. It
is also possible to take advantage of multicore processing in the R environment. The R code
available in the online supplement uses the sparsematrix function and multiple cores. Each of the
four lack-of-fit statistics examined in the simulations require an exhaustive computation across all
possible response patterns to obtain the expected values which are then collapsed to obtain the
cells of the marginal tables. For a composite null hypothesis, GFfit(ij)⊥ requires calculation of the

matrix G =
∂πππ(βββ )

∂βββ
, a large matrix with dimension T by g. For a simple null hypothesis, GFfit(ij)⊥

does not include the G matrix, and the amount of random access memory needed for calculation
is substantially reduced. Calculations for GFfit(ij)⊥ with a composite null hypothesis and 20
binary variables can be performed on a laptop with 16 GB of memory using vectorized code in
about three minutes of CPU time. With more categories and more than 20 response variables,
calculations to store and manipulate these matrices using vectorized coding require a server with
large amounts of random access memory. With a typical workstation, the limit for binary
variables is about 30 response variables. With more categories, the limit on the number of
response variables is reduced. Although less efficient in terms of cpu time, calculations for first-
and second-order marginals can be done with loops rather than vectorized code which reduces the
demand for random access memory.

When the number of response categories increases beyond two, even the frequencies in
second-order marginals may exhibit sparseness. The asymptotic chi-square approximation for
GFfit

(ij)
⊥ and other diagnostics reviewed below may not be valid if sparseness is present in the

frequencies. Cai and Hansen (2013) found that cells in corner of larger two-way tables tended to
have low expected frequencies, although other cells may have low expected values depending on
the model parameters. The GFfit(ij)⊥ statistic can be decomposed into components that would
correspond to some cells that would be expected to be sparse and components for other cells that
would not be sparse. The asymptotic chi-square approximation would be valid for a statistic
obtained as a sum of components that correspond to cells that are not sparse. A method for



PSYCHOMETRIKA SUBMISSION February 25, 2022 19

decomposing the components of GFfit(ij)⊥ for this purpose is given in Appendix B.

5. Other Diagnostics for Marginal Tables with Multiple Categories

GFfit
(ij)
⊥ is a general lack-of-fit diagnostic because it can be applied to a wide variety of

models for cross-classified tables. In addition to GFfit(ij), a few other general lack-of-fit
statistics for marginal tables that can be applied to a wide variety of models for cross-classified
variables have been proposed in the literature. Although general, applications have been mostly,
although not exclusively, to IRT models with the aim of detecting the item associations that are
not fit well by the model because the these models often involve high-dimensional cross-classified
tables. In addition to GFfit(ij), the class of widely applicable statistics includes Mij

(Maydeu-Olivares & Joe, 2006) and ¯̄X
2

ij , a statistic based on a mean and variance correction

given by Asparouhov and Muthén (2010). Mij and ¯̄X
2

ij will be reviewed in this section because
they will be compared to GFfit(ij)⊥ using simulations in Section 6. The Lagrange multiplier
approach of Glas (1999) will also be reviewed in this section, although it is less general in that it
is specific to the IRT model.

Mij is a bivariate version of the Mr statistic (Maydeu-Olivares and Joe, 2005, 2006). Mr is
an omnibus lower-order test statistic for cross-classified data, where marginals up to order r are
included in the statistic. If Mr detects a model misfit, Maydeu-Olivares and Joe (2006) suggest to
identify the item pair associations that are not fit well by applying Mr to marginal tables. In the
case of bivariate residuals, the statistic becomes

Mij = eee′ij ĈCC ijeeeij (5.1)

with eeeij = HHH
(ij)
[2] (p̂̂p̂p − πππ(β̂̂β̂β)) and

ĈCC ij = (D̂DD
(ij)

[2] )−1 − (D̂DD
(ij)

[2] )−1ĜGG
(ij)

[2] ((ĜGG
(ij)

[2] )′(D̂DD
(ij)

[2] )−1ĜGG
(ij)

[2] )−1(ĜGG
(ij)

[2] )′(D̂DD
(ij)

[2] )−1 (5.2)

where D̂DD
(ij)

[2] = HHH
(ij)
[2] DDD(π̂ππ)(H

(ij)
[2] )

′ and ĜGG
(ij)

[2] = HHH
(ij)
[2] ĜGG. Mij is asymptotically distributed as

chi-square with degrees of freedom equal to c2 − gij − 1 where gij is defined above, although the
joint distribution of a set of Mij for a set of bivariate tables has not been given. Mij can be easily
applied to higher-order marginal tables (Maydeu-Olivares and Liu, 2012). Liu and
Maydeu-Olivares (2014) compared the performance of Mij with several statistics based on
bivariate marginal tables for pairs of items.

Another statistic is the Pearson X2 applied to bivariate marginal tables:

X2
ij = n(eee′ij(D̂DD

(ij)

[2] )−1eeeij) (5.3)

X2
ij is the same statistic as the original GFfit(ij). Since, in general, X2

ij does not follow an
asymptotic chi-square distribution, it can be adjusted with its asymptotic mean and variance so
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that the asymptotic distribution is closer to chi-square. The estimated asymptotic moments are
given by

µ̂1 = tr
(

(D̂DD
(ij)

[2] )−1Σ̂ΣΣ
(ij)

eee

)
µ̂2 = 2tr

(
(D̂DD

(ij)

[2] )−1Σ̂ΣΣ
(ij)

eee

)2
. (5.4)

Using a mean and variance correction given by Asparouhov and Muthén (2010),
¯̄X
2

ij = a∗ + b∗X2
ij , where a∗ and b∗ are chosen so that the mean and variance of ¯̄X

2

ij are dfij and
2dfij , where dfij = c2 − gij − 1, and gij is the number of parameters for the bivariate table. Then,

¯̄X
2

ij = X2
ij

√
2dfij
µ̂2

+ dfij −

√
2dfijµ̂2

1

µ̂2

. (5.5)

While GFfit(ij)⊥ can be applied to a model for binary response variables, neither Mij nor ¯̄X
2

ij can
be applied to binary cross-classified variables with estimated parameters because the degrees of
freedom would become negative

Liu and Maydeu-Olivares (2014) proposed a similar statistic, X̄2
ij , which extends the statistic

derived by Bartholomew and Leung (2002) and Cai et. al. (2004) to composite null hypothesis for
bivariate marginal tables. The latter authors also proposed a correction to improve the power of
the test. Another general approach for marginal tables is the standardized residual for ordered
data in the form suggested by Reiser (1996) and Maydeu-Olivares and Joe (2005).

While GFfit(ij)⊥ , ¯̄X
2

ij , and Mij can be applied to a variety of models for cross-classified
variables, there is a sizeable literature on lack-of-fit diagnostics specific to IRT models. Among
that literature, the entry most relevant to the approach taken in this paper is a Lagrange multiplier
statistic proposed by Glas (1999) to assess fit on pair-wise associations in IRT models. For
manifest variables with multiple categories, Glas worked with the nominal response model (Bock,

1972). Introducing lack-of-fit parameters (γγγ jk

... δδδjk)′ into the model, under the composite null

hypothesis H0 : (γγγ jk

... δδδjk)′ = 0, the Lagrange multiplier statistic LM(γγγ jk, δδδjk) is distributed
asymptotically as a central chi-square statistic on 2(cj − 1)(ck − 1) degrees of freedom.
Simulations and an example that employ the GLLVM for the graded response model will be
presented in Sections 4.1 and 7. It is not clear how to extend the Lagrange multiplier method for a
lack-of-fit diagnostic to graded response model, and further work is needed to develop this
approach for the multi-category graded response model. So, a comparison of the performance of
GFfit

(ij)
⊥ and LM(γγγ jk, δδδjk) in terms of power and Type I error for the IRT model are not

included in the remainder of this paper and are left for future research.
Also in the area of IRT models, Glas & Verhelst (1989, 1995), Glas & Suarez-Falcon (2003)

have developed lack-of-fit diagnostics specific to the Rasch model based on the underlying
multinomial distribution.

The diagnostics reviewed above are based on assessing the fit of a model to pair-wise
associations among a set of manifest variables. A different approach was taken by Yen (1981),
who developed a statistic Q1 to assess the fit of item characteristic curves for IRT models. Since
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Q1 is designed to determine if an IRT model does not fit well to a particular manifest variable, it
is fundamentally different from the other diagnostics reviewed above that assess the fit of a model
to the associations among manifest variables. Because of this fundamental difference in the Q1

approach, it is not included in the simulation studies that are presented below. Bock (1972)
developed a similar statistic for the item characteristic curve.

Among all of the diagnostics discussed above for marginal tables with multiple categories,
GFfit

(ij)
⊥ has two unique properties: a set of GFfit(ij)⊥ are asymptotically independent with

known joint distribution, and the set of GFfit(ij)⊥ are components of X2
PF .

6. Simulation Studies and Asymptotic Power Calculations

The statistics developed above can be applied to cross-classified tables from a variety of
models including categorical variable factor analysis, latent class analysis, and manifest variable
log-linear models. Simulation studies to assess the performance of X2

[2] and GFfit(ij)⊥ applied to
multi-category variables were conducted using the Generalized Linear Latent Variable Model
(GLLVM).

6.1. GLLVM

GLLVM is a latent variable response model for categorical variables with two or more
graded categories and has features of a proportional odds model. Let y = (y1, y2, · · · , yq)′ be the
vector of q ordinal observed variables, each of them having ci categories. Thus there are

∏q
i=1 ci

cells, also called response patterns in the cross-classified table. Response pattern s is indicated as
ys = (y1 = a1, y2 = a2, · · · , yq = aq)

′, where ai is the value of the ith observed variable
(ai = 1, . . . , ci and i = 1, . . . , q). Let XXX = (X1, X2, · · · , Xp)

′ be the vector of p continuous
latent variables. Then the probability of response pattern s is given by

πs(βββ) = P(YYY = ys | βββ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

P(YYY = ys | βββ, xxx)f(xxx)dxxx, s = 1, 2, . . . , T (6.1)

where f(xxx) is the density function of XXX , and the multiple integral is over dimension p.
The conditional probability of YYY given xxx expresses conditional independence:

P(YYY = ys|xxx) =

q∏
i=1

π(i)
ais

(xxx) =

q∏
i=1

(η(i)ais
− η(i)ai−1,s

) (6.2)

where η(i)ai = π
(i)
1 (xxx) + π

(i)
2 (xxx) + · · ·+ π

(i)
ai (xxx) is the probability of a response in category ai or

lower on the variable i, and π(i)
ai (xxx) is the probability of a response in category ai on the variable i.

Logistic regression is used to model the interrelationship between η(i)ai and the latent variables:

log
( η

(i)
r

1− η(i)r

)
= βi0(r)−

p∑
j=1

βijxj,
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r = 1, . . . , ci−1, where ci is the number of categories for variable i, βi0(r) and βij are the
parameters of the model. βi0(r) is an intercept and βij is the jth slope for variable i. The
intercepts should satisfy the condition βi0(1) ≤ βi0(2) ≤ · · · ≤ βi0(ci). The integrals are
approximated through the Gauss-Hermite quadrature method.

6.2. Monte Carlo Simulation for GFfit(ij)⊥ Type I Error

We now present results for simulations of the diagnostic statistics. A simulation study was
conducted using GLLVM to assess the accuracy of the Type I error rates for GFfit(ij)⊥ , Mij , X2

ij ,

and ¯̄X
2

ij . Mij is the Maydeu-Olivares and Joe (2005) statistic applied to the (i, j) table. X2
ij is

similar to the Pearson’s statistic, except instead of using the joint frequencies, it is calculated by
using the marginal frequencies. ¯̄X

2

ij is X2
ij with adjustment using the first two moments. Although

the full Pearson statistic is distributed chi-square, X2
ij is not, as mentioned previously. Simulation

results for X2
ij were calculated using the central chi-square distribution on (ci − 1)(cj − 1)

degrees of freedom as the reference distribution, as suggested by Joreskog and Moustaki (2001),
where ci = cj = c. The central chi-square distribution was also used as the reference distribution
for ¯̄X

2

ij . Standardized residuals (Reiser, 1996; Maydeu-Olivares & Joe, 2005) and X̄2
ij were not

included in the comparison because results reported elsewhere (Dassanayake, Reiser, & Zhu,
2016) show that GFfitij⊥ has higher power than these two diagnostics.

The design of this Monte Carlo study was as follows. Pseudo data was generated and fit with
a one-factor GLLVM. The number of manifest variables was q = 4, 6, 8, and 10. The number of
categories was c = 3 and 4 at four manifest variable, and c = 4 for six, eight, and ten manifest
variables. The number of pseudo samples for each simulation was 1000, and sample size was
both 300 and 500 for each set of manifest variables. In addition, simulations were also run using
sample size 1000 and 5000 with six and eight variables. The joint frequencies in the simulated
data tables for six, eight and ten variables are very sparse: 48 = 65, 536, so even with sample size
5000, a high proportion of the joint frequencies are zeros.

In the GLLVM model, the maximum likelihood estimator is consistent and efficient, but the
estimator has large mean square error in finite samples when model parameters have large
magnitudes, i.e, large intercepts, either positive or negative, and large slopes. Since this study is
concerned with the performance of the test statistics, only modest values for GLLVM parameters
were used in order to avoid confounding of the performance of the test statistic with bias in
parameter estimation. To generate the pseudo data, intercept values were specified in as −1.5 and
1.5 for three categories and −1.5, 0, and 1.5 with four categories. Slope parameters were
specified as follows: With four variables, slopes were 0.2, 0.5, 1.0, 2.0; for six variables, slopes
were 0.2, 0.5, 0.75, 1.0, 1.5, 2.0; for eight variables slope parameter values were 0.2, 0.5, 0.65,
0.75, 1.0, 1.25, 1.5, and 2.0; and for ten variables 0.2, 0.5, 0.65, 0.75, 1.0, 1.15, 1.25, 1.5, 1.75,
and 2.0. At four and six manifest variables, parameter values for intercept and slope were the
same as the values used in the simulations for the omnibus statistics described in Section ?? of
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Appendix B. All intercept and slope parameters were estimated using the mirt package and the
grm function from the ltm package in R. Test statistics were calculated using a custom R script.
GFfitij⊥ were calculated using the orthogonal regression presented in Reiser (2008). Integrals to
approximate the probability of response patterns were calculated with 21 quadrature points. A
higher number of quadrature points, and the use of adaptive quadrature would be useful for more
accurate estimation of GLLVM parameters when the intercepts and slopes are more extreme, and
more accurate estimation of model parameters could improve the performance of the lack-of-fit
diagnostics. The intercept and slope parameters used for these simulations were not extreme, and
using more quadrature points does not change the results.

The null hypothesis for each marginal table is Ho : H
(ij)
[2] πππ = H

(ij)
[2] πππ(βββ). Simulation results

for Type I error using sample size 300 and 500 with four, six and eight variables are shown in the
Tables 1 to 3, which show empirical Type I error for nominal α = 0.05. While Table 1 has four
variables with three categories, Table ?? in Appendix C has Type I error simulation results using
four variables with four categories, and results for ten variables are shown in Table ?? of
Appendix C.

Table 1: Type I Error Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Four variables, Three categories

n = 300 n = 500

(ij) GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.059 0.053 0.040 0.046 0.047 0.049 0.041 0.043

(13) 0.052 0.046 0.030 0.043 0.035 0.035 0.020 0.036
(14) 0.063 0.050 0.032 0.043 0.055 0.057 0.033 0.054

(23) 0.051 0.045 0.026 0.044 0.036 0.039 0.021 0.047

(24) 0.057 0.041 0.028 0.057 0.046 0.042 0.025 0.040

(34) 0.052 0.037 0.044 0.070 0.047 0.055 0.022 0.041

1000 samples; 991 (n = 300), 999 (n = 500) convergence

Tables 1 to 3 contain empirical Type I error rates for 98 bivariate marginal tables. Using a
large sample approximation for the binomial distribution, a margin of error interval for these error
rates is 0.05± 1.96

√
(0.05)(0.95)/1000 = (0.0365, 0.0635). All Type I error results that are

outside of this interval are shown in bold in the Type I error tables. From these tables it can be
seen that GFfit

(ij)
⊥ has four error rates outside this interval, Mij has four error rates outside this

interval, ¯̄X
2

ij has seven error rates outside of this interval, but X2
ij has 38 error rates below this

interval.
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Table 2: Type I Error Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Six variables, Four categories

n = 300 n = 500

(ij) GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.037 0.044 0.037 0.040 0.039 0.041 0.040 0.042

(13) 0.045 0.043 0.037 0.041 0.042 0.045 0.040 0.043

(14) 0.039 0.041 0.024 0.031 0.052 0.044 0.041 0.049

(15) 0.054 0.053 0.036 0.049 0.058 0.055 0.044 0.059

(16) 0.051 0.046 0.045 0.049 0.058 0.061 0.043 0.061

(23) 0.051 0.046 0.045 0.049 0.057 0.053 0.051 0.056

(24) 0.041 0.037 0.034 0.041 0.045 0.045 0.043 0.050

(25) 0.050 0.052 0.041 0.051 0.055 0.053 0.048 0.056

(26) 0.053 0.053 0.031 0.054 0.045 0.052 0.037 0.051

(34) 0.062 0.052 0.049 0.059 0.055 0.050 0.038 0.047

(35) 0.048 0.053 0.037 0.056 0.048 0.050 0.034 0.046

(36) 0.057 0.058 0.045 0.064 0.052 0.047 0.035 0.054

(45) 0.054 0.044 0.037 0.050 0.052 0.053 0.029 0.047

(46) 0.053 0.054 0.040 0.051 0.049 0.047 0.030 0.050

(56) 0.059 0.068 0.045 0.067 0.043 0.052 0.030 0.046

1000 samples, 100% convergence
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Table 3: Type I Error Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Eight variables, Four categories

n = 300 n = 500

(ij) GFfit
(ij )
⊥ M ij X2

ij
¯̄X
2

ij GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.047 0.057 0.042 0.044 0.046 0.043 0.044 0.046

(13) 0.054 0.056 0.047 0.051 0.049 0.052 0.049 0.050

(14) 0.058 0.048 0.050 0.056 0.061 0.051 0.056 0.060

(15) 0.045 0.051 0.034 0.040 0.056 0.048 0.040 0.046

(16) 0.054 0.046 0.039 0.045 0.048 0.049 0.040 0.052

(17) 0.061 0.065 0.056 0.065 0.066 0.062 0.048 0.060

(18) 0.049 0.047 0.033 0.045 0.044 0.049 0.033 0.046

(23) 0.048 0.048 0.043 0.046 0.048 0.041 0.039 0.044

(24) 0.042 0.049 0.041 0.045 0.052 0.054 0.048 0.050

(25) 0.048 0.050 0.034 0.042 0.047 0.043 0.039 0.044

(26) 0.051 0.043 0.033 0.047 0.041 0.041 0.029 0.039

(27) 0.045 0.043 0.033 0.047 0.044 0.044 0.031 0.039

(28) 0.042 0.050 0.031 0.041 0.044 0.050 0.034 0.045

(34) 0.046 0.048 0.041 0.044 0.049 0.042 0.043 0.050

(35) 0.045 0.052 0.039 0.047 0.063 0.062 0.046 0.055

(36) 0.056 0.060 0.046 0.055 0.046 0.048 0.034 0.043

(37) 0.057 0.051 0.040 0.054 0.050 0.058 0.046 0.058

(38) 0.045 0.046 0.028 0.043 0.047 0.049 0.039 0.050

(45) 0.052 0.056 0.046 0.058 0.058 0.054 0.049 0.055

(46) 0.050 0.046 0.034 0.045 0.036 0.048 0.033 0.040

(47) 0.043 0.052 0.039 0.053 0.044 0.055 0.036 0.046

(48) 0.054 0.046 0.038 0.050 0.048 0.046 0.030 0.046

(56) 0.055 0.056 0.034 0.048 0.060 0.045 0.043 0.051

(57) 0.056 0.045 0.033 0.045 0.068 0.066 0.049 0.065
(58) 0.056 0.050 0.040 0.059 0.040 0.056 0.035 0.055

(67) 0.049 0.042 0.037 0.048 0.064 0.051 0.033 0.052

(68) 0.052 0.048 0.032 0.047 0.045 0.051 0.039 0.047

(78) 0.051 0.052 0.036 0.055 0.053 0.048 0.034 0.055

1000 samples, 100% convergence
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To further investigate Type I error, simulations were conducted for six variables and eight
variables using pseudo samples with size 1000 and 5000. Results for these simulations are shown
in Tables ?? and ?? of Appendix C. Results for these simulations with larger sample sizes show a
similar pattern as seen in simulations for sample sizes 300 and 500. GFfit

(ij)
⊥ , Mij , and ¯̄X

2

ij have
error rates outside the interval described above at a level that would be expected by chance, but
X2

ij still has too many error rates below the interval described earlier.
A Kolomogorov-Smirnov test was also employed to assess the fit of the chi-square

distribution for simulation results on four, five and six variables with sample size 300 and 500.
Type I error simulation results for the lack-of-fit diagnostics with five variables are shown in
Appendix C. The Kolomogorov-Smirnov test results are consistent with the empirical Type I error
rates: out of 74 bivariate marginal tables, GFfit

(ij)
⊥ had two p-values below 0.05, Mij also had two

p-values below 0.05, ¯̄X
2

ij had 12 p-values below 0.05, and X2
ij had 33 p-values below 0.05. These

results for the diagnostic statistics under the null hypothesis indicate that for sample sizes from
300 and 500, the distribution of GFfit

(ij)
⊥ is well approximated by a chi-square distribution with

(c− 1)2 degrees of freedom, the distribution of Mij is well approximated by a chi-square
distribution with degrees of freedom c2 − g(ij) − 1, and the distribution of ¯̄X

2

ij is well
approximated by a chi-square distribution with c2 − gij − 1 degrees of freedom. While the
chi-square distribution can be rejected as the asymptotic distribution of X2

ij , the approximation
may still be close enough to be useful.

6.3. Power Study for GFfit(ij)⊥

Power for GFfit(ij)⊥ as a diagnostic statistic was studied by first calculating asymptotic
power for GFfit(ij)⊥ and then comparing to empirical power for GFfit(ij)⊥ , Mij , X2

ij , and ¯̄X
2

ij

obtained from Monte Carlo simulations. The power study used GLLVM with four categories for
the four, six, eight and ten variable cases. Pseudo data for 1000 samples were generated from a
confirmatory two-factor model with all parameters fixed and then fit with a one factor model.
Sample size was 300 and 500. Intercept parameters for the manifest variables in all generating
models were -1.5, 0, and 1.5. Slope parameters for the data generating model were as follows:
with four variables slopes for factor 1, βββ1 = (0.2, 0.5, 1.0, 2.0)′, and slopes for factor 2,
βββ2 = (0.8, 0.8, 0.0, 0.0)′; For six variables, βββ1 = (0.2, 0.5, 0.75, 1.0, 1.5, 2.0)

′
, and

βββ2 = (0.8, 0.8, 0.8, 0.0, 0.0, 0.0)
′
. For eight variables, βββ1 = (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2)′,

and βββ2 = (1.0, 1.0, 1.0, 0, 0, 0, 1.0, 1.0)′; for ten variables,
βββ1 = (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2, 1.2, 0.2)′, and βββ2 = (1.0, 1.0, 1.0, 0, 0, 0, 1.0, 1.0, 0, 1.0)′.
With four variables, the slope values were chosen so that two variables cross-load on both factors.
For six variables, slopes were chosen so that three variables cross-load. There is more
heterogeneity in the cross-loading patterns for eight and ten variables. Anther power study was
done using six variables with non-zero cross-loading for all variables:
βββ1 = (0.2, 0.5, 0.75, 1.0, 1.5, 2.0)

′
, and βββ2 = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

′
. With four and six
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variables, slope parameters are the same as the values used for power simulations of the omnibus
statistic in Section ?? of Appendix B. The two latent variables were specified as uncorrelated,
each with variance equal to 1.0, so ΣΣΣX = I , an identity matrix. Estimation of the one-factor
GLLVM converged for 1000 cases for both the four variable and six variable simulation, and the
convergence rate was very high for the eight and ten variable simulations. The power simulation
results with four, six and eight variables are shown in Tables 4 to 6. Power simulation results for
ten variables are shown in Tables ?? and ?? of Appendix C. Power simulation results for six
variables with non-zero cross loadings for all variables are shown in Table ?? of Appendix C. The
column headed “A.Power” in these tables shows asymptotic power. Asymptotic power was
calculated by the method given in Reiser (2008). In tables showing results from simulations for
power, entries in all rows with asymptotic power higher than 0.05 are highlighted in bold.

Table 4: Power Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Four Variables, Four Categories

A.Power Empirical Power

(ij) GFfit
(ij )
⊥ GFfit

(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.7059 0.6480 0.0430 0.5410 0.549
(13) 0.0502 0.0550 0.0490 0.0490 0.0570

(14) 0.0506 0.0600 0.0520 0.0460 0.0590

(23) 0.0516 0.0570 0.0480 0.0440 0.0620

(24) 0.0525 0.0550 0.0510 0.0280 0.0540

(34) 0.0500 0.0670 0.0540 0.0550 0.0720

n=500, 1000 samples, 100% convergence

From these tables, Mij rarely has power larger than the size of the test. This type of result for
Mij has been found in previous studies (Liu & Maydeu-Olivares, 2014). From the four variable
case, GFfit

(12)
⊥ has empirical power of 0.6480, which shows that primarily the association

between variables 1 and 2 was not adequately explained by the one-factor model, which is
intuitive because variables 1 and 2 are primarily associated with only factor 2. The empirical
power for GFfit

(12)
⊥ does not quite reach the asymptotic power level. X2

12 appears to have even
larger power of 0.5410, but as demonstrated above, it does not distribute chi-square. ¯̄X

2

12 has
lower power than GFfit

(12)
⊥ for the lack of fit on variables 1 and 2.

For the results from six variables, there is a similar conclusion: Empirical power for GFfit
(ij)
⊥

is very close to asymptotic power especially for {i, j} = (1, 2), (1, 3), (2, 3), where the one-factor
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Table 5: Power Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Six variables, Four categories

n = 300 n = 500

(ij) A.Power GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij A.Power GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.344 0.348 0.047 0.274 0.288 0.572 0.572 0.033 0.479 0.492
(13) 0.368 0.322 0.050 0.203 0.217 0.606 0.582 0.043 0.386 0.410
(14) 0.051 0.057 0.058 0.055 0.060 0.052 0.051 0.051 0.052 0.060

(15) 0.051 0.044 0.040 0.036 0.047 0.052 0.039 0.048 0.036 0.053

(16) 0.051 0.045 0.038 0.034 0.047 0.052 0.053 0.042 0.040 0.050

(23) 0.354 0.372 0.049 0.209 0.238 0.587 0.591 0.038 0.356 0.386
(24) 0.052 0.046 0.047 0.040 0.046 0.054 0.045 0.046 0.035 0.046

(25) 0.053 0.041 0.043 0.030 0.047 0.056 0.059 0.053 0.054 0.068

(26) 0.053 0.057 0.047 0.044 0.058 0.055 0.058 0.058 0.050 0.065

(34) 0.054 0.049 0.053 0.032 0.045 0.057 0.061 0.063 0.049 0.062

(35) 0.056 0.048 0.050 0.041 0.056 0.060 0.055 0.049 0.040 0.052

(36) 0.055 0.055 0.050 0.034 0.059 0.059 0.060 0.050 0.039 0.055

(45) 0.050 0.050 0.049 0.042 0.057 0.050 0.058 0.056 0.029 0.048

(46) 0.050 0.057 0.057 0.033 0.051 0.051 0.051 0.043 0.028 0.051

(56) 0.051 0.055 0.036 0.029 0.044 0.052 0.051 0.048 0.028 0.047

1000 samples, 100% convergence
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Table 6: Power Results for GFfit(ij)⊥ , Mij , X2
ij , and ¯̄X

2

ij

Eight variables, Four categories

n = 300 n = 500

(ij) A.Power GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij A.Power GFfit
(ij )
⊥ Mij X2

ij
¯̄X
2

ij

(12) 0.051 0.054 0.048 0.034 0.053 0.052 0.061 0.061 0.041 0.065

(13) 0.052 0.064 0.040 0.041 0.058 0.054 0.061 0.041 0.031 0.042

(14) 0.064 0.064 0.052 0.045 0.055 0.074 0.063 0.040 0.042 0.052

(15) 0.064 0.067 0.058 0.052 0.063 0.074 0.074 0.041 0.059 0.064

(16) 0.064 0.089 0.056 0.056 0.058 0.075 0.091 0.043 0.062 0.075

(17) 0.050 0.054 0.053 0.038 0.052 0.051 0.056 0.050 0.035 0.051

(18) 0.050 0.052 0.041 0.042 0.052 0.051 0.064 0.042 0.035 0.052

(23) 0.055 0.086 0.058 0.060 0.076 0.059 0.074 0.053 0.045 0.057

(24) 0.073 0.076 0.055 0.050 0.058 0.090 0.089 0.042 0.044 0.051
(25) 0.073 0.076 0.058 0.055 0.063 0.091 0.114 0.063 0.067 0.081
(26) 0.074 0.101 0.043 0.046 0.057 0.092 0.115 0.052 0.045 0.060
(27) 0.050 0.050 0.052 0.053 0.062 0.051 0.062 0.058 0.042 0.058

(28) 0.050 0.057 0.046 0.049 0.061 0.051 0.039 0.045 0.035 0.043

(34) 0.097 0.097 0.049 0.054 0.061 0.135 0.145 0.047 0.053 0.062
(35) 0.098 0.118 0.048 0.050 0.057 0.137 0.175 0.046 0.061 0.068
(36) 0.100 0.130 0.040 0.042 0.052 0.142 0.158 0.045 0.052 0.059
(37) 0.052 0.063 0.047 0.048 0.063 0.054 0.062 0.056 0.042 0.051

(38) 0.052 0.062 0.051 0.048 0.062 0.053 0.060 0.059 0.045 0.059

(45) 0.925 0.847 0.083 0.895 0.897 0.996 0.977 0.093 0.990 0.991
(46) 0.938 0.893 0.074 0.911 0.912 0.997 0.988 0.090 0.995 0.995
(47) 0.051 0.044 0.041 0.036 0.045 0.051 0.040 0.045 0.035 0.046

(48) 0.051 0.050 0.043 0.040 0.049 0.051 0.057 0.050 0.037 0.049

(56) 0.925 0.910 0.068 0.891 0.893 0.998 0.994 0.076 0.990 0.990
(57) 0.051 0.053 0.046 0.045 0.051 0.051 0.053 0.057 0.049 0.063

(58) 0.051 0.042 0.048 0.032 0.040 0.051 0.044 0.049 0.038 0.044

(67) 0.051 0.049 0.040 0.043 0.054 0.051 0.037 0.045 0.034 0.044

(68) 0.051 0.050 0.052 0.046 0.055 0.053 0.058 0.050 0.052 0.055

(78) 0.050 0.051 0.033 0.034 0.045 0.050 0.049 0.037 0.033 0.040

n=300, 1000 samples, 996 converged; n=500, 1000 samples, 994 converged
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model has the most severe misspecification. The X2
ij appear to be substantially inflated, and ¯̄X

2

ij

has considerably lower power than GFfit
(ij)
⊥ where the model is most severely misspecified.

Results shown in Table ?? show that all four lack-of-fit diagnostics have low power under the
design where all variables have non-zero cross-loadings on both factors. The omnibus statistics
have low power in this simulation design also.

The simulation results for eight variables are somewhat more informative when the effect
size is small. For the (45), (46), and (56) associations, the lack-of-fit effect size is very large, so
there is little difference when comparing the empirical power for GFfit

(ij)
⊥ to the other lack-of-fit

statistics. But when the lack-of-fit effect size is smaller, as in the (24), (25), (26), (34), (35), and
(36) associations, higher power for GFfit

(ij)
⊥ to detect lack of fit is clearly apparent in the

simulation results. For these associations with smaller lack-of-fit effect size, the power for X2
ij

and ¯̄X
2

ij appear to be, as with Mij , not much higher than the size of the test. A similar pattern of
higher power for GFfit

(ij)
⊥ is found in the ten variable power simulation results shown in

Appendix C.

The GFfit
(ij)
⊥ are dependent on the order of the variables in the residual vector rrr, so it is

informative to compare the simulation results with four and six variables, where lack of fit is
present among the first few elements of rrr, to the results for eight and ten variables, where order of
variables, and hence order of GFfit

(ij)
⊥ , is arbitrary and lack of fit is spread out among the

elements of rrr. For eight variables, there are nine bivariate tables where asymptotic power for
GFfit

(ij)
⊥ is above the 0.05 level. The rows for these tables are highlighted in bold in Table 6. In

each of these rows, the asymptotic power for GFfit
(ij)
⊥ is higher than the empirical power for Mij

X2
ij and ¯̄X

2

ij , and in eight of the nine rows, the empirical power for GFfit
(ij)
⊥ is equal to or higher

than the empirical power for Mij , X2
ij and ¯̄X

2

ij . Even among the association for variables five and
six, which is the 23rd GFfit

(ij)
⊥ statistic, GFfit

(ij)
⊥ still has higher power than the other three lack

of fit diagnostics displayed in the table. A very similar pattern can be seen in the simulation
results for ten variables in Appendix C.

Although there are 8! = 40,320 permutations of the order of eight variables, for purposes of
investigating the effect of variable order, Table ?? in Appendix C shows the asymptotic and
empirical power for GFfit

(ij)
⊥ when the order of the eight variables is reversed. (Reversing the

order of the variables changes the order of the GFfit
(ij)
⊥ but does not reverse the order of the

GFfit
(ij)
⊥ .) By reversing the variable order, the GFfit

(ij)
⊥ statistics for marginals (4,5), (4,6) and

(5,6) are earlier in the sequence of orthonormalization, similar to the six variable simulation.
Table ?? shows that asymptotic power increases slightly when the variables are reordered this
way, 0.925 to 0.967 for marginal (4,5), 0.938 to 0.962 for marginal (4,6), and 0.925 to 0.956 for
marginal (5,6). There is a somewhat larger change in empirical power for these three marginals
when the variables have this order. The simulation results in Table ?? look similar to the results
for six variables in that the empirical power for GFfit

(ij)
⊥ is higher than the power for the other



PSYCHOMETRIKA SUBMISSION February 25, 2022 31

diagnostics for all three of these marginals. On the other hand, empirical power for GFfit
(ij)
⊥ on

marginal (5,6) is slightly reduced when it is earlier in the sequence. Although the effect of
variable order on the power of GFfit

(ij)
⊥ is modest, in some circumstances, it may be possible to

employ a strategy to increase power of GFfit
(ij)
⊥ by placing variables that may not be well fit by a

model earlier in the orthonormalization. It is important to realize that although small power
differences in one-at-a-time tests for GFfit

(ij)
⊥ relative to other diagnostics may result from order

dependence as seen in marginal (4,5), GFfit
(ij)
⊥ would nevertheless be substantially more reliable

to detect existing lack of fit after a correction for multiple testing because the GFfit
(ij)
⊥ are

asymptotic independent while the ¯̄X
2

ij are not independent due to the origin from X2
ij and have

unknown joint distribution. The correction to maintain Type I error level is much more
conservative for the statistics that have unknown joint distribution. Strategies for variable order
and correction for multiple testing are demonstrated and discussed further in the application in the
next section.

7. Application to Depression Symptoms

The GFfit
(ij)
⊥ statistic was used to evaluate the fit of a one factor model to responses given to

questions related to the psychiatric condition depression. In this example, the GFfit
(ij)
⊥ will be

compared to ¯̄X
2

ij . Mij and X2
ij are not included in the example because of inadequate

performance in terms of Type I error and power properties as demonstrated in the simulations
presented in earlier sections. The data used in this example consist of the responses from 294
adults to the following seven depression symptom questions: (1) “I felt that I could not shake off
the blues even with the help of my family and friends,”(2) “I felt hopeful about the future,” (3) “I
felt that everything was an effort,” (4) ”I felt lonely,” (5) “I felt fearful,” (6) I thought my life had
become a failure,” and (7) “I felt that people disliked me.” The four response categories, ordered
from most to least severe, were (1) “most or all of the time,” (2) “occasionally or a moderate
amount of time,” (3) “some or little of the time,” and (4) “rarely or none of the time.” The source
of the data is Afifi & Clark (1984), and the data is also reproduced in Sharma (1995). Fifty of the
294 sample members were classified as depressed based the Center for Epidemiologic Studies
Depression Scale (CESD), which would give a rate that is higher than the prevalence of about 7%
for depression in the general U.S. population of adults (NIMH, 2019). The marginal proportions
for the severe level of all of the symptoms in the sample are very low, at five percent or less, so the
47 cross-classified table is very sparse with a large number of cells that have count equal to 0.

The seven items used for this example were chosen to demonstrate two features of the
GFfit

(ij)
⊥ statistics. First, seven item questions were chosen because it is possible to calculate

higher-order GFfit⊥ in addition to the GFfit
(ij)
⊥ statistics with a 47 cross-classified table. Second,

as mentioned in the previous section, occasionally, when response variables have a substantive
meaning such as in an attitude survey or clinical psychological symptoms, it may be possible to
employ a strategy for selecting a variable order based on substantive theory to obtain a moderate
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increase in power to detect lack of fit in some bivariate tables among the first few variables. We
demonstrate this strategy in the clinical psychology example below. However, in other
applications, such as educational testing, it may not be possible to devise a variable ordering on
substantive considerations to increase power and order of variables will be arbitrary. In the
example, we will demonstrate that the correction for multiple testing among correlated statistics
with unknown joint distribution is so conservative that GFfit

(ij)
⊥ statistics can be expected to have

higher power than the other available diagnostics to detect existing source of lack of fit regardless
of variable order.

Depression symptoms are heterogeneous in view of a one-dimensional IRT model (Reiser,
1989), so most of the symptom questions chosen for this example are more homogeneous in that
they ask respondents about how they “felt.” Six of the symptom questions are “negatively”
worded in that “most or all of the time” response would indicate possible depression, but the
second symptom question is “positively” worded in that the “most or all of the time” response
would indicate a healthy psychological state. This positively worded symptom question may have
associations with some of the other symptom questions that are not well fit by a one-dimensional
IRT model. Since GFfit

(ij)
⊥ that are extracted early may tend to be larger, based on substantive

theory this positively worded symptom question was placed near the beginning of the variables
that are cross-classified in the 47 table.

The GLLVM with one factor was fit to these data using the R package mirt, and fit statistics
were calculated using a custom R program. X2

PF = 11, 515.55 on 16, 355 degrees of freedom, but
the chi-square approximation for the full Pearson statistic should not be considered valid because
of the high degree of sparseness in the data table. X2

[2] = 222.62 on 189 degrees of freedom, with
p-value < 0.047, indicating that the model should be rejected, although the p-value result might
be considered marginal.

GFfit
(ij)
⊥ and ¯̄X

2

ij goodness-of-fit statistics for the two-way associations are shown in Table
7. Since each survey question had four response categories, the GFfit(ij) statistics follow an
asymptotic chi-square distribution on (4− 1)2 = 9 degrees of freedom in this application, and the
¯̄X
2

ij follow an asymptotic chi-square distribution with 42 − 8− 1 = 7 degrees of freedom.

Lack-of-fit results from GFfit
(ij)
⊥ and ¯̄X

2

ij are fairly similar in this example. Looking at p-values
obtained from the central chi-square distribution for one-at-a-time tests without correction for
multiple testing, both statistics indicate that three of the two-way associations are not well fit by
the one-dimensional GLLVM. Both statistics show large values for the association between
“could not shake off the blues” and “felt hopeful about the future,” and also for the association the
between “everything was an effort” and “felt fearful.” However, the two statistics differ on the fit
for the association between a third pair of items: GFfit

(ij)
⊥ has a large value for the association

between “everything was an effort” and “felt lonely,” while ¯̄X
2

ij has a large value for the
association between “felt hopeful” and “people disliked me.” This type of difference can be
explained by different properties of the statistics: whereas the GFfit

(ij)
⊥ are independent, each ¯̄X

2

ij
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is obtained in a manner that ignores the other ¯̄X
2

ij . So, for example, ¯̄X
2

2 ,7 may be larger than

GFfit
(2,7)
⊥ because ¯̄X

2

2 ,7 may include some overlap with other ¯̄X
2

ij due to lack of independence.

Since Table 7 has goodness-of-fit statistics for 21 item pairs, it is important to consider the
inflation of Type I error rate due to multiple testing. As mentioned earlier, an important difference
between GFfit

(ij)
⊥ and ¯̄X

2

ij is that GFfit
(ij)
⊥ are asymptotically independent while ¯̄X

2

ij are not
independent. For the independent statistics, the false discovery rate (FDR) procedure of
Benjamini and Hochberg (1995) can be used to control the inflation of Type I error among the
GFfit

(ij)
⊥ . The FDR p-values for the GFfit

(ij)
⊥ are shown in the fourth column of Table 7, where it

can be seen that GFfit
(12)
⊥ for the association between “could not shake off the blues” and “felt

hopeful” is still significant at the α = 0.05 level indicating lack of fit. For the ¯̄X
2

ij , which are not
independent and have unknown joint distribution, the FDR method is not valid, and the method of
Benjamini and Yekutieli (2001) for controlling the false discovery rate under dependency is more
appropriate. The BY p-values for ¯̄X

2

ij are shown in the seventh column of Table 7, where it can be

seen that the BY procedure is much more conservative and none of the ¯̄X
2

ij are significant at even
the α = 0.50 level after the correction. Strictly for purposes of comparison, FDR p-values for the
¯̄X
2

ij are also shown in the last column of Table 7, and although the FDR procedure is less

conservative, there are still no ¯̄X
2

ij that are significant at the α = 0.05 level after the correction.
This example demonstrates that occasionally it may be possible to select a variable order based on
substantive theory that would modestly increase the power for the first few GFfit

(ij)
⊥ statistics.

More importantly, it demonstrates that the asymptotic independence property of GFfit
(ij)
⊥ allows

for a much less conservative correction for multiple testing compared to other diagnostics
considered in this study, which will result in higher probability of detecting existing lack of fit for
GFfit

(ij)
⊥ regardless of variable order when controlling Type I error. Although the ¯̄X

2

ij are not
order dependent, there are issues of dependency and inflation of the Type I error rate when using
this diagnostic. Regardless of variable order, GFfit

(ij)
⊥ will always sum to the same value for the

X2
[2] statistic.

With seven variables in the cross-classified table, it is possible to compute some of the
higher-order GFfit⊥ statistics. These higher-order GFfit⊥ are also independent components of
the X2

PF statistic and will be used to demonstrate the power of a focused test and further issues of
sparseness with an omnibus statistics. In this example with symptoms of depression, the
GFfit

(ijk)
⊥ sum to 788.31, which is equal to the value of X2

[3|2], where X2
[u|u−1,u−2,...,t] indicates a

statistic calculated using only the columns corresponding H∗[u] from the larger H∗[1:q] matrix. A
few studies (Mavridis, Moustaki & Knott, 2007; Dassanayake, Reiser, & Zhu, 2016) have
indicated that third-order marginal frequencies may be substantial enough in magnitude so that an
asymptotic chi-square distribution may be valid for a statistic on third-order marginals. If the
asymptotic distribution is valid in this example, then X2

[3|2] would be distributed approximately
chi-square on 945 degrees of freedom. Since X2

[2] and X2
[3|2] are sequential and independent, they
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may be pooled to form the statistic X2
[2:3] which would be equal to 1010.93 on 1134 degrees of

freedom. Using this statistic, the null hypothesis Ho : Hπππ = Hπππ(βββ) would not be rejected,
demonstrating that the X2

[2:3] statistic is diluted if the lack of fit is present in the second-order
marginals. A study by Salomaa (1990) found that lack of fit for an IRT type model in social
science applications is predominantly found in the second-order marginals, so a more focused test
using the X2

[2] statistic is preferable because it would be expected to have higher power. The sum
of the fourth-order GFfit⊥ produce X2

[4|3,2] which is equal to 2284.08, the sum of the fifth-order
GFfit⊥ produce X2

[5|4,3,2] which is equal to 3824.28. GFfit⊥ statistics from the sixth- and
seventh-order marginals sum to 4395.86 and fill out the X2

PF statistic, although some of the
seventh-order GFfit⊥ would be equal to zero because only 2180 degrees of freedom remain for
the seventh-order GFfit⊥ and 37 = 2187. The marginal tables for higher-order GFfit⊥ are
undoubtedly too sparse to apply an asymptotic chi-square approximation, but the parametric
bootstrap could be used for a test of Ho : Hπππ = Hπππ(βββ), where H is H[4:7] to cover possible lack
of fit in higher-order marginals.

Each of the GFfit(ij) statistics shown in Table 7 is a sum of nine orthogonal components of
Pearson’s statistic. The GFfit(ij) statistics shown in Table 7 sum to 222.62, which is equal to the
value of the X2

[2] statistic, and the X2
[2] statistic is then the sum of 189 individual orthogonal

components. In a similar way, X2
[3] is a sum of ten GFfit(ijk) statistics.

8. Conclusions

Components of Pearson’s chi-square statistic have a long history in the statistical literature.
The present work on GFfit(ij)⊥ as a component of Pearson’s statistic places this lack-of-fit
diagnostic for cross-classified tables in the tradition of Lancaster (1969), Mirvaliev (1987),
Raynor & Best (1989) and Eubank(1997). The GFfit(ij)⊥ are asymptotic independent chi-square
statistics and are a powerful diagnostic to detect the source of lack of fit in a cross-classified table
when a more global test indicates that the hypothesized model does not fit; the more global test
should be conducted first. As demonstrated, a more global test statistic such as X2

[2] based on

second-order marginals can also be obtained as as a partial sum of GFfit(ij)⊥ . Power calculations
for an IRT model show that GFfit(ij)⊥ has substantially higher power for detecting the source of
lack of fit compared to other general diagnostics on bivariate marginal tables. Simulation results
using an IRT model show that GFfit(ij)⊥ has good Type I error performance even if the joint
frequencies in the cross-classified table are very sparse, and GFfit(ij)⊥ generally has higher
empirical power than the other diagnostics for detecting model lack of fit in bivariate tables. An
application with a large number of variables will produce a large number of lack-of-fit statistics
on bivariate tables, and it is important for applied researchers to use a multiple decision rule to
maintain validity when identifying unusually large values.

A primary purpose of models for cross-classified tables is to explain the association among
the variables. GFfit(ij)⊥ is a member of a class of general lack-of-fit statistics for marginal tables
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Table 7: GFfit Statistics for Depression Example

(ij) GFfit
(ij )
⊥ p-val FDR ¯̄X

2

ij p-val BY FDR
(12) 25.948 0.002 0.044 16.583 0.020 0.777 0.213
(13) 6.050 0.735 0.908 2.669 0.914 1.000 0.960
(14) 9.628 0.381 0.720 11.434 0.121 1.000 0.386
(15) 10.179 0.336 0.706 8.129 0.321 1.000 0.547
(16) 7.341 0.602 0.877 8.678 0.277 1.000 0.547
(17) 3.861 0.920 0.946 5.282 0.626 1.000 0.773
(23) 3.415 0.946 0.946 1.544 0.981 1.000 0.981
(24) 12.408 0.191 0.574 7.831 0.348 1.000 0.547
(25) 13.979 0.123 0.517 10.816 0.147 1.000 0.386
(26) 7.106 0.626 0.877 7.645 0.365 1.000 0.547
(27) 14.816 0.096 0.505 14.850 0.038 0.969 0.266
(34) 20.161 0.017 0.119 12.176 0.095 1.000 0.386
(35) 20.397 0.016 0.119 18.525 0.010 0.751 0.206
(36) 9.285 0.411 0.720 4.680 0.699 1.000 0.776
(37) 4.812 0.850 0.946 8.186 0.316 1.000 0.547
(45) 13.166 0.155 0.543 6.186 0.518 1.000 0.726
(46) 4.465 0.878 0.946 5.577 0.590 1.000 0.773
(47) 10.539 0.309 0.706 10.958 0.140 1.000 0.386
(56) 7.190 0.617 0.877 4.653 0.702 1.000 0.776
(57) 11.173 0.264 0.693 13.683 0.057 1.000 0.300
(67) 6.700 0.668 0.877 8.503 0.290 1.000 0.547
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that can be applied broadly to models for cross-classified variables. Other members of the class
include ¯̄X

2

ij and Mij , although neither ¯̄X
2

ij nor Mij can be applied to binary cross-classified
variables with estimated parameters because the degrees of freedom would become negative. The
GFfit

(ij)
⊥ also differ from ¯̄X

2

ij and Mij in that they are obtained jointly, in a sequential manner
with known asymptotic joint distribution function. Because of the sequential feature, using
substantive theory to plan the order of variables may be fruitful in terms of power to detect lack of
fit, similar to selecting an order for variables in a multiple regression. When fitting an IRT model,
for example, items that might be associated with multiple factors or newly introduced items could
be placed at the top in the order. However, in many applications, a substantive theory will not be
available, and ordering of the variables will be arbitrary. Then conditional on (i, j) and a given
false model, even though this particular GFfit(ij)⊥ might have modestly higher or lower
one-at-a-time power to detect lack of fit with a different variable order, applied researchers can
nevertheless still expect that after a correction for multiple testing that takes advantage of the
asymptotic independence property for a set of GFfit(ij)⊥ , there will be higher probability to detect
existing lack of fit using GFfit(ij)⊥ than other diagnostics for cross-classified tables. Furthermore,
when diagnostics have different properties, applied researchers may find it useful to examine
multiple lack-of-fit diagnostics, some of which are not order dependent. SAS PROC MIXED, for
example, provides three versions of model diagnostic residuals, including order-dependent
Cholesky residual (scaled residual), marginal residual, and conditional residual (Schabenberger,
2005). For cross-classified tables, GFfit(ij)⊥ , GFfit(ij), and ¯̄X

2

ij could be examined, keeping in
mind the need to maintain Type I error level. Based on simulation results, Mij is not
recommended as a lack-of-fit diagnostic for the IRT model because it has very low power for
detecting misspecification of variables associations, which is the most common misspecification
in applications of IRT models.

Calculation of GFfit(ij)⊥ requires careful computation because there is high collinearity
among the columns of matrix H. Computing GFfit(ij)⊥ by using the sum of squares from an
orthogonal regression as discussed in Section 3.2 has high numerical stability and reliability.
Because calculation of GFfit(ij)⊥ requires a large amount of memory as the number of response
variables increases, it is more suitable for applications such as attitude surveys, personality and
clinical psychological assessments and medical applications (Breinegaard, Rabe-Hesketh &
Skrondal (2017), rather than educational testing where the number of items may be sizable. For a
composite null hypothesis, a lack-of-fit index somewhat similar to GFfit(ij)⊥ could be calculated
by simply ignoring the matrix GGG, which would reduce the demand for memory substantially, but
the indices would not have the theoretical properties for probability distribution and degrees of
freedom obtained in Section 4.1.

High-dimensional cross-classified tables are often found in social science applications, and
in this paper, GFfit(ij)⊥ was employed to identify lack of fit among second-order marginals for
the IRT model applied to symptoms of depression with four response categories. In this
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application, the performance of GFfit(ij)⊥ and ¯̄X
2

ij for identifying lack of fit were similar, but the
asymptotic independent GFfit(ij)⊥ statistics had a substantial advantage when controlling the
Type I error rate. This example also showed the advantage that an omnibus test formed on a
partial sum of GFfit(ij)⊥ had higher power to reject a false null model than X2

PF . Although the
application was to the IRT model, GFfit(ij)⊥ can be applied to many other models. For example, a
closely related approach has been used as a diagnostic for models applied to cross-classified
longitudinal variables (Breinegaard, Rabe-Hesketh and Skrondal, 2017).

More simulation studies are needed to determine if an asymptotic chi-square approximation
would be valid for GFfit(ijk)⊥ and other higher-order GFfit⊥ that could be used as lack-of-fit
diagnostics. The asymptotic approximation may be less reliable in higher-order marginal tables
due to sparseness among the marginal frequencies. If the asymptotic approximation is not valid,
the parametric bootstrap can be used to obtain a p-value for GFfit(ijk)⊥ and for other higher-order
GFfit⊥ as well. Another important area for future research in IRT applications is a comparison
of the approach using components of Pearson’s statistic to the Lagrange multiplier approach of
Glas (1999). A study for this comparison using binary manifest variables is now underway and
will also include X̄2

ij and standardized bivariate residuals. More studies are also needed to extend
application of GFfit(ij)⊥ to other models for cross-classified tables from longitudinal studies.
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9. Appendix A

9.1. First- and Second-order Marginals

Define H[1] = VVV ′. Then, under the model πππ = πππ(βββ), the first-order marginal proportion for
variable Yi can be defined as

π(i)(a; βββ) = Prob(Yi = a|βββ) =
∑
s

h`sπs(βββ) = hhh
′

`πππ(βββ),

a = 2, . . . , c; ` = (c− 1)(i− 1) + a− 1; s = 1, . . . , T,

(9.1)

where h`s is an element of the q(c− 1) by T matrix H[1], and where hhh′` is row ` of matrix H[1].
The true first-order marginal proportion is given by

π(i)(a) = Prob(Yi = a) =
∑
s

h`sπs = hhh
′

`πππ . (9.2)

The second-order marginal proportion for variables Yi and Yj under the model can be defined
as

π(ij)(a, b; βββ) = Prob(Yi = a, Yj = b|βββ) =
∑
s

hmsh`sπs(βββ) = (hhh′m ◦ hhh
′

`)πππ(βββ), (9.3)

where i = 1, · · · , q − 1; j = i, · · · , q; m = (c− 1)(i− 1) + a− 1; ` = (c− 1)(j − 1) + b− 1;
a = 2, . . . , c; b = 2, . . . , c; and hhh′m ◦ hhh

′

` represents the Hadamard product (Magnus & Neudecker,
1999) of rows m and ` from matrix H[1]. Then the true second-order marginal proportion is given
by

π(ij)(a, b) = Prob(Yi = a, Yj = b) =
∑
s

hmsh`sπs = (hhh′m ◦ hhh
′

`)πππ . (9.4)

9.2. V Matrix

The matrix VVV has (c− 1) kernel patterns, each of dimension c. For c = 2, the kernel pattern
is fff 1 = (0, 1)

′ , and for c = 3, the kernel patterns are fff 1 = (0, 0, 1)
′ and fff 2 = (0, 1, 0)

′ . In
general, the kernel patterns, as columns, form a (c− 1) by (c− 1) matrix JJJ − III adjoined to a row
of zeros. The matrix VVV can be generated by Kronecker products of the kernel patterns with the
vector 111c, which is a vector of length c where each element is 1. The pattern of columns is

VVV = (fff 1 ⊗ (111c ⊗ 111c · · · ⊗ 111c), fff 2 ⊗ (111c ⊗ 111c · · · ⊗ 111c) . . . fff c−1 ⊗ (111c ⊗ 111c · · · ⊗ 111c),

111c ⊗ (fff 1 ⊗ 111c · · · ⊗ 111c), 111c ⊗ (fff 2 ⊗ 111c · · · ⊗ 111c), . . . 111c ⊗ (fff c−1 ⊗ 111c · · · ⊗ 111c), . . .

111c ⊗ (111c · · · ⊗ 111c ⊗ fff 1), 111c ⊗ (111c · · · ⊗ 111c ⊗ fff 2), . . . 111c ⊗ (111c · · · ⊗ 111c ⊗ fff c−1))

(9.5)
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With q = 3 and c = 2, VVV is generated as

VVV =
(
fff 1 ⊗ (1112 ⊗ 1112), 1112 ⊗ (fff 1 ⊗ 1112), (1112 ⊗ 1112)⊗ fff 1 .

)
(9.6)

For q = 3 and c = 3, VVV is generated as

VVV = (fff 1 ⊗ (1113 ⊗ 1113), fff 2 ⊗ (1113 ⊗ 1113), 1113 ⊗ (fff 1 ⊗ 1113),

1113 ⊗ (fff 2 ⊗ 1113), (1113 ⊗ 1113)⊗ fff 1, (1113 ⊗ 1113)⊗ fff 2),
(9.7)

and for q = 4 and c = 4, VVV is generated as

VVV = (fff 1 ⊗ (1114 ⊗ 1114 ⊗ 1114), fff 2 ⊗ (1114 ⊗ 1114 ⊗ 1114), fff 3 ⊗ (1114 ⊗ 1114 ⊗ 1114),

1114 ⊗ (fff 1 ⊗ 1114 ⊗ 1114), 1114 ⊗ (fff 2 ⊗ 1114 ⊗ 1114), 1114 ⊗ (fff 3 ⊗ 1114 ⊗ 1114),

1114 ⊗ (1114 ⊗ fff 1 ⊗ 1114), 1114 ⊗ (1114 ⊗ fff 2 ⊗ 1114), 1114 ⊗ (1114 ⊗ fff 3 ⊗ 1114),

1114 ⊗ (1114 ⊗ 1114 ⊗ fff 1), 1114 ⊗ (1114 ⊗ 1114 ⊗ fff 2), 1114 ⊗ (1114 ⊗ 1114 ⊗ fff 3))

(9.8)

9.3. H Matrix

For second-order marginals, a (c− 1)2q(q − 1)/2 by cq matrix H[2] can be defined by
forming Hadamard products among the columns VVV :
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HHH [2] =



(vvv1 ◦ vvvc)′

(vvv1 ◦ vvvc+1)
′

...

(vvv1 ◦ vvvq(c−1))′

(vvv2 ◦ vvvc)′

(vvv2 ◦ vvvc+1)
′

...

(vvv2 ◦ vvvq(c−1))′
...

(vvvc−1 ◦ vvvc)′

(vvvc−1 ◦ vvvc+1)
′

...

(vvvc−1 ◦ vvvq(c−1))′
...

(vvvc ◦ vvv(q−1)(c−1))′
...

(vvvc ◦ vvvq(c−1))′
...

(vvv(q−1)(c−1) ◦ vvv(q−1)(c−1)+1)
′

...

(vvv(q−1)(c−1) ◦ vvvq(c−1))′



(9.9)

where vvv` represents column ` of matrix VVV . To place the marginals in a convenient order, the
columns of H from the products (vvv ′m ◦ vvv

′

`) are arranged in lexicographical order. If c = 2,
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H[2] =



(vvv1 ◦ vvv2)′

(vvv1 ◦ vvv3)′
...

(vvv1 ◦ vvvq)′

(vvv2 ◦ vvv3)′
...

(vvv2 ◦ vvvq)′
...

(vvvq−1 ◦ vvvq)′



, (9.10)

If q = 3 and c = 4 categories, H[2] is a 27 by 64 matrix:

H[2] =



(vvv1 ◦ vvv4)′

(vvv1 ◦ vvv5)′

(vvv1 ◦ vvv6)′

(vvv2 ◦ vvv4)′

(vvv2 ◦ vvv5)′

(vvv2 ◦ vvv6)′

(vvv3 ◦ vvv4)′

(vvv3 ◦ vvv5)′

(vvv3 ◦ vvv6)′
...

(vvv4 ◦ vvv7)′

(vvv4 ◦ vvv8)′

(vvv4 ◦ vvv9)′

(vvv5 ◦ vvv7)′

(vvv5 ◦ vvv8)′

(vvv5 ◦ vvv9)′

(vvv6 ◦ vvv7)′

(vvv6 ◦ vvv8)′

(vvv6 ◦ vvv9)′



(9.11)
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9.4. M Matrix

Consider c kernel patterns fff `, ` = 1, 2, . . . , c that form, as columns, a c by c matrix JJJ − III ,
and consider the cq by T matrix UUU given by

UUU = (fff 1 ⊗ (111c ⊗ 111c · · · ⊗ 111c), fff 2 ⊗ (111c ⊗ 111c · · · ⊗ 111c) . . . fff c ⊗ (111c ⊗ 111c · · · ⊗ 111c),

111c ⊗ (ttt1 ⊗ 111c · · · ⊗ 111c), 111c ⊗ (fff 2 ⊗ 111c · · · ⊗ 111c), . . . 111c ⊗ (fff c ⊗ 111c · · · ⊗ 111c), . . .

111c ⊗ (111c · · · ⊗ 111c ⊗ fff 1), 111c ⊗ (111c · · · ⊗ 111c ⊗ fff 2), . . . 111c ⊗ (111c · · · ⊗ 111c ⊗ fff c))

(9.12)

Then a c2q(q − 1)/2 by T matrix MMM is defined using Hadamard products among the columns of
UUU :
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MMM [2] =



(uuu1 ◦ uuuc+1)
′

(uuu1 ◦ uuuc+2)
′

...

(uuu1 ◦ uuuqc)
′

(uuu2 ◦ uuuc+1)
′

(uuu2 ◦ uuuc+2)
′

...

(uuu2 ◦ uuuqc)
′

...

(uuuc ◦ uuuc+1)
′

(uuuc ◦ uuuc+2)
′

...

(uuuc ◦ uuuqc)
′

...

(uuuc+1 ◦ uuu2c+1)
′

...

(uuuc+1 ◦ uuuqc)
′

...

(uuu(q−2)c+1 ◦ uuu(q−1)c+1)
′

...

(uuu(q−1)c ◦ uuuqc))
′



(9.13)

Linear dependencies exist among the columns of UUU ; VVV from Section 2 consists of the linear
independent columns of UUU such that VVV = UUUAAA, where AAA = III ⊗ (ttt1, ttt2, . . . , tttc).

The (c− 1)2q(q − 1)/2 by c2q(q − 1)/2 matrix AAA is given by
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AAA =



III ` ⊗ AAA(1) 000q(c−1) x qc 000 000 000 . . . 000

000 000 III ` ⊗ AAA(1) 000g(c−1) x(q−1)c 000 . . . 000

000 000 000 000
. . . 000 000

...
...

...
... . . . 000 000

000 000 000 000 . . . III 2x2 ⊗ AAA(1) 0002(c−1)xc


(9.14)

where ` = (q − d)(c− 1) for column d of AAA, and AAA(1) = (III (c−1)
... 000).
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