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S U M M A R Y
There is evidence that magma chambers are not fed by a continuous flow, but in the form of
discrete magma batches. The possibility is considered that the chamber is fed by a magma
bubble ascending through the region underneath, driven by buoyancy force. Due to the high
ambient temperatures, it is assumed that the bubble moves through a viscoelastic medium
with temperature-dependent viscosity. The motion of a spherical magma bubble and its inflow
into the chamber are studied. The bubble volume is assumed to be at least equal to magma
volumes in typical effusive eruptions on Mount Etna, corresponding to bubble radii of a few
hundred metres. Under some simplifying assumptions, the problem is solved analytically. The
bubble velocity is directly proportional to the square of its radius and inversely to the viscosity
of surrounding rocks, but it is independent of magma viscosity. Velocity can reach values of
the order of tens of metres per year in the proximity of the chamber. Since the characteristic
time for heat diffusion is several hundred years, the bubble can cover several kilometres with
only moderate cooling. During ascent, forced convection takes place in the bubble. Equations
for convection streamlines are obtained and traveltimes of magma are calculated, giving a
mixing time of the order of hundred years below the chamber. Inflow of the bubble in the
magma chamber produces a pulse in flow rate. Under reasonable assumptions, pulse shape
and duration are calculated analytically. Pulse duration can be several tens of years and can
give rise to a sequence of eruptions, depending on the size of the bubble and the critical
overpressure for eruption.

Key words: Effusive volcanism; Magma chamber processes; Physics of magma and magma
bodies.

1 I N T RO D U C T I O N

Magma fluxes feeding magma chambers are difficult to ascertain,
emphasizing the need for a better understanding of how magmatic
systems evolve (e.g. Gudmundsson 2012). A challenging question
is whether magma more commonly ascends during continuous or
pulse-like flow. A variety of observations from plutonic and active
systems suggest the prevalence of discrete pulses feeding reservoirs
(Bons et al. 2004; Manea et al. 2005; Menand 2011). The occur-
rence of magma pulses has been inferred for the feeding of magma
chambers prior to eruptions as well as for very long episodes of
magma intrusion in the Earth’s crust (Crisp 1984; Paterson & Ver-
non 1995; Scandone et al. 2007; Annen 2011; Michaut & Jaupart
2011). There are also thermal arguments for the episodic feeding
of magma reservoirs: unless the crust is exceptionally hot, contin-
uous magma feeding is incompatible with estimates of long-term-
averaged filling rates (Menand et al. 2015).

Geophysical, geochemical and petrologic observations present a
picture of magmatic systems that extend throughout the crust and
are characterized by distributions of melt, crystals and exsolved

volatiles that are heterogeneous in both space and time (Cashman
et al. 2017). In general, magma ascent occurs via a combination
of porous flow, diapirs and dikes, with ascent rate controlled by
ambient conditions (Rubin 1993). In the upper crust, magma ascent
occurs primarily via dikes, as numerous field outcrops attest.

This paper considers the particular region beneath a magma
chamber, where the rheological properties may allow ascent via
diapir-like structures. In this case, the possibility is explored that
magma feeding magma chambers may flow in the form of dis-
crete magma bubbles. Interesting questions are whether we can
recognize distinct magma pulses and how far a magma bubble trav-
elled from its source region to the magma chamber (Paterson et al.
2011).

The dynamics of ascending magma bubbles has been considered
by several authors in connection with diapirism and the formation of
plutons. Schmeling et al. (1988) considered a viscous sphere rising
through another viscous fluid in order to represent the buoyant
motion of a diapir. A review of previous work on the subject was
given by Weinberg & Podladchikov (1994), who extended the model
to non-Newtonian fluids.
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Mass flow into a spherical magma chamber has been considered
by Segall (2016), who assumed that flux is proportional to the dif-
ference between a constant source pressure and the magma chamber
pressure. Currenti & Bonaccorso (2019) considered magma inflow
into a spheroidal chamber during inter-eruptive periods, suggesting
that they might be recorded by high-precision strain measurements.

In fact, transient variations in physical properties have been ob-
served during magma ascent at Mount Etna (Patanè et al. 2006).
The path of magma ascent may be defined by low values of the
quality factor (De Gori et al. 2005) and it was shown that seismic
attenuation of local earthquakes may strongly increase, announcing
an incipient eruption (De Gori et al. 2011).

A time-varying injection rate and its effects on mass extraction
have been considered by Karlstrom et al. (2012), who modelled
stochastic dike flux that provides pulsed input to a magma chamber
in a viscoelastic half-space. Degruyter & Huber (2014) proposed a
model focused on the evolution of the thermodynamic state of the
chamber as new magma is injected and showed how the frequency
of eruptions depends on the timescale of injection.

Dragoni & Piombo (2020) assumed that an eruption is due to a
magma pulse entering the chamber from the feeding system and
showed that the finite duration of magma inflow may affect the time
history of effusion rate. In the absence of data about possible pulse
shapes, a simple bell-shaped function of time was chosen.

In the present paper, the ascent of a magma bubble through the
region below the magma chamber is considered. The aim is to study
the bubble dynamics in the final part of its ascent and to show that
inflow in the chamber gives rise to a magma pulse that may be
responsible for one or more eruptions. It must be noted that mass
injection into a magma reservoir is not the only mechanism by which
eruptions are triggered: a major role is played by the evolution of
the thermodynamic state of the chamber (e.g. Degruyter & Huber
2014).

Although elastic behaviour well describes the uppermost layers of
the Earth’s crust, in active volcanic regions viscoelastic behaviour
is more appropriate to characterize the medium around magma
reservoirs, which can extensively perturb the geothermal gradient
(Del Negro et al. 2009). Rocks surrounding a long-lived magmatic
reservoir are heated significantly above the brittle–ductile transition
and their behaviour is often modelled with a Maxwell viscoelastic
rheology (e.g. Newman et al. 2001).

Accordingly, the region below the magma chamber is consid-
ered as a Maxwell viscoelastic medium through which a spheri-
cal bubble ascends driven by buoyancy force. This excludes the
case in which the medium under the magma chamber is made of
crystal mush, which has lower density than magma (Burgisser &
Bergantz 2011). Pressurization of deeper magmatic reservoirs or
exsolution of gas may be needed to drive magma ascent in this
case.

The choice of a spherical shape is related to the possibility of solv-
ing the equations analytically, thus obtaining a deeper understand-
ing of the underlying physics. Employing different shapes (such as a
spheroid) for the bubble would not change sensibly the main results,
in terms of relationships between bubble dynamics and rheological
properties as well as the shape and duration of the associated magma
pulse.

2 T H E M O D E L

We introduce a Cartesian coordinate system (x, y, z) and consider a
spherical magma chamber with radius R0 and centre at point (0, 0,

Figure 1. Sketch of the model. The magma chamber lies in the half-space
z < 0. The Earth’s surface is at z = 0. The centre and the bottom of the
chamber are at z = z0 and z = z1, respectively. At a generic time t, the centre
of the rising bubble is at z = z2(t).

z0) in the half-space z < 0. Let S1 be the region below the magma
chamber. We assume that S1 is viscoelastic with density ρ1 and a
Maxwell rheology with viscosity η1, rigidity μ1 and characteristic
time

τ1 = η1

μ1
. (1)

We also consider a spherical magma body S2 (hereafter called bub-
ble), which is slowly rising through S1 driven by buoyancy force,
with velocity

u = uẑ. (2)

Let R2 be the radius, ρ2 the density and η2 the viscosity of the
bubble, with R2 � R0. Let x2(t) be the position of the bubble centre
at time t (Fig. 1). We define a characteristic ascent time, equal to
the time the bubble takes to cover a distance equal to its diameter:

τ2 = 2R2

u
. (3)

Density in the region is then

ρ(x, t) =
{

ρ1, x ∈ S1

ρ2, x ∈ S2
(4)

with ρ1 > ρ2, producing a buoyancy force

f = (ρ − ρ1)g, (5)

where g is the acceleration of gravity. Viscosity is

η(x, t) =
{

η1, x ∈ S1

η2, x ∈ S2
. (6)

Viscosity η1 is a function of temperature T that will be evaluated
from the Arrhenius formula

η1(T ) = De
E

RT , (7)

where D is the Dorn parameter, E is the activation energy and R
is the gas constant (e.g. Ranalli 1995). For viscosity η2, a typical
value of high-temperature basaltic magmas will be assumed.

Temperature in region S1 is dominated by the presence of magma
chamber. The perturbation due to the bubble is neglected. In steady-
state conditions, the heat equation is

κ∇2T + H = 0, (8)
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(b)

(a)

Figure 2. (a) Temperature field T(x, z)/T1 around a spherical magma cham-
ber with radius R0 and centre at z = z0; (b) temperature T(z)/T1 on the
z-axis below the magma chamber. The dashed line is the unperturbed crustal
geotherm (z0 = −5R0, T1 = 1273 K, Ts = 293 K, k = 30 K km−1). Bottom
of magma chamber is at z = z1.

where κ is the thermal conductivity of S1 and H is the heat produc-
tion of the magma chamber. Temperature can be considered as the
superposition of a typical crustal geotherm and the temperature field
generated by the chamber. A solution of eq. (8) satisfying boundary
conditions T = Ts at the Earth’s surface z = 0 and T = T1 at the
bottom of the chamber (0, 0, z1) is

T (x) = Ts − kz + (T0 − Ts + kz1)R0

(
1

r1
− 1

r2

)
, (9)

where k is the unperturbed geothermal gradient,

r1 =
√

x2 + y2 + (z − z0)2, r2 =
√

x2 + y2 + (z + z0)2 (10)

and

T0 = |z1 + z0|T1 − |z1 − z0|(Ts − kz1)

|z1 + z0| − |z1 − z0| . (11)

A contour plot of the ratio T/T1 on the plane y = 0 is plotted
in Fig. 2(a). It can be seen that T is laterally uniform to a good
approximation in region S1. Temperature on the z-axis below the
chamber (z ≤ z1) can be written as

T (z) = Ts − kz − (T1 − Ts + kz1)R0
z1 + z0

z2 − z2
0

(12)

(a)

(b)

(c)

Figure 3. (a) Viscosity η1 of region S1; (b) upward velocity u of the magma
bubble and (c) traveltime t̄ of the bubble, as functions of distance z1 − z
from the bottom of the magma chamber at z = z1 (t̄ = 0 at z = z1 − 4R0).

and is plotted in Fig. 2(b). As a function of depth, T is approximately
constant, apart from the vicinity of the chamber.

In order to estimate the orders of magnitude of quantities in-
volved in the problem, we assume a value R0 = 2 km for the radius
of the magma chamber and R2 = 200 m for the radius of the bubble.
Viscosity η1 is calculated according to eq. (7) with Dorn parame-
ter D = 109 Pa s, activation energy E = 120 kJ mol−1 (Kirby &
Kronenberg 1987; Del Negro et al. 2009) and R = 8.31 J mol−1

K−1.
If we assume a temperature T1 = 1273 K at the bottom of the

magma chamber z = z1, it results η1(z1) � 1014 Pa s. With μ1 =
1010 Pa, the Maxwell time is τ 1 � 104 s. As shown in Fig. 3(a),
values of η1 increase with depth below the chamber (by a factor of
50 at a distance just greater than 2R0 from the chamber bottom) and
then decrease. Accordingly, bubble motion is very slow: for most of
the path, a value of u of the order of 1 m a−1 is obtained (Fig. 3b),
entailing a characteristic ascent time τ 2 equal to about 20 a. Then
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τ 2 � τ 1, so that bubble motion takes place as if the surrounding
medium were a viscous liquid.

Since bubble temperature is higher than the temperature of sur-
rounding rocks, the bubble is subject to cooling during its motion.
The characteristic cooling time for heat diffusion is

τ3 = R2
2

4χ
, (13)

where χ is thermal diffusivity. With χ = 10−6 m2 s−1, it results
τ 3 = 1010 s or about 300 a, so that τ 3 � τ 2. A greater contri-
bution to cooling is given by forced convection inside the bub-
ble, which will be considered in Section 4. The relative impor-
tance of advection with respect to diffusion is given by the Péclet
number

Pé = u R2

χ
(14)

that is of the order of 102 in the proximity of the chamber. However,
convection is very slow as well (an overturn time τ 4 equal to 5τ 2

will be found), so that cooling rate remains small. Cooling entails a
very slow increase in bubble viscosity η2 during ascent. We assume
that η2 is of the order of 102 or 103 Pa s, typical of high-temperature
basaltic magmas.

The problem of bubble motion is solved by a procedure similar
to that used by Landau & Lifshitz (1987), who considered a viscous
liquid drop falling through a liquid with different viscosity. We
introduce a coordinate system (x

′
, y

′
, z

′
) in which the bubble is

stationary, defined as

x′ = x − x2. (15)

In this system, viscosity η1 can be considered spatially uniform, but
slowly increasing with time, with a rate

∂η1

∂t
= ∂η1

∂z
u (16)

that is a very small quantity due to the slowness of bubble motion.
As to viscosity η2, it can also be considered slowly increasing in
time due to cooling, but uniform due to convection.

Accordingly, we assume that both regions S1 and S2 are homo-
geneous and isotropic. We also assume that they are incompress-
ible. Then the equation of motion is the Navier–Stokes equation. A
steady-state motion with small Reynolds number is considered, due
to the small velocity and the high viscosities. Under these assump-
tions, the equation reduces to

η∇2v′ − ∇ p′ + f = 0, (17)

where v
′

is the flow velocity and p
′
is the variation of pressure with

respect to equilibrium conditions. The continuity equation is

∇ · v′ = 0. (18)

3 F L OW V E L O C I T Y

Eqs (17) and (18) must be solved separately for the two regions S1

and S2. To this aim, boundary conditions must be assigned at the
bubble surface. During the motion, the bubble surface undergoes
a small change in shape, due to pressure differences. This change
is a higher order effect and can be neglected (Landau & Lifshitz
1987).

Therefore boundary conditions can be imposed on the spherical
surface. They are: vanishing of normal components of velocity of

the inner and outer liquid; continuity of tangential component of
velocity; continuity of normal and tangential components of stress.
They provide five equations allowing us to determine constants a1,
b1, a2, b2 and u appearing in the solution.

In region S1, the flow velocity is

v′ = a1
u + n̂(u · n̂)

r
+ b1

u − 3n̂(u · n̂)

r 3
− u, (19)

where n̂ is the unit normal vector to the bubble surface and

r =
√

x ′ 2 + y′ 2 + z′ 2. (20)

The constants are

a1 = 2 + 3γ

4(1 + γ )
R2, b1 = γ

4(1 + γ )
R3

2 (21)

with

γ = η2

η1
. (22)

In the bubble interior (region S2), the flow velocity is

v′ = a2u + b2r 2[n̂(u · n̂) − 2u], (23)

where

a2 = 1

2(1 + γ )
b2 = 1

2R2
2(1 + γ )

. (24)

The bubble velocity is

u = 2R2
2 g(ρ1 − ρ2)(1 + γ )

3η1(2 + 3γ )
. (25)

Since γ � 1, it will be neglected henceforth. Therefore, eq. (25)
reduces to

u = R2
2 g(ρ1 − ρ2)

3η1
(26)

that retrieves Stokes’ solution for a solid body rising or falling
through a viscous liquid (e.g. Batchelor 1967). A graph of u(z)
is given in Fig. 3(b), showing an acceleration of motion in the
proximity of magma chamber. Upon substitution of eq. (26) in eq.
(3), the characteristic ascent time becomes

τ2 = 6η1

R2g(ρ1 − ρ2)
. (27)

In the reference system of the Earth’s crust, we can calculate the
time t̄(z) taken by the bubble to rise up to a given depth z. Supposing
that the bubble centre is at point (0, 0, z3) at time t = 0, the traveltime
is

t̄(z) =
∫ z

z3

dz∗

u(z∗)
(28)

or, thanks to eqs (26) and (7),

t̄(z) = 3D

R2
2 g(ρ1 − ρ2)

∫ z

z3

e
E

RT (z∗ ) dz∗, (29)

where T(z∗) is given by (12) with z = z∗. The integral must be solved
numerically and the result is shown in Fig. 3(c), where t̄ has been
plotted for z3 = z1 − 4R0. The graph also yields the position z2(t)
of the bubble as a function of time during its ascent: z2 increases
almost linearly up to t = 0.8 t̄(z1), then it shows an acceleration up
to the base of the chamber.

The flow inside and outside the bubble has axial symmetry around
the z

′
axis. Therefore, it can be plotted in the plane y

′ = 0, where
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(a)

(b)

Figure 4. (a) Flow velocity v
′
(ξ , ζ ) inside and around the magma bubble

in the reference system of the bubble; (b) flow velocity v(x, z) inside and
around the bubble in the reference system of the Earth’s crust.

the v′
y component of velocity vanishes. From eq. (19) the velocity

components in region S1 are

v′
x = x ′z′

r 3

(
a1 − 3b1

r 2

)
u (30)

v′
z = −

[
1 − z′ 2

r 3

(
a1 − 3b1

r 2

)
− 1

r

(
a1 + b1

r 2

)]
u. (31)

From eq. (23), the velocity components in region S2 are

v′
x = b2x ′z′u (32)

v′
z = (a2 − 2b2r 2 + b2z′ 2) u. (33)

Flow velocity inside and outside the bubble is plotted in Fig. 4(a)
as a function of non-dimensional coordinates:

ξ = x ′

R2
, ζ = z′

R2
. (34)

In the reference system of the Earth’s crust, flow velocity is given
by

v(x) = v′(x − x2) + u (35)

and is shown in Fig. 4(b).

(a)

(b)

Figure 5. (a) Symmetric streamline loops in the bubble, corresponding to
ξ2 = 0.95; (b) magnitude v

′
(ξ , ζ )/u of flow velocity in the bubble.

4 F O RC E D C O N V E C T I O N I N T H E
B U B B L E

A consequence of bubble motion is that magma is subject to forced
convection. Magma close to the bubble surface is dragged down-
ward during ascent, while it rises in the central part of the bubble.
The equation of streamlines in the plane ξζ is

dξ

dζ
= v′

x

v′
z

. (36)

Upon substitution of eqs (32) and (33) and use of eq. (34), we obtain
the differential equation

dξ

dζ
= ξζ

1 − 2ξ 2 − ζ 2
(37)

that has the solution

ξ 2(1 − ξ 2 − ζ 2) = ξ 2
1 ξ 2

2 , (38)

representing a quartic curve made of two disconnected loops that
are symmetric with respect to the ξ and ζ axes (Fig. 5a). The loop
in the half-plane ξ > 0 intersects the ξ axis at points (ξ 1, 0) and
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Figure 6. Traveltime τ 4 of magma along streamlines as a function of stream-
line parameter ξ2, ranging from ξ0 = 1/

√
2 to 1.

(ξ 2, 0) such that

ξ 2
1 + ξ 2

2 = 1. (39)

They are the minimum and the maximum distance of the stream-
line from the origin, respectively. All streamlines are generated by
varying one of the two parameters ξ 1 or ξ 2 over its own range, that
is

0 < ξ1 < ξ0, ξ0 < ξ2 < 1, (40)

where

ξ0 = 1√
2
. (41)

All streamlines enclose the point (ξ 0, 0), where velocity vanishes.
The traveltime along a streamline C is

τ4 =
∫

C

ds

v′ , (42)

where ds is the infinitesimal line element and v
′
is the magnitude of

v
′
:

v′(ξ, ζ ) = u

2

√
ξ 2ζ 2 + (1 − 2ξ 2 − ζ 2)2. (43)

A contour plot of v
′

is shown in Fig. 5(b). Thanks to the symmetry
of streamlines with respect to the plane ζ = 0, we can write

τ4 = 2R2

∫ ξ2

ξ1

dξ

v′
ξ

, (44)

where, thanks to eqs (32), (34), (38) and (39),

v′
ξ = u

2

√
(ξ 2 − ξ 2

1 )(ξ 2
2 − ξ 2). (45)

Then,

τ4 = 2τ2

∫ ξ2

ξ1

dξ√
(ξ 2 − ξ 2

1 )(ξ 2
2 − ξ 2)

, (46)

where the characteristic ascent time (3) has been introduced. Inte-
gration yields

τ4 = 2τ2

ξ2
K

⎛
⎝

√
ξ 2

2 − ξ 2
1

ξ2

⎞
⎠ , (47)

where K is the complete elliptic integral of the first kind (e.g.
Abramowitz & Stegun 1972). The ratio τ 4/τ 2 is shown in Fig. 6
as a function of the streamline parameter ξ 2 and is equal to about
5 for all streamlines. The time τ 4 can be considered as the mixing

time of magma in the bubble. There is complete mixing after a run
approximately equal to 10 times the bubble radius R2, independently
of bubble velocity.

5 I N F L OW I N T O T H E M A G M A
C H A M B E R

In a previous paper (Dragoni & Piombo 2020) it was shown that
feeding of a magma chamber by a magma pulse may explain the
observed time histories of effusion rate, in the case of eruption.
A bell-shaped function of time was employed for the pulse, while
pulse duration was chosen in order that it was comparable with the
duration of an eruption. Here it is shown that the shape and duration
of a magma pulse can be obtained as the result of a magma bubble
entering the chamber.

Let � be the surface of the magma chamber. We suppose that the
bubble touches � at point P and time t = t0. The magma flow rate
entering the chamber is

�(t) =
∫



u · m dS, (48)

where m is the unit normal to � and  is the intersection of � with
the bubble S2. Since R0 � R2, we neglect the curvature of � and
consider the tangent plane to � at P. Then  is a disk with radius
r0(t) for t > t0.

During magma inflow, forces acting on the bubble change, entail-
ing a change in bubble velocity and a possible deformation of the
bubble. When the bubble enters the magma chamber, eq. (26) no
longer holds, but flow velocity is still controlled by buoyancy force,
that decreases as the bubble penetrates into the chamber, because
the density contrast between the two magmas vanishes.

These complications do not change the pulse-like shape of flow
rate and we assume, for the sake of simplicity, that the bubble
velocity decreases linearly to zero: this makes it possible to obtain
a simple analytical expression for inflow rate. The time required for
inflow of the entire bubble is then

τ5 = 2τ2 sec α, (49)

where α is the angle between vectors u and m. Introducing a non-
dimensional time

t ′ = t − t0

τ5
, (50)

we write

u(t ′) = u0(1 − t ′) ẑ, 0 ≤ t ′ ≤ 1, (51)

where u0 is the velocity at t = t0. Then, eq. (48) yields

�(t ′) = πu0 cos α(1 − t ′)r 2
0 (52)

or, thanks to eq. (49),

�(t ′) = 4π R2

τ5
(1 − t ′)h(2R2 − h), (53)

where h is the height of the spherical cap entering the chamber:

h(t ′) = τ5 cos α

∫ t ′

0
u(t∗)dt∗ (54)

whence

h(t ′) = 2R2 t ′(2 − t ′). (55)

Then,

�(t ′) = 12
V2

τ5
t ′(2 − t ′)(1 − t ′)3, (56)
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(a)

(b)

(c)

Figure 7. (a) Flow rate �(t
′
) of the magma pulse and (b) cumulative volume

V(t
′
) entering the magma chamber as functions of non-dimensional time t

′
;

(c) pressure induced in the chamber as a function of t
′

for different values
of the ratio R2/R0 in the absence of eruptions (μ1 = 1010 Pa).

where V2 is the volume of the bubble. It is easy to find that the
maximum flow rate �m is attained at time

t ′
m = 1 −

√
3

5
(57)

and its value is

�m = 8

(
3

5

)5/2 V2

τ5
. (58)

The ratio �(t
′
)/�m is shown in Fig. 7(a), showing an asymmetric

pulse. The cumulative volume entering the chamber is

V (t ′) = τ5

∫ t ′

0
�(t∗) dt∗. (59)

Introducing eq. (56) and integrating, we obtain

V (t ′) = V2

{
t ′ 2(2 − t ′)2(3 − 4t ′ + 2t ′ 2), 0 ≤ t ′ ≤ 1
1, t ′ > 1.

(60)

A graph of the ratio V(t
′
)/V2 is shown in Fig. 7(b).

The overall deformation of the magma chamber following bubble
inflow involves the rheological behaviour of the entire crust, also
above the chamber and laterally to it, where temperatures are lower
and viscosities are higher than in region S1. In particular, above
the chamber, temperature decreases rapidly from T1 to Ts and the
average viscosity is orders of magnitude greater. Therefore an elastic
behaviour is assumed for this overall deformation.

According to eq. (49), τ 5 has the same order of magnitude as τ 2,
that is tens of years. If we assume that the Earth’s crust behaves elas-
tically over times of the order of τ 5, the pressure increase produced
in the chamber by magma inflow is (Dragoni & Piombo 2020)

p(t ′) = k1ρ2V (t ′), (61)

where

k1 = μ1

πρ2 R3
0

. (62)

Hence,

p(t ′) = pm

{
t ′ 2(2 − t ′)2(3 − 4t ′ + 2t ′ 2), 0 ≤ t ′ ≤ 1
1, t ′ > 1

(63)

where

pm = 4

3
μ1

(
R2

R0

)3

(64)

is the maximum value of pressure. A graph of p(t
′
) is shown in

Fig. 7(c) for different values of the ratio R2/R0, in the absence of
eruptions.

6 E RU P T I O N S

The values of pm shown in Fig. 7(c) are of the order of tens or
hundreds of MPa, much greater than the critical pressure p0 for
eruption, that is typically smaller than 10 MPa. We assume that,
when p = p0, an eruption takes place through a tensile fracture
connecting the magma chamber with the Earth’s surface. During
eruption, pressure in the chamber changes according to

dp

dt
= k1ρ2(� − �), (65)

where � is the magma outflow rate, that is proportional to over-
pressure p according to

� = k2

ρ2
p, (66)

where k2 is a constant depending on the conduit geometry and on
the rheology of magma (Dragoni & Piombo 2020).

Since � is of the order of 10–100 m3 s−1 in typical effusive
eruptions, while � is of the order of 10−2–10−1 m3 s−1, � can be
neglected in eq. (65) that reduces to

dp

dt
+ p

τ
= 0, (67)

where

τ = 1

k1k2
. (68)

Eq. (67) was first proposed by Wadge (1981). If eruption starts at t
= t1, the solution is

p(t) = p0e−(t−t1)/τ (69)



Feeding of magma chamber 2045

so that the waning time τ is representative of the duration of erup-
tion. The volume of erupted magma is

Ve =
∫ ∞

t1

�(t) dt. (70)

With eqs (66) and (69), the integration yields

Ve = πp0

μ1
R3

0, (71)

where eq. (62) has been used. Hence the size of the eruption depends
mainly on the radius R0 of the magma chamber. From eqs (71) and
(64), Ve is a fraction of the bubble volume V2 equal to

f = p0

pm
. (72)

Since τ � τ 5, eruption reduces the overpressure p to negligible
values in a time much smaller than pulse duration τ 5. After eruption,
magma inflow continues at a rate � and the critical pressure p0 can
be reached again, giving rise to a new eruption, and so on. The
sequence of eruptions terminates when magma inflow ceases, at t
= t0 + τ 5. Hence, according to the model, the arrival of a magma
bubble can give rise to a sequence of n eruptions, with n = [pm/p0],
where brackets indicate the integer part of the ratio. The total erupted
volume is then Vt = nVe ≤ V2.

7 D I S C U S S I O N

Vicari et al. (2011) illustrated typical time histories of magma ef-
fusion rates on Mount Etna considering values of erupted magma
volumes ranging from 30 to 200 × 106 m3. According to eq. (71),
if we take μ1 = 1010 Pa and p0 = 107 Pa, we obtain Ve � 25 × 106

m3 if R0 = 2 km and Ve � 85 × 106 m3 if R0 = 3 km.
In order to illustrate the model, we consider a chamber with radius

R0 = 2 km and centre at depth z0 = −5R0 and a bubble with radius
R2 = 200 m rising from a distance equal to 4R0 from the bottom of
the chamber, along a path with incidence angle α = 0. We assume
a density difference ρ1 − ρ2 between solid rock and magma equal
to 400 kg m−3 and an acceleration of gravity g = 10 m s−2.

In Fig. 2, we assume that temperature T1 at the base of the chamber
is equal to 1273 K. Fig. 2(b) shows that there is a smooth variation
in temperature along the bubble path, from 984 to 1273 K. This
entails an initial increase in viscosity η1, followed by a decrease by
a factor of 50, with values ranging between 8 × 1013 and 2 × 1015

Pa s (Fig. 3a).
Bubble velocity u(z1) in the proximity of the magma chamber

can be calculated from eq. (26) with η1 = η1(z1), yielding u(z1) �
20 m a−1. Along most of the path, bubble velocity u is about 1 m
a−1 (Fig. 3b). As a consequence of the decrease in η1, u increases
by a factor of 30 in the last part of the path. Accordingly, the
characteristic ascent time τ 2 decreases from about 500 to 20 a.

However, the increase in velocity is slow and corresponds to a
very small acceleration, having only a small effect on the bubble
traveltime t̄(z), as shown in Fig. 3(c). From eq. (29), the time t̄(z1)
taken to cover the distance 4R0 is quite long, of the order of 104 a,
but the last kilometre is covered in less than 200 a. A remarkable
fact is that magma viscosity η2 has no effect on the dynamics
both outside and inside the bubble, a consequence of the fact that
η2 � η1.

As to forced convection in the bubble, eqs (32) and (33) show that
magma velocity in streamlines is proportional to bubble velocity u.
Hence, the mixing time τ 4 is inversely proportional to u and there
is complete mixing after a bubble run equal to 10 R2 or 2 km.

Mixing tends to keep uniform temperature and viscosity inside the
bubble.

The streamline length increases with increasing ξ 2, but Fig. 5(b)
shows that magma flow is faster in longer streamlines, so that the
traveltime for a complete loop is about the same for all streamlines.
During most of the ascent path, where u � 1 m a−1 and τ 2 � 500 a,
eq. (47) yields τ 4 � 2800 a for most streamlines (Fig. 6). A much
smaller value of τ 4, that is 100 a, is found in the proximity of the
magma chamber, where τ 2 = 20 a.

The flow rate into the magma chamber is an asymmetric pulse, as
shown in Fig. 7(a). According to eqs (49) and (27), pulse duration
τ 5 depends on bubble radius R2, velocity u and incidence angle
α. If α = 0, τ 5 is equal to 2τ 2 calculated at the bottom of the
magma chamber, that is about 40 a for the assumed values of R2

and u. The average value of inflow rate is V2/τ 5 = 0.03 m3 s−1,
with a peak value �m = 0.06 m3 s−1 that is reached about 9 a
from the beginning of inflow. These flow rates are several orders of
magnitude lower than those from typical basaltic dikes (Peltier et al.
2007).

Larger values of bubble radius R2 would produce higher bubble
velocities according to eq. (26), showing that u is proportional to the
square of R2. For example, a bubble with R2 = 400 m has an initial
velocity u � 3 m a−1, reaching a value u(z1) as large as 80 m a−1

in the proximity of the chamber. The time t̄(z1) taken to cover the
distance 4R0 is four times smaller, that is about 3000 a. According to
eq. (27), the characteristic ascent time τ 2 is inversely proportional
to bubble radius R2, a property that is shared with mixing time τ 4

and pulse duration τ 5. Therefore, τ 4 and τ 5 have halved values for
a bubble with R2 = 400 m, that is τ 4 varies from 1400 to 50 a and
τ 5 is equal to 20 a.

A different value of temperature T1 at the base of the magma
chamber would not change sensibly this picture. For example, if
we assume T1 = 1473 K, viscosity η1 at z = z1 would be about 2
× 1013 Pa s, a factor of 0.2 smaller. This corresponds to a greater
final velocity, that is u(z1) � 100 m a−1 if the bubble radius is R2

= 200 m. Characteristic ascent time τ 2, mixing time τ 4 and inflow
time τ 5 will be 0.2 times smaller, as well as the Maxwell time τ 1.
In particular, τ 5 is equal to about 8 a, that is reduced by a further
factor of 2 if R2 = 400 m.

According to eq. (64), the maximum pressure pm is proportional
to the cube of the ratio R2/R0. Values of pm for R2 = 200, 300 and
400 m are about 13, 45 and 107 MPa, respectively (Fig. 7c). Since
critical pressure values for eruption are of the order of 10 MPa,
inflow of a magma bubble can produce an eruption far in advance
that the maximum pressure pm is attained.

Dragoni & Piombo (2020) considered the case in which the du-
ration of magma pulse is comparable with the duration of eruption.
Here, the case is considered of a much slower pulse that can produce
several single eruptions according to the value of the ratio p0/pm. In
the three cases shown in Fig. 7(c), the number n of eruptions would
be equal to 1, 4 and 10, respectively, with total erupted volumes Vt

equal to 25, 100 and 250 × 106 m3.

8 C O N C LU S I O N S

The ascent of a spherical magma bubble through the low-viscosity
region below a magma chamber has been considered. Under some
simplifying assumptions, an analytical solution has been given, pro-
viding the upward magma flow and the associated dragging of sur-
rounding crustal rocks. Magma volumes in the bubble have been
assumed to be at least equal to magma batches in typical effusive
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eruptions on Mount Etna, corresponding to bubble radii of a few
hundred metres.

The ascent velocity of the bubble depends mainly on the bubble
radius and the viscosity of surrounding rocks. It does not depend
on the viscosity of magma, because it is much smaller than the
viscosity of rocks. The high ambient temperature gives the bubble
a velocity reaching tens of metres per year in the proximity of the
chamber. It shows that the bubble can cover several kilometres with
only moderate cooling.

An interesting aspect is that the magma in the bubble is subject
to a forced convection. Analytical expressions for the streamlines
in the bubble have been obtained and the traveltime of magma
along streamlines has been calculated. It results in a mixing time
of the order of few tens of years, contributing to keep a uniform
temperature in the bubble.

Inflow of the bubble in the magma chamber produces a magma
pulse and an overpressure in the chamber. Under reasonable as-
sumptions, the pulse shape and duration have been calculated an-
alytically as functions of the bubble radius, ascent velocity and
incidence angle. Pulse duration can be several tens of years. The
associated overpressure is an increasing function of time that may
produce an eruption, if a critical pressure value is attained. Eruption
releases a fraction of the magma contained in the bubble and reduces
overpressure to zero. Continued magma inflow may produce a se-
quence of eruptions, ending when the entire bubble has entered the
chamber.

Of course, this is a very simplified picture of more complex pro-
cesses occurring below a magma chamber. Feeding of the chamber
may be a combination of diapir, dike and porous flows. With regard
to the first mechanism, the model shows that it may occur thanks to
the rheological properties of the region below the chamber. A single
bubble has been considered, but several bubbles with different sizes
may contribute at the same time. The eruption mechanism has been
simplified too. It was assumed that, in each eruption, effusion rate is
controlled only by pressure decrease due to emptying of the magma
chamber, while other processes occurring in the volcanic conduit
may contribute (Piombo et al. 2016; Piombo & Dragoni 2021).
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