CHEMNANOMAT

Supporting Information

Water Remediation from Pollutant Agents by the Use of an Environmentally Friendly Supramolecular Hydrogel
Demetra Giuri ${ }^{+}$, Simone D’Agostino ${ }^{+}$, Paolo Ravarino, Davide Faccio, Giuseppe Falini,* and Claudia Tomasini*

Boc-AUV-OH (A)

Scheme S1. Preparation of compound A.

Synthesis of compound A.

900 mg of Boc-Aib-OH, (4.43 mmol) are dissolved in 60 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and 2 g of $\mathrm{HBTU}(5.21 \mathrm{mmol})$ are added under inert atmosphere at room temperature. A solution containing 782 mg of $\mathrm{L}-\mathrm{Val}-\mathrm{OMe} * \mathrm{HCl}$ (4.43 mmol), 20 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and 2.34 mL of DIPEA (13.73 mmol) is added dropwise to the first one. The reaction is left under stirring for 3 h , then the solvent is removed under vacuum, the residue suspended in 20 mL of $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and washed with $\mathrm{HCl} 1 \mathrm{M}(2 \times 30 \mathrm{~mL})$, saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$. The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under vacuum. The product, Boc-Aib-L-Val-OMe was obtained as a white solid with 95% yield ($4.22 \mathrm{mmol}, 1,34 \mathrm{~g}$).
Boc-Aib-L-Val-OMe ($4.22 \mathrm{mmol}, 1.34 \mathrm{~g}$) is dissolved in 40 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then 5.9 mL of trifluoroacetic acid (75.96 mmol) are added under inert atmosphere. The reaction is left under vigorous stirring for 2 h at room temperature, then the solvent is removed under reduced pressure. The whole residue, made of the remaining TFA and the desired intermediate $\left[\mathrm{F}_{3} \mathrm{CCO}_{2}{ }^{-}{ }^{+} \mathrm{H}_{3} \mathrm{~N}\right.$-Aib-L-Val-OMe], is used for the next step of the reaction, considering a quantitative yield for this one.

799 mg of Boc-L-Ala-OH, 10 (4.22 mmol) are dissolved in 60 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and 1.76 g of HBTU (4.64 mmol) are added under N_{2} atmosphere at room temperature. A solution containing the residue of the former step, 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 3.7 mL of DIPEA (22.0 mmol) is added dropwise to the first one. The reaction is left under stirring for 3 h , then the solvent is removed under vacuum, the residue suspended in 10 mL of $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and washed with $\mathrm{HCl} 1 \mathrm{M}(15 \mathrm{~mL})$, Brine (15 mL), saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine once again $(15 \mathrm{~mL})$. The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under vacuum. The product is eventually purified through a flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc} 80: 20, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc} 70: 30\right)$. Boc-L-Ala-Aib-L-Val-OMe is obtained as a white solid with a yield of $84 \%(3.54 \mathrm{mmol}, 1.37 \mathrm{~g})$.
1.37 g of Boc-L-Ala-Aib-L-Val-OMe in 6 mL of MeOH and 12 mL of THF was cooled to $0^{\circ} \mathrm{C}$ and treated with 4.4 mL of NaOH 1 M . The ice bath was removed. The mixture warmed to room temperature with stirring for 18 hours. A solution of 5.3 ml of HCl 1 M was added to the reaction mixture, which was concentrated in vacuo to remove the volatiles. The reduced volume was then extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ $\mathrm{mL})$. The organic phase was combined, washed with water $(60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo, to afford pure Boc-L-Ala-Aib-L-Val-OH (95\%) as a white solid.
m.p. : $175-182{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \boldsymbol{:}-20(\mathrm{c}=5 \mathrm{mg} / \mathrm{mL}$ in MeOH$)$; IR (ATR-IR): $v 3507,3412,3395,3330,3294$, $3279,3072,2978,2932,1701,1685,1670,1645,1558,1524$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 0.93\left(6 \mathrm{H}, \mathrm{dd}, J=9.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}\right.$ Val $), 1.27\left(3 \mathrm{H}, \mathrm{d}, 7.1 \mathrm{~Hz}, \mathrm{CH} H_{3} \mathrm{CH}\right.$ Ala), $1.42(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CNH} \mathrm{Aib}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CNH} \mathrm{Aib}\right), 2.23-2.04(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{3} \mathrm{CH}_{3} \mathrm{Val}\right), 3.93-4.06(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 6,72(1 \mathrm{H}, \mathrm{d}, \mathrm{N} H \mathrm{Boc}, J=5.6 \mathrm{~Hz})$, $7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}$ Val, $J=8.3 \mathrm{~Hz}), 8.04\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Aib}\right)$.
${ }^{13} \mathbf{C}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 16.62,17.27,18.18,23.27,24.76,27.31,30.43,50.25,56.53,57.77,79.17,156.24$, 173.17, 173.87, 175.24.

${ }^{1} \mathrm{H}$ NMR spectrum of Boc-L-Ala-Aib-L-Val-OH (A) in $\mathrm{CD}_{3} \mathrm{OD}$.

${ }^{13} \mathrm{C}$ NMR spectrum of Boc-L-Ala-Aib-L-Val-OH (A) in $\mathrm{CD}_{3} \mathrm{OD}$.

HSQC NMR spectrum of Boc-L-Ala-Aib-L-Val-OH (A) in $\mathrm{CD}_{3} \mathrm{OD}$.

IR-ATR spectrum of Boc-L-Ala-Aib-L-Val-OH (A)

Boc-VUV-OH (B)

Scheme S2. Synthesis of Boc-VUV-OH (B).

Synthesis of gelator B. $\mathrm{F}_{3} \mathrm{CCO}_{2}{ }^{-+} \mathrm{H}_{3} \mathrm{~N}$-Aib-L-Val-OMe was synthesised as described above.
917 mg of Boc-L-Val-OH (4,22 mmol) are dissolved in 60 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and $1,76 \mathrm{~g}$ of HBTU (4,64 mmol) are added under N_{2} atmosphere. A solution containing $\mathrm{F}_{3} \mathrm{CCO}_{2}{ }^{-+} \mathrm{H}_{3} \mathrm{~N}$-Aib-L-Val-OMe, 20 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and $3,7 \mathrm{~mL}$ of DIPEA $(22,0 \mathrm{mmol})$ is added dropwise to the first one. The reaction is left under stirring for 3 h at room temperature, then the solvent is removed under vacuum, the residue suspended in 10 mL of $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and washed with $\mathrm{HCl} 1 \mathrm{M}(15 \mathrm{~mL})$, Brine (15 mL), saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine once again $(15 \mathrm{~mL})$. The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under vacuum. The product is eventually purified through a flash chromatography (Cyclohexane:Ethyl acetate 80:20, Cyclohexane:Ethyl acetate 70:30). Boc-L-Val-Aib-L-Val-OMe is obtained as a white solid with a yield of 80%. m.p. : $97-103^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \boldsymbol{:}-10(\mathrm{c}=5 \mathrm{mg} / \mathrm{mL}$ in MeOH); IR (ATR-IR): v 3447, 3347, 3259, 3220, 3065, 2970, 2928, 2877, 2853, 1721, 1702, 1666, 1547, $1519 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (CD ${ }_{3} \mathrm{OD}$, $400 \mathrm{MHz}): \delta 0.92\left(12 \mathrm{H}, 2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.42(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CNH}\right), 1.96(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.6.8,6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.14\left(1 \mathrm{H}, \mathrm{dq}, J=5.6,6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.80\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} H\right), 4.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\alpha} H\right)$, $7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H \mathrm{Boc}), 8.17\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NHC}_{\alpha} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 17.21,17.26,18.20,18.32$, $22.86,25.10,27.32,30.43,30.58,56.67,57.74,60.06,79.13,156.60,172.54,173.18,175.13$.

${ }^{1} \mathrm{H}$ NMR spectrum of Boc-L-Val-Aib-L-Val-OH (B) in $\mathrm{CD}_{3} \mathrm{OD}$.

${ }^{13} \mathrm{C}$ NMR spectrum of Boc-L-Val-Aib-L-Val-OH (B) in $\mathrm{CD}_{3} \mathrm{OD}$.

HSQC spectrum of Boc-L-Val-Aib-L-Val-OH (B) in $\mathrm{CD}_{3} \mathrm{OD}$.

IR-ATR spectrum of Boc-L-Val-Aib-L-Val-OH (B).

Table S1. Gelation properties of compounds $\mathbf{A}(10 \mathrm{mg})$ or $\mathbf{B}(10 \mathrm{mg})$ in different mixtures of $\mathrm{MeOH}, \mathrm{EtOH}$ or PrOH and water ($1 \% \mathrm{w} / \mathrm{w}$ final concentration).

Solvent 1 $(\mu \mathrm{L})$	Water $(\mu \mathrm{L})$	Sample	Peptide	Outcome	Sample	Peptide	Outcome
MeOH (330)	660	$\mathbf{1}$	A	PG	$\mathbf{1 0}$	B	C
MeOH (500)	500	$\mathbf{2}$	A	C	$\mathbf{1 1}$	B	C
MeOH (660)	330	$\mathbf{3}$	A	P	$\mathbf{1 2}$	B	S
EtOH (330)	660	$\mathbf{4}$	A	G	$\mathbf{1 3}$	B	C
EtOH (500)	500	$\mathbf{5}$	A	C	$\mathbf{1 4}$	B	S
EtOH (660)	330	$\mathbf{6}$	A	S	$\mathbf{1 5}$	B	S
iProOH (330)	660	$\mathbf{7}$	A	G	$\mathbf{1 6}$	B	C
iProOH (500)	500	$\mathbf{8}$	A	P	$\mathbf{1 7}$	B	S
ProOH (660)	330	$\mathbf{9}$	A	S	$\mathbf{1 8}$	B	S

$\mathrm{G}=$ gel $; \mathrm{PG}=$ partial gel; $\mathrm{S}=$ solution; $\mathrm{C}=$ crystals; $\mathrm{P}=$ precipitate

XRD Analysis.
Table S2. Crystal data and refinement details for crystalline AUV (A) and VUV (B).

	A	B
Formula	$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7}$	$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{7}$
FW	391.46	447.57
Temperature	RT	RT
Cryst. System	Triclinic	Orthorhombic
Space group	P1	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
Z	1	4
a (Å)	6.0267(6)	9.816(1)
b (Å)	9.3387(9)	10.360(2)
c (Å)	20.099(2)	26.572(5)
α (deg)	89.281(7)	90
β (deg)	84.010(7)	90
γ (deg)	82.622(8)	90
$\mathrm{V}\left(\mathrm{A}^{3}\right)$	1115.7(1)	2773.0(7)
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	0.583	1.072
$\mu\left(\mathrm{mm}^{-1}\right)$	0.045	0.080
Measd reflns	13096	7915
Indep reflns	8985	4697
Largest diff. peak/hole (e/Å)	0.75/-0.63	0.13/-0.12
R_{1} [on $\mathrm{F}_{0}{ }^{2}, 1>2 \sigma(\mathrm{I})$]	0.2294	0.0745
wR2 (all data)	0.5682	0.1479

Figure S1. Overlay of the molecular structures of crystalline \mathbf{B} (blue) and \mathbf{A} (orange) highlighting the subtle differences among folded conformations deriving from the intramolecular hydrogen bonds (dashed red line).

Table S3. Selected backbone torsion angles for the compounds AUV (A) and VUV (B).

	$\boldsymbol{\omega}_{1}\left({ }^{\circ}\right)$	$\boldsymbol{\phi}_{1}\left({ }^{\circ}\right)$	$\boldsymbol{\Psi}_{1}\left({ }^{\circ}\right)$	$\boldsymbol{\omega}_{2}\left({ }^{\circ}\right)$	$\boldsymbol{\phi}_{2}\left({ }^{\circ}\right)$	$\boldsymbol{\psi}_{2}\left({ }^{\circ}\right)$	$\boldsymbol{\omega}_{3}\left({ }^{\circ}\right)$	$\boldsymbol{\phi}_{3}\left({ }^{\circ}\right)$	$\boldsymbol{\psi}_{\mathbf{3}}\left({ }^{\circ}\right)$
A	179	-50	144	161	62	34	176	-62	142
B	177	-76	141	172	58	34	172	-73	157

(2)

Figure S2. Comparison between XRD diffraction patterns for crystalline B(1) and A (2): experimental (blue-line) and calculated on the basis of single-crystal structure (black-line).

Table S4. G^{\prime} and $\mathrm{G}^{\prime \prime}$ moduli from amplitude sweep ($\gamma=0.0214 \%$) for compounds $\mathbf{4 , 7}$ and 19. The measurements were repeated three times and mean values and standard deviation calculated and plotted.

Sample	$\mathrm{G}^{\prime}(\mathrm{KPa})$	$\mathrm{G}^{\prime \prime}(\mathrm{KPa})$
4	$40,66 \pm 9,70$	$9,61 \pm 1,74$
7	$31,55 \pm 3,47$	$8,46 \pm 0,73$
19	$247,34 \pm 18,53$	$47,53 \pm 5,15$

Pollutant adsorption.

Calibration curve of Eosine Y obtained with a Uv-vis spectrophotometer, absorbance reading at $\lambda_{\max }=515 \mathrm{~nm}$.

Calibration curve of Diclofenac sodium obtained with a HPLC (DAD $=280 \mathrm{~nm})$.

Concentration (mg/mL)
0,2000
0,1000
0,0200
0,0100
0,0020
0,0008
0,0004

Area
5021,30566
2481,05054
525,68408
253,97585
54,11948
20,66679
11,08909

Figure S3. Epifluorescence microscope image of a sample of $\mathbf{7}$ after absorption of Eosine Y .

