
27 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Alessandro Ricci, A.C. (2022). Web of Digital Twins. ACM TRANSACTIONS ON INTERNET TECHNOLOGY,
22(4), 1-30 [10.1145/3507909].

Published Version:

Web of Digital Twins

Published:
DOI: http://doi.org/10.1145/3507909

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/879941 since: 2023-06-06

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1145/3507909
https://hdl.handle.net/11585/879941

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Web of Digital Twins

ALESSANDRO RICCI, Dept. of Computer Science and Eng., Univ. of Bologna, Italy
ANGELO CROATTI, Dept. of Computer Science and Eng., Univ. of Bologna, Italy
STEFANO MARIANI, Dept. of Sciences and Methods of Eng., Univ. of Modena and Reggio Emilia, Italy
SARA MONTAGNA, Dept. of Pure and Applied Sciences, Univ. of Urbino Carlo Bo, Italy
MARCO PICONE, Dept. of Sciences and Methods of Eng., Univ. of Modena and Reggio Emilia, Italy

In recent years, digital twins have been pervading different application domains – from manufacturing to
healthcare – as an approach for virtualising different kinds of physical entities (things, products, machines).
The dominant view developed in the literature so far is about the virtualisation of individual physical assets,
in a closed-system perspective. In this paper, we introduce and explore a broader perspective that we call Web
of Digital Twins (WoDT), in which the digital twin paradigm is exploited for the pervasive softwarisation
of possibly large-scale interrelated physical realities. A WoDT can be conceived as an open, distributed and
dynamic ecosystem of connected digital twins, functioning as an interoperable service-oriented layer for
applications running on top, especially smart applications and multiagent systems. The paper introduces an
abstract model and architecture aimed to capture key aspects of the idea not bound to any specific application
domains or implementing technologies, and discusses their adoption in engineering real-world systems. To
this purpose, two concrete case studies are considered, in the context of healthcare and smart mobility. Finally,
the paper includes a discussion of a selected set of research directions.

CCS Concepts: • Computing methodologies → Multiagent systems; • Software and its engineering
→ Designing software; • Computer systems organisation → Embedded and cyber-physical systems; •
Information systems→World Wide Web.

Additional Key Words and Phrases: Digital Twins, Web, Agents, MAS, WoDT

ACM Reference Format:
Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone. 2021. Web of Digital
Twins. In ACM Transaction on Internet Technology. ACM, New York, NY, USA, Article 1, 30 pages. https:
//doi.org/10.1145/3507909

1 INTRODUCTION
In the last decade, the digital twin (DT) paradigm has been explored in different domains as
an approach to virtualise entities existing in the real world, creating software counterparts that
provide smart services upon them [16, 17, 28]. Such services may range from simple tracking
of the actual state of the physical entity or device, to smarter forms of monitoring in order to,
e.g., detect and predict possible critical situations, optimise performances, up to more general
forms of augmentation of the capabilities of the physical counterpart. Relevant examples can be
found in the Industry 4.0 context [52], healthcare [24], smart cities [44]—the interested readers can
refer to surveys available in the literature [28]. Despite the specific domain and implementation,
the models of DT described in the literature share two main characteristics: (i) they typically
concern virtualisation of individual, standalone assets, in a closed-system perspective—being them

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
ACM ToIT, April 2021,
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3507909

1

https://doi.org/10.1145/3507909
https://doi.org/10.1145/3507909
https://doi.org/10.1145/3507909

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

physical objects, products, machines, buildings; (ii) they are used for vertical applications, designed
for specific purposes. Beyond this view, the DT principles and paradigm can be extended to the
virtualisation of complex realities composed of interrelated assets, possibly belonging to different
domains and different organisations, in a more open-system perspective [27, 39]. Such a stance,
besides enabling technologies, calls for a proper conceptual model and framework, abstract enough
to capture key aspects in spite of concrete application domains and technologies, and yet expressive
enough to be a reference for the development of concrete architectures and technologies.

To this purpose, in this paper we introduce and discuss an approach in which the DT paradigm is
meant to be pervasively applied to virtualise large-scale, dynamic, possibly cross-domain physical
realities of an organisation and across different organisations, resulting in an open distributed
ecosystem of connected DTs. We refer to such an ecosystem asWeb of Digital Twins (WoDT), being
inspired by the main conceptual and architectural principles of the Web, and considering the Web,
and related technology stack and standards, as a natural underlying deployment architecture and
platform—although not necessarily the only one. In this view, a DT is not (necessarily) a vertical
application: conversely, the WoDT of an organisation defines a service-oriented software layer on
top of which smart applications can be designed and integrated, exploiting functionalities to access
and interact with the interrelated physical assets as-a-service.

At the application level, a main kind of systems that can take advantage of WoDT as a service are
intelligent agents and multiagent systems (MASs) [20], that can exploit DTs as a virtual environment
(or, application environment [53]) enabling the access and interaction with the physical world.
In this view, a DT functions first of all as a shared medium used by agents to perceive/observe
and act upon the physical world. Besides, a DT may provide further higher-level functionalities
conceptually augmenting the basic ones provided by the physical world, that could be exploited by
agents to support their reasoning and decision making.
The remainder of the paper is structured as follows. We first provide a broad overview and

background about DTs (Section 2), and their added value for reference contexts such as Internet of
Things. Then, the main aim of the paper is to provide a comprehensive account of the WoDT vision
and approach. To this purpose, first, we describe an abstract model capturing key concepts and
features (Section 3) and the general traits of architectures based on that model (Section 4), including
a discussion about their integration with multiagent systems architectures and technologies. Then,
we discuss the application of the model to two real-world concrete case studies (Section 5), based
on our previous work exploring the application of DTs in specific domains, in particular healthcare,
for major trauma management [29], and in smart mobility scenarios [36]. Finally, we provide an
overview of the main research directions for the development of the WoDT vision and approach
(Section 6).

2 BACKGROUND AND STATE OF THE ART
The scientific literature has referred to DTs since 2003 when Michael Grieves introduced this
concept with an initial formulation in the aerospace field by the National Aeronautics and Space
Administration (NASA) [16, 17]. As reported in [28, 51], from there the concept has evolved and
attracted growing attention, from manufacturing industries to the Internet of Things and Cyber-
Physical Systems contexts. In particular, [28] surveys and analyses the state-of-the-art definitions
also investigating the common characteristics of a DT and the domains in which they are currently
being developed and adopted.

The original definition introduced the core concepts associated with a DT, namely it is composed
by three dimensions: physical, virtual, and connection parts, where the virtual space represents the
digital or software representation and replication of the physical asset, and it is mapped to the
physical space through the connection part that exchanges information. Moreover, DT possibly

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Web of Digital Twins ACM ToIT, April 2021,

includes models of the structure, functionalities, and behaviour of the real counterpart [17, 32].
It can persist for the whole system life-cycle, and it is tightly linked with the physical entity: a
shadowing process enables the continuous update of DT’s internal state in near-real-time with data
acquired on the physical system by different devices – mainly sensors or other sources such as
existing IT systems (e.g. ERP, PLM) – and transferred digitally [7].

Recent advancements in IoT, big data, and machine learning have also significantly contributed to
the improvements in DTs regarding their real-time capabilities and forecasting properties. Collected
data constitute the so-called digital threads and are the grounding information on which simulation
or machine learning algorithms rely to make predictions, enabling failures to be anticipated, to
optimise the system, to design novel features, to ease and accelerate decision making, and to
improve productivity— to mention some [43, 52]. According to this definition, the DT is not only a
model of the physical asset, but it can autonomously evolve through simulation and AI-enabled
algorithms to understand the world, learn, reason, and answer to what-if questions. Furthermore,
whenever DTs encapsulate reasoning capabilities, the concept of DT has evolved into Cognitive
Digital Twin (CDT) [1, 13] that has been introduced in the literature to refer to those DTs that
autonomously perform some intelligent task within the context of the physical asset, related to
e.g. smart management, maintenance, and optimisation of performances. This corresponds to
stage 4 DTs envisioned in [43], as extended DTs delivering additional capabilities besides the
physical asset ones, possibly including an autonomous part flanking the basic DT ones. To support
cognitive and analytical solutions, someworks in literature propose the adoption of semantic models
and technologies to extract knowledge from data, building on specific domain-driven ontologies.
Semantic relations among data may then be represented as knowledge graphs [42], enabling the
exploitation of a set of models and theories to enhance the DT with cognitive capabilities. As
such, DTs attracted a multitude of specific approaches related to data analytics [41], behavioural
modelling [45], ontology definition [49], or specific device mirroring [46] and networking.
As clearly reviewed and pointed out also in [28], the literature is conceptually aligned on an

idea and the importance of DT in multiple fields, but there is not yet a shared set of properties
and behaviours that can help to create common background, language, and a unifying model for
representing and properly work with DT across multiple application domains. The fragmentation
of existing solutions is mostly related to their specificity for a target sector and the missing detailed
definition of how DTs should be represented and operate. On the one hand, the resulting trend
generates innovative approaches in disparate fields. However, on the other hand, it limits the real
potential of uniformed DTs by creating an unnecessary substrate of heterogeneous proposals [50].
Currently, it is almost impossible to create an ecosystem where devices, services, and users can
efficiently cooperate through a shared and interoperable DT vision. From this analysis, the definition
of a model that introduces concepts and principles on top of which building a DT, crosscutting the
different application domains and independent of specific technologies, emerges as an open issue.
The industrial world, particularly the Industrial Internet of Things Consortium, is proposing

a shared reference architecture [25, 47] taking into account DTs relationships, composition, and
main services (e.g., prediction, maintenance, safety). In the networking research field, DTs are
also recently adopted to support interoperability, reduce heterogeneity by providing a dynamic
application-driven layer on top of physical equipment [3]. Furthermore, the concept of network
DTs appears also for the first time as an informational draft [56] trying to define their role and
main responsibilities to mirror network assets. Similar works have been done by the Robotics and
Robot Operating System communities [22, 23]. In this context, a set of platforms and solutions has

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

been developed by major industries. It is worth mentioning the vision of GE Digital1, Siemens2, and
Azure Digital Twin3. The latter, in particular, provides a comprehensive approach for designing
and developing cross-domain digital twins, including – among the other features – a language
called DTDL (Digital Twin Definition Language), which makes it possible to describe graphs of
DTs, representing both their properties and their relationships. This feature is an essential one also
in the WoDT proposal, in which – however – a more open-system oriented perspective is explicitly
adopted, taking the Web and Semantic Web as main references.

The oneM2M organisation4 and theWorld WideWeb Consortium withWeb of Things (WoT)5 are
actively working to provide uniform access and description of physical assets to achieve practical
interoperability across multiple application domains and deployments. Unfortunately, within these
fundamental standardisation activities, the definition of the role of DTs is at an early stage, e.g.
the WoT tries to introduce the concept mainly as a cloud-driven interaction pattern instead of
a fundamental tool to digitise and model physical assets. Market ready DTs approaches are also
mainly focused on legacy systems design, and providers like Amazon6, Google7, and Bosch8 already
proposed their siloed implementations and DT services.
The broader perspective brought by the WoDT proposal shares many points with the Gemini

Principles vision [27], on which the National Digital Twin (NTD) Programme developed in the UK
is based. The NDT programme is nationwide, but focused mainly on the built environment. The
perspective of WoDT is even larger, considering the opportunity of virtualising physical assets not
limited to buildings or related physical objects. In the literature, this pervasive vision has strong
affinities with the idea of mirror worlds as introduced by D. Gelernter in [15], and further explored
and developed in the context of agents and multiagent systems in [40]. Following Gelernter, mirror
worlds are “software models of some chunk of reality” [15], that is: “a true-to-life mirror image trapped
inside a computer”, which can be then viewed, zoomed, analysed by real-world inhabitants with the
help of proper software (autonomous) assistant agents. Following [15], the primary objective of
a mirror world is to strongly impact the lives of the citizens of the real world, offering them the
possibility to exploit software tools and functionalities provided by the mirror world, generically, to
tackle the increasing life complexity. The same vision applies to Web of Digital Twins, which could
be considered a concrete approach to design and develop mirror worlds under this perspective.

Finally, the literature already accounts for a few works that apply agents for modelling, designing,
implementing, or even exploiting DTs. In [2] BDI agents – being BDI (Belief-Desire-Intention)
a main model/architecture adopted to implement knowledge-based intelligent agents [38] – are
proposed to represent DTs of real-life organisations claiming that beliefs, desires, and intentions
are suitable abstractions for characterising mental attitudes of anthropomorphic organisations.
A similar approach is proposed in [48] where agents are adopted as a metaphor to revise the
structure of a DT in an autonomous, behaviour-centred perspective encapsulating the inherent
agent’s perception–decision–action cycle and intelligence. Compared to these works, WoDT is
more focused on exploring intelligent agents and MAS at the application layer, modelling a digital
twins connected ecosystem as an agent application environment [53].

1https://www.ge.com/digital/applications/digital-twin
2https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/digital-twin.html
3https://azure.microsoft.com/en-gb/services/digital-twins/
4https://www.onem2m.org/
5https://www.w3.org/TR/wot-architecture/
6https://aws.amazon.com/it/iot/
7https://cloud.google.com/solutions/iot
8https://www.bosch-iot-suite.com/

4

https://www.ge.com/digital/applications/digital-twin
https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/digital-twin.html
https://azure.microsoft.com/en-gb/services/digital-twins/
https://www.onem2m.org/
https://www.w3.org/TR/wot-architecture/
https://aws.amazon.com/it/iot/
https://cloud.google.com/solutions/iot
https://www.bosch-iot-suite.com/

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Web of Digital Twins ACM ToIT, April 2021,

Digital Twin Layer

REAL WORLD

Physical Asset Layer

S
H

A
D

O
W

IN
G WoDT

SOFTWARE APPS

Application Layer

Application Service Agent

O
B
S
ER

V
E

&
 A

C
T

PATIENT
PHYSICIAN
 EMERGENCY
VEHICLE

MEDICAL
DEVICE
HOSPITAL

Fig. 1. The WoDT Layered View.

3 THEWODT MODEL
In this section, we provide a description of the main concepts and principles defining the WoDT
idea, abstracting from specific application domains and technologies. Nevertheless, to clarify the
concepts, we will use examples from concrete domains, the healthcare scenario in particular.

3.1 Overview
The WoDT idea is based on a background principle introduced in [39] to broaden the perspective
about the application of the DT paradigm:

Every strategic physical asset of an organisation must have a corresponding digital twin,
mirroring and augmenting its functionalities and services at the digital level, resulting in
an ecosystem of connected digital twins.

AWoDT is meant to serve as a blueprint to shape that idea of ecosystem from a computational point
of view. The term physical asset (PA) mentioned in the principle is intentionally used as a broad
term, to include any entity that has some kind of manifestation and relevance in the physical world
of the organisation, with a well defined temporal lifespan9. It can include physical objects/resources,
places, persons, but also activities and processes carried on by people in places. For instance, in the
context of the healthcare/clinical scenario later described in Section 5, the organisation is a regional
public health authority, involving multiple hospitals and structures distributed on a regional land.
In that context, examples of PAs range from vehicles and devices (e.g. an ambulance or a vital
signs monitor), building and places (e.g. a hospital, an operating room), persons (e.g. a patient), up
to activities and processes happening real-time on the field (e.g. the management of a trauma, a
surgery in the operating room), as well as logical aggregated entities, such as a department or the
global organisation itself (see Figure 1).

In spite of specific cases, a DT is meant to capture and represent at a proper level of abstraction
the actual state and functionality of the PA, possibly augmented by the digital layer, and what’s
happening to it (as well as what happened and what will happen). For a proper level of abstraction,
here we mean two things:

• the DT defines a model of the PA, so abstracting from aspects of the PA that are not relevant
for its purpose;

9The definition of entity used here is analogous to the one defined by the ISO 24760-1:2011: “entity is an item that has
recognisably distinct existence, e.g. a person, an organisation, a device, a subsystem, or a group of such items.”

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

• the representation provided by the DT is about concepts that concern the PA at the domain
level—not technical aspects related to how its digitisation is being implemented.

Generally speaking, a DT could host multiple concrete models of the same PA, capturing different
aspects. In this paper we will refer to a single abstract model, that may be ground then to multiple
concrete ones, without losing generality.

WoDT as Open, Dynamic System of Linked Systems. Two characterising points of DTs in WoDT
concern dynamism and relationships. In particular:

• The PAs part of a WoDT could include both entities that are stably part of the organisation,
sharing the same lifespan, and entities with a limited temporal existence, beginning to exist
or to be part of the organisation at some point in time and possibly ending or exiting the
organisation at some other time. Correspondingly, DTs bound to PAs could either be part of
a WoDT since the beginning, or dynamically created and possibly disposed.

• The PAs of an organisation are typically interrelated, and this set of domain-based rela-
tionships could change dynamically. For instance, in the healthcare scenario, an ambulance
belongs to a hospital and could take part in a mission-related to an emergency event. In a
WoDT, these relationships are meant to be explicitly captured and represented at the DT
level, by means of links among the DTs, similarly to link in hypermedia-based environments
(like the Web), and with some defined semantics based on domain-level ontologies (like in
the case of Semantic Web).

WoDT Distributed Knowledge Graph. The PAs of an organisation could be in relationship with
PAs of other organisations, or even the same PA could take part in different organisations with
different roles. Accordingly, a DT of an asset inside an organisation could be linked/related to DTs
that are outside the organisation. This implies the capability in WoDT to deal with the problem
of interoperability, e.g. allowing to use multiple/different ontologies, possibly cross-domain, in
an open-system perspective. The semantic modelling of each virtualised physical asset into a
corresponding DT is an aspect of primary importance to foster interoperability and openness, as
well as the development of intelligent applications on top. To this purpose, each DT of a WoDT
is meant to be described by a knowledge graph (KG) [18, 19], interlinking domain knowledge and
physical asset data in a uniform graph representation. A WoDT is therefore represented by a
Distributed KG (DKG) [21], linking independent KG, possibly based on different domain-specific
ontologies ground to the related physical asset contexts. Semantic Web technologies such as RDF
and OWL are taken as the main reference for this aspect.

WoDT at the Application Level. From an application model point of view, a WoDT is meant to
define a cross-application distributed base layer bridging the digital and physical levels and DTs
could serve as-a-service different applications, running inside or outside the organisation. In the
healthcare scenario, for instance, the DT of the ambulance could be useful for different specific
applications, e.g. one about maintenance of the vehicles and one about the allocation of vehicles in
the management of an emergency. Furthermore, the same DT can serve as a traffic management
application prioritising emergency vehicles over private traffic and public transportation. In the
most general case, for the same PA multiple and independent DTs can be available, each one with a
different model, specialised for different applications.

A main kind of applications that may benefit from the availability of WoDT is given by intelligent
agents [54] and multiagent systems [20], i.e. intelligent systems designed to autonomously perform
tasks that need a flexible interaction with the physical/socio-technical environments where they
are situated. In this view, DTs can be considered as shared and modular services that intelligent
agents can exploit to perceive and observe the state and events of PAs, based on the semantic

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Web of Digital Twins ACM ToIT, April 2021,

PATIENT

PA

DT

MISSION

PA

DT

AMBULANCE

PA

DT

PROPERTIES
position(lat, long)
available

RELATIONSHIPS
central-emergency-unit
driver

EVENTS
low-fuel
patient-picked-up(id)

PROPERTIES
accident-info(...)

RELATIONSHIPS
ambulance
patient

EVENTS
major-trauma-detected
mbt-protocol-requested

PROPERTIES
personal-data(...)
anamnesi(...)

RELATIONSHIPS
emr

EVENTS
drug-administered(id, qty)

diagnostic-request(id)

Digital

Twin

Physical

Asset

Shadowing

Linking

SYMBOLS

MEANING

Fig. 2. A representation of three DTs of three different PAs (Ambulance, Mission, Patient), including an excerpt
of their models, in terms of properties, relationships and events that can be generated.

models provided by the DTs in terms of knowledge graphs. Besides the support for perceiving and
observing, DTs may provide actions that allow agents to possibly affect, control and manage the
corresponding physical twins. In other words, from an intelligent agent perspective, a WoDT would
provide a distributed dynamic application environment [53] enabling, mediating and empowering
the access to the physical reality.

After this broad overview, in the remainder of the section we describe an abstract model for
WoDT, to be useful as a reference for designing and developing WoDT platforms and technologies.

3.2 An Abstract Model
Each DT in WoDT is based on a model 𝑀 of the corresponding PA, defining how the PA is
represented at the digital/software/virtual level. Such a representation is defined in terms of
properties, relationships and events:

• Properties represent the observable attributes of the PA, as labelled data values (variables)
that can change dynamically according to the evolution of the PA state.

• Relationships represent relationships of the PA with other PAs, as links to other digital twins.
Like properties, even relationships can be observable, created dynamically and change over
time. Differently from properties, they do not purely concern the local state of the PA, but
they allow to refer other PAs, represented by the corresponding DTs.

• Events represent relevant observable events that occurred at the PA, at the domain level.
A concrete model defines the actual properties and relationships used by the DT to represent the
PA and the events that it can dynamically generate. An example related to the healthcare case
study is shown in Figure 2.

Given a model𝑀 , the dynamic state 𝑆𝐷𝑇 of a DT can be defined by a tuple:

𝑆𝐷𝑇 = ⟨𝑃, 𝑅, 𝐸, 𝑡⟩
where 𝑃 is the current set of properties (including data values), 𝑅 is the current set of relationships,
𝐸 is the sequence of events generated so far, and 𝑡 is a logical timestamp representing the current
time of the PA as modelled by𝑀 .

Shadowing is the process to keep the DT state 𝑆𝐷𝑇 synchronised to the PA state, according to the
model𝑀 . Any update involves a sequence of three main steps (see Figure 3a):
(1) any relevant change of the state 𝑆𝑃𝐴 occurring at the PA is captured by an event 𝑒𝑣𝑃𝐴;

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

1

2

DT

evPA

3

DT DT

PA PA

PA

(a) Shadowing process from PA to DT: a change of the
PA state 𝑆𝑃𝐴 results in updating the DT state 𝑆𝐷𝑇 .

1

DT DT

3

PA

DT

2

PA

PA

(b) Shadowing process from DT to PA: an action re-
quest on the DT leads to updating the PA state 𝑆𝑃𝐴 .

Fig. 3. The Shadowing Process in the WoDT Model.

(2) the event 𝑒𝑣𝑃𝐴 is propagated to the DT;
(3) given a new event 𝑒𝑣𝑃𝐴, the state 𝑆𝐷𝑇 of the DT is updated by means of a shadowing function

𝑆ℎ𝑎𝑑𝑃𝐴→𝐷𝑇 that depends on the model𝑀 : 𝑆 ′
𝐷𝑇

= 𝑆ℎ𝑎𝑑𝑃𝐴→𝐷𝑇 (𝑆𝐷𝑇 , 𝑒𝑣𝑃𝐴).
In concrete systems, PAs can be complex entities, with a structured and distributed state. The
shadowing process then may involve multiple sources generating information flows and events.
Sources can also include other DTs, that is: a DT can shadow a high-level logical PA (e.g. the DT of
an organisation) by aggregating information and events provided by other DTs.

Besides mirroring the state, a DT may mirror also actions provided by the PA. A simple example
is the DT of a lamp, providing actions to switch the light on and off. Accordingly, the shadowing
process propagates actions requested on the DT down to the PA, eventually changing its state. This
case too involves a sequence of three main steps (see Figure 3b):
(1) an action 𝑎𝐷𝑇 is requested on the DT, e.g. through the digital twin API;
(2) a new action request 𝑎𝑃𝐴 for the PA is generated by means of a further shadowing function

𝑆ℎ𝑎𝑑𝐷𝑇→𝑃𝐴, that is: 𝑎𝑃𝐴 = 𝑆ℎ𝑎𝑑𝐷𝑇→𝑃𝐴 (𝑆𝐷𝑇 , 𝑎𝐷𝑇), and propagated to the PA;
(3) the action request 𝑎𝑃𝐴 is applied to the PA, determining a change of the PA state 𝑆𝑃𝐴.

It is worth remarking that an action request 𝑎𝐷𝑇 does not directly change 𝑆𝐷𝑇 . Changes to 𝑆𝐷𝑇 are
uniquely caused by shadowing from PA to DT—so, in this case as a result of the PA state change,
after applying 𝑎𝑃𝐴.
Overall a WoDT is then a dynamic set of independent DTs, each one with its own model and

state, linked according to the relationships defined at the PA level. A WoDT is then inherently
asynchronous and decentralised—the DTs of a WoDT may have different and independent time
models, and evolve independently and asynchronously.

3.3 A Semantic Model based on (Distributed) Knowledge Graphs
The abstract model defined above makes it quite straightforward to semantically describe an
instance of DT by a knowledge graph (KG) [19], and a WoDT as a Distributed KG. This is a key
aspect of WoDT to enable cross-application/domain interoperability, and support reasoning by
intelligent systems running at the application layer.
By using RDF as concrete representation language, the KG of each DT can be represented as

an RDF resource characterised by a unique IRI, using RDF triples to represent dynamic state
information about properties, relationships, events and time, as well as the static information of the
DT. In triples about properties, the predicate is the property name (identifier) and the object is the
value of the property—that can be represented either by a literal or the IRI of another resource (in a
Linked Data perspective). In triples about relationships, the predicate identifies the relationship

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Web of Digital Twins ACM ToIT, April 2021,

:ambulanceA :status "busy" ;
 :position "POINT(-0.26310 51.46287)"^^geo:wktLiteral .
:eventE :code "SC01R" ;
 :mission : missionM ;
 :place "10, Park Avenue" .
:missionM :part-of :Event ;
 :status "at-place" ;
 :leader :rescuerR ;
 :vehicle :ambulanceA ;
 :patient :patientP .
:rescuerR :code "ABC123" ;
 :qualification "paramedic" .

:patientP :diagnosis "trauma" ;
 :bloodPressure 110 ;
 :respiratoryRate 25 .

Rescuer

Mission Patient

Event

Ambu-

lance

AMB

RS

MSN

EVT

PTN

:eventE

:missionM:ambulanceA

:rescuerR

SC01R

10, Park Ave

at-place

POINT(-0.26310 51.46287)"
^^geo:wktLiteral

busy paramedic

ABC123

:code

:part-of

:v:vehicle

:v:status :v:leader:v:status

:v:place

:v:code

:v:qualification

:patientP:patient

110

trauma

:v:bloodPressure

:diagnosis

:v:position
:mission :v:respiratoryRate

25

Fig. 4. An example of a RDF-based KG (on the right) for a WoDT (on the left) in the healthcare context.

name (identifier) and the object is the IRI of the linked DT, corresponding to the target PA which is
related to the source PA, mirrored by the linking DT.

Figure 4 shows a representation of a portion of Distributed KG related to the DTs of a previous
example, represented in RDF. Each KG can be based on different ontologies, expressed in OWL,
including both domain-specific ontologies and shared upper ontologies. For instance, the DTs in
the healthcare context example and case study can refer to FHIR RDF representation10 and FHIR
OWL Ontology11.
Dynamically, the KG of a DT instance evolves according to the shadowing process, involving

atomic updates of the set of triples. The Distributed KG of a WoDT evolves by virtue of the
asynchronous and concurrent evolution of the individual KGs.

3.4 Interaction Model
The interaction model is about the primitives (API) that are provided at the application level to
interact with DTs and exploit the functionalities of a WoDT.

The first core functionality is about making observable at the digital level any up-to-date infor-
mation about the current state of physical assets, as well as events relevant at the domain level. The
interaction primitives are then (i) to query and (ii) to track (observe) DTs, at two different levels: (i)
individual DTs (ii) and graphs of DTs.

Both querying and tracking (observing) account for getting information about the current state
𝑆𝐷𝑇 of a DT or a graph of DTs. Querying is about one-shot requests and – given the semantic
modelling adopted here – standard semantic query languages like SPARQL12 can be used as
reference to this purpose. Tracking is about subscribing to either a DT or a graph of DTs to receive
all observable events (that is, all relevant events occurred in the PA), possibly filtered according
to patterns specified with the subscription. Subscription is meant to be dynamic, by means of
interaction primitives for start tracking (subscribing) and stop tracking (unsubscribing). Remarks:

• Queries and tracking cannot interfere or block the shadowing process. That is: updates from
the physical world have priority and are meant to be performed satisfying the requirements (in
terms of e.g. latency, responsiveness, etc) defined by the model. This is an important constraint
for concrete architectures and strategies to be adopted to design a platform supporting the
WoDT model (Section 3).

10https://www.hl7.org/fhir/rdf.html, accessed in September 2021.
11https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html, accessed in September 2021.
12https://www.w3.org/TR/sparql11-query/

9

https://www.hl7.org/fhir/rdf.html
https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html
https://www.w3.org/TR/sparql11-query/

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

• In the most general case, queries (and tracking) that involve a graph of DTs concern Dis-
tributed KGs, where it cannot be assumed a-priori neither a unique reference time, nor a
common model of time (which is defined by the model𝑀 of each DT).

Besides querying and observing, a DT can mirror also the actions provided by the physical asset
to command/control it. Therefore, interaction primitives may include application-specific requests
for asynchronously executing actions/commands, shadowing those provided by the PA.
Finally, a last core functionality is about creating (and disposing) DTs. In a WoDT, the creation

of a new DT can occur in three conceptually different ways:

• statically, when a DT is instantiated and configured by administrators. This typically concerns
either standalone systems or root DT of a possibly complex WoDT, where the other DTs are
then created dynamically;

• dynamically by shadowing, when a DT is created as effect of the shadowing of an existing DT
(and PA), possibly linking the new DT by means of some relationship (part of the 𝑅 set, in
the abstract model). In this case the existing DT can be considered the parent of the new DT;

• dynamically by the application level, when a DT is created as effect of an action requested
from the application layer. It could concern the creation of a DT which is either unrelated
to any existing DTs, like in the first case, or created in the context of an existing parent DT
(linking it by some relationship).

3.5 Modelling Augmentation
A DT can be used not only to virtualise a PA, making its digital shadow accessible and exploitable,
but also to extend (augment) its functionalities by properly exploiting the digital/software layer [28].
For instance, the DT of a room can provide a property about the number of people inside the room
(by exploiting different kind of tracking technologies), even if – at the physical level – there could
not be any physical counter. An another example, the DT of a patient can generate a warning event
about the health state, given e.g. rules defined by medics, possibly contextualised to the specific
situation. Event prediction and simulation – which are main high-level functionalities that are
described in the literature for DTs – can be conceptually framed as augmentation, since they are
not part of the functionalities mirrored from the PA, but exploit the model 𝑀 , the state 𝑆𝐷𝑇 and
possibly other available data to generate information about the future states/behaviour of the PAs.
In the abstract model, augmentation can be represented by means of an augmented state 𝑆𝐴𝑈

including a further set of properties, relationships, and events besides the ones generated by
shadowing the PA. The augmentation behaviour can be modelled as an abstract functions 𝐴𝑢𝑔𝑚
part of the model𝑀 too, like the shadowing functions 𝑆ℎ𝑎𝑑 , so that:

• an event 𝑒𝑣𝑃𝐴 occurring at the PA level may trigger both the update of the state 𝑆𝐷𝑇 , according
to the basic shadowing process, and the update of the augmented state 𝑆𝐴𝑈 according to the
augmentation function: 𝑆 ′

𝐴𝑈
= 𝐴𝑢𝑔𝑚𝑃𝐴→𝐷𝑇 (𝑆𝐴𝑈 , 𝑆𝐷𝑇 , 𝑒𝑣𝑃𝐴);

• an action event 𝑎𝐷𝑇 part of the augmented behaviour may cause the update of the augmented
state into a 𝑆 ′

𝐴𝑈
and (possibly, not necessarily) generate an event 𝑎𝑃𝐴 to be propagated to the

PA, as in the basic shadowing process: 𝑎𝑃𝐴 = 𝐴𝑢𝑔𝑚𝐷𝑇→𝑃𝐴 (𝑆𝐴𝑈 , 𝑆𝐷𝑇 , 𝑎𝐷𝑇).

In this modeling, the augmented state 𝑆𝐴𝑈 is kept separated by the state 𝑆𝐷𝑇 to remark the
conceptual difference between them: properties and relationships of the core state are strictly
bound to the PA and its evolution, and cannot be (directly) changed by the application layer, which
is the case, instead, of the properties and relationships of the augmented state.

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Web of Digital Twins ACM ToIT, April 2021,

4 BRINGING THEWODT MODEL INTO THE REALWORLD
The WoDT model needs to be supported by an abstract DT’s life cycle and an adequate software
architecture to be effectively and efficiently deployed as an operational artefact. We thus provide
here a plausible abstract representation of both.
Figure 5 depicts the envisioned DT life cycle. After startup, the DT moves to the Operating &

Not Bound state where all the internal modules are active but the DT is not yet associated with
the PA. It is the binding procedure that connects the two, according to the existing domain-specific
requirements. In the Bound state the DT is correctly attached to its physical counterpart, hence is
able to handle bidirectional events, interact with the PA, and start the shadowing process in order
to be effectively synchronised in terms of events and state—reaching the Shadowed state.

Any error during synchronisation brings the DT into a new state denoted as Out of Sync, where
it is unable to handle events, to align its status, or to interact with the external world. Only once
synchronisation is correctly recovered (according to the defined model) the DT returns to the
Shadowed state. During its life cycle, the DT can be also stopped and moved to the Done state,
where it is still active and accessible from external applications and consumers (maintaining its
memory and events log), but it is neither bound or synchronised anymore with the PA. At the end
of its life cycle, the DT can be finally dismissed and associated to the Stop state.

Given the WoDT model and the DT’s life cycle just described, we now present a WoDT blueprint
architecture, conceived by (i) making explicit the requirements put forth by the WoDT model,
and (ii) devising out the abstract architectural components, as well as their role and relationships,
needed to fulfil them.

It is worth remarking that the described architecture is by no means meant to serve as the unique
reference architecture for implementing an ecosystem of DTs, rather, as an abstract architecture
where each component (hence its functional and non-functional responsibilities) may be possibly
realised by a slew of different existing models and technologies. We tackled the problem of both
platform and DTs’ complexity by decomposing them into a set of manageable event-driven modules
along with suitable adapters, with the aim of simplifying development, maintenance, and scalability.
This approach also reduces the barriers to adoption by not being bound to a specific target platform
and domain-specific solution. Finally, this flexibility and modularity also enable each component to
be deployed independently and dynamically according to the application scenario or the run-time
context. For example, DTs can be executed both on the Edge and in the Cloud, or can migrate
among multiple processing nodes. At the same time, the platform is responsible for maintaining
the event-driven communication and the distributed knowledge available.

START
Operating

Not

Bound

Bound
 Shadowed
 Done

Out

of

Sync

INIT BIND

WITH PA

EVENTS &
STATE SYNC STOP

DISMISSSTOP

STOP

STOP
UNBOUND

EVENTS ORSTATE ASYNC

EVENTS &
STATE SYNC

Fig. 5. Abstract representation of the state and transitions of a DT’s life cycle.

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

4.1 An Architectural Perspective
By reflecting on the model described in Section 3 we can devise out the following architectural
requirements: (i) it should be possible to create DTs and bind them to PAs dynamically, which in
turn requires to dynamically associate DTs and PAs with an addressable and discoverable unique
identifier, and to provide the means to resolve and discover such address; (ii) changes in the state
of a PA, that is, PA events, should be captured and reified in a uniform representation, regardless
of the heterogeneity of the source PAs, by the bound DT, whose state may change in response as
defined by the DT model(s); (iii) a labelled multi-graph (the knowledge graph) is needed to track
dynamic linking amongst DTs, and means to navigate and query such labelled multi-graph should
be provided; (iv) the shadowing process must guarantee proper synchronisation between the PA
and the DT, according to the constraints put forth by the DT model(s)—e.g. in terms of quality
of service metrics, amongst which timing constraints; (v) an operational specification of the DT
model(s) must be available for execution at all times, to drive the processes of event capturing,
state update, shadowing itself, linking, namely the whole inner functioning of the DT; (vi) some
services must be available independently of any DT, such as for DT creation and querying; (vii)
observation of DTs’ current and past state and augmented state, model(s), thread of captured events,
context in terms of linking sub-graph it participates to, and any other relevant data related to DTs
functioning must be available at all times, to external entities, regardless of their heterogeneity (e.g.
web service vs. cognitive agent); and (viii) interaction with the DT, and consequently the PA, in
order to trigger actions and functions, also regarding augmentation, must be possible at all times,
and will spawn events giving feedback about the action itself (e.g. results), and possibly generate
state updates in the PA or the DT.
Based on these requirements, we define the abstract architecture depicted in Figure 6 as the

minimal architecture fulfilling all the requirements described above. Such architecture exposes (i)
elements which are part of each DT (e.g. Model Execution Engine), hence are conceptually “inside”
of a DT, (ii) elements which are at the boundary between DTs (e.g. Management Interface), (iii)
elements which are the boundary between DTs and client entities (e.g. Digital Adapter), and (iv)
infrastructural elements which are not part of any DT (e.g. DT Manager), hence are conceptually
“outside” of a DT.

First we first focus on the inside of a DT, that is, what the components providing the functions
that each DT should be able to deliver autonomously are:

S
H

A
D

O
W

IN
G

Application Service Agent

Physical
Assets

Ev
en

t-D
riv

en
En

gi
ne

Digital Adapter (DA)

Physical Asset Adapter (PAA)

M
anagem

ent
Interface

Binding & Shadowing Module

Model Execution Engine Augmentation Engine

Knowledge Graph Engine

State Manager

WoDT Platform

Communication Layer

Digital Twin ManagerDistributed
Knowledge Graph

Engine

Cache & Storage

PA

DT
DTDT

PA
PA

PA
PA

DT DT

DIGITAL TWIN

WoDT PLATFORM

Digital
Layer

O
B
S
ER

V
E

&
 A

C
T

Fig. 6. Overall abstract Architecture of WoDT vision (inner DT and WoDT platform).

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Web of Digital Twins ACM ToIT, April 2021,

Physical Asset Adapter (PAA) The component in charge of capturing events 𝑒𝑃𝐴 coming from
the PA(s) associated to the DT (due to, e.g., a change to the PA(s) state), as well as of delivering
events 𝑒𝑃𝐴 to the PA(s), corresponding to actions to be carried out, as requested by applications
through the Digital Adapter. Despite heterogeneity of PAs, in terms of structure, purpose,
behaviour, communication protocols, data representation formats, and so on, such events
must be mapped to a uniform representation 𝑒𝐼 so as to be seamlessly exchanged amongst
different DTs, filtered, manipulated, aggregated, and possibly dispatched to external entities.
A fundamental aspect of this mapping is the preservation of some temporal information about
𝑒𝑃𝐴, such that, for instance, causal relationships could be established amongst resulting 𝑒𝐼 ,
and synchronisation status can be assessed. Such 𝑒𝐼 will be processed within the DT by the
Binding & Shadowing Module and the Model Execution Engine, as described below, thanks
to the Event-driven Engine, which drives the internal behaviour of each DT. In the case that
the PA is mapped into another DT, events 𝑒𝑃𝐴 are already represented as 𝑒𝐼 , hence no further
translation is required.

Binding & Shadowing Module (BSM) The “heart” of the DT, that is, the component in charge
of both the one-time binding process associating a DT with its PA, usually done at DT creation
time and dismissed when the PA is disposed, and the perpetual shadowing process meant
to keep the DT and PA in synch. This module interacts with the Event-driven Engine to
dispatch events 𝑒𝐼 to the Model Execution Engine, and operates according to the policies
put forth by it regarding when and how to update the DT state and the Knowledge Graph.
Finally, this module also tracks and governs the lifecycle stages of a DT, from creation and
binding, to unbinding and disposal.

Event-driven Engine (EE) The “nervous system” of the DT, that is, the component binding
together all the other internal components of a DT, by enabling their reciprocal interaction
through events 𝑒𝐼 . It is worth emphasising here that we interpret the DT as an event-driven
machinery conceptually, at the modelling level; however, as already said, we do not constrain
the DT to be actually implemented as such, hence the EE in turn may be not, for instance, an
internal or shared event bus, but anything else fitting the job.

Model Execution Engine (MEE) The “brain” of the DT, that is, the component in charge of
governing other components according to the model(s) defined by the DT designer. As such,
it dictates which events to capture, how they influence the DT state and behaviour, the
admissible linking operations on the KG, the admissible actions on the corresponding PA, etc.
Conceptually, through the MEE, the DT designer has the means to make the model(s) she
defined operational, that is, capable of affecting the behaviour of the DT at run-time.

State Manager (SM) The component responsible for managing DT state updates, according
to the policies put forth by the MEE, the events dynamically captured, and the contextual
conditions defined by the linking relationships with other DTs. While doing so, particular
attention should be devoted in leaving the DT in a consistent state, in relation to the constraints
possibly defined by the MEE model(s), at all times.

Knowledge Graph Engine (KGE) The component responsible for managing the KG of the
DT, including the links to the other DTs, as tracked by the relationships attribute. Also, it is
in charge of serving

Cache & Storage (CS) The component providing to the DT those basic functionalities related
to storage and caching of data, for instance regarding state updates, KG updates, events
caching, and so on.

Management Interface (MI) The set of functions a DT exposes to other DTs, the WoDT
platform, and external entities such as platform/administration tools and services, too. Queries

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

about the lifecycle state of a DT, and requests for linking to and creation of other DTs are all
expected to be served through the MI.

Digital Adapter (DA) The component complementary to the PAA, that is, in charge of trans-
lating events 𝑒𝐼 intoDT events 𝑒𝐷𝑇 , namely, events generated by the DT towards some external
entity in response to invocation of some MI function—e.g. the track operation to be notified
upon changing of DT (PA) properties and the generation of observable events.

Augmentation Engine (AE) The module that allows the DT to extend its original capabilities
(inherited from the PA with the shadowing process) through the activation and execution of
one or multiple functional modules. Each AE module can operate with both 𝑒𝐷𝑇 and 𝑒𝑃𝐴 (e.g.
exposing a prediction action and making available predicted values of a property) according
to the implemented augmentation function, and enables the definition of an additional set of
properties, relationships, actions, and events exposed to the digital world and accessible by
external applications and services.

Then we can consider the outside of a DT, that is, the components providing those functions that
cannot be delivered by an individual DT alone but should be supported by platform modules, or that
may be anyway practically convenient to have independently of individual DTs. The Distributed
Knowledge Graph Engine (DKGE) is in charge of providing the means to navigate the entire
“web of DTs”, that is, the labelled multi-graph where all the linking relationships between DTs are
tracked, without necessarily having prior knowledge about the DTs already in the system. By doing
so, the DKGE grants access to any of the DT of the platform, and to any of its properties, events 𝑒𝐼
thread, and so on – namely, to the whole DT tuple as seen in the model (Section 3)—by routing
and forwarding requests for data access to the DTs involved in any given query. The DT Manager
(DTM) is responsible instead to manage the DT lifecycle, from creation, and hence unique ID
and discoverable address generation, to DT disposal. The component also offers typical lookup
services such as white and yellow pages to lookup DTs based on ID or specific properties. The
Communication Layer (CL) enables interaction with external entities, whatever they are. Such
a component represents the entry point to the WoDT platform, by providing the API to interact
with the DKGE, the DTF, and the DTs themselves, through the DA.

It is worth clarifying that the architecture just presented is purely logical, in the sense that
we do not pose any restriction on (i) implementation of its components, e.g. whether the DT
Factory is a centralised registry or a distributed hashtable, or whether the EE is fragmented in
each DT, a globally available event bus, or a combination thereof, and (ii) deployment of such
components, e.g. whether the DT resides on the same host as the PA or even the PAA, or where a
DT should be placed across the Edge-Fog-Cloud spectrum. The reason for not doing so is that such
choices likely depend on many factors, such as (i) the target application domain, (ii) the available
computational resources and communication infrastructure, and (iii) the preferred technologies to
actually implement the components. Also, some of the components may be dynamically moved, or
replicated, or fragmented (akin to “sharding” for database technology) at run-time, thus imposing
design-time restrictions seems unnecessary and potentially limiting.

4.2 Interaction Flows
With the aim of clarifying the relationships between the DT’s architectural components we identified
in the previous section, and provide further insights on DTs functioning with respect to external
applications, we here comment a few selected sequence diagrams explaining some of the main
operational phases of a DT.

Figure 7 reports the internal DT operations related to PA’s binding and shadowing. Interactions
unfold as follows. (1) an external application (e.g. an agent) interacts with the DTM through the CL

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Web of Digital Twins ACM ToIT, April 2021,

CS

Start

Custom
Interaction

Update StatusPA
Event

Exec. Model

DT Event

Update

CS
CS

Retrieve Shadowing
Info

Shadowed

PA
Adapter

Bind. &
Shad.

Knowledge
Graph Engine

State
Manager

Model Exec.
Engine

Digital
Adapter

Management
Interface DTM

PA
Change

Bind 3 2 1
4

5

6

7

Shadow

8

9 10

11
12 13

PA

Fig. 7. DT binding and shadowing, and status update.

to create a new DT The DTM then starts the DT, through the MI module, to shadow a target PA. (2)
The MI initiates the procedure by requesting to the BSM to perform coupling with the PA. (3) The
BSM then interacts with the PAA to perform binding according to PA’s nature, communication
protocols, and data formats. (4) The BSM also interacts with the MEE to retrieve the shadowing
information as a function of the DT’s model and the received PA’s state. For example, a PA can
expose multiple properties but only a subset will be shadowed through the defined DT’s model.
(5) The BSM keeps interacting with the PAA to complete the shadowing process, and finally (6)
updates the KG to keep track of the DT’s local view in terms of linking, which in turn uses the CS
module to store the update and, if required, update its thread. (7,8) Notification of completion of the
shadowing process is forwarded to the MI and the DTM. The remaining steps in Figure 7 describe
how the DT handles state changes coming from the PA: (9) the PA generates an event associated
with an internal change (or the PAA detects a variation on the PA), hence the PAA notifies the
BSM about the change and tracks it through the CS module; (10) the BSM generates a new 𝑒𝑃𝐴; (11)
the MEE executes the DT’s model according to the 𝑒𝑃𝐴, the current state, and any other relevant
information in the DT. Once the new state is correctly computed the MEE notifies the SM about
the variation. Finally, (12,13) the SM validates the state, updates the CS, and possibly generates a
new 𝑒𝐷𝑇 for the DA—possibly delivered to external applications tracking the DT.
Figure 8 depicts how the query and track operations of the interaction model described in Section 3.4
are carried out by the DT. In particular, in the case of a query operation (1), the DA takes care
of transforming such a request into a DT event (2), which is then forwarded to the KGE through
the MEE (3). Once the query request reaches the KGE, it is its sole responsibility to appropriately
forward the query to the (possibly) linked DTs (not shown). Then, once the query results are
available, they are propagated back to the requesting application (4-6). In the case of tracking (7),

App

Custom
Interaction

DT Event
(Status Update)

PA
Change

Update Status
Execute
Model

DT Event
CS

PA Event
10 11 12

13 14

PA
Adapter

Bind. &
Shad.

Knowledge
Graph Engine

State
Manager

Model Exec.
Engine

Digital
Adapter

Management
Interface

PA

12
Query

3
Query EventExecute Model

5

KG
6

DT Event
(Query Result)

4

7
Track

8
Track Event

9

Query Result

Fig. 8. Interaction of an external application with the DT: query and track.

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

the flow of interactions stops at the MEE (9), that simply keeps track that a new observer should be
associated with the updates coming from the shadowed PA. In fact, steps (10-14) are akin to steps
(9-13) already described for Figure 7, representing the shadowing process. What’s new here, is step
(12) in which the PA state change is notified to the tracking application.

Finally, Figure 9 illustrates the internal DT operations necessary to trigger a specific action on
the PA as requested by an application. If the action involves also a status change on the PA, a new
𝑒𝑃𝐴 will be generated to notify the variation. In particular: (1,2) the application acts on the DT to,
e.g., modify the status of, or trigger an action on, the PA through the DA; (3) the MEE analyses the
action event, applies the DT’s model, and triggers synchronisation with the BSM; (4) the BSM uses
the PAA to forward to the PA the action; (5) the BSM generates an 𝑒𝑃𝐴 associated to the action; (6,7)
the MEE analyses the event, applies the model, and then sends a new 𝑒𝐷𝑇 for action completion to
the DA. Then, if the action on the PA causes a status change, the PAA notifies the modification
with the same interactions already seen in previous figures.

App

Action Event

Custom
Interaction

PA Sync

Execute
Model

Action

Sync
PA Event (Action Done) DT Event

(Action Done)
DT Event

(Action Done)

DT Event
(Status Update)

PA
Change

Update Status
Execute
Model

DT Event
CS

PA Event

1
234

5

6 7
8 9

10

11 12

PA
Adapter

Bind. &
Shad.

Knowledge
Graph Engine

State
Manager

Model Exec.
Engine

Digital
Adapter

Management
Interface

PA

Fig. 9. Interaction of an external application with the DT: action on the PA.

4.3 Integration with Agent-based Architectures and Platforms
As mentioned in Section 3.1, agent-based approaches are a main reference for modelling and
engineering smart applications and intelligent situated systems running on top of WoDT. In an
agent-based view, a WoDT defines a virtual environment where agents are logically situated,
exploiting the WoDT interaction model to perceive and act upon the PAs through the DTs. On
the agent side, the integration with such a virtual environment can be designed using two main
conceptually different approaches:

• The first one is based on agentification of the virtual environment, that is: every DT is
represented inside the MAS by an agent functioning as its representative (or proxy), and this
kind of agents provide an interface based on the Agent Communication Language (ACL) –
e.g. FIPA ACL, based on speech acts – for the other agents of the MAS to interact with the
DT. A concrete example of this approach is shown in Figure 10a, based on JADE [4], a well
known FIPA compliant platform [5]. In this case, the agent representing the agentified DT
would encapsulate and hide the DA machinery to interact with the DT.

• The second one is based on modelling the WoDT virtual environment in terms of first-class
environment abstractions on the agent side. For instance, in the A&A metamodel [34], each
DT could be represented as an artifact, being artifacts the basic entities used to modularise
computational environments in A&A, organised in workspaces. In this case, agents would
interact with DTs perceiving their observable states, events and performing actions by
interacting with artifacts, i.e. perceiving/observing their observable properties (mapping
the DT state) and executing operations (representing actions). Figure 10b shows a concrete

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Web of Digital Twins ACM ToIT, April 2021,

PA

DT
DTDT

PA
PA

PA
PA

S
H
A
D
O
W
IN
G DT

DT

DA DA DADA DA DA DA DA

PHYSICAL
ASSETS

WoDT

APPLICATION
LAYER

containerco
nta
ine
r

container

(a)

PA

DT
DTDT

PA
PA

PA
PA

S
H
A
D
O
W
IN
G DT

DT

PHYSICAL
ASSETS

WoDT

APPLICATION
LAYER

DA

...

DA
...

DA
...

DA
...

DA
...

workspace

w
orkspace

workspace

(b)

Fig. 10. Examples of integration approaches using JADE (a) and JaCaMo (b) platforms. For the former, agents
wrap DAs to mediate interaction with the DTs; for the latter, DAs become artifacts.

example based on JaCaMo [6], a MAS platform that supports artifact-based environments
and BDI agents, that can be programmed in Jason.

These two simple approaches are useful just to enable the integration at a technical/platform level
between agents and DTs. A deeper form of integration can be explored by considering that a WoDT
is possibly a distributed hypermedia-based environment, being based on an open distributed dynamic
KG, which can be represented in terms of Semantic Web technologies. In the literature, research on
Hypermedia-based MAS [8] is exactly about agents that are situated in a distributed hypermedia
environment that they can navigate and use in pursuit of their goals. Accordingly, a further way to
understand and explore the design of agent-based applications running on a WoDT is to view them
as a special kind of Hypermedia based MASs, where the distributed hypermedia environments in
this case are meant to be virtualisations of physical assets.

Finally, architectures for designing intelligent agents – such as the BDI one – can be a relevant
reference not only for designing intelligent systems at the application level, but also at the Digital
Twin Layer, as constituting elements of Cognitive Digital Twins. As a specific example, a CDT based
on the BDI architecture can exploit the sense-plan-act reasoning cycle to realise the shadowing
process of a DT as well as the augmentation counterpart: through the event-driven sensing, changes
in the PA are mapped into beliefs, that can trigger the execution of reactive plans realising the
augmented behaviour, including pro-active tasks toward the achievement of goals as defined by the
stage 4 DT vision [43]. Vice versa, requests for action coming from applications may be encapsulated
in messages sent to the agent-based DT, that through appropriate plans triggers the needed actions
on its associated PA. Indeed the opportunities about exploiting intelligent agent architectures like
BDI to design CDTs are manifold, and although some early research activities are already started
on the topic, much more will be needed to comprehensively understand the extent and limits of
agent-based DT modelling and engineering.

5 APPLYINGWODT TO REALWORLD CASE STUDIES
The vision described in Section 3 has been devised by generalising our experience in the design of
real-world systems in specific domains, namely healthcare and smart city. In this section, we briefly
introduce these cases and discuss their modelling using the WoDT vision.

5.1 The Case of Major Trauma Management
Major Trauma Management is one of the most challenging scenarios where physicians can be
involved in the healthcare context. Like other time-dependent pathologies, major traumas ask for a

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

team of physicians with strong heterogeneous expertise (called trauma team), to promptly identify
a diagnosis and quickly provide medical aid. In fact, patient health outcomes strongly depend on the
first hour of treatment. In broad terms, the whole trauma management process can be conceptually
split into three main stages:

Stage #1 – Emergency Call Management Following an emergency call to the Central Emer-
gency Unit (CEU), an operator collects information about the occurred event then plans and
starts a first-aid emergency mission, involving a particular rescuer and a specific vehicle;

Stage #2 – Pre-Hospital Management The rescuer reaches the patient with the aim of ad-
ministering him/her first aid basic life support, deciding the severity of the trauma and, finally,
transferring the patient to the trauma centre;

Stage #3 – Trauma Management At the emergency room of the trauma centre, the patient
is taken in charge by a team of expert physicians called trauma team, led by its trauma leader,
with the aim to do everything is required to save patient’s life according to the severity of
the occurred trauma.

Besides procedures that physicians have to accomplish to save patient’s life, this process requires in
every stage some collateral activities in order to (i) document the overall evolution of the ongoing
trauma – e.g., time tracks of procedures implementation and drugs administration, diagnostics
results, and so on – and, (ii) have continuous monitoring of the real-time evolving state of the
trauma process—in particular, of the patient and other assets, including the trauma teams members.
To support this scenario, and in particular these two latter collateral needs, a research project

called TraumaTracker [10, 29] has been carried out in cooperation with an Italian Trauma Centre13
since 2017. Briefly, TraumaTracker has been designed and developed to support the trauma team at
Stage #3 of the major trauma management process. In particular, it acts as a personal assistant agent
of the trauma leader to produce the trauma documentation of the in-hospital stage and monitor
the evolution of the ongoing medical procedures, possibly producing alerts for the trauma leader.
The TraumaTracker prototype is currently being used: to date, over 1600 trauma reports have
been collected. Since its first release, TraumaTracker has been constantly refactored and updated
according to a domain-driven design process. Recently it has also been extended to Stages #1 and
#2, refactoring its design towards a DT-oriented architecture [9, 39].
In this paper, we demonstrate how the mission-critical scenario of major trauma management

can be designed according to the WoDT approach (and model). Table 1 describes the details of a
major trauma management scenario, considering its evolution both in the physical and the digital
worlds. To provide a better comprehension of how the WoDT can be designed to support the
scenario of this case study, in Figure 11 a graphical notation is used to model relations among
involved DTs and related PAs. This figure represents a kind of “architectural view” of the relations
among the PAs composing the scenario and the DTs modelling them. Moving from the top to the
bottom of this figure, for each stage a snapshot of DTs in execution in that stage is reported. In
particular, some of them are conveniently created with the purpose of shadowing emerging PAs in
the evolution of the scenario (e.g., the MissionDT at Stage #1, the TraumaTeamDT at Stage #2 or the
ShockRoomDT at Stage #3). Other DTs, instead, are in execution regardless of the specific stage and
scenario (e.g., the CentralEmergencyUnitDT at Stage #1 or the HospitalDT at Stage #3) because
they are part of the broader WoDT of the whole Local Health Department. In other words, these
latter DTs have been previously created in the context of other DTs, and they are in continuous
execution to support heterogeneous scenarios beyond the major trauma management one.

It is worth noting that some of them – e.g. the PhysicianDT and RescuerDT at the Stage #1 – can
be coupled to the same PA. This means that both DTs represent the same PA with different levels of
13The “M. Bufalini” Hospital Trauma Centre, AUSL della Romagna, Cesena, Italy.

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Web of Digital Twins ACM ToIT, April 2021,

Table 1. The evolution of a Major Trauma Management Scenario both in the physical and in the digital world.

Physical World Digital World

Stage
#1

An emergency call is taken by the unique health num-
ber, and the Central Emergency Unit (CEU) operator
collects the first-contact information of the occurred
event (e.g., the place of the event, its status, the num-
ber of involved people, and their rough health sta-
tus). Then, for each involved victim, a new mission
is started with a specific vehicle (e.g., an ambulance)
and a particular physician qualified to act as rescuer.

A new DT for the event (EventDT) is created in the
context of the running DT coupled to the CEU. This
new DT includes the information collected by the
operator about the event. According to the rescue
process, also a DT for each mission (MissionDT) is
instantiated and linked to DTs of both the vehicle
(AmbulanceDT) and the rescuer (RescuerDT), dynam-
ically discovered exploiting the CEU DT.

Stage
#2

The emergency crew arrives at the event place and
interact with the patient, possibly identified as a qual-
ified healthcare user with his health insurance card.
Here, the rescuer giving the first-aid evaluates the
patient medical condition to establish a diagnosis (a
major/severe trauma, in this example). Accordingly,
a destination for the patient is decided (in this case,
the emergency department of the nearest hospital act-
ing as trauma centre). So, the patient is moved to the
destination by the emergency crew and, in the mean-
while, at the notified trauma centre a new trauma team
(led by its trauma leader, typically an anaesthetist-
resuscitator) is dynamically composed and informed
about the incoming patient health conditions.

A new DT for the patient (PatientDT) tracking the
triage data collected by the rescuer is created and
linked to the MissionDT. In the case that the patient
is properly identified (using his/her health id), the
corresponding DT (HealthcareUserDT) is discovered
and linked by the PatientDT. When the diagnosis
is a major trauma, a new DT for the trauma man-
agement process (OngoingTraumaDT) is created in
the context of the DT of the selected trauma centre
(TraumaCentreDT), and it is linked to the DT of the
patient, to start to collect information of the incom-
ing patient. Finally, the DTs of the physician of the
trauma team (TraumaTeamDT and TraumaLeaderDT)
are properly created and linked.

Stage
#3

The emergency crew arrives at the emergency depart-
ment and entrusts the patient to the trauma team. So,
the mission of the emergency crew ends as well as
the involvement of the rescuer. The trauma manage-
ment in-hospital process starts, possibly involving
multiple rooms and facilities of the hospital. For in-
stance, the main room where the trauma is managed,
called shock-room, is equipped with adequate facili-
ties to support physician’s work, among them most
relevant are a display to refer to tracked information
and diagnostics’ results dynamically, and the vital
signs monitor to collect and observe the patient’s vi-
tal signs trace. Other rooms of the trauma path are,
e.g., the computer-aided tomography (CT) room or a
dedicated operating room. Finally, when the trauma
management process ends, the patient is generally
hospitalised according to his/her new health condi-
tion, e.g. into the intensive-care unit.

The OngoingTraumaDT tracks all the relevant events
happening during the traumamanagement. In a sense,
this DT replaces the PatientDT in the in-hospital
phase: no more updates are reported to this latter
DT. The OngoingTraumaDT tracks the current room
where the patient (and trauma team) are, by linking
the corresponding DT (e.g. the ShockRoomDT). The DT
of the current room provides the links to the DTs of
the physical facilities in the room (e.g., the DisplayDT
and the VitalSignsMonitorDT). These facilities can
be exploited by, e.g., the personal assistant agent of
the trauma team/leader, implementing context-aware
support. When the trauma management ends, the
OngoingTraumaDT is no longer updated, and a DT
referring to the hospitalised patient is created by the
DT of the designed hospital ward. Likewise, the DTs of
the trauma team and trauma leader ends their work.

specialisation. In this case, the rationale behind this design choice is given by the specific domain,
that is: a physician working at the local health department has its own DT created by the time
when he/she was hired, representing his/her digital counterpart as individual (the PhysicianDT);
vice versa, when the physician acts as a rescuer in the specific context of a rescue mission he/she
has to be coupled to a dedicated DT (the RescuerDT) conceived as a specialisation of the previous
DT having specific properties (e.g., the identifier of the rescuer for that specific mission) according
to the role played at that moment. This latter DT’s life span is limited to the duration of the mission
in which he/she is involved.

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone
S
TA

G
E

#
2

S
TA

G
E

#
1

S
TA

G
E

#
3 CEU

Vital
Signs
MonitorTrauma

Team

Display

Ongoing
Trauma

Trauma
Centre

PTN

HCU

SR

OT

DSP
VSM

MSN

Mission Patient

HSPLHD

Physi-
cian

Trauma
Leader

Central
Emerg.
Unit

Shock
RoomAmbu-

lance

PHC
AMB

TC TL

TRTRSCEVT

Event

Local
Health
Dep.

Hospital

CEU

Trauma
Team

Ongoing
Trauma

Trauma
Centre

PTN

HCU

OTMSN

Mission Patient

HSPLHD

Physi-
cian

Trauma
Leader

Central
Emerg.
UnitAmbu-

lance

PHC
AMB

TC TL

TRTRSCEVT

Event

Local
Health
Dep.

Hospital

CEU

MSN

Mission

LHD

Physi-
cian

Central
Emerg.
UnitAmbu-

lance

PHC
AMB RSCEVT

Event

Local
Health
Dep.

Fig. 11. The evolution of a Major Trauma Management Scenario in terms of relations among DTs and PAs.
Entities in bold represent new additions to the KG, entities in grey represent old entities but still active, faded
entities represent currently inactive entities.

Software agents are not explicitly represented in Figure 11, to avoid cluttering. Nevertheless, they
are the proactive actors observing and acting upon DTs. For instance, the personal assistant agent
of the trauma leader – as identified in the TraumaTracker system – is an agent which comes into
play mainly at Stage #3 of this scenario, when the trauma leader starts to coordinate the trauma
team in performing medical procedures to save patient’s life. In particular, considering, for instance
the aim to producing relevant alerts related to the ongoing trauma, such personal agent observes
all the DTs shadowing the in-hospital macro phase (OngoingTraumaDT, VitalSignsMonitorDT,
ShockRoomDT, . . .) and, potentially, it exploits the DisplayDT API to show the alert (e.g., about the
fact that the patient heart rate is decreasing rapidly).
Figure 12 shows instead (a portion of) the KG of the WoDT and how it evolves, from stage to

stage, according to the evolution of the case study as described in Table 1. The KG is represented in

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Web of Digital Twins ACM ToIT, April 2021,

RDF using the Turtle notation and is built according to the specific domain glossary of terms. For
instance, the :ambulanceA instance at the Stage #1 is represented by two properties (:position and
:status) and it is related to the :CEU instance, with the :from relation. Note that the :ambulanceA
is also indirectly related to the :missionM concept because this latter has a relation :vehicle
toward :ambulanceA. An agent which would like to track the position of an ambulance of a specific
mission in the context of a specific event, could observe changes of the :position propriety of the
:ambulanceA instance in the graph.
To further support agent reasoning, a KG may include not only ABox assertions, i.e. facts

associated with the actual state and situation of the PAs mirrored by the WoDT, but also TBox
statements, about classes and properties of the ontologies [14]. As an example, Figure 13a shows
a refinement of the KG at Stage #1 in which the subject of each RDF triple has been qualified,
introducing a proper domain-oriented parent concept to enhance the semantics and the reasoning

S
TA

G
E

#
1

S
TA

G
E

#
2

S
TA

G
E

#
3

PREFIX : <https://pslabunibo.github.io/t4c/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
:eventE :started-by :ceuX;
 :code "SC01R" ;
 :mission :missionM ;
 :place "10, Park Avenue" .
:missionM :part-of :eventE ;
 :status "moving" ;
 :leader :rescuerR ;
 :vehicle :ambulanceA .
:ambulanceA :from :ceuX ;
 :status "busy" ;
 :position POINT(-0.26310 51.46287)" ^^geo:wktLiteral .
:rescuer :code "ABC123" ;
 :qualification "paramedic" .

:EventE

:missionM:ambulanceA

:ceuX

:rescuerR

SC01R

10, Park Ave

moving

busy

paramedic

ABC123

:code

:started-by

:mission :part-of

:v:vehicle

:v:from

:v:position

:v:status :v:leader

:v:status

:v:place

:v:code

:v:qualification

:eventE

:missionM

:ambulanceA

:ceuX

:rescuerR

SC01R
10, Park Ave

at-place

busy

paramedicABC123

:code

:started-by

:mission
:part-of

:v:vehicle

:v:from
:v:status

:v:leader
:v:status

:v:place

:v:code :v:qualification

:trauma

CentreTC

:destination

:patientP:patient :ongoing

TraumaOT:v:of

trauma

:diagnosis

:trauma

TeamTT

:v:managed-by

:trauma

LeaderTL

:v:leader

waiting
:v:status

:v:member:member-of

:v:position

PREFIX ... (as above)
:eventE ... (as above)
:ambulanceA ... (as above)
:missionM :part-of :eventE ;
 :status "at-place" ;
 :leader :rescuerR ;
 :vehicle :ambulanceA ;
 :patient :patientP ;
 :destination :traumaCentreTC .
:patientP :diagnosis "trauma" ;
 :bloodPressure 110 ;
 :respiratoryRate 25 .
:ongoingTraumaOT :of :patientP ;
 :managed-by :traumaTeamTT .
:traumaTeamTT :status "waiting" ;
 :member :surgeonS ;
 :leader :traumaLeaderTL .
:traumaLeaderTL :member-of :traumaCentreTC ;

PREFIX .. (as above)
:ongoingTraumaOT :involves :patientP ;
 :managed-by :TraumaLeader ;
 :place :shockRoomSR ;
 :starts "2021-05-10"^^xsd:date ;
 :heart-rate 80 ;
 :nbp 120 ;
 :event :eventX .
:eventX :description "intubation" ;

 :time "2021-03-10T15:32:14"^^xsd:dateTime ;
:patientP :person :healthcareUserHU .
:healthcareUserHU :name "M. Adams" ;
 :age 75 .
:shockRoomSR :part-of :emergencyDeptE ;
 :equippedWith :vitalSignsMonitorM, :displayD .
:traumaLeaderTL :refers-to :physicianP ;
 :member-of :traumaCentreTC ;
 :role "Anesthetist" .
:traumaTeamTT :status "working" ;
 :member :surgeonS ;
 :leader :traumaLeaderTL .
:traumaCentreTC :defines :traumaTeamTT .

:physicianP

anesthetist

:v:refers-to

:v:role

:trauma

CentreTC

:patientP

:ongoing
TraumaOT

:v:involves

:trauma
TeamTT

:v:managed-by

:trauma

LeaderTL :v:leader

waiting
:v:status

:v:member

:member-of :defines

:healthcare

UserHU :person

M. Adams

:name:name

75

:name:age

120 :v:nbp

80
:v:heart-rate

2021-03-10

^^xsd:date:v:starts

intubation

:v:event

:shock
RoomSR

:v:place

:vitalSigns

MonitorM :displayD

:emergency

DeptE

:v:equippedWith :v:equippedWith

:v:part-of

POINT(-0.26310
51.46287)"

^^geo:wktLiteral

POINT(-0.26310
51.46287)"

^^geo:wktLiteral

110

:v:bloodPressure
:v:respiratoryRate

25

:surgeonS

:surgeonS

:eventX

:v:description

:v:time

2021-03-10T15:32:14
^^xsd:dateTime

Fig. 12. The Knowledge Graphs related to the Major Trauma Management Scenario Evolution.

21

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

PREFIX : <https://pslabunibo.github.io/t4c/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:eventE a :Accident ;
:started-by :ceuX ;
:code "SC01R" ;
:mission :missionM ;
:place "10, Park Avenue" ;
:victims 1 .

:missionM a :FirstAidAction ;
:part-of :eventE ;
:status "moving" ;
:leader :rescuerR ;
:vehicle :ambulanceA .

:ambulanceA a :Vehicle ;
:from :ceuX ;
:status "busy" ;
:position "POINT(-0.263 51.462)"^^geo:wktLiteral .

:rescuerR a :Rescuer ;
:code "ABC123" .

:rescuerR a :TraumaCentreEmployee ;
:name "J. Smith" ;
:qualification "paramedic" .

(a) Generic RDF description with unspecified
domain-specific ontology.

PREFIX : <https://pslabunibo.github.io/t4c/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX fhir: <https://www.hl7.org/fhir#>

:eventE a fhir:Encounter;
fhir:identifier "SC01R" ;
fhir:location :eventLocationEL ;
fhir:status "active" ;
:victims 1 .

:eventLocationEL a fhir:Location ;
fhir:address "10, Park Avenue" .

:missionM a fhir:Encounter ;
fhir:partOf :eventE ;
fhir:status "moving" ;
fhir:location :ambulanceA ;
fhir:participant :rescuerR .

:ambulanceA a fhir:Location ;
fhir:status "active" ;
fhir:position "POINT(-0.263 51.462)"^^geo:wktLiteral .

:rescuerR a fhir:Practitioner ;
fhir:identifier "ABC123" ;
fhir:name "J. Smith" ;
fhir:qualification "paramedic" .

(b) RDF description according to the domain-specific
FHIR ontology.

Fig. 13. Refinements to the semantics of the Major Trauma Management Scenario Stage #1.

:patientP

:ongoing

TraumaOT

:v:involves

120 :v:nbp 80:v:heart-rate

2021-03-10

^^xsd:date

:v:starts

:shockRoomSR :v:place

intubation

:v:event

:eventX:v:description :v:time 2021-03-10T15:32:14
^^xsd:dateTime

SELECT ?t ?v1 ?v2

WHERE {

 ?t a :OngoingTrauma .

 ?p a :Patient .

 ?t :involves ?p .

}

Fig. 14. An Example of a SPARQLQuery on the KG.

upon it. For instance, we added the information about the fact that the :ambulanceA is a :Vehicle
(note that in the Turtle syntax the keyword “a” can be used to express an :is-a relationship).

When considering concrete real-world domains, the knowledge graph of a WoDT may profitably
refer to existing standard ontologies available for those domains. A main example in the healthcare
context is given by FHIR14, the standard for healthcare data exchange. Figure 13b shows a refinement
of the representation of the WoDT at Stage #1, in which domain concepts have been rearranged
according to the FHIR ontology. For instance, FHIR uses the concept fhir:Location to identify
all the heterogeneous set of healthcare locations (e.g., buildings, rooms, streets, vehicles): for
this reason, both :ambulanceA and :eventLocationEL are now instances of the fhir:Location
concept. Moreover, both :eventE and :missionM must be qualified as fhir:Encounter instances,
although they have a very different meaning in the specific major trauma management scenario.
Nonetheless, in FHIR every non-planned occurring event, involving practitioners and patients

14https://www.hl7.org/fhir/

22

https://www.hl7.org/fhir/

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Web of Digital Twins ACM ToIT, April 2021,

must be defined as encounters, with specific properties as, i.e., fhir:participant, fhir:status,
fhir:identifier as shown in this example.
Finally, Figure 14 reports an example of a simplified SPARQL Query performed on a portion of

the KG of the Stage #3 related to the described Trauma Management scenario.

5.2 The Case of Mobility Intelligence
In a future cooperative driving scenario with both autonomous and non-autonomous vehicles
sharing the road infrastructure, basic services such as intersection crossing, parking, and ride-
sharing will need to be re-designed [26]. A WoDT can play the role of the enabling coordination
infrastructure: (i) each vehicle has its own DT created and bound when the vehicle is registered in
the municipality’s dedicated registry; (ii) each citizen may also have her own DT, whose creation
and binding could happen at birth upon registration in public health registries; (iii) each relevant
road infrastructure element – such as Road Side Units (RSUs) working as intersection managers,
parking lots managers, etc. – is also digitally represented as a DT; (iv) some of these, such as those
representing RSUs, are statically connected at design-time to provide application developers with
the means to shape the computational environment of intelligent mobility and traffic management
applications; (v) some others, such as those representing vehicles, become connected dynamically, at
run-time, based on users’ adoption and the applications’ needs. Several use cases may be described
with the WoDT vision we defined in Section 3. Here we focus on intersection crossing as the most
challenging urban task for both autonomous and non-autonomous vehicles, but other application
scenarios may as well target smart parking, ride-sharing, and overall traffic flow management.
Currently, most intersections are regulated by right of way signals placed on the road, traffic

lights, or roundabouts. These regulations means are suitable for human-driven vehicles but largely
inadequate (e.g. sub-optimal) for autonomous ones, which could leverage cooperative driving to
cross intersections more efficiently. Literature about autonomous intersection crossing is abundant
and features many different approaches, such as reservation-based, negotiation-based, distributed
constrained optimisation, solutions based on game-theoretic approaches, etc. [26]. Common to all
approaches is the assumption that either an intersection manager is available, as the computational
component of the intersection road infrastructure in charge of coordinating vehicles, or that vehicles
are able to communicate with each other and reach an agreement about the crossing order in a fully
decentralised way. In Table 2, we take as a reference a reservation-based approach to intersection
crossing, one of the most successful and studied approaches [12], and describe the relationships
between what happens in the physical world and what happens in the digital world, that is, in the
WoDT representing the domain (the problem as well as the solution).

There, it is worth noting that the signalling operation mentioned in stage “incoming” can be
realised according to two approaches: the one described in Table 2 needs the Vehicle DT to be
pro-active, as it is the one who informs the intersection about its intention to cross; an alternative
would be to let the Intersection DT devise out the Vehicle DTs intentions through observation
(e.g. if both turning lights are off, the vehicle is going straight). Preference of either approach is a
design choice whose discussion is out of scope here.
The many links established throughout the scenario lifespan are depicted in Figure 15, which

shows the temporal evolution (from top to bottom) of the knowledge graph of the WoDT, assumed
to be defined by RDF in Turtle notation, exploiting the SAREF4Auto ontology15 currently defined
by the ETSI 16. In stage “setup” the basic road infrastructure is setup, and vehicles registered to
the municipality are bound to their DT. Links in this stage are rather static, as they resemble

15https://forge.etsi.org/rep/SAREF/saref4auto
16https://www.etsi.org

23

https://forge.etsi.org/rep/SAREF/saref4auto
https://www.etsi.org

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

Table 2. Description of the intersection crossing scenario using the Web of DTs model.

Physical World Digital World

Stage
“setup”

The municipality deploys the “intelligent
mobility” platform on a target intersection.
Relevant RSUs are deployed, such as smart
cameras to monitor traffic conditions and
a computational node (e.g. a RasberryPi) to
govern the crossing process according to a
policy given by the municipality. Vehicles
are registered to the municipality before
hitting the streets, and are supposed to be
equipped with a suitable hardware & soft-
ware stack enabling at least identification.

The Intersection DT is created and bound, representing the
status of the intersection area. The CrossingProcess DT is
created and bound, representing the policy of the crossing
process and its status. A :deployed link is established amongst
the two, to represent the fact that the intersection is currently
enforcing the given crossing policy on approaching vehicles. In
case of a fully autonomous vehicle, the Vehicle DT is created
and bound, representing the vehicle status and behaviour. In
case of a non fully autonomous vehicle, the Driver DT is also
created and bound, and linked to the Vehicle to represent the
connection between a vehicle and its driver.

Stage
“incom-
ing”

A vehicle approaching the intersection is
detected by some RSU (e.g. a smart camera
with a given detection radius). The vehicle
somehow signals the intention to cross the
intersection, e.g. by activating the turning
lights in case of a non autonomous vehicle,
or by communicating with the intersection
manager over wireless networks in case of
an autonomous vehicle attempting to re-
serve a spatio-temporal slot for occupying
the intersection area [12].

A :crossing link is established between the Vehicle DT and
the Intersection DT, to track the presence of the vehicle
within the intersection area. A :managing link is established
between the CrossingProcess DT and the Vehicle DT, to
track the fact that the vehicle is now being managed by the
intersection policy. The Vehicle DT signals the intention to
cross to the Intersection DT, e.g. by raising an appropriate
event 𝑒𝐷𝑇 , or by exploiting the dedicated service interface
on the Intersection DT. The CrossingProcess DT, by ob-
serving the Intersection DT, becomes aware of the crossing
request and includes the Vehicle DT in the coordination pro-
cess aimed at distributing right of ways.

Stage
“outgo-
ing”

The intersection manager checks new re-
quests for crossing against pending ones
given the current crossing state, and de-
cides which vehicles get the right of way,
and which spatio-temporal constraints
they should abide to while crossing. The ve-
hicle eventually gets its right of way, then
can safely cross the intersection.

The CrossingProcess DT establishes :assigned and
:waiting links to Vehicle DTs already having a :managing
link with it, representing the crossing status of the vehicle—
respectively: right of way given, or not. The Intersection
DT establishes :leading links with Vehicle DTs leading
a queue of vehicles—that is, vehicles with a :waiting link
and an incoming :queuing link. The Vehicle DTs establish
:queuing links with the preceding vehicle, if any, tracking
the fact that to get the right of way they need the leading
VehicleDTs to get it first. The Vehicle DT loses all of its links
related to the CrossingProcess DT and the Intersection
DT, tracking the fact that it is no longer involved in the
intersection.

(mostly) persistent relationships. In stage “incoming” the dynamic links tracking the status of the
intersection and of the crossing process begin to be established towards all vehicles approaching
the intersection area (e.g. within a 100m radius). In stage “outgoing” further links are established to
track the highly dynamic process of intersection crossing. For instance, links resembling waiting
queues are established, as well as links tracking the crossing status of a vehicle, where :assigned
means that the vehicle got its right of way, whereas :waiting the opposite. It is worth noting that
orientation of links highly depend on their semantic: for instance, we decided to let the :queueing
link go from the queued vehicle to the leading one, but the opposite could be meaningful as well.
However, it is crucial to keep in mind that orientation of links has an impact on applications, as
which links a DT can participate to as the subject of the relationship should be known at design-time,
whereas those involving the DT as the object can be unknown before run-time.

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Web of Digital Twins ACM ToIT, April 2021,

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@PREFIX s4auto: <https://saref.etsi.org/saref4auto/> .

@PREFIX : <#> .

:crossingProcessCP a s4auto:TrafficManagementCentre .

:intersectionI a s4auto:RoadEntity .

:vehicleVi a s4auto:Vehicle .

:crossingProcessCP :deployed :intersectionI .

:intersection :belongsto :municipalityM .

:driverDi :registered :municipalityM ;

 :drives :vehicleVi .

:vehicleVi :registered :municipalityM .

:managing rdfs:domain s4auto:TrafficManagementCentre ;

 rdfs:range s4auto:Vehicle .

:crossing rdfs:domain s4auto:RoadEntity ;

 rdfs:range s4auto:Vehicle .
:crossingProcessCP :managing :vehicleVi ;

 :managing :vehicleVj , :vehicleVk , :vehicleVw .

:intersectionI :crossing :vehicleVi ;

 :crossing :vehicleVj , :vehicleVk , :vehicleVw .

S
TA

G
E-

S
et

up
S
TA

G
E-

In
co

m
in

g
S
TA

G
E-

O
ut

go
in

g :assigned rdfs:domain s4auto:TrafficManagementCentre ;

 rdfs:range s4auto:Vehicle .

:waiting rdfs:domain s4auto:TrafficManagementCentre ;

 rdfs:range s4auto:Vehicle .

:leading rdfs:domain s4auto:TrafficManagementCentre ;

 rdfs:range s4auto:Vehicle .

:queueing rdfs:domain s4auto:Vehicle ;

 rdfs:range s4auto:Vehicle .

:crossingProcessCP :assigned :vehicleVi ;

 :waiting :vehicleVj ;

 :leading :vehicleVw .

:vehicleVw :queueing :vehicleVk .

:vehicleVk :queueing :vehicleVj .

:driverDi

:vehicleVk :drives

:queuing
:queuing

:crossingProcessCP

:managing

:assigned

:vehicleVj
:managing

:waiting :vehicleVw

:leading
:municipalityM

:registered

:registered

:registered

:registered

:intersectionI

:crossing

:deployed

:crossing

:crossing

:crossing

:belongsto

:driverDk

:registered

:managing
:drives

:registered

:vehicleVi

:crossingProcessCP

:deployed

:vehicleVi

:driverDi

:drives

:belongsto

:registered

:registered
:municipalityM

:crossing

:managing

:intersectionI

:intersectionI

:deployed

:vehicleVi

:driverDi

:drives

:belongsto

:registered
:registered

:municipalityM

:crossingProcessCP

Fig. 15. Evolution of the knowledge graph in the mobility intelligence scenario.

To conclude, we emphasise that on top of the WoDT infrastructure, we can envision a wide array
of applications. For instance, an application may continuously monitor the knowledge graph linking
together all the different intersections of an urban area, e.g. based on ownership of the municipality,
to provide to city governance a dashboard with a map charting the traffic flow. The governance
can then detect bottlenecks and, for instance, change the crossing policy of selected intersections.
A similar application may be given to drivers, or integrated with vehicles’ navigation systems, so
that they can always choose the least congested route towards their destination. Another kind of
application instead may inform drivers about the crossing policy of intersections along their route,
so that they can decide which to avoid (e.g. auction-based policies to avoid spending “road credits”
to cross). More complex applications, such as for gaining actionable knowledge through traffic
flow prediction, may be engineered as well on the common, homogeneous, interoperable substrate
provided by the WoDT, depending on the augmentation capabilities of the DT, as discussed in
Section 6.

6 RESEARCH DIRECTIONS
The vision and model proposed in this paper, as well as its application in the real world, introduce
potential opportunities and open issues that should drive future research and implementation
activities, possibly in different areas. In this section, we provide an overview of a selection of them.

Realising Interoperable WoDTs. In this paper, we described the main concepts of WoDT using
an abstract conceptual framework and architecture. The possibility to apply and implement it
by preserving (cross-domain) interoperability is bound to the definition of shared concrete meta-
models and languages. For instance, in the case of WoT, standardised metadata and other re-usable
technological building blocks – such as the Thing Description – have been defined by the W3CWoT
Working Group, to ease the integration across IoT platforms and application domains. Analogously,

25

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

standardised metadata and technological building blocks can be devised as well for WoDT, possibly
layered upon enabling ones, such as Semantic Web and the ones defined byWoT. Main references to
be considered for exploring this direction include both standardisation initiatives (such as the Digital
Twin Consortium17), large scale projects (such as the Digital Twin Programme18 promoted by the
CDBB), but also concrete languages and technologies available from specific companies. A main
example for this is the digital twin definition language (DTDL) by Microsoft. These technologies
can be used to develop specific incarnations of the WoDT model, for instance one specific to the
WoT domain exploiting standard Web technologies. Indeed, we deliberately described our reference
architecture in abstract terms, without specific constraints on design paradigm or technologies
(except for event-driveness), exactly to let the interested communities – be it the (Semantic) Web
community, the MAS community, etc. – develop their own technical solutions, depending on
reference applications requirements and available technologies.

Design and Implementation of WoDT Middleware and Tools. Recent years clearly showed how the
lack of standards or common agreements for DTs design and development has led to the proliferation
of several isolated platforms and domain specific solutions. This trend is also emphasised in [50]
where the authors highlight how the real DTs’ potentials are seriously limited by the existing
fragmentation and heterogeneity. Each existing approach or platform is built from scratch with a
siloed centralised vision instead of a shared set of methodologies, models, and interaction patterns.
The WoDT contribution aims to overcome these limitations by creating an interoperable vision
where DTs can seamlessly cooperate within the same application domain and across multiple
domains at the same time. As previously illustrated, theWoDT does not impose any implementation
specifications or constraints, rather, it aims to operate at a higher layer supportingmultiple platforms
and tools following the set of shared modelling principles and event-driven design.
An open challenge for DTs and WoDT will be at first related to the definition of open imple-

mentations for both the DT’s core and the platform in order, on the one hand, to simplify the
shadowing and the augmentation management and, on the other hand, to support a distributed
and interoperable knowledge system and communication overlay. The natural next step will be
to quickly adopt the new implementations and start developing and integrating specific modules
and libraries dedicated to target PAs, domains, and use cases in order to exploit existing standards
and creating a set of shared features without the need to reinvent the wheel at each deployment,
and limit the risk to create siloed ecosystems. The perfect example will be the integration between
WoDT with the IoT world, where the benefits of introducing an interoperable and flexible DT’s
layer will be strategic at different levels and for several uses cases. In that specific domain, where
the fragmentation of the physical layer is a massive issue, the integration of WoDT with the stan-
dardisation efforts provided by consortia such as oneM2M and W3C WoT represent an appealing
and concrete opportunity to quickly reach a standardised version of IoT DTs, capable of providing
a scalable digital abstraction on top of the physical layer.

Shadowing and Certified DTs. Shadowing is a key process for DTs, being responsible of making
the state of the DT a correct digital shadow of the PA, where the semantics of correctness is
given by the model 𝑀—it may include constraints about fidelity, responsiveness, accuracy, etc.
Applications exploiting DTs – especially intelligent agent-based systems reasoning upon DTs and
taking autonomously decisions given the observable state of DTs – should have evidence that
a DT is working (or not) as promised by its model/specification. Accordingly, a proper level of

17https://www.digitaltwinconsortium.org/index.htm
18https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme

26

https://www.digitaltwinconsortium.org/index.htm
https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Web of Digital Twins ACM ToIT, April 2021,

certification should be useful (or, rather, necessary) to define the quality of service expected from a
DT, as part of its Service Level Agreement.

Querying and Observing Graphs of DTs. Querying and observing graphs of DTs and, correspond-
ingly, Distributed KG is a challenging issue, given in particular the semantic constraints specified
in Section 3. This issue is strongly related to existing research works in Semantic Web literature
that are about querying distributed RDF data stores [37], and, more generally, to research that
deals with large-scale semantic integration of linked data [31]. The two aspects of Distributed
KG in WoDT that further characterise the open issue is about dynamism and shadowing, so that
individual KG continuously evolve, possibly with a high changing frequency, and the stream of
updates from the physical world cannot be blocked or be interfered by querying and tracking.

Design of Intelligent Agents Situated in WoDT. The adoption of a semantic model based on
knowledge graphs makes it particularly interesting to explore the usage of intelligent agents
that adopt an explicit knowledge level [33] to represent and reason about their tasks, goals, and
environment. In the case of BDI Agents, for instance, this translates to adopting a model for
representing beliefs based on KG triples. That is: each triple is represented by a belief and then a
WoDT environment observed by an agent is represented by a (dynamic) set of triples tracking the
corresponding KGs, properly updated according to the evolution of the WoDT. A main reference
for this research investigation is given by existing works in the literature exploring the integration
of BDI Agents and Semantic Web [11] and ontology-based agents [30]. In these works, agents
are equipped with basic capabilities to access and query OWL-based knowledge based on some
ontologies. That knowledge is however almost static. TheWoDT calls for agents capable of observing
knowledge graphs that could dynamically evolve, not only in terms of values in data properties but
also in terms of relationships.
Besides knowledge representation, a further main research issue concerns the opportunity to

combine practical reasoning techniques – that are typically adopted on the agent side [54] – with
cognitive capabilities provided by DTs, such as predictive ones. Accordingly, in order to decide
the course of actions to perform to fulfil some task, the agent could consider not only the current
observed state of the WoDT (in terms of knowledge graph), but exploiting the prediction/simulation
functionalities provided by the DT as-as-service. This calls for exploring the design of intelligent
agents (and MAS) exploiting anticipatory capabilities [35] to enhance the overall sense-making
process and improve decision-making.

Prediction and Historical Data Analysis based on Knowledge Graphs. In the literature, distin-
guishing functionalities such as threading and prediction have been explored for individual DTs
mirroring specific physical assets [43]. The WoDT approach broadens this view by considering
a graph of linked but independent evolving DTs: a semantic model based on knowledge graphs
makes it possible to explore these features in terms of the evolution of KGs and distributed KGs. A
challenging aspect here is that a WoDT may involve multiple DTs based on different models 𝑀 ,
hence abstracting away different facets of the observed reality, which in turn likely need different
data being available, following different distributions—features that complicate notably the task
of learning patterns that can be generalised. Existing works in the literature have explored such
techniques in the case of single models or a single data stream [55]. Nevertheless, these contri-
butions can be taken as a starting point for exploring extensions considering the integration of
multiple heterogeneous models, as well as of multiple heterogeneous data sources for data-driven
approaches.

27

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

7 CONCLUDING REMARKS
The WoDT is an effort to take the lessons learnt from the World Wide Web, the IoT, multiagent
systems, and distributed systems, and apply them to the definition of an event-driven, decentralised,
interoperable, linkable and discoverable vision of digital twins. The proposed model and abstract
architecture define a basic conceptual framework, that can be mapped onto a variety of concrete
deployment scenarios and implementation technologies, with the aim to be a unifying horizontal
layer on top of the physical assets.
The use cases presented in Section 5 illustrated how the WoDT can be actually shaped into

specific application domains with peculiar challenges and constraints related, for example, to the
enrolment of heterogeneous physical assets, a structured hierarchical organisation, and dynamic
evolution in terms of interactions and knowledge representation. On one hand, the WoDT allowed
to model DT’s properties, behaviours, and relationships, and consequently to represent large-scale
and complex physical environments as an open ecosystem of connected and interoperable DTs. On
the other hand, the proposed vision supports the definition of a new cyber layer where applications,
agents, and services can implement and orchestrate new smart and dynamic systems of components
by relying on a structured and integrated DT’s overlay, without the responsibility to handle the
fragmentation and the heterogeneity characterising the physical layer.

Moving forward from the local scope of a single application domain, the possibility to exploit a
uniform and interoperable Web of DTs also opens the way to the design of a new generation of
cross-domain computational infrastructures, trying to mirror the physical world where existing
assets seamlessly move and interact across multiple contexts at the same time. For example, a
person can be an employee for a company and a patient for the health system, or an ambulance
can be a vehicle on the street and a resource for the trauma management ecosystem. Through the
adoption of WoDT, DTs from multiple realms can start cooperating (potentially on demand) to
reach a shared goal or to opportunistically implement a new behaviour, that is something quite
difficult to achieve in the siloed environments representing the state of the art.

REFERENCES
[1] Sailesh Abburu, Arne J. Berre, Michael Jacoby, Dumitru Roman, Ljiljana Stojanovic, and Nenad Stojanovic. 2020.

COGNITWIN – Hybrid and Cognitive Digital Twins for the Process Industry. In IEEE Int. Conf. on Engineering,
Technology and Innovation (ICE/ITMC). 1–8.

[2] Ahmad Alelaimat, Aditya Ghose, and Hoa Khanh Dam. 2020. Abductive Design of BDI Agent-Based Digital Twins
of Organizations. In Proc. of the 23rd Int. Conf. on Principles and Practice of Multi-Agent Systems (PRIMA ’20) (LNCS,
Vol. 12568). Springer, 377–385.

[3] Paolo Bellavista, Carlo Giannelli, Marco Mamei, Matteo Mendula, and Marco Picone. 2021. Application-driven
Network-aware Digital Twin Management in Industrial Edge Environments. IEEE Trans. on Industrial Informatics
(2021).

[4] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. 2005. JADE - A Java Agent Development
Framework. In Multi-Agent Programming: Languages, Platforms and Applications. Multiagent Systems, Artificial
Societies, and Simulated Organizations, Vol. 15. Springer, 125–147.

[5] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020. The first twenty years of agent-based
software development with JADE. Auton. Agents Multi Agent Syst. 34, 2 (2020), 36.

[6] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and Andrea Santi. 2013. Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78, 6 (2013), 747–761.

[7] Stefan Boschert and Roland Rosen. 2016. Digital twin—the simulation aspect. In Mechatronic Futures. Springer, 59–74.
[8] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro Ricci, and Antoine Zimmermann. 2019. A

Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the World Wide Web. In Proc. of the 18th
Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS ’19). IFAAMAS, 1659–1663.

[9] Angelo Croatti, Matteo Gabellini, Sara Montagna, and Alessandro Ricci. 2020. On the Integration of Agents and Digital
Twins in Healthcare. Journal of Medical Systems 44, 9 (04 Aug 2020), 161.

28

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Web of Digital Twins ACM ToIT, April 2021,

[10] Angelo Croatti, Sara Montagna, Alessandro Ricci, Emiliano Gamberini, Vittorio Albarello, and Vanni Agnoletti. 2019.
BDI personal medical assistant agents: The case of trauma tracking and alerting. Artificial Intelligence in Medicine 96
(2019), 187–197.

[11] Ian Dickinson and Michael J. Wooldridge. 2003. Towards practical reasoning agents for the semantic web. In Proc. of
the 2nd Int. Conf. on Autonomous Agents & Multiagent Systems (AAMAS ’03). ACM, 827–834.

[12] Kurt M. Dresner and Peter Stone. 2008. A Multiagent Approach to Autonomous Intersection Management. J. Artif.
Intell. Res. 31 (2008), 591–656.

[13] Pavlos Eirinakis, Kostas Kalaboukas, Stavros Lounis, Ioannis Mourtos, Jože M. Rožanec, Nenad Stojanovic, and Georgios
Zois. 2020. Enhancing Cognition for Digital Twins. In 2020 IEEE International Conference on Engineering, Technology
and Innovation (ICE/ITMC). 1–7.

[14] Dieter Fensel, Umutcan Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Panasiuk, Ioan Toma, Jürgen
Umbrich, and Alexander Wahler. 2020. Knowledge Graphs - Methodology, Tools and Selected Use Cases. Springer.

[15] David Gelernter. 1991. Mirror Worlds or the Day Software Puts the Universe in a Shoebox: How Will It Happen and What
It Will Mean. Oxford University Press, Inc., New York, NY, USA.

[16] Edward Glaessgen and David Stargel. 2012. The digital twin paradigm for future NASA and US Air Force vehicles. In
Proc. of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.

[17] Michael Grieves and John Vickers. 2017. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in
Complex Systems. Springer International Publishing, Cham, 85–113.

[18] Claudio Gutierrez and Juan F. Sequeda. 2021. Knowledge Graphs. Commun. ACM 64, 3 (Feb. 2021), 96–104.
[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo, Claudio Gutierrez, Sabrina Kirrane,

José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, and et al. 2021. Knowledge Graphs. Comput. Surveys 54,
4 (Jul 2021), 1–37.

[20] Nicholas R. Jennings. 2001. An Agent-Based Approach for Building Complex Software Systems. Commun. ACM 44, 4
(April 2001), 35–41.

[21] Tobias Käfer and Andreas Harth. 2020. Tutorial: Distributed Knowledge Graphs for the Web of Things. In 10th
International Conference on the Internet of Things Companion (Malmö, Sweden) (IoT ’20 Companion). Association for
Computing Machinery, New York, NY, USA, Article 13, 4 pages.

[22] Niki Kousi, Christos Gkournelos, Sotiris Aivaliotis, Christos Giannoulis, George Michalos, and Sotiris Makris. 2019.
Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Procedia Manufacturing 28 (2019), 121
– 126. 7th International conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2018).

[23] Vladimir Kuts, Tauno Otto, Toivo Tähemaa, and Yevhen Bondarenko. 2019. Digital twin based synchronised control
and simulation of the industrial robotic cell using virtual reality. Journal of Machine Engineering 19 (02 2019), 128–144.

[24] Ying Liu, Lin Zhang, Yuan Yang, Longfei Zhou, Lei Ren, Fei Wang, Rong Liu, Zhibo Pang, and M. Jamal Deen. 2019. A
novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7 (2019), 49088–49101.

[25] Somayeh Malakuti and Sten Grüner. 2018. Architectural Aspects of Digital Twins in IIoT Systems. In Proceedings of the
12th European Conference on Software Architecture: Companion Proceedings (Madrid, Spain) (ECSA ’18). Association for
Computing Machinery, New York, NY, USA, Article 12, 2 pages.

[26] Stefano Mariani, Giacomo Cabri, and Franco Zambonelli. 2021. Coordination of Autonomous Vehicles: Taxonomy and
Survey. Comput. Surveys 54, 1, Article 19 (Feb. 2021), 33 pages.

[27] Members of the Digital Framework Task Group. 2018. White paper: The Gemini Principles. Technical Report. Centre of
Digital Built Britain. Available at https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples. Last access: 20210401.

[28] Roberto Minerva, Gyu Myoung Lee, and Noël Crespi. 2020. Digital Twin in the IoT Context: A Survey on Technical
Features, Scenarios, and Architectural Models. Proc. IEEE 108, 10 (2020), 1785–1824.

[29] Sara Montagna, Angelo Croatti, Alessandro Ricci, Vanni Agnoletti, Vittorio Albarello, and Emiliano Gamberini. 2020.
Real-time tracking and documentation in trauma management. Health Informatics Journal 26, 1 (2020), 328–341.

[30] Álvaro F. Moreira, Renata Vieira, Rafael H. Bordini, and Jomi Fred Hübner. 2005. Agent-Oriented Programming with
Underlying Ontological Reasoning. In Declarative Agent Languages and Technologies III, 3rd Int. Workshop, DALT 2005,
Utrecht, The Netherlands (Lecture Notes in Computer Science, Vol. 3904). Springer, 155–170.

[31] Michalis Mountantonakis and Yannis Tzitzikas. 2019. Large-Scale Semantic Integration of Linked Data: A Survey.
ACM Comput. Surv. 52, 5, Article 103 (Sept. 2019), 40 pages.

[32] Elisa Negri, Luca Fumagalli, and Marco Macchi. 2017. A review of the roles of digital twin in CPS-based production
systems. Procedia Manufacturing 11 (2017), 939–948.

[33] Allen Newell. 1982. The Knowledge Level. Artif. Intell. 18, 1 (1982), 87–127.
[34] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A meta-model for multi-agent systems.

Autonomous Agents and Multi-Agent Systems 17, 3 (2008), 432–456.
[35] Giovanni Pezzulo. 2008. Coordinating with the Future: The Anticipatory Nature of Representation. Minds Mach. 18, 2

(2008), 179–225.

29

https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

ACM ToIT, April 2021, Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone

[36] Marco Picone, Stefano Mariani, Marco Mamei, and Franco Zambonelli. 2021. WIP: Preliminary Evaluation of Digital
Twins on MEC Software Architecture. In IEEE 22nd International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). In press.

[37] Bastian Quilitz and Ulf Leser. 2008. Querying Distributed RDF Data Sources with SPARQL. In The Semantic Web:
Research and Applications, Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, andManolis Koubarakis (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 524–538.

[38] Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within a BDI-Architecture. In Proceedings of
the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91). Cambridge, MA, USA,
April 22-25, 1991. Morgan Kaufmann, 473–484.

[39] Alessandro Ricci, Angelo Croatti, and Sara Montagna. 2021. Pervasive and Connected Digital Twins – A Vision for
Digital Health. IEEE Internet Computing (jan 2021).

[40] Alessandro Ricci, Michele Piunti, Luca Tummolini, and Cristiano Castelfranchi. 2015. The Mirror World: Preparing for
Mixed-Reality Living. IEEE Pervasive Computing 14, 2 (2015), 60–63.

[41] Dominik Riemer. 2018. Feeding the Digital Twin: Basics, Models and Lessons Learned from Building an IoT Analytics
Toolbox (Invited Talk). In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 4212–4212.

[42] Joze M. Rozanec, Lu Jinzhi, Aljaz Kosmerlj, Klemen Kenda, Kiritsis Dimitris, Viktor Jovanoski, Jan Rupnik, Mario
Karlovcec, and Blaz Fortuna. 2020. Towards Actionable Cognitive Digital Twins for Manufacturing. In Proceedings
of the International Workshop on Semantic Digital Twins co-located with the 17th Extended Semantic Web Conference,
SeDiT@ESWC 2020, Heraklion, Greece, June 3, 2020 (CEUR Workshop Proceedings, Vol. 2615). CEUR-WS.org.

[43] Roberto Saracco. 2019. Digital Twins: Bridging Physical Space and Cyberspace. Computer 52, 12 (2019), 58–64.
[44] Ehab Shahat, Chang T. Hyun, and Chunho Yeom. 2021. City Digital Twin Potentials: A Review and Research Agenda.

Sustainability 13, 6 (2021).
[45] Jack Sleuters, Yonghui Li, Jacques Verriet, Marina Velikova, and Richard Doornbos. 2019. A Digital Twin Method

for Automated Behavior Analysis of Large-Scale Distributed IoT Systems. In 2019 14th Annual Conference System of
Systems Engineering (SoSE). IEEE, 7–12.

[46] Eugene Y. Song, Martin Burns, Abhinav Pandey, and Thomas Roth. 2019. IEEE 1451 Smart Sensor Digital Twin
Federation for IoT/CPS Research. In 2019 IEEE Sensors Applications Symposium (SAS). IEEE, 1–6.

[47] Viniciu Souza, Robson Cruz, Walmir Silva, Sidney Lins, and Vicente Lucena. 2019. A Digital Twin Architecture Based
on the Industrial Internet of Things Technologies. In 2019 IEEE Int. Conf. on Consumer Electronics (ICCE). 1–2.

[48] Christian Stary. 2021. Digital Twin Generation: Re-Conceptualizing Agent Systems for Behavior-Centered Cyber-
Physical System Development. Sensors 21, 4 (2021).

[49] Charles Steinmetz, Achim Rettberg, Fabíola Gonçalves C Ribeiro, Greyce Schroeder, and Carlos E. Pereira. 2018. Internet
of things ontology for digital twin in cyber physical systems. In 2018 VIII Brazilian Symposium on Computing Systems
Engineering (SBESC). IEEE, 154–159.

[50] Fei Tao and Qinglin Qi. 2019. Make more digital twins. Nature 573, 7775 (2019), 490–491.
[51] Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. 2019. Digital Twin in Industry: State-of-the-Art. IEEE Trans. on Industrial

Informatics 15, 4 (2019), 2405–2415.
[52] Thomas H.-J. Uhlemann, Christian Lehmann, and Rolf Steinhilper. 2017. The digital twin: Realizing the cyber-physical

production system for Industry 4.0. Procedia Cirp 61 (2017), 335–340.
[53] Danny Weyns, Andrea Omicini, and James J. Odell. 2007. Environment as a First-class Abstraction in Multi-Agent

Systems. Autonomous Agents and Multi-Agent Systems 14, 1 (Feb. 2007), 5–30.
[54] Michael J. Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 2

(1995), 115–152.
[55] Yan Xu, Yanming Sun, Xiaolong Liu, and Yonghua Zheng. 2019. A Digital-Twin-Assisted Fault Diagnosis Using Deep

Transfer Learning. IEEE Access 7 (2019), 19990–19999.
[56] Cheng Zhou, Hongwei Yang, Xiaodong Duan, Diego Lopez, Antonio Pastor, Qin Wu, Mohamed Boucadair, and

Christian Jacquenet. 2021. Concepts of Digital Twin Network. Internet-Draft draft-zhou-nmrg-digitaltwin-network-
concepts-03. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-zhou-nmrg-digitaltwin-
network-concepts-03 Work in Progress.

30

https://datatracker.ietf.org/doc/html/draft-zhou-nmrg-digitaltwin-network-concepts-03
https://datatracker.ietf.org/doc/html/draft-zhou-nmrg-digitaltwin-network-concepts-03

	Abstract
	1 Introduction
	2 Background and state of the art
	3 The WoDT model
	3.1 Overview
	3.2 An Abstract Model
	3.3 A Semantic Model based on (Distributed) Knowledge Graphs
	3.4 Interaction Model
	3.5 Modelling Augmentation

	4 Bringing the WoDT model into the real world
	4.1 An Architectural Perspective
	4.2 Interaction Flows
	4.3 Integration with Agent-based Architectures and Platforms

	5 Applying WoDT to real world case studies
	5.1 The Case of Major Trauma Management
	5.2 The Case of Mobility Intelligence

	6 Research Directions
	7 Concluding Remarks
	References

