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Abstract
Querying inconsistent knowledge bases is an intriguing problem that gave rise to a flourishing

research activity in the knowledge representation and reasoning community during the last years.
It has been extensively studied in the context of description logics (DLs), and its computational
complexity is rather well-understood. Although DLs are popular formalisms for modeling ontologies,
it is generally agreed that rule-based ontologies are well-suited for data-intensive applications, since
they allow us to conveniently deal with higher-arity relations, which naturally occur in standard
relational databases. The goal of this work is to perform an in-depth complexity analysis of querying
inconsistent knowledge bases in the case of the main decidable classes of existential rules, based on
the notions of guardedness, linearity, acyclicity, and stickiness, enriched with negative (a.k.a. denial)
constraints. Our investigation concentrates on three central inconsistency-tolerant semantics: the
ABox repair (AR) semantics, considered as the standard one, and its main sound approximations,
the intersection of repairs (IAR) semantics and the intersection of closed repairs (ICR) semantics.

1 Introduction
The purpose of an ontology is to provide an explicit specification via an unambiguous language, typically
based on logic, of an abstract model of a domain of interest. A relatively recent, and admittedly
quite successful, application of ontologies is ontology-based data access (OBDA) [43], which in turn has
emerged as an exciting application of knowledge representation and reasoning technologies in information
management systems. The goal of OBDA is to facilitate access to data by separating the user from the
raw data sources. This is done using an ontology that provides a unified conceptual view of the data, and
makes it accessible via queries solely formulated in the vocabulary of the ontology without any knowledge
of the actual structure of the data. In addition, the ontology enriches the possibly incomplete data sources
with domain knowledge, enabling more complete answers to queries, typically conjunctive queries.

In real-life OBDA scenarios, involving large amounts of data, it is likely that the raw data is inconsistent
with the ontology. Since standard ontology languages adhere to the classical first-order logic semantics,
inconsistencies are nothing else than logical contradictions. Therefore, the classical inference semantics
fails when faced with an inconsistency, since everything follows from a logical contradiction. This
demonstrates the need of developing alternative semantics.

© 2022. This manuscript version is made available under the CC BY-NC-ND 4.0 license. The formal publication of this
manuscript is available via the DOI: 10.1016/j.artint.2022.103685.

∗This paper is a substantially extended and revised version of the papers [34, 37, 39, 40].
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There has been a significant effort on the development of inconsistency-tolerant semantics for query
answering purposes. Consistent query answering, first developed for relational databases [1], and then
generalized as the ABox repair (AR) semantics for several DLs [28], is the most widely accepted semantics
for querying inconsistent knowledge bases. The AR semantics is based on the idea that an answer
is considered to be valid if it can be inferred from each of the repairs of the extensional data set D,
i.e., the ⊆-maximal consistent subsets of D. However, obtaining the set of consistent answers under
the AR semantics is known to be a hard problem, even for lightweight ontology languages [28]. For
this reason, several other semantics have been developed with the aim of approximating the set of
consistent answers [3, 9, 28, 38]; the list is by no means exhaustive, and we refer the reader to [4] for a
comprehensive survey. We also refer the reader to the related work section (Section 9) for further details
on inconsistency-tolerant semantics.

The two main approximations of the AR semantics that are of special interest for the present work
are the following:

1. The intersection of ABox repairs (IAR) semantics: an answer must be inferred from the intersection
of the repairs and the ontology [28].

2. The intersection of closed repairs (ICR) semantics: an answer must be inferred from the intersection
of the closure of the repairs and the ontology [3].

Apart from being natural approximations of the AR semantics, the IAR and ICR semantics are
coming with additional advantages of practical relevance. Recent work on explanation in the context of
inconsistency-tolerant query answering shows that explanations are much easier to define and compute
for the IAR and ICR semantics [7]. Moreover, the IAR and ICR semantics are amenable to preprocessing,
since the intersection of the (closed) repairs can be computed offline, and then standard query answering
algorithms can be employed online. Indeed, the latter approach has been adopted in the implementation
of the IAR semantics [30], while for the ICR semantics, it has been already remarked in [5].

The complexity of query answering under different inconsistency-tolerant semantics, including the
ones above, has been extensively studied for a wide spectrum of DLs; see, e.g., [3, 6, 8, 30, 44]. But
what about rule-based ontology languages? It is agreed that rule-based ontologies are well-suited for
data-intensive applications such as OBDA, since they allow us to conveniently deal with higher-arity
relations, which naturally occur in standard relational databases. Therefore, analyzing and understanding
the complexity of query answering under inconsistency-tolerant semantics in the presence of rule-based
ontologies is a highly relevant task that deserves our attention. This is the main concern of the present
work.

Towards this direction, we focus on ontologies modeled using existential rules (also called tuple-
generating dependencies), i.e., first-order sentences of the form

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

with ϕ and ψ being conjunctions of atoms, and negative (a.k.a. denial) constraints, which are first-order
senetences of the form

∀x̄ (ϕ(x̄) → ⊥) ,
where ϕ is a conjunction of atoms, and ⊥ denotes the truth constant false. Note that rules of the above
form are also known in the literature as Datalog± rules [12]. It is known, however, that query answering
under arbitrary existential rules (even without negative constraints) is undecidable (see, e.g., [10]). This
has led to an intensive research activity for identifying restrictions on existential rules that lead to
decidability. The main decidable paradigms are (i) guardedness [10] (which includes linearity [11]) that is
based on the relativization of quantifiers by atomic formulas, (ii) acyclicity [37] that forbids recursion, and
(iii) stickiness [13] that forces variables that appear more than once in the left-hand side of an existential
rule to be propagated to the right-hand side of the rule. The goal underlying stickiness is to express
non-guarded statements without forbidding recursion. The formal definitions of the above paradigms are
given in Section 3.

Our main goal is to perform an in-depth complexity analysis of querying inconsistent knowledge bases
under the AR, IAR, and ICR semantics, when the ontology is modeled using one of the main decidable
classes of existential rules discussed above enriched with negative constraints. Note that we can easily
inherit from DLs that our problem in the case of the AR semantics is intractable, even when the ontology
and the query are fixed [28]. Thus, another objective of our work, apart from clarifying the complexity
landscape, is to understand whether the IAR and ICR semantics reduce the complexity of the problem in
question, especially when the ontology and the query are fixed. Our contributions are as follows:
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• Before studying inconsistency-tolerant query answering, we first need to understand standard query
answering under existential rules without inconsistencies. The latter is well-understood in the case
of guardedness, linearity, and stickiness. Surprisingly, query answering under acyclic existential
rules has not been explicitly studied before the conference paper [37], which is one of the works on
which the present journal paper is based. We show that the problem is NExpTime-complete even
if we bound the arity, NP-complete if we fix the ontology, and in AC0 when both the ontology and
the query are fixed; these results are summarized in Proposition 3.3.

• The complete picture concerning inconsistency-tolerant query answering in the case of the AR
semantics is given by Theorem 5.1. The main outcome is that the problem is intractable, actually
coNP-complete, even when the ontology and the query are fixed. This is not surprising in view of
the fact that the problem is already coNP-hard for lightweight DLs such as DL-Lite [28].

• The complete picture for the IAR semantics is given by Theorem 6.1. It turned out that the IAR
semantics does not reduce the complexity in the case of guardedness; the only difference is a minor
decrease from ΠP

2 to ΘP
2 when the ontology is fixed. However, in the case of linear, acyclic, and

sticky existential rules, we observed some significant differences: the complexity decreases from ΠP
2

to NP when the ontology is fixed, and from coNP to AC0 when both the ontology and the query
are fixed. This is due to a central property known as first-order rewritability. Note that all the
complexity results, apart from AC0, are completeness results.

• The complete picture for the ICR semantics is given by Theorem 7.1. The ICR semantics does not
reduce the complexity of our problem, no matter which class of existential rules we consider. We
only observed a minor decrease from ΠP

2 -complete to ΘP
2 -complete when the ontology is fixed.

• Finally, for the sake of completeness, we consider the central class of full existential rules (i.e.,
rules without existentially quantified variables), as well as the main extensions of guarded, acyclic,
and sticky existential rules that generalize full existential rules; the complete picture for all the
inconsistency-tolerant semantics in question is given by Theorem 8.1. It turned out that the analysis
performed for the less expressive classes allowed us to easily complete the picture for the more
expressive classes of existential rules.

The rest of the paper is organized as follows. The basics on relational databases, conjunctive queries,
existential rules, and negative constraints, as well as basic complexity classes, are recalled in Section 2.
An overview of query answering under the main decidable classes of existential rules is given in Section 3.
The main inconsistency-tolerant semantics for query answering under existential rules are introduced in
Section 4. Our complexity results on inconsistency-tolerant query answering w.r.t. the AR, IAR, and
ICR semantics are presented in Sections 5, 6, and 7, respectively. In Section 8, we consider the class
of full existential rules, as well as the main extensions of guarded, acyclic, and sticky existential rules
that generalize full existential rules. A rather comprehensive overview of the main inconsistency-tolerant
semantics, which go beyond the AR, IAR, and ICR semantics, that have been proposed and studied
during the last decade is given in Section 9. We finally conclude in Section 10 with a brief discussion and
directions for future research.

2 Preliminaries
In this section, we recall the basics on relational databases, (unions of) conjunctive queries, ontological
query answering (including tuple-generating dependencies1 and negative constraints), the chase procedure,
and the complexity classes encountered in this paper. Throughout the paper, we assume the disjoint
countably infinite sets C, N, and V of constants, (labeled) nulls, and variables, respectively. We also refer
to constants, nulls, and variables as terms.

2.1 Relational databases and (unions of) conjunctive queries
A (relational) schema S is a finite set of relation symbols (or predicates) with associated arity. We write
R/n to denote that the arity of the relation symbol R is n ≥ 0. A relational atom (or simply atom) over
S is an expression of the form R(t̄), where R is an n-ary relation symbol from S, and t̄ is an n-tuple of

1Henceforth, as customary in the literature, we adopt the more traditional term tuple-generating dependency instead of
existential rule.
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terms. An atom is ground if it mentions only constants of C. An instance over S is a (possibly infinite)
set of atoms over S that contain constants and nulls, while a database over S is a finite set of ground
atoms over S, i.e., a finite instance without nulls. For an instance I, we write dom(I) for the set of all
terms occurring in I.

Consider two sets of terms T and S. A substitution from T to S is a function h : T → S. The restriction
of h to T ′ ⊆ T , denoted h|T ′ , is the function from T ′ to S such that, for every t ∈ T ′, h|T ′(t) = h(t).
Consider now two sets of atoms A and B. A homomorphism from A to B is a substitution h from the set
of terms in A to the set of terms in B, i.e., from dom(A) to dom(B), such that (i) t ∈ C implies h(t) = t,
and (ii) R(t1, . . . , tn) ∈ A implies h(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ B.

A conjunctive query (CQ) over a schema S is a formula of the form

q(x̄) := ∃ȳ
(
R1(z̄1) ∧ · · · ∧Rm(z̄m)

)
,

where each Ri(z̄i), for i ∈ {1, . . . ,m}, is an atom over S without nulls, each variable occurring in a
tuple z̄i appears either in x̄ or ȳ, and x̄ contains all the free variables of q. If x̄ is empty, then q is a
Boolean conjunctive query (BCQ). The evaluation of CQs is defined in terms of homomorphisms. Given
an instance I, the evaluation of q(x̄) over I, denoted q(I), is the set of all tuples t̄ ∈ C|x̄| such that there
exists a homomorphism h from q(x̄) to I with h(x̄) = t̄. By abuse of notation, we sometimes treat a tuple
of variables as a set of variables, and a conjunction of atoms as a set of atoms. Note that in the case of
Boolean CQs, the only possible answer is the empty tuple.

A union of conjunctive queries (UCQ) over S is a formula of the form

q(x̄) := q1(x̄) ∨ · · · ∨ qn(x̄),

where each qi(x̄) is a CQ over S. The evaluation of q over an instance I, denoted q(I), is defined as the
set of tuples

⋃
i∈{1,...,n} qi(I). By abuse of notation, we may treat a UCQ q(x̄) as the one above as the

set of CQs {q1(x̄), . . . , qn(x̄)}.

2.2 Ontological query answering
A tuple-generating dependency (TGD) σ is a (constant-free) sentence

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

where x̄, ȳ, and z̄ are tuples of variables of V, and ϕ and ψ are conjunctions of atoms. For brevity, we
write σ as ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma for joining atoms. We refer to ϕ(x̄, ȳ) and ψ(x̄, z̄) as the
body and head of σ, denoted body(σ) and head(σ), respectively. An instance I satisfies a TGD σ as the
one above, written I |= σ, if the following holds: whenever there exists a homomorphism h such that
h(ϕ(x̄, ȳ)) ⊆ I, then there exists an extension h′ of h|x̄, i.e., h′ ⊇ h|x̄, such that h′(ψ(x̄, z̄)) ⊆ I. The
instance I satisfies a set Σ of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ. Let TGD be the class of
(finite) sets of TGDs.

A negative constraint (NC) σ is a sentence of the form

∀x̄ (ϕ(x̄) → ⊥) ,

where x̄ is a tuple of variables of V, ϕ is a conjunction of atoms, and ⊥ denotes the truth constant false.
For brevity, we write σ as ϕ(x̄) → ⊥, and use comma for joining atoms. We refer to ϕ(x̄) as the body
of σ, denoted body(σ). An instance I satisfies an NC σ as the one above, written I |= σ, if there is no
homomorphism h such that h(ϕ(x̄)) ⊆ I (observe the inversion: satisfies NC → no homomorphism exists).
The instance I satisfies a set Σ of NCs, written I |= Σ, if I |= σ for each σ ∈ Σ. Let NC be the class of
(finite) sets of NCs.

Consider a database D and a set Σ of TGDs and NCs; henceforth, we denote by τ(Σ) and ν(Σ) the
set of TGDs and NCs, respectively, occurring in Σ. A model of D and Σ is an instance I ⊇ D such that
I |= τ(Σ) and I |= ν(Σ). We write mods(D,Σ) for the set of models of D and Σ. The certain answers to
a CQ q w.r.t. D and Σ is defined as the set of tuples

cert(q,D,Σ) =
⋂

I∈mods(D,Σ)

q(I).

A problem that is central for our work is to compute the certain answers to a CQ w.r.t. a database
and a set of TGDs and NCs that falls in C ∪ NC, where C ⊆ TGD is a class of TGDs; concrete classes of
TGDs are given below. For brevity, given a class C of TGDs, we write C⊥ as an abbreviation for C ∪ NC.
As is customary when studying the complexity of this problem, we focus on its decision version:
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PROBLEM : QAns(C⊥)
INPUT : A database D, a set Σ ∈ C⊥, a CQ q(x̄), and c̄ ∈ dom(D)|x̄|.
QUESTION : Does c̄ ∈ cert(q,D,Σ)?

This general formulation refers to the combined complexity of the problem, that is, the database,
the set of TGDs and NCs, the CQ, and the candidate tuple are considered part of the input. It is
common, however, to study also refined measures that are more realistic in practice. Here, we consider the
bounded-arity combined complexity, where the arity of the underlying schema is bounded by an integer,
the fixed-program combined complexity,2 where the set of TGDs and NCs is fixed, and the data complexity,
where the CQ and the set of TGDs and NCs are fixed. Henceforth, for brevity, we write c-, ba-, fp-,
and d-complexity for combined, bounded-arity combined, fixed-program combined, and data complexity,
respectively.

It should be clear that if the given database D and set Σ of TGDs and NCs are inconsistent, i.e.,
mods(D,Σ) = ∅,3 then the set of certain answers to a CQ q(x̄) consists of all the tuples c̄ ∈ dom(D)|x̄|.
This is because the definition of certain answers relies on the classical first-order semantics. That is,

cert(q,D,Σ) = {c̄ ∈ dom(D)|x̄| | D ∧ Σ |=FO q(c̄)},

where D ∧ Σ denotes the first-order sentence
∧
α∈D α ∧

∧
σ∈Σ σ, q(c̄) is the first-order sentence obtained

by instantiating the free variables of q with c̄, and |=FO denotes the standard first-order entailment.
Therefore, if D and Σ are inconsistent, this means that the sentence D ∧ Σ does not admit a model, i.e.,
is a logical contradiction, and thus, everything is entailed from it:

mods(D,Σ) = ∅ =⇒ cert(q,D,Σ) =
{
c̄ | c̄ ∈ dom(D)|x̄|

}
.

Another crucial observation is that, if mods(D,Σ) ̸= ∅ (i.e., D and Σ are consistent), then for computing
the certain answers to q w.r.t. D and Σ, it suffices to focus on the TGDs of Σ. That is:

mods(D,Σ) ̸= ∅ =⇒ cert(q,D,Σ) = cert(q,D, τ(Σ)).

By exploiting the above two implications, we can easily show that:

c̄ ∈ cert(q,D,Σ) ⇐⇒ mods(D,Σ) = ∅ or c̄ ∈ cert(q,D, τ(Σ)). (1)

It is not difficult to see that the problem of checking whether mods(D,Σ) = ∅ boils down to the problem
of checking whether the database and the set of TGDs entail at least one NC. Given an NC σ of the form
ϕ(x̄) → ⊥, we write qσ for the Boolean CQ ∃x̄ ϕ(x̄). Then:

mods(D,Σ) = ∅ ⇐⇒ there is σ ∈ ν(Σ) s.t. cert(qσ, D, τ(Σ)) ̸= ∅.4 (2)

From (1) and (2), we immediately get the following folklore result:

Proposition 2.1. Consider a database D, a set Σ of TGDs and NCs, a CQ q(x̄), and a tuple c̄ ∈
dom(D)|x̄|. The following are equivalent:

1. c̄ ∈ cert(q,D,Σ).

2. There is σ ∈ ν(Σ) such that cert(qσ, D, τ(Σ)) ̸= ∅, or c̄ ∈ cert(q,D, τ(Σ)).

2.3 The chase procedure
The above proposition shows that for checking whether a tuple is a certain answer to a CQ w.r.t. a
database and a set Σ of TGDs and NCs, we actually have to reason with the TGD component of Σ. The
chase procedure is a useful algorithmic tool when reasoning with TGDs that takes as an input a database
D and a set Σ of TGDs, and constructs a (possibly infinite) instance I such that I ⊇ D and I |= Σ; see,
e.g., [10, 21]. We start by defining the notion of chase step.

2A set of TGDs and NCs is sometimes called a program, and hence the term fixed-program.
3If Σ consists only of TGDs, then D and Σ are always consistent, i.e., mods(D, Σ) ̸= ∅. In this case, a model of D and Σ

can be constructed via the chase procedure introduced in Section 2.3.
4Notice that qσ is Boolean, and by cert(qσ , D, τ(Σ)) ̸= ∅, we simply mean that the only possible answer (i.e., the empty

tuple) is a certain answer.
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Consider an instance I and a TGD σ of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄). We say that σ is applicable
w.r.t. I if there exists a homomorphism h from ϕ(x̄, ȳ)) to I. In this case, the result of applying σ over I
with h is the instance J = I ∪ h′(ψ(x̄, z̄)), where h′ is an extension of h|x̄ that maps each variable of z̄ to
a distinct null not in I, and for each pair (z, w) of distinct variables of z̄, h′(z) ̸= h′(w). For such a single
chase step, we write I⟨σ, h⟩J .

The main idea of the chase is, starting from a database D, to exhaustively apply TGDs over the
instance constructed so far. This simple idea is formalized via the notion of chase sequence. We distinguish
the two cases where a chase sequence is finite or infinite. Consider a set Σ of TGDs:

• A finite sequence I0, I1, . . . , In of instances, where n ≥ 0, is a chase sequence for I0 under Σ if: (i)
for each 0 ≤ i < n, Ii⟨σ, h⟩Ii+1 for some σ ∈ Σ and homomorphism h from body(σ) to Ii, (ii) for
each 0 ≤ i < j < n, assuming that Ii⟨σi, hi⟩Ii+1 and Ij⟨σj , hj⟩Ij+1, σi = σj implies hi ̸= hj , i.e., hi
and hj are different homomorphisms, and (iii) there is no TGD of Σ that is applicable w.r.t. In.
The result of the chase is the (finite) instance In.

• An infinite sequence I0, I1, . . . of instances is a chase sequence for I0 under Σ if: (i) for each i ≥ 0,
Ii⟨σ, h⟩Ii+1 for some σ ∈ Σ and homomorphism h from body(σ) to Ii, (ii) for each i, j > 0 such
that i ≠ j, assuming that Ii⟨σi, hi⟩Ii+1 and Ij⟨σj , hj⟩Ij+1, σi = σj implies hi ̸= hj , and (iii) for
each i ≥ 0, and for every σ ∈ Σ that is applicable w.r.t. Ii due to a homomorphism h, there exists
j ≥ i such that Ij⟨σ, h⟩Ij+1. The latter is known as the fairness condition, and guarantees that all
the applicable TGDs eventually will be applied. The result of the chase is

⋃
i≥0 Ii.

Since we consider the oblivious version of the chase, i.e., a TGD is applied whenever its body is satisfied
no matter whether its head is satisfied, every chase sequence for I under Σ leads to the same result (up
to isomorphism). Thus, we can refer to the result of the chase for I under Σ, denoted chase(I,Σ).

The following is a well-known result, which exposes the usefulness of the chase in relation with
ontological query answering. The key reason why this result holds is because, given a database D and a
set Σ of TGDs, the instance chase(D,Σ) is not only a model, but is a universal model of D and Σ, which
means that chase(D,Σ) can be homomorphically mapped to every instance I ∈ mods(D,Σ).

Proposition 2.2 (see, e.g., [19, 21]). Consider a database D, a set Σ of TGDs , and a CQ q. It holds
that cert(q,D,Σ) = q(chase(D,Σ)).

2.4 Complexity classes
We assume that the reader has some background in computational complexity theory, including the
notions of Turing machine, and hardness and completeness of a problem for a complexity class, as can be
found in standard textbooks, e.g., in [27, 42]. In what follows, we briefly recall the complexity classes that
we encounter in our complexity results. The complexity class PSpace (resp., PTime, ExpTime, and
2ExpTime) contains all the decision problems that can be solved in polynomial space (resp., polynomial,
exponential, and double exponential time) via a deterministic Turing machine. The complexity classes
NP and NExpTime contain all the decision problems that can be solved in polynomial and exponential
time via a non-deterministic Turing machine, respectively, while coNP and coNExpTime are their
complementary classes, where “Yes” and “No” instances are interchanged. The class ΘP

2 is the class of all
decision problems that can be decided in polynomial time by a deterministic Turing machine using a
logarithmic number of calls to an NP-oracle. The class ΣP2 is the class of problems that can be solved in
non-deterministic polynomial time using an NP-oracle, and ΠP

2 is the complement of ΣP2 . The complexity
class AC0 is the class of all languages that are decidable via uniform families of Boolean circuits of
polynomial size and constant depth. The above complexity classes and their inclusion relationships (which
are all currently believed to be strict) are shown below:

AC0 ⊆ PTime ⊆ NP, coNP ⊆ ΘP
2 ⊆ ΣP2 ,ΠP

2 ⊆ PSpace ⊆ ExpTime
⊆ NExpTime, coNExpTime ⊆ PNExpTime ⊆ 2ExpTime.

3 Ontological query answering: Overview and new results
It is well known that QAns(TGD⊥) is undecidable; this is implicit in [2], which studies the implication
problem for database dependencies. A stronger result of this kind can be found in [10], where it is shown
that QAns(TGD⊥) is undecidable even in data complexity. Actually, the above negative results hold
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c-complexity ba-complexity fp-complexity d-complexity
G⊥ 2ExpTime ExpTime NP PTime
L⊥ PSpace NP NP in AC0
A⊥ NExpTime NExpTime NP in AC0
S⊥ ExpTime NP NP in AC0

Table 1: Complexity of QAns(C⊥), where C ∈ {G, L,A,S}. Apart from the AC0 upper bounds, the rest
are completeness results.

even without considering NCs. Let us stress that Propositions 2.1 and 2.2 do not provide a chase-based
decision procedure for query answering, since the chase is (in general) infinite. This has led to an intensive
research activity for identifying syntactic restrictions on sets of TGDs that lead to decidability. Such
restrictions can be classified into three main syntactic paradigms: guardedness (which includes linearity),
acyclicity, and stickiness. We proceed to recall each of those paradigms, and discuss the complexity of
query answering (summarized in Table 1).

3.1 Guardedness
A TGD σ is called guarded if body(σ) has an atom, called guard, that contains all the variables occurring
in body(σ). Although the chase under a set of guarded TGDs does not necessarily terminate, query
answering is decidable. This follows from the fact that the result of the chase procedure is “treelike”, or,
in other words, has finite treewidth [10]. Let G be the class of sets of guarded TGDs. Then:

Proposition 3.1 ([10]). QAns(G⊥) is 2ExpTime-complete in c-complexity, Exp-Time-complete in
ba-complexity, NP-complete in fp-complexity, and PTime-comp-lete in d-complexity.

A key subclass of guarded TGDs is the class of linear TGDs, i.e., TGDs whose body consists of a
single atom [11]. Let L be the class of sets of linear TGDs.

Proposition 3.2 ([10]). QAns(L⊥) is PSpace-complete in c-complexity, NP-comp-lete in ba-complexity
and fp-complexity, and in AC0 in d-complexity.

3.2 Acyclicity
The predicate graph of a set Σ of TGDs is defined as follows: its nodes are the predicates occurring in Σ,
and there is an edge from P to R iff there is a TGD σ ∈ Σ such that P occurs in body(σ) and R occurs
in head(σ). We call Σ acyclic (a.k.a. non-recursive) if its predicate graph contains no directed cycles. It
is easy to see that acyclicity ensures the termination of the chase. Thus, by Propositions 2.1 and 2.2,
we immediately get the decidability of QAns(A⊥), where A denotes the class of acyclic sets of TGDs.
However, the exact complexity of the problem has not been studied before the conference paper [37],
which is one of the works on which the present journal paper is based. We proceed to show that:

Proposition 3.3. QAns(A⊥) is NExpTime-complete in c- and ba-complexity, NP-complete in fp-
complexity, and in AC0 in d-complexity.

To establish the upper bounds for QAns(A⊥), Proposition 2.1 suggests that it suffices to establish
the same upper bounds for QAns(A). At this point, one may be tempted to think that this can be done
by simply constructing the chase instance I, and then checking whether the given tuple belongs to the
evaluation of the CQ over I. Although this simple algorithm shows that indeed QAns(A) is in NP in
fp-complexity, it does not lead to optimal upper bounds in the case of c-complexity, ba-complexity, and
d-complexity. In particular, it yields a 2ExpTime upper bound in c-complexity and ba-complexity, and a
PTime upper bound in d-complexity. The next example shows that indeed this is the best that we can
achieve via the naive procedure that explicitly constructs the chase instance.

Example 3.1. Consider the family of acyclic sets of TGDs{
Σn = {Ri(x), Ri(y) → ∃z Pi+1(x, y, z), Ri+1(z)}i∈{0,...,n}

}
n≥0 .

Consider also the family of databases

{Dm = {R0(c1), . . . , R0(cm)}}m≥0 .
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The i-th stratum of Σn computes all the pairs of terms using the m(2i) terms stored in the predicate Ri,
and for each such pair generates a fresh null that is stored in the predicate Ri+1. It is easy to verify that
the predicate Rn in chase(Dm,Σn) contains m(2n) nulls. Since each chase step generates exactly one null,
the chase procedure starting from Dm and applying TGDs of Σn terminates after double-exponentially
many steps in n, and polynomially many steps in m.5

We proceed to provide more refined procedures that lead to optimal complexity upper bounds for
QAns(A). In Section 3.2.1 we establish the desired upper bounds, and we show that they are indeed
worst-case optimal in Section 3.2.2.

3.2.1 Upper bounds

Our main technical result, which in turn allows us to obtain the desired upper bounds for QAns(A),
essentially shows that, for query answering purposes under acyclic sets of TGDs, it suffices to apply
exponentially many chase steps, while this exponential bound does not depend on the input database. To
formalize this statement, we first need to recall the notion of stratification.

Consider a set Σ of TGDs. Let sch(Σ) be the set of predicates occurring in Σ. A stratification of Σ is
a partition {Σ1, . . . ,Σn}, where n ≥ 1, of Σ such that, for some function f : sch(Σ) → {1, . . . , n}, the
following holds:

- For each predicate R ∈ sch(Σ), all the TGDs with R in their head belong to Σf(R), i.e., they belong
to the same set of the partition.

- If there exists a TGD in Σ such that the predicate R appears in its body, while the predicate P
appears in its head, then f(R) < f(P ).

The depth of a set Σ of TGDs that admits a stratification, denoted depth(Σ), is defined as the cardinality
of its smallest stratification.

It is easy to verify that if a set of TGDs is acyclic, then it admits a stratification, and thus we can
refer to its depth. Consider now a CQ q and a set Σ ∈ A. Let |q| be the number of atoms occurring in q,
and width(Σ) be the maximum number of atoms occurring in the body of a TGD of Σ. We define the
function

g(q,Σ) =


|q| ·

⌊
width(Σ)depth(Σ)+1−1

width(Σ)−1

⌋
if width(Σ) > 1

|q| · depth(Σ) if width(Σ) = 1.

Roughly speaking, g(q,Σ) provides an upper bound on the number of chase steps that we need to apply
in order to be able to safely conclude whether the query q is entailed by the instance chase(D,Σ) for any
database D.

Lemma 3.1. Consider a database D, a set Σ ∈ A of TGDs, a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|. If
c̄ ∈ cert(q,D,Σ), then there exists a sequence of instances (Ji)0≤i≤g(q,Σ) with J0 = D and Ji⟨σ, µ⟩Ji+1
for some TGD σ ∈ Σ and homomorphism µ from body(σ) to dom(Ji) such that c̄ ∈ q(Jg(q,Σ)).

Proof. By hypothesis, there is a chase sequence s = (Ii)0≤i≤n with Ii⟨σi, hi⟩Ii+1 for D under Σ such that
c̄ ∈ q(In) with h(x̄) = c̄. Consider an arbitrary atom α of q. It is clear that h(α) ∈ In. We are going to
establish an upper bound on the number of chase steps of s that are really needed to generate h(α). To
this end, we first need to recall the so-called chase relation of s, denoted ≺s, which is a binary relation
over the atoms of In such that (β, γ) ∈≺s iff there exists i ∈ {0, . . . , n− 1} with β ∈ hi(body(σi)) and
γ ∈ Ii+1 \ Ii. In simple words, ≺s encodes which atoms generate some other atom via a single chase
step. For convenience, we write β ≺s γ for the fact that (β, γ) belongs to ≺s. We also write ≺⋆

s for the
transitive closure of ≺s. Let ≺s,h(α) be the subrelation of ≺s defined as

{(β, γ) | β ≺s γ and γ = h(α) or γ ≺⋆
s h(α)}.

Roughly, ≺s,h(α) collects only the sequences of atoms that lead to h(α). Observe that the inverse relation
of ≺s,h(α), denoted ≺−

s,h(α), is a directed acyclic graph, where its nodes are atoms of In, with h(α) being
the root, i.e., is the only node without an incoming edge. We can now transform ≺−

s,h(α) into the binary

5This example provides a lower bound even if we consider the restricted version of the chase, where a TGD σ is applicable
w.r.t. an instance I only if it is really violated, i.e., the homomorphism that maps body(σ) to I cannot be extended to a
homomorphism that maps head(σ) to I.
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relation ≺−,△
s,h(α) that represents a rooted tree, where h(α) is the root node, and each node has at most

width(Σ) children. This is done in the obvious way by duplicating some nodes of ≺−
s,h(α) as shown in the

figure below; the formal definition is omitted:
1

2 3

4

5 6

1

2 3

41

52 6

51� 42

It should be clear that by providing an upper bound on the number of nodes occurring in ≺−,△
s,h(α), we

immediately get an upper bound on the number of nodes in ≺−
s,h(α). Due the fact that Σ is acyclic, the

depth of the rooted tree ≺−,△
s,h(α) is at most depth(Σ). Thus, the number of nodes in ≺−,△

s,h(α) is at most

ĝ(Σ) =


⌊

width(Σ)depth(Σ)+1−1
width(Σ)−1

⌋
if width(Σ) > 1

depth(Σ) if width(Σ) = 1.

This allows us to conclude that ≺s,h(α) has at most ĝ(Σ) nodes, which means that the number of atoms
in In that are needed to generate h(α) is at most ĝ(Σ). This implies that the number of chase steps of s
that are needed to generate h(α) is at most ĝ(Σ). Hence, we can construct from s a sequence of instances
(Ji)0≤i≤|q|·ĝ(Σ) with J0 = D and Ji⟨σ, h⟩Ji+1 for some σ ∈ Σ and homomorphism µ from body(σ) to
dom(Ji) such that c̄ ∈ q(J|q|·ĝ(Σ)). By definition, |q| · ĝ(Σ) = g(q,Σ), and the claim follows.

Having the above lemma in place, it is now easy to devise a non-deterministic algorithm for QAns(A)
that runs in exponential time in general, and in polynomial time whenever the set of TGDs is fixed: guess
a sequence of instances (Ji)0≤i≤g(q,Σ) with J0 = D, a sequence of pairs (σi, hi)0≤i≤g(q,Σ)−1, where σi ∈ Σ
and hi is a substitution from the set of variables occurring in body(σi) to dom(Ji), and a substitution h
from the variables occurring in q(x̄) to dom(Jg(q,Σ)) with h(x̄) = c̄, and then check that Ji⟨σi, hi⟩Ji+1
for each i ∈ {0, . . . , g(q,Σ) − 1}, and h maps q to Jg(q,Σ). Therefore, we obtain that QAns(A) is in
NExpTime in c- and ba-complexity, and in NP in fp-complexity. However, the above algorithm provides
only a PTime upper bound for QAns(A) in d-complexity. For the latter type of complexity we need to
argue a bit more.

It is implicit in [11] that Lemma 3.1 above implies that the class of acyclic sets of TGDs is UCQ-
rewritable: given a set Σ ∈ A of TGDs and a CQ q(x̄), we can construct a (finite) UCQ Qq,Σ(x̄) such
that, for every database D and tuple c̄ ∈ dom(D)|x̄|, c̄ ∈ cert(q,D,Σ) iff c̄ ∈ Qq,Σ(D). Since evaluating a
fixed UCQ over a database is in AC0 [47], we get that QAns(A) is in AC0 in d-complexity.

3.2.2 Lower bounds

We now proceed to establish the complexity lower bounds stated in Proposition 3.3. Actually, the
NP-hardness of QAns(A) in fp-complexity is inherited from the well-known fact that deciding whether a
tuple of constants belongs to the evaluation of a CQ over a database is NP-hard, even if the underlying
schema is fixed. It remains to show the following:

Lemma 3.2. QAns(A) is NExpTime-hard in ba-complexity.

The above result is shown via a reduction from the standard exponential tiling problem. A tiling
system is a tuple T = (n,m,H, V, s), where n and m are numbers in unary, H and V are subsets of
{1, . . . ,m} × {1, . . . ,m}, and s is a sequence of numbers of {1, . . . ,m}; let s[i] be the i-th element of s.
An exponential tiling for T is a function f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → {1, . . . ,m} such that:

- f(i, 0) = s[i], for each 0 ≤ i ≤ (|s| − 1),

- (f(i, j), f(i+ 1, j)) ∈ H, for each 0 ≤ i ≤ 2n − 2 and 0 ≤ j ≤ 2n − 1, and

- (f(i, j), f(i, j + 1)) ∈ V , for each 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ 2n − 2.

The exponential tiling problem is defined as follows:
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PROBLEM : ExpTiling
INPUT : A tiling system T .
QUESTION : Is there an exponential tiling for T ?

The goal is to provide a polynomial time reduction from ExpTiling to QAns(A). Given a tiling
system T = (n,m,H, V, s), we are going to construct in polynomial time a database DT , and a set
ΣT ∈ A of TGDs that mentions only predicates of fixed arity such that T has an exponential tiling iff
cert(Yes(), DT ,ΣT ) ̸= ∅

The database DT . It simply stores the horizontal and vertical compatibility relations H and V ,
respectively, together with the sequence of numbers s:

DT = {H(i, j) | (i, j) ∈ H} ∪ {V (i, j) | (i, j) ∈ V } ∪ {Si(s[i])}i∈{0,...,|s|−1}.

The set of TGDs ΣT . The idea underlying ΣT is, during the chase, to inductively construct tilings of
size 2i × 2i from tilings of size 2i−1 × 2i−1. This exploits the following simple fact, which has been already
observed in [18] where Datalog with complex values is studied: the left square in the figure below of size
2i × 2i, for i > 1, with each xi, yi, zi, wi being of size 2i−2 × 2i−2, satisfies the horizontal and vertical
compatibility relations iff the nine subsquares of size 2i−1 × 2i−1 depicted on the right in the following
figure satisfy the compatibility relations. Let us clarify that the origin of a grid is considered to be the
upper-left cell.
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To achieve this construction, we encode 2i × 2i squares, for i > 0, of the form

ul

ll

ur

lr

where ul, ur , l l, lr are squares of size 2i−1 × 2i−1, as relational atoms of the form

Ti(id, ul, ur , l l, lr),

where id is the identity of the encoded square, and ul, ur , l l, lr are the identities of its four subsquares as
shown above.

We first construct squares of size 2 × 2 that satisfy the compatibility relations directly from H and V
stored in the database DT . This is done via the TGD

H(x1, x2), H(x3, x4), V (x1, x3), V (x2, x4) → ∃z T1(z, x1, x2, x3, x4).

The inductive construction of squares of size 2i × 2i, for i ∈ {2, . . . , n}, which satisfy the compatibility
relations, from squares of size 2i−1 × 2i−1, is done via the following TGDs. For each i ∈ {1, . . . , n− 1},
we have the TGD

Ti(u1, x1, x2, x3, x4), Ti(u2, x2, y1, x4, y3), Ti(u3, y1, y2, y3, y4),
Ti(u4, x3, x4, z1, z2), Ti(u5, x4, y3, z2, w1), Ti(u6, y3, y4, w1, w2),
Ti(u7, z1, z2, z3, z4), Ti(u8, z2, w1, z4, w3), Ti(u9, w1, w2, w3, w4) → ∃uTi+1(u, u1, u3, u7, u9).
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We now need to verify the initial condition. To this end, we need to extract from the squares of size
2n × 2n the tiles at positions (0, 0), (1, 0), . . . , (|s| − 1, 0). This is done by defining relational atoms of the
form

Topji (x, y),

where 1 ≤ i ≤ n and 0 ≤ j ≤ |s| − 1, to express that in the 2i × 2i square x, at position (j, 0), we have
the tile y ∈ {1, . . . ,m}. We then need to add the TGDs

T1(x, x1, x2, x3, x4) → Top0
1(x, x1),Top1

1(x, x2),

for each i ∈ {2, . . . , ⌈log |s|⌉},

Ti(x, x1, x2, x3, x4),Top0
i−1(x1, y0), . . . ,Top2i−1−1

i−1 (x1, y2i−1−1)→Top0
i (x, y0), . . . ,Top2i−1−1

i (x, y2i−1−1),

Ti(x, x1, x2, x3, x4),Top0
i−1(x2, y0), . . . ,Top2i−1−1

i−1 (x2, y2i−1−1)→Top2i−1

i (x, y0), . . . ,Top2i−1
i (x, y2i−1−1),

and, for each i ∈ {⌈log |s|⌉ + 1, . . . , n},

Ti(x, x1, x2, x3, x4),Top0
i−1(x1, y0), . . . ,Top|s|−1

i−1 (x1, y|s|−1) → Top0
i (x, y0), . . . ,Top|s|−1

i (x, y|s|−1).

We finally add the TGD

Top0
n(x, y0), S0(y0), . . . ,Top|s|−1

n (x, y|s|−1), S|s|−1(y|s|−1) → Yes(),

which simply checks whether there exists a square of size 2n × 2n that complies with H and V , and, in
addition, the tile at position (i, 0), for i ∈ {0, . . . , |s| − 1}, is s[i], i.e., it checks whether an exponential
tiling for T has been found.

It should be clear that T has an exponential tiling iff the atom Yes() occurs in chase(DT ,ΣT ), which
implies that the above construction is correct. It should be also clear that DT and ΣT can be constructed
in polynomial time, while ΣT mentions only predicates of arity at most five. This completes the proof of
Lemma 3.2.

3.3 Stickiness
This condition, introduced in [13], is inherently different from guardedness and acyclicity. It ensures
neither finite treewidth nor termination of the chase. Instead, the decidability of query answering is
obtained via backward-chaining techniques. The goal of stickiness is to capture joins among variables
that are not expressible via guarded TGDs, but without forcing the chase to terminate. The key property
underlying this condition is that, during the chase, terms that unify with variables that appear more
than once in the body of a TGD (i.e., join variables) are always propagated (or “stick”) to the inferred
atoms; this is graphically illustrated as

× 
  T(x,y,z)  → ∃w  S(y,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

  T(x,y,z)  → ∃w  S(x,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

where the first set of TGDs is sticky, while the second is not. The formal definition is based on an
inductive procedure that marks the variables that may violate the semantic property described above.
Roughly, during the base step of this procedure, a variable that appears in the body of a TGD σ but not
in every head atom of σ is marked. Then, the marking is inductively propagated from head to body as
follows

  T(x,yyyy,z)  → ∃w  S(x,w)

    R(x,yyyy), P(yyyy,z) → ∃w        T(x,y,w)
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Stickiness requires every marked variable to appear only once in the body of a TGD. Let us now give the
formal definition.

Consider a set Σ of TGDs; we can always assume that the TGDs in Σ do not share variables. For
brevity, given an atom R(t̄) and a variable x ∈ t̄, pos(R(t̄), x) is the set of positions in R(t̄) at which x
occurs; a position R[i] identifies the i-th attribute of the predicate R. Let σ ∈ Σ and x a variable in the
body of σ. We inductively define when x is marked in Σ as follows:

- If there is an atom R(t̄) ∈ head(σ) such that x ̸∈ t̄, then x is marked in Σ.

- Assuming that there exists an atom R(t̄) ∈ head(σ) such that x ∈ t̄, if there is σ′ ∈ Σ that has in its
body an atom of the form R(t̄′), and each variable in R(t̄′) at a position of pos(R(t̄), x) is marked
in Σ, then x is marked in Σ.

The set Σ is sticky if there is no TGD whose body contains two occurrences of a variable that is marked
in Σ. Let S be the class of sticky sets of TGDs. Then:

Proposition 3.4 ([13, 23]). QAns(S⊥) is ExpTime-complete in c-complexity, NP-complete in ba-
complexity and fp-complexity, and in AC0 in d-complexity.

Let us clarify that in [13], where stickiness has been introduced, only the c-complexity, fp-complexity,
and d-complexity have been considered. Moreover, the query answering algorithm devised in [13] does
not provide an NP upper bound in the case of ba-complexity. This result is implicit in [23], where a
result analogous to Lemma 3.1 is shown. In particular, there is a function g(x, y), which is polynomial in
x and exponential in y, such that, for every database D, set Σ ∈ S, CQ q(x̄), and tuple c̄ ∈ dom(D)|x̄|,
c̄ ∈ cert(q,D,Σ) implies there exists a sequence of instances (Ii)0≤i≤g(|q|+n,m) with J0 = D and Ii⟨σ, h⟩Ii+1
for some TGD σ ∈ Σ and homomorphism h, where n is the number of predicates in Σ, and m the
maximum arity over all those predicates, such that c̄ ∈ q(Ig(|q|+n,m)). Thus, if the arity of the underlying
schema is bounded by a constant, g(|q| + n,m) is a polynomial, which in turn leads to an easy guess and
check algorithm for QAns(S) that runs in polynomial time. Therefore, QAns(S) is in NP in ba-complexity.

4 Consistent ontological query answering
As already discussed in Section 2, the set of certain answers to a CQ q(x̄) w.r.t. a database D and a
set Σ of TGDs and NCs that are inconsistent consists of all the tuples c̄ ∈ dom(D)|x̄|. This exposes the
main weakness of the standard certain answers semantics as defined above: the answers that we obtain
from databases that are inconsistent with the given set of TGDs and NCs are not meaningful in practice.
For this reason, several inconsistency-tolerant semantics have been proposed in the literature. All these
inconsistency-tolerant semantics are based on the key notion of repair, which is essentially a ⊆-maximal
consistent subset of the given database.

Definition 4.1 (Repairs). Consider a database D and a set Σ of TGDs and NCs. A repair of D and Σ
is a database D′ ⊆ D such that

1. mods(D′,Σ) ̸= ∅, and

2. there is no α ∈ D \D′ such that mods(D′ ∪ {α},Σ) ̸= ∅.

We write reps(D,Σ) for the set of repairs of D and Σ.

A simple example that illustrates the notion of repair follows. Note that this example will also serve as
a running example in the rest of the section for illustrating the different inconsistency-tolerant semantics
that we consider in our work.

Example 4.2. Consider the database

D = {Professor(p),Postdoc(p),Group(g),LeaderOf(p, g)},

asserting that p is a professor, a postdoc, and the leader of the research group g. Consider also the set Σ
of TGDs and NCs consisting of

Professor(x) → ∃yResearcher(x),WorksOn(x, y),Project(y)
Postdoc(x) → ∃yResearcher(x),WorksOn(x, y),Project(y)

LeaderOf(x, y) → Professor(x),Group(y)
Professor(x),Postdoc(x) → ⊥,
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expressing that professors and postdocs are researchers who work on some project, the domain (range)
of the relation LeaderOf(·, ·) consists of professors (research groups), and professors and postdocs form
disjoint sets. Clearly, mods(D,Σ) = ∅ since p violates the disjointness assertion. The repairs of D and Σ
are

D1 = {Professor(p),Group(g),LeaderOf(p, g)}
D2 = {Postdoc(p),Group(g)}.

To obtain D1 it suffices to remove the atom Postdoc(p) from D. To obtain D2, apart from removing
Professor(p), we also need to remove LeaderOf(p, g), which, together with the third TGD above, implies
Professor(p).

4.1 ABox repair semantics
Having the notion of repair in place, we can now recall the main inconsistency-tolerant semantics, i.e.,
the ABox repair (AR) semantics [28]. Notice that this semantics has been proposed in the context of
description logics, where the database is called assertional box (ABox); hence the name ABox repair. The
underlying idea is very simple: a tuple is a certain answer if it is entailed by every repair.

Definition 4.3 (AR Semantics). Consider a database D, and a set Σ of TGDs and NCs with
reps(D,Σ) = {D1, . . . , Dn}. The AR-certain answers to q w.r.t. D and Σ is defined as certAR(q,D,
Σ) =

⋂
i∈{1,...,n} cert(q,Di,Σ).

A simple example that illustrates the AR semantics follows:

Example 4.4. Consider the database D and the set Σ of TGDs and NCs in Example 4.2. Consider also
the Boolean CQs

q1 = ∃xGroup(x) q2 = Researcher(p)
q3 = ∃xProject(x) q4 = Professor(p).

The query q1 asks whether a group exists, q2 whether p is a researcher, q3 whether a project exists, and
q4 whether p is a professor. Recall that reps(D,Σ) = {D1, D2} as in Example 4.2. Observe that, for each
i ∈ {1, 2} and j ∈ {1, 2, 3}, it holds that cert(qj , Di,Σ) ̸= ∅; hence, certAR(qj , D,Σ) ̸= ∅. On the other
hand, even if cert(q4, D2,Σ) ̸= ∅, cert(q2, D2,Σ) = ∅, and thus certAR(q4, D,Σ) = ∅.

Although the AR semantics provides an elegant way to deal with inconsistency in ontological query
answering, finding AR-certain answers is most commonly in coNP, and very often coNP-hard in d-
complexity [28]. The reason is the fact that we need to consider many repairs, in general, exponentially
many in the size of the database. This led to a large body of work on defining sound approximations
of the AR semantics with the aim of reducing the complexity of query answering. Two of the most
prominent such approximations are the intersection of repairs (IAR) semantics [28] and the intersection
of closed repairs (ICR) semantics [3].

4.2 Intersection of ABox repairs semantics
The key idea is, instead of considering all the possible repairs, to focus on one repair that approximates
all the others in a sound way. The obvious repair with this property is the one obtained by computing
the intersection of all the repairs.

Definition 4.5 (IAR Semantics). Consider a database D, and a set Σ of TGDs and NCs with reps(D,Σ) =
{D1, . . . , Dn}. The IAR-certain answers to a CQ q w.r.t. D and Σ is defined as certIAR(q,D,Σ) =
cert(q,

⋂
i∈{1,...,n} Di,Σ).

Clearly, certIAR(q,D,Σ) ⊆ certAR(q,D,Σ), i.e., the IAR semantics is indeed a sound approximation of
the AR semantics. Here is a simple example:

Example 4.6. Consider the database D and the set Σ of TGDs and NCs in Example 4.2, and the CQs in
Example 4.4. Recall that reps(D,Σ) = {D1, D2} given in Example 4.2, and thus D1 ∩D2 = {Group(g)}.
Hence, certIAR(q1, D,Σ) = cert(q1, D1 ∩D2,Σ) ̸= ∅, while certIAR(qi, D,Σ) = ∅ for each i ∈ {2, 3, 4}.
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c-complexity ba-complexity fp-complexity d-complexity
G⊥ 2ExpTime ExpTime ΠP

2 coNP
L⊥ PSpace ΠP

2 ΠP
2 coNP

A⊥ PNExpTime PNExpTime ΠP
2 coNP

S⊥ ExpTime ΠP
2 ΠP

2 coNP

Table 2: Complexity of QAnsAR(C⊥), where C ∈ {G, L,A,S}; these are completeness results.

4.3 Intersection of closed repairs semantics
The key idea is, as in the case of the IAR semantics, to focus on one repair that approximates all the
others in a sound way. This can be done in a more refined way than by considering the intersection of all
repairs, which corresponds to closing the repairs w.r.t. the given set of TGDs before intersecting them.
Given a database D and a set Σ of TGDs, we denote by cl(D,Σ) the set of ground atoms that can be
entailed by D and Σ, i.e., the set of atoms

⋂
mods(D,Σ).

Definition 4.7 (ICR Semantics). Consider a database D, and a set Σ of TGDs and NCs with
reps(D,Σ) = {D1, . . . , Dn}. The ICR-certain answers to a CQ q w.r.t. D and Σ is certICR(q,D,
Σ) = cert(q,

⋂
i∈{1,...,n} cl(Di, τ(Σ)),Σ).

Here is a simple example based on our running example:

Example 4.8. Consider the database D and the set Σ of TGDs and NCs in Example 4.2, and the CQs
in Example 4.4. Recall that reps(D,Σ) = {D1, D2} as in Example 4.2; thus, cl(D1, τ(Σ)) ∩ cl(D2, τ(Σ)) =
{Research(p),Group(g)}. Hence, certICR(qi, D,Σ) ̸= ∅ for i ∈ {1, 2}, and certICR(qi, D,Σ) = ∅ for
i ∈ {3, 4}.

Observe that in the scenario adopted in the above simple examples, where the repairs of D and Σ
are the databases D1 and D2 given in Example 4.2, it holds that D1 ∩D2 ⊂ cl(D1, τ(Σ)) ∩ cl(D2, τ(Σ)),
which explains the fact that more queries are entailed in the case of the ICR semantics. In general, we
can show that

certIAR(q,D,Σ) ⊆ certICR(q,D,Σ) ⊆ certAR(q,D,Σ),

which justifies the statement that the ICR semantics is a finer approximation of the AR semantics than
the IAR semantics.

4.4 Inconsistency-tolerant ontological query answering
Having the above semantics in place, we are now ready to revisit ontological query answering in order
to ensure conceptually meaningful answers. The intention is not to compute the certain answers,
but the s-certain answers, where s is one of the inconsistency-tolerant semantics described above, i.e.,
s ∈ {AR, IAR, ICR}. This gives rise to the following problems; as usual, C denotes a class of TGDs:

PROBLEM : QAnss(C⊥)
INPUT : A database D, a set Σ ∈ C⊥, a CQ q(x̄), and c̄ ∈ dom(D)|x̄|.
QUESTION : Does c̄ ∈ certs(q,D,Σ)?

We may also write QAnss(NC) for the problem that takes as input a database D, a set Σ of NCs (i.e.,
Σ does not contain any TGDs), a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|, and asks whether c̄ ∈ certs(q,D,
Σ). Pinpointing the exact complexity of the above problems is the main goal of the present work. We are
going to consider different complexity measures, that is, the combined complexity, the bounded-arity and
fixed-program combined complexity, and the data complexity of QAnss(C⊥), which are defined in the
obvious way. Each one of the next three sections focuses on one of the semantics in question.

5 ABox repair semantics
We first focus on QAnsAR(C⊥), where C is one of the classes of TGDs discussed above. The main result of
this section follows:
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and tuple c̄ ∈ dom(D)|x̄|

Output: accept, if c̄ ̸∈ certAR(q,D,Σ); otherwise, reject

guess a database D′ ⊆ D
if there exists σ ∈ ν(Σ) such that cert(qσ, D′, τ(Σ)) ̸= ∅ then

return reject
foreach α ∈ D \D′ do

if there is no σ ∈ ν(Σ) such that cert(qσ, D′ ∪ {α}, τ(Σ)) ̸= ∅ then
return reject

if c̄ ∈ cert(q,D′, τ(Σ)) then
return reject

else
return accept

Algorithm 1: AlgorithmAR

Theorem 5.1. The t-complexity of QAnsAR(C⊥), where t ∈ {c, ba, fp, d} and C ∈ {G, L,A, S}, is as shown
in Table 2.

The rest of the section is devoted to establishing the above result. We first show, in Section 5.1, the
upper bounds, and then, in Section 5.2, the lower bounds.

5.1 Upper bounds

Interestingly, all the upper bounds in Table 2 are obtained via the simple algorithm that checks
whether there exists a repair that does not entail the given tuple of constants. The formal definition
of this algorithm, called AlgorithmAR, is given in Algorithm 1. It is clear that this non-deterministic
algorithm is correct. It is also easy to see that AlgorithmAR(D,Σ, q, c̄) runs in polynomial time, assuming
access to an oracle that is powerful enough for solving the problem QAns(C), where C is the class of
TGDs from which τ(Σ) is coming from. Therefore:

Lemma 5.1. For a class C of TGDs, QAnsAR(C⊥) is in coNPC in t-complexity, where t ∈ {c, ba, fp, d},
assuming that QAns(C) is in C in t-complexity.

The desired upper bounds given in Table 2 are obtained from Propositions 3.1, 3.2, 3.3, and 3.4, which
provide the t-complexity of QAns(C), for t ∈ {c, ba, fp, d}, Lemma 5.1, and the following complexity facts:

coNPC =



coNP if C ⊆ PTime

ΠP
2 if C = coNP

C if C ∈ {PSpace,ExpTime, 2ExpTime}

PNExpTime if C = NExpTime.

The first three facts are actually well-known. We only need to argue why the fourth one holds. The
complexity class NPNexpTime lies at a higher level of the so-called strong exponential hierarchy. We
know that the strong exponential hierarchy collapses to its ∆2 level, which implies that NPNexpTime =
PNexpTime [26]. Observe that the class PNexpTime is a deterministic one, since the oracle machines in terms
of which it is defined are deterministic, and therefore coPNexpTime = PNexpTime.

5.2 Lower bounds
We now proceed to establish the complexity lower bounds claimed in Table 2. In fact, the C-hardness
results, where C ∈ {PSpace,ExpTime, 2ExpTime}, are coming for free, since already QAns(C) is C-hard.
Therefore, to complete the picture, it suffices to establish the following results:

1. QAnsAR(A⊥) is PNExpTime-hard in ba-complexity.

2. QAnsAR(NC) is ΠP
2 -hard in fp-complexity.
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3. QAnsAR(NC) is coNP-hard in d-complexity.

Notice that the last two statements refer only to negative constraints. The rest of the section is devoted
to establishing the above three lower bounds.

Theorem 5.2. QAnsAR(A⊥) is PNExpTime-hard in ba-complexity.

Actually, the above result has been recently shown in [20] by relying on the construction, given in the
proof of Lemma 3.2, for showing that QAns(A) is NExpTime-hard. As we will need it later, we recall
the proof of this result, which relies on a PNExpTime-hard variation of the exponential tiling problem,
introduced in [20]. An extended tiling system is a tuple E = (k, n,m,H1, V1, H2, V2), where k, n, and m
are numbers in unary, and H1, V1, H2, and V2 are subsets of {1, . . . ,m} × {1, . . . ,m}. We say that E
is valid if the following holds: for every sequence s of length k of numbers from {1, . . . ,m}, there is no
exponential tiling for the tiling system T1 = (n,m,H1, V1, s), or there is an exponential tiling for the
tiling system T2 = (n,m,H2, V2, s). The extended exponential tiling problem follows:

PROBLEM : ExtendedExpTiling
INPUT : An extended tiling system E .
QUESTION : Is E valid?

We are now ready to recall the proof of Theorem 5.2 given in [20].

Proof of Theorem 5.2. Let E = (k, n,m,H1, V1, H2, V2) be an extended tiling system. We construct a
database DE , and a set ΣE ∈ A⊥ that mentions only predicates of bounded arity, such that E is valid iff
certAR(Yes(), DE ,ΣE) ̸= ∅.
The database DE . As expected, it stores the horizontal and vertical compatibility relations Hi and Vi,
for i ∈ {1, 2}, respectively. In addition, it stores all the possible sequences of length k of numbers from
{1, . . . ,m}. More precisely,

DE = {Hℓ(i, j) | (i, j) ∈ Hℓ}ℓ∈{1,2} ∪ {Vℓ(i, j) | (i, j) ∈ Vℓ}ℓ∈{1,2} ∪
{S1

i (j), S2
i (j)}i∈{0,...,k−1},j∈{1,...,m} ∪ {No1()}.

The atom No1() is an auxiliary atom that will help us to check whether, for every sequence s of length k,
there is no exponential tiling for (n,m,H1, V1, s).
The set of TGDs and NCs ΣE . We first add the following NCs. For each i ∈ {0, . . . , k− 1}, j ∈ {1, 2},
and ℓ, ℓ′ ∈ {1, . . . ,m} such that ℓ ̸= ℓ′, we have

Sji (ℓ), S
j
i (ℓ′) → ⊥.

For each i ∈ {0, . . . , k − 1}, and ℓ, ℓ′ ∈ {1, . . . ,m} such that ℓ ̸= ℓ′, we also have

S1
i (ℓ), S2

i (ℓ′) → ⊥.

The above set of NCs guarantees that in each repair exactly one atom of the form Sji (ℓ) occurs, for each
j ∈ {1, 2}, where ℓ ∈ {1, . . . ,m}. That is, in each repair, we keep a proper sequence s of length k of
numbers from {1, . . . ,m} such that Ti = (n,m,Hi, Vi, s), for each i ∈ {1, 2}, are proper tiling systems.

We then add the TGDs ΣT1 and ΣT2 that encode the tiling systems T1 and T2 as defined in the
proof of Lemma 3.2; ΣT1 and ΣT2 use different predicates. Assuming that the final TGD of ΣTi

, which
checks for the existence of an exponential tiling for Ti, has in its head the atom Yesi(), we finally add the
following NC and TGDs:

Yes1(),No1() → ⊥ No1() → Yes() Yes2() → Yes().

The above NC ensures that No1() appears in every repair iff the atom Yes1() is not entailed, or,
equivalently, for every sequence s of length k, the tiling system (n,m,H1, V1, s) does not admit an
exponential tiling. It should then be clear that the following are equivalent:

1. For every D ∈ reps(DE ,ΣE), the atom Yes() occurs in chase(D, τ(ΣE)).

2. For every sequence s of length k of numbers from {1, . . . ,m}, there is no exponential tiling for
T1 = (n,m,H1, V1, s), or there is an exponential tiling for T2 = (n,m,H2, V2, s), i.e., E is valid.
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Hence, the above reduction is correct. It is also easy to verify that DE and ΣE can be constructed
in polynomial time, and ΣE mentions only predicates of bounded arity. This completes the proof of
Theorem 5.2.

Theorem 5.3. QAnsAR(NC) is ΠP
2 -hard in fp-complexity.

The proof of the above result exploits the satisfiability problem for quantified Boolean formulas with
two alternations of quantifiers starting with universal quantifiers (2QBF∀). We actually consider formulas
of the form

φ = ∀x1 · · · ∀xn∃y1 · · · ∃ym ψ,

where ψ = C1 ∧ · · · ∧ Ck is a 3CNF formula with Ci being a clause of the form (ℓ1
i ∨ ℓ2

i ∨ ℓ3
i ), while

each literal ℓji is either a variable or the negation of a variable. The formula φ is satisfiable if, for every
assignment of truth values to variables x1, . . . , xn, there is an assignment of truth values to variables
y1, . . . , ym such that ψ evaluates to true. The ΠP

2 -hard problem of interest follows:

PROBLEM : 2QBF∀-SAT
INPUT : A 2QBF∀ formula φ.
QUESTION : Is φ satisfiable?

We are now ready to give the proof of Theorem 5.3.

Proof of Theorem 5.3. Given a 2QBF∀ formula φ as above, we construct a database Dφ, and a BCQ qφ,
such that φ is satisfiable iff certAR(qφ, Dφ,Σ) ̸= ∅ with

Σ = {S(x,_, z), S(_, x, z) → ⊥},

where “_” denotes a “don’t care” variable that occurs only once.

The database Dφ. Roughly, in Dφ we store, for each clause C, all the valuations that make C true.
A valuation for C is a function f from the variables in C to {0, 1}. For a literal ℓ = x (resp., ℓ = ¬x),
f(ℓ) = f(x) (resp., f(ℓ) = ¬f(x)). A valuation f satisfies a clause C = (ℓ1 ∨ℓ2 ∨ℓ3) if (f(ℓ1)∨f(ℓ2)∨f(ℓ3))
evaluates to true. For a clause C, let T (C) be the set of valuations for C that make C true. For a literal
ℓ, we write var(ℓ) for its variable. The database Dφ is defined as⋃

1≤i≤k

⋃
f∈T (Ci)

⋃
1≤j≤3

{
P ji

(
cfi , f(var(ℓji ))

)}
∪

⋃
1≤i≤n

{S(0, 1, di), S(1, 0, di)}.

The atom P ji (cfi , f(var(ℓji ))) simply states the following: according to the valuation f , the variable of
the literal ℓji of Ci takes the value f(var(ℓji )). The S-atoms are auxiliary atoms, and their purpose is
explained below.

The query qφ. Observe that the set reps(D,Σ) consists of all the subsets of D that can be formed by
keeping either the atom S(0, 1, di) or the atom S(1, 0, di), for each i ∈ {1, . . . , n}. In fact, each repair
D′ corresponds to a possible assignment µD′ of truth values to the universally quantified variables of
φ. More precisely, the atom S(0, 1, di) (resp., S(1, 0, di)) states that the universally quantified variable
xi is assigned the value 0 (resp., 1). Therefore, it suffices to check whether, for every D′ ∈ reps(D,Σ),
there exists a valuation for φ, which is compatible with µD′ , that makes φ true. This is achieved via the
Boolean CQ

qφ =
∧

1≤i≤k

∧
1≤j≤3

P ji (zi, var(ℓji )) ∧
∧

1≤i≤n

S(xi,_, di),

where all the variables occurring in qφ are existentially quantified. This completes the proof of Theorem 5.3.

Theorem 5.4. QAnsAR(NC) is coNP-hard in d-complexity.

The above result relies on a variation of the unsatisfiability problem for Boolean formulas. A (2 + 2)
Boolean formula is a CNF formula where each clause has two positive and two negative literals. The
coNP-hard problem of interest follows:
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c-complexity ba-complexity fp-complexity d-complexity
G⊥ 2ExpTime ExpTime ΘP

2 coNP
L⊥ PSpace ΠP

2 NP in AC0
A⊥ PNExpTime PNExpTime NP in AC0
S⊥ ExpTime ΠP

2 NP in AC0

Table 3: Complexity of QAnsIAR(C⊥), where C ∈ {G, L,A,S}. Recall that ΘP
2 = PNP[O(logn)], i.e., it

collects all the problems that are solvable in polynomial time with logarithimically many calls to an
NP-oracle. Apart from the AC0 upper bounds, the rest are completeness results.

PROBLEM : 2+2UNSAT
INPUT : A (2 + 2) Boolean formula φ.
QUESTION : Is φ unsatisfiable?

We are now ready to give the proof of Theorem 5.4.

Proof of Theorem 5.4. Given a (2 + 2) formula φ = C1 ∧ · · · ∧Cn over the variables x1, . . . , xm, we define
the database Dφ as follows:

{Pos1(i, x1
i ),Pos2(i, x2

i ),Neg1(i, x3
i ),Neg2(i, x4

i ) | Ci = x1
i ∨ x2

i ∨ x3
i ∨ x4

i }
∪ {True(xi),False(xi) | 1 ≤ i ≤ m},

which essentially stores the formula φ, and also assigns to each variable in φ both the value 1 and the
value 0. It is not difficult to verify that φ is unsatisfiable iff certAR(q,Dφ,Σ) ̸= ∅, where

Σ = {True(x),False(x) → ⊥}

and q is the Boolean CQ

∃x∃y1 · · · ∃y4 (Pos1(x, y1) ∧ False(y1) ∧ Pos2(x, y2) ∧ False(y2)∧
Neg1(x, y3) ∧ True(y3) ∧ Neg2(x, y4) ∧ True(y4)) .

It is clear that, for each variable x of φ, a repair of reps(D,Σ) keeps either the atom True(x) or the
atom False(x), i.e., each D′ ∈ reps(D,Σ) corresponds to a possible assignment µD′ of truth values to the
variables of φ. The query q checks that each such assignment evaluates φ to false, which is actually done
by checking that at least one clause of φ evaluates to false.

6 Intersection of repairs semantics
We now concentrate on QAnsIAR(C⊥), where C is one of the classes of TGDs discussed above. The main
result of this section follows:

Theorem 6.1. The t-complexity of QAnsIAR(C⊥), where t ∈ {c, ba, fp, d} and C ∈ {G, L,A, S}, is as shown
in Table 3.

The rest of the section is devoted to establishing the above result. We first show, in Section 6.1, the
upper bounds, and then, in Section 6.2, the lower bounds.

6.1 Upper bounds
Although for the ABox repair semantics we were able to establish all the upper bounds (see Table 2) in a
uniform way via the algorithm AlgorithmAR, this is not the case for the intersection of repairs semantics.
We are able, however, to partition the cells of Table 3 into four groups, and establish the upper bounds
claimed in the cells of each such group in a uniform way. The four groups are as follows:

1. The c-complexity and the ba-complexity for C⊥, where C ∈ {G, L,A, S}, as well as the d-complexity
for G⊥.
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|

Output: accept, if c̄ ̸∈ certIAR(q,D,Σ); otherwise, reject

guess a database D⋆ ⊆ D
foreach α ∈ D \D⋆ do

guess a database Dα ⊆ D
if α ∈ Dα then

return reject
else

foreach β ∈ D \Dα do
if there is no σ ∈ ν(Σ) s.t. cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅ then

return reject

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return reject

else
return accept

Algorithm 2: AlgorithmIAR1

2. The fp-complexity for G⊥.

3. The fp-complexity for C⊥, where C ∈ {L,A,S}.

4. The d-complexity for C⊥, where C ∈ {L,A,S}.

We proceed to give more details for each of the above groups.

6.1.1 The c-complexity and the ba-complexity for C⊥, where C ∈ {G, L, A, S}, as well as the
d-complexity for G⊥

The upper bounds are obtained via the simple procedure AlgorithmIAR1, depicted in Algorithm 2, that
checks whether there exists a superset of the intersection of repairs that does not entail the given tuple
c̄ of constants. More precisely, the algorithm guesses a subset D⋆ of the input database D, and then
checks that for every atom α ∈ D \D⋆, there exists Dα ∈ reps(D,Σ), where Σ is the input set of TGDs
and NCs, such that α ̸∈ Dα, and thus, α is not in the intersection of repairs. This implies that D⋆ is a
superset of the intersection of repairs. Finally, the algorithm rejects if c̄ ∈ cert(q,D⋆, τ(Σ)); otherwise, it
accepts. Indeed, this algorithm is correct due to the following lemma:

Lemma 6.1. Consider a database D, a set Σ of TGDs and NCs, a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|.
The following are equivalent:

1. c̄ ̸∈ certIAR(q,D,Σ).

2. There exists D⋆ ⊇
⋂
D′∈reps(D,Σ) D

′ such that c̄ ̸∈ cert(q,D⋆, τ(Σ)).

Proof. The fact that (1) implies (2) holds trivially with D⋆ being exactly the intersection of repairs. The
other direction follows by the monotonicity of the CQ q, i.e., for every two instances I1 and I2, I1 ⊆ I2
implies q(I1) ⊆ q(I2).

It is also easy to see that the non-deterministic algorithm AlgorithmIAR1 runs in polynomial time,
assuming access to an oracle that can solve QAns(C), where C is the class of TGDs from which the input
set of TGDs is coming from. Therefore:

Lemma 6.2. For a class C of TGDs, QAnsIAR(C⊥) is in coNPC in t-complexity, where t ∈ {c, ba, d},
assuming that QAns(C) is in C in t-complexity.

Since, by Lemma 6.1, AlgorithmIAR1 is correct, the desired upper bounds for Group 1 given in Table 3
are obtained from Propositions 3.1, 3.2, 3.3 and 3.4, Lemma 6.2, and the following complexity facts that
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ∈ certIAR(q,D,Σ); otherwise, reject

D⋆ := D
foreach α ∈ D do

if there exists Dα ∈ reps(D,Σ) such that α ̸∈ Dα then
D⋆ := D⋆ \ {α}

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return accept

else
return reject

Algorithm 3: AlgorithmIAR2

have been already discussed in the previous section and we recall again for the sake of readability:

coNPC =



coNP if C ⊆ PTime

ΠP
2 if C = coNP

C if C ∈ {PSpace,ExpTime, 2ExpTime}

PNExpTime if C = NExpTime.

6.1.2 The fp-complexity for G⊥

We need to establish a ΘP
2 = PNP[O(logn)] upper bound. To this end, we exploit the procedure

AlgorithmIAR2, depicted in Algorithm 3, that constructs the intersection of repairs D⋆, and accepts
if the given tuple c̄ belongs to cert(q,D⋆, τ(Σ)); otherwise, it rejects. The intersection of repairs D⋆ is
constructed by starting from the input database D, and removing all the atoms α for which there exists
at least one repair Dα ∈ reps(D,Σ) such that α ̸∈ Dα. More precisely, D⋆ is constructed via polynomially
many parallel calls to an NP-oracle. In fact, for each atom α ∈ D, we call in parallel an NP-oracle that
does the following:

1. Guess a database Dα ⊆ D.

2. If α ∈ Dα, then reject.

3. For each atom β ∈ D \ Dα, if there is no σ ∈ ν(Σ) such that cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅, then
return reject; otherwise; return accept.

It is crucial to clarify that the check whether cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅ is feasible in polynomial time
since qσ and τ(Σ) are fixed – recall that we are studying the fp-complexity of QAnsIAR(G⊥), while, by
Proposition 3.1, QAns(G) is in PTime in d-complexity. Therefore, the above oracle in indeed an NP-oracle.
It is clear that, for an atom α ∈ D, if the above oracle returns accept, then there exists a repair Dα such
that α ̸∈ Dα, and thus, α does not belong to the intersection of repairs. Consequently, the intersection of
repairs D⋆ is constructed by simply removing from D all the atoms α for which the oracle returns accept.
Since D⋆ can be constructed in polynomial time via parallel NP-oracle calls, we can conclude that it can
also be constructed in polynomial time via logarithimically many NP-oracle calls; see, e.g., [42]. Once we
have D⋆ in place, we need one more call to an NP-oracle for checking whether c̄ ∈ cert(q,D⋆, τ(Σ)); the
latter is indeed in NP since, by Proposition 3.1, QAns(G) is in NP in fp-complexity. Hence, we get the
desired ΘP

2 = PNP[O(logn)] upper bound.

6.1.3 The fp-complexity for C⊥, where C ∈ {L,A,S}

We need to establish an NP upper bound. A crucial notion that we are going to exploit is that of culprit,
which is essentially a minimal inconsistent subset of a database D w.r.t. a set Σ of TGDs and NCs.
Formally, a culprit of D w.r.t. Σ is a subset D′ of D such that the following conditions hold:

1. mods(D′,Σ) = ∅, and
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ∈ certIAR(q,D,Σ); otherwise, reject

D⋆ := D \
⋃
D′∈culprit(D,Σ) D

′

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return accept

else
return reject

Algorithm 4: AlgorithmIAR3

2. there is no D′′ ⊊ D′ such that mods(D′′,Σ) = ∅.

Intuitively, a culprit is a minimal subset of D that, together with τ(Σ), entails some NC σ ∈ ν(Σ); a
culprit for σ is a “minimal explanation” [14] of qσ. We write culprit(D,Σ) for the set of all culprits of D
w.r.t. Σ. By deleting from D a minimal set of facts S intersecting all culprits from culprit(D,Σ),6 we
obtain a repair R = D \ S. By this, it is an easy exercise to show that the intersection of the repairs of D
w.r.t. Σ is precisely the subset of D obtained after eliminating its culprits (w.r.t. Σ):

Lemma 6.3. Consider a database D, and a set Σ of TGDs and NCs. It holds that⋂
D′∈reps(D,Σ)

D′ = D \
⋃

D′∈culprit(D,Σ)

D′.

From the above lemma, we immediately get the algorithm AlgorithmIAR3, depicted in Algorithm 4,
that explicitly constructs the intersection of repairs D⋆, and accepts if the given tuple c̄ belongs to
cert(q,D⋆, τ(Σ)); otherwise, it rejects. It remains to argue how we get the desired NP upper bounds. To
this end, it suffices to show that culprit(D,Σ) can be computed in polynomial time when the set Σ is
fixed and falls in C⊥, where C ∈ {L,A, S}. In such a case, D⋆ can be computed in polynomial time, and
the claim follows by Propositions 3.2, 3.3 and 3.4, which state that QAns(C) for C ∈ {L,A, S} is in NP in
fp-complexity.

The key property of the classes in question that we are going to exploit is UCQ-rewritability shown
in [24]: given a set of TGDs Σ ∈ C and a CQ q(x̄), we can construct a UCQ Qq,Σ(x̄) such that, for every
database D and tuple c̄ ∈ dom(D)|x̄|,

c̄ ∈ cert(q,D,Σ) ⇐⇒ c̄ ∈ Qq,Σ(D).

Consider now a set Σ ∈ C⊥, where C ∈ {L,A, S}. By exploiting UCQ-rewritability, we can first “embed”
the TGDs of τ(Σ) into the NCs of ν(Σ), which leads to a set of NCs denoted ⟨Σ⟩, and then compute the
culprits of a database D w.r.t. Σ by collecting all the images of the so-called minimal specializations of
the NCs of ⟨Σ⟩ in D via injective mappings. Let us formalize the above discussion.

• Let QΣ be the UCQ
⋃
σ∈ν(Σ) Qqσ,τ(Σ); recall that qσ denotes the Boolean CQ that corresponds to

σ. The embedding of τ(Σ) into ν(Σ) is the set

⟨Σ⟩ = {ϕ(x̄) → ⊥ | ∃x̄ ϕ(x̄) ∈ QΣ}.

• A specialization of a NC σ is a NC obtained from σ by identifying some of the variables occurring in
body(σ). For example, R(x, y, x), S(x) → ⊥ is a specialization of R(x, y, z), S(z) → ⊥ obtained by
identifying x and z. Notice that a NC is trivially a specialization of itself. We write sp(σ) for the
set of all specializations of a NC σ, and for a set of NCs Σ′ we define sp(Σ′) as the set

⋃
σ∈Σ′ sp(σ).

Moreover, we define msp(Σ′) as the largest subset of sp(Σ′) such that, for every σ ∈ msp(Σ′), there
is no σ′ ∈ msp(Σ′) with body(σ′) ⊊ body(σ) (up to variable renaming). Clearly, msp(Σ′) is unique
(up to variable renaming). Finally, for a database D, let

ID,Σ = {h(body(σ)) | σ ∈ msp(⟨Σ⟩) and h is an injective
homomorphism from body(σ) to D}.

6Such a deletion S is a (hypergraph) transversal of culprit(D, Σ), and hence S is minimal iff, for each fact f ∈ S, there is
a culprit C ∈ culprit(D, Σ) such that C ∩ S = {f} [16, 22].
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We proceed to show the following:

Lemma 6.4. For a database D and a set Σ ∈ C⊥, where C ∈ {L,A, S}, it holds that culprit(D,Σ) = ID,Σ.

Proof. (⊆) Consider an arbitrary C ∈ culprit(D,Σ). There is σ ∈ ⟨Σ⟩ and a homomorphism h from
body(σ) to C, and for every σ′ ∈ ⟨Σ⟩, there is no homomorphism from body(σ′) to a strict subset of
C. Let σh be the NC with body(σh) being the conjunction of atoms obtained from C by converting
each constant c into a variable xc. We claim that σh ∈ msp(⟨Σ⟩) (up to variable renaming), which in
turn implies that C ∈ ID,Σ. By contradiction, assume that this is not the case. It is clear that σh is a
specialization of σ (up to variable renaming), and thus σh ∈ sp(⟨Σ⟩) (up to variable renaming). This
implies that there exists σ′ ∈ sp(⟨Σ⟩) such that body(σ′) ⊊ body(σ) (up to variable renaming). Therefore
the NC σ′′ ∈ ⟨Σ⟩ from which σ′ is obtained via specialization can be mapped via a homomorphism to a
strict subset of C, which is a contradiction.

(⊇) Consider now an arbitrary C ∈ ID,Σ. By definition, there exists σ̂ ∈ msp(⟨Σ⟩) and an injective
mapping ĥ that maps body(σ̂) to C. By contradiction, assume that C ̸∈ culprit(D,Σ). Suppose that σ̂ is
the specialized version of σ ∈ ⟨Σ⟩. Clearly, there exists a homomorphism from body(σ) to C. Hence, the
fact that C ̸∈ culprit(D,Σ) allows us to conclude that there exists σ′ ∈ ⟨Σ⟩ and a homomorphism h′ from
body(σ′) to a strict subset C ′ of C. Consider the NC σ′′ with body(σ′′) being the conjunction of atoms
obtained from C ′ by converting each constant c into a variable xc. Clearly, σ′′ ∈ sp(⟨Σ⟩) (up to variable
renaming). But since ĥ(body(σ̂)) = C with ĥ being an injective homomorphism, we can conclude that
body(σ′′) ⊊ body(σ̂) (up to variable renaming). But this contradicts the fact σ̂ ∈ msp(⟨Σ⟩). Therefore,
C ∈ culprit(D,Σ), and the claim follows.

The fact that for a fixed set Σ ∈ C⊥, where C ∈ {L,A, S}, the culprits of a database D w.r.t. Σ can be
computed in polynomial time is an easy consequence of Lemma 6.4. Indeed, we can compute in constant
time the set of NCs msp(⟨Σ⟩). This in turn allows us to compute the set of databases ID,Σ in polynomial
time in the size of D, which, by Lemma 6.4, coincides with culprit(D,Σ).

6.1.4 The d-complexity for C⊥, where C ∈ {L,A,S}

Our goal is to establish an AC0 upper bound. To this end, we are going to show the following technical
result, which essentially states that computing the IAR-certain answers to a CQ in the case of linear,
acyclic and sticky sets of TGDs boils down to evaluating a first-order query over the input database.

Lemma 6.5. Consider a set of TGDs and NCs Σ ∈ C⊥, where C ∈ {L,A,S}, and a CQ q(x̄). We can
construct a first-order query Φq,Σ(x̄) such that, for every database D, certIAR(q,D,Σ) = Φq,Σ(D).

Having the above lemma in place, it is straightforward to obtain the desired AC0 upper bound. The
key fact is that the first-order query Φq,Σ does not depend on the input database. Therefore, for a
fixed set Σ of TGDs and NCs, and a fixed CQ q(x̄), we can construct the first-order query Φq,Σ(x̄) in
constant time. Then, given a database D and a tuple c̄ ∈ dom(D)|x̄|, we simply need to check whether
c̄ ∈ Φq,Σ(D). The latter is in AC0 since first-order query evaluation is in AC0 in data complexity. It
remains to establish Lemma 6.5.

We first establish the following useful auxiliary result:

Lemma 6.6. Consider a set of TGDs and NCs Σ ∈ C⊥, where C ∈ {L,A,S}, and a CQ q(x̄). We
can construct a first-order query Ψq,Σ(x̄) such that, for every database D, q

(
D \

⋃
D′∈culprit(D,Σ) D

′
)

=
Ψq,Σ(D).

Proof. We assume that q(x̄) = ∃ȳ ϕ(x̄, ȳ). We also assume, w.l.o.g., that the NCs of ⟨Σ⟩ and q do not
share variables. We define Ψq,Σ(x̄) as

∃y

ϕ(x̄, ȳ) ∧
∧

ψ(z̄)→⊥∈msp(⟨Σ⟩)

∀z̄

ψ(z̄) ∧
∧

v,w∈z̄,v ̸=w
v ̸= w →

∧
α∈ϕ(x̄,ȳ),β∈ψ(z̄)

α ̸= β

 .

Given a database D, Ψq,Σ(D) is the set of tuples c̄ ∈ dom(D)|x̄| such that q(c̄) is mapped to D via a
homomorphism h, while h(D) does not contain an atom of ID,Σ, and thus, by Lemma 6.4, h(D) does
not contain an atom of culprit(D,Σ). In other words, Ψq,Σ(D) = q(D \

⋃
D′∈culprit(D,Σ) D

′), and the claim
follows.
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We are now ready to give the proof of Lemma 6.5. We claim that the desired first-order query Φq,Σ(x̄)
is the query ∨

q′∈Qq,τ(Σ)

Ψq′,Σ(x̄),

where Ψq′,Σ(x̄) is the first-order query provided by Lemma 6.6. Given a database D, by Lemma 6.3 and
UCQ-rewritability, we get that

certIAR(q,D,Σ) =
⋃

q′∈Qq,τ(Σ)

q′

D \
⋃

D′∈culprit(D,Σ)

D′

 .

Since Ψq′,Σ(D) is precisely q′
(
D \

⋃
D′∈culprit(D,Σ) D

′
)

, the claim follows.

6.2 Lower bounds
We now proceed to establish the complexity lower bounds claimed in Table 3. The C-hardness results,
where C ∈ {NP,PSpace,ExpTime, 2ExpTime}, are coming for free since already QAns(C) is C-hard.
Therefore, to complete the picture, it suffices to establish the following hardness results:

1. QAnsIAR(A⊥) is PNExpTime-hard in ba-complexity.

2. QAnsIAR(NC) is ΠP
2 -hard in ba-complexity.

3. QAnsIAR(G⊥) is ΘP
2 -hard in fp-complexity.

4. QAnsIAR(G⊥) is coNP-hard in d-complexity.

Notice that the second statement refers only to negative constraints. The rest of the section is devoted to
establishing the above four lower bounds.

Theorem 6.2. QAnsIAR(A⊥) is PNExpTime-hard in ba-complexity.

Proof. The proof is via a reduction from the extended exponential tiling problem, which has been used
for showing Theorem 5.2, that is, the PNExpTime-hardness in ba-complexity of QAnsAR(A⊥). In fact, the
proof is an adaptation of the proof of Theorem 5.2. Recall that in the proof of Theorem 5.2, given an
exponential tiling system E = (k, n,m,H1, V1, H2, V2), we construct the database

DE = {Hℓ(i, j) | (i, j) ∈ Hℓ}ℓ∈{1,2} ∪ {Vℓ(i, j) | (i, j) ∈ Vℓ}ℓ∈{1,2} ∪
{S1

i (j), S2
i (j)}i∈{0,...,k−1},j∈{1,...,m} ∪ {No1()}

and a set ΣE ∈ A⊥, which mentions only predicates of bounded arity, such that

E is valid ⇐⇒ certAR(Yes(), DE ,ΣE) ̸= ∅. (3)

For showing Theorem 6.2, we adapt DE and ΣE as follows:

D̂E = DE ∪ {Yes(),No2()}
Σ̂E = ΣE ∪

{ϕ(x̄),Yes(),No() → ⊥,
Yes2(),No2() → ⊥,
Yes1(),No2() → No()},

where ϕ(x̄) is the conjunction of atoms

∧
ℓ∈{1,2}

 ∧
(i,j)∈Hℓ

Hℓ(i, j) ∧
∧

(i,j)∈Vℓ

Vℓ(i, j) ∧
∧

i∈{0,...,k−1}

Sℓi (xi)

 .

We first show that

certAR(Yes(), DE ,ΣE) ̸= ∅ ⇐⇒ certAR(Yes(), D̂E , Σ̂E) ̸= ∅. (4)
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For the direction (⇒), assume that certAR(Yes(), D̂E , Σ̂E) = ∅. This implies that there exists D′ ∈
reps(D̂E , Σ̂E) such that cert(Yes(), D′, Σ̂E) = ∅. It is clear that Yes() ̸∈ D′. Observe that cert(q,D′, Σ̂E) ̸=
∅, where q is the Boolean CQ ∃x̄ ϕ(x̄),No(), since otherwise mods(D′ ∪ Yes(), Σ̂E) ̸= ∅, which contradicts
the fact that D′ ∈ reps(D̂E , Σ̂E). This in turn implies cert(Yes1(), D′, Σ̂E) ̸= ∅. Let D′′ = D′ \ {No2()}.
We proceed to show that D′′ ∈ reps(DE ,ΣE) and cert(Yes(), D′′,ΣE) = ∅, which in turn implies that
certAR(Yes(), DE ,ΣE) = ∅, as needed. It is clear that D′′ ⊆ DE . Moreover, since D′′ ⊆ D′ and ΣE ⊆ Σ̂E ,
we immediately get that cert(Yes(), D′′,ΣE) = ∅ (since cert(Yes(), D′, Σ̂E) = ∅), and mods(D′′,ΣE) ̸= ∅
(since mods(D′, Σ̂E) ̸= ∅). To show that D′′ ∈ reps(DE ,ΣE), it remains to show that there is no
α ∈ DE \D′′ such that mods(D′′ ∪ {α},ΣE) ̸= ∅. We first observe that in DE \D′′ we only have atoms
of the form Sji (ℓ) for i ∈ {0, . . . , k − 1}, j ∈ {1, 2} and ℓ ∈ {1, . . . ,m}, and the atom No1(). It is clear
that adding to D′′ an atom α of the form Sji (ℓ) leads to inconsistency, i.e., mods(D′′ ∪ {α},ΣE) = ∅.
Observe now that cert(Yes1(), D′, Σ̂E) ̸= ∅ implies cert(Yes1(), D′′,ΣE) ̸= ∅ since the facts (resp.,
the TGDs and NCs) in D′ \ D′′ (resp., Σ̂E \ ΣE) do not affect the entailment of Yes1(). Therefore,
cert(Yes1(), D′′ ∪ {No1()},ΣE) ̸= ∅, which in turn implies that mods(D′′ ∪ {No1()},ΣE) = ∅. We
conclude that D′′ ∈ reps(DE ,ΣE), and the claim follows.

For the direction (⇐), assume that certAR(Yes(), DE ,ΣE) = ∅, which, by equivalence (3), implies that
E is not valid. This means that there exists D′ ∈ reps(DE ,ΣE) such that cert(Yes1(), D′,ΣE) ̸= ∅ and
cert(Yes2(), D′,ΣE) = ∅. Observe that cert(No1(), D′,ΣE) = ∅ because otherwise mods(D′,ΣE) = ∅,
which contradicts the fact that D′ ∈ reps(DE ,ΣE). Let D′′ = D′ ∪ {No2()}. We proceed to show that
D′′ ∈ reps(D̂E , Σ̂E) and cert(Yes(), D′′, Σ̂E) = ∅, which in turn implies that certAR(Yes(), D̂E , Σ̂E) = ∅, as
needed. It is clear that D′′ ⊆ D̂E . Moreover, it can be easily verified that adding No2() to D′, and adding
Σ̂E \ ΣE to ΣE , do not affect the non-entailment of No1() and Yes2(), and thus, cert(No1(), D′′, Σ̂E) = ∅
and cert(Yes2(), D′′, Σ̂E) = ∅. As a consequence, we have that cert(Yes(), D′′, Σ̂E) = ∅. The last three
statements allow us also to conclude that mods(D′′, Σ̂E) ̸= ∅. To show that D′′ ∈ reps(D̂E , Σ̂E), it
remains to show that there is no α ∈ D̂E \ D′′ such that mods(D′′ ∪ {α}, Σ̂E) ̸= ∅. Notice that in
D̂E \ D′′ we only have atoms of the form Sji (ℓ) for i ∈ {0, . . . , k − 1}, j ∈ {1, 2} and ℓ ∈ {1, . . . ,m},
and the atoms No1() and Yes(). It is clear that adding to D′′ an atom α of the form Sji (ℓ) leads to
inconsistency, i.e., mods(D′′ ∪ {α}, Σ̂E) = ∅. Since cert(Yes1(), D′,ΣE) ̸= ∅, D′ ⊆ D′′, and ΣE ⊆ Σ̂E ,
we get that cert(Yes1(), D′′, Σ̂E) ̸= ∅, which implies that mods(D′′ ∪ {No1()}, Σ̂E) = ∅. Finally, we
show that cert(No(), D′′, Σ̂E) ̸= ∅ and cert(q,D′′, Σ̂E) ̸= ∅, where q is the Boolean CQ ∃x̄ ϕ(x̄), which
imply that mods(D′′ ∪ {Yes()}, Σ̂E) = ∅, as needed. The fact that cert(No(), D′′, Σ̂E) ̸= ∅ follows from
cert(No2(), D′′, Σ̂E) ̸= ∅ since No2() ∈ D′′, and cert(Yes1(), D′′, Σ̂E) ̸= ∅ since cert(Yes1(), D′,ΣE) ̸= ∅,
D′ ⊆ D′′ and ΣE ⊆ Σ̂E . The fact that cert(q,D′′, Σ̂E) ̸= ∅ follows from cert(q,D′,ΣE) ̸= ∅, D′ ⊆ D′′

and ΣE ⊆ Σ̂E .
It is also not difficult to verify that

certAR(Yes(), D̂E , Σ̂E) ̸= ∅ ⇐⇒ certIAR(Yes(), D̂E , Σ̂E) ̸= ∅. (5)

The direction (⇐) holds trivially, since the IAR semantics is an approximation of the AR semantics. For
the direction (⇒), we observe that, for each repair D′ ∈ reps(D̂E , Σ̂E) such that cert(Yes(), D′, Σ̂E) ̸= ∅, it
holds that Yes() ∈ D′. Since, by hypothesis, for each D′ ∈ reps(D̂E , Σ̂E), we have that cert(Yes(), D′, Σ̂E) ̸=
∅, we conclude that each repair of reps(D̂E , Σ̂E) contains the atom Yes(). Therefore,

⋂
D′reps(D̂E ,Σ̂E ) D

′

contains Yes(), and certIAR(Yes(), D̂E , Σ̂E) ̸= ∅ follows.
By putting together the equivalences (3), (4), and (5), we conclude that

E is valid ⇐⇒ certIAR(Yes(), D̂E , Σ̂E) ̸= ∅,

which shows the correctness of our reduction, and Theorem 6.2 follows.

Theorem 6.3. QAnsIAR(NC) is ΠP
2 -hard in ba-complexity.

The proof of the above result exploits a variant of 2QBF∀-SAT. A 2NQBF∀ formula is a 2QBF∀
formula

φ = ∀x1 · · · ∀xn∃y1 · · · ∃ym ψ,

where ψ is a 3CNF formula of the form∧
1≤i≤k

Ci ∧
∧

1≤i≤n

(C+
i ∧ C−

i )
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with Ci = (ℓ1
i ∨ ℓ2

i ∨ ℓ3
i ), C+

i = (xi ∨ ¬yt(i)) and C−
i = (¬xi ∨ yt(i)) for some t(i) ∈ {1, . . . ,m}, and for

each i ∈ {1, . . . , n}, the universally quantified variable xi occurs only in the clauses C+
i and C−

i . In other
words, the latter says that, for each i ∈ {1, . . . , n}, the truth value of the variable yt(i) is determined by
the value of xi. The ΠP

2 -hard problem of interest follows [25, 45]:

PROBLEM : 2NQBF∀-SAT
INPUT : A 2NQBF∀ formula φ.
QUESTION : Is φ satisfiable?

We are now ready to give the proof of Theorem 6.3.

Proof of Theorem 6.3. For a 2NQBF∀ formula φ as defined above, our goal is to construct a database
Dφ and a set Σφ ∈ NC, which mention only predicates of bounded arity, such that φ is satisfiable iff
certIAR(Sat(), Dφ,Σφ) ̸= ∅.
The database Dφ. Our intention is to store (i) the values that a universally quantified variable can
take, (ii) an auxiliary atom Sat(), which indicates that φ is satisfiable, (iii) all the satisfying assignments
for each clause Ci (not C+

i or C−
i ) of φ, (iv) auxiliary atoms that would allow us to force the existentially

quantified variable yt(i), for i ∈ {1, . . . , n}, to take the same value as xi, and (v) “consistency” atoms that
would allow us to ensure that an assignment to the existentially quantified variables of φ is consistent
among its clauses, i.e., a variable is assigned the same value in every clause that it appears. The formal
definition of Dφ follows:

⋃
1≤i≤n

{Value(xi, 0),Value(xi, 1)} ∪ {Sat()}

⋃
1≤i≤k

⋃
b1,b2,b3∈{0,1},
b1∨b2∨b3=1

{
Clause

(
ci, ℓ

1
i , b1, ℓ

2
i , b2, ℓ

3
i , b3

)}
∪

⋃
1≤i≤n

 ⋃
b∈{0,1}

{
Force

(
xi, b, yt(i), b

)}
∪

⋃
b1,b2∈{0,1}
b1⊕b2=1

{
Force

(
xi, b1,¬yt(i), b2

)} ∪

⋃
1≤i≤m

 ⋃
b∈{0,1}

{Cons(yi, b, yi, b),Cons(¬yi, b,¬yi, b)} ∪

⋃
b1,b2∈{0,1}
b1⊕b2=1

{Cons(yi, b1,¬yi, b2),Cons(¬yi, b1, yi, b2)}

 .

The set Σφ of NCs. This set consists of three NCs. Note that, in what follows, we use xi and yj for the
actual constants used in the database Dφ in order to represent the variables of φ. To avoid notational
clutter, for variables we will use only the symbols z and w (possibly with subscripts and superscripts).
The first NC of Σφ simply states that a universally quantified variable can take only one value:

Value(z, 0),Value(z, 1) → ⊥.

The second NC encodes the satisfiability of φ once an assignment to the universally quantified variables
has been fixed (which is provided by a repair due to the NC above). Before defining this NC, let us
introduce some auxiliary conjunctions of atoms, which will eventually give rise to the desired NC. The
first one is

Config =
∧

α∈Struct
α,

where Struct = Dφ \ ({Sat()} ∪ {Value(xi, 0),Value(xi, 1)}1≤i≤n). The second conjunction is defined as

∀Assign =
∧

1≤i≤n

Value(xi, wi),
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which “reads” the assignment to the universally quantified variables. The third conjunction aims at
“copying” the assignment for the universally quantified variables to the associated (according to C+

i and
C−
i ) existentially quantified variables:

Copy =
∧

1≤i≤n

∧
1≤j≤k,1≤r≤3,

var(ℓr
j )=yt(i)

Force
(
xi, wi, z

r
j , w

r
j

)
.

The fourth conjunction is defined as

∃Consistency =
∧

1≤j1,j2≤k,
1≤r1,r2≤3,

var(ℓr1
j1

)=var(ℓr2
j2

)

Cons
(
zr1
j1
, wr1

j1
, zr2
j2
, wr2

j2

)
,

which states that an assignment to the existentially quantified variables is consistent among the clauses
of φ. Finally, the fifth conjunction is defined as

Satisfied =
∧

1≤i≤k

Clause
(
ci, z

1
i , w

1
i , z

2
i , w

2
i , z

3
i , w

3
i

)
,

which simply encodes the fact the φ is satisfiable. Having the above conjunctions in place, the desired
NC is defined as

Config,∀Assign,Copy,∃Consistency,Satisfied → ⊥.

We also add to Σφ the NC
Config,∀Assign,Sat() → ⊥.

This completes the construction of Σφ. We proceed to show that the above reduction is correct, i.e., φ is
satisfiable iff certIAR(Sat(), Dφ,Σφ) ̸= ∅.

(⇒) Consider an arbitrary repair D ∈ reps(Dφ,Σφ). It suffices to show that Sat() ∈ D. We proceed
by considering the following two cases on the shape of D:

1. There exists a universally quantified variable xi such that none of the atoms Value(xi, b), for
b ∈ {0, 1}, occurs in D, which means that D does not assign a value to xi. In this case, Sat()
necessarily belongs to D; otherwise, D is not a repair since adding Sat() would not violate any of
the NCs.

2. Assume now that D assigns a value to every universally quantified variable of φ. By hypothesis, φ
is satisfiable, which allows us (by definition of Σφ) to conclude that Struct \D ̸= ∅; otherwise, the
body of the second NC is satisfied, which cannot be the case since D is a repair. But then Sat()
necessarily belongs to D because otherwise D is not a repair since adding Sat() would not violate
any of the NCs; in particular, the third NC would not be violated as Struct \D ̸= ∅.

(⇐) Assume now that φ is not satisfiable. Thus, there exists an assignment µ to the universally
quantified variables such that, for every (valid) assignment to the existentially quantified variables, φ is
not satisfied. Let D be the subset of Dφ that keeps only one Value-atom for each universally quantified
variable as dictated by µ, and all the other atoms of Dφ apart from Sat(). It should be clear that D
satisfies Σφ. In particular, the second NC is satisfied since φ is not satisfiable, while the third NC is
satisfied since Sat() is not in D. Moreover, D is maximal since by adding either Sat() or a Value-atom,
one of the NCs will be violated. Therefore, D ∈ reps(Dφ,Σφ), which in turn implies that certIAR(Sat(),
Dφ,Σφ) = ∅.

Remark. Interestingly, the above proof applies even if we consider the AR semantics. Thus, we get an
alternative proof for the fact that QAnsAR(NC) is ΠP

2 -hard in ba-complexity. However, the proof given in
Section 5 shows that the ΠP

2 -hardness holds even for fp-complexity, but it exploits a more complex CQ.

Theorem 6.4. QAnsIAR(G⊥) is ΘP
2 -hard in fp-complexity.

The proof of the above result relies on a ΘP
2 -hard variant of 3SAT that involves counting of satisfiable

formulas [32, 33]. For a set A of 3CNF formulas, we write #A for the cardinality of {φ ∈ A |
φ is satisfiable}. The problem follows:
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PROBLEM : Comp3SAT
INPUT : Two sets A and B of 3CNF formulas.
QUESTION : Is #A > #B?

The above problem remains ΘP
2 -hard even if we pose several simplifying assumptions on A and B. In

particular, we can assume that |A| = |B|, all formulas in A and B are over the same set of variables and
have the same number of clauses, and A = {φ1, . . . , φm}, B = {ψ1, . . . , ψm} are such that φi+1 (resp.,
ψi+1) is satisfiable implies φi (resp., ψi) is satisfiable, for i ∈ {1, . . . ,m− 1}. It should be clear, due to
the last assumption, that #A > #B iff there exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is
unsatisfiable.

We are now ready to proceed with the proof of Theorem 6.4.

Proof of Theorem 6.4. Given A = {φ1, . . . , φm} and B = {ψ1, . . . , ψm}, we are going to construct a
database DA,B and a Boolean CQ qA,B such that the following are equivalent:

1. There exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is unsatisfiable.

2. certIAR(qA,B , DA,B ,Σ) ̸= ∅ for some fixed set Σ ∈ G⊥.
Our goal is to devise DA,B and qA,B in a modular way, where the parts that are coming from A are
independent from those that are coming from B. To this end, we are first going to construct a database
DA and a CQ qA(x) such that, for each i ∈ {1, . . . ,m}, φi is satisfiable iff ⟨fi⟩ ∈ qA(DA); the constant fi
should be understood as the identifier for the formula φi. Moreover, we are going to construct a database
DB and a CQ qB(x) such that, for each i ∈ {1, . . . ,m}, ψi is unsatisfiable iff ⟨fi⟩ ∈ certIAR(qB , DB ,Σ)
for some fixed set Σ ∈ G⊥; here, fi acts as the identifier for the formula ψi. Once we have the above
databases and CQs in place, it will be easy to construct DA,B and qA,B . In the sequel, we assume that
all the formulas in A and B are over the variables x1, . . . , xn and have k clauses.
The database DA and the CQ qA. Given a 3CNF formula φi = Ci,1 ∧ · · · ∧ Ci,k from A with
Ci,j = (ℓ1

i,j ∨ ℓ2
i,j ∨ ℓ3

i,j), the database DA stores all the truth assignments that make a certain clause of φi
true. To this end, we use an 8-ary predicate AClause. For example, given the clause Ci,j = xi1 ∨xi2 ∨¬xi3 ,

AClause(fi, cj , xi1 , 1, xi2 , 0,¬xi3 , 1)

encodes the clause itself (recall that fi is the identifier of φi, while cj is the identifier of Ci,j), and at the
same time encodes the truth assignment that sets xi1 to true, xi2 to false, and xi3 to false (i.e., ¬xi3 to
true). Formally, let DA,1 be the database⋃

1≤i≤m

⋃
1≤j≤k

⋃
b1,b2,b3∈{0,1},
b1∨b2∨b3=1

{
AClause

(
fi, cj , ℓ

1
i,j , b1, ℓ

2
i,j , b2, ℓ

3
i,j , b3

)}
.

To check whether a formula φi is satisfiable, we need to check whether each of its clauses is satisfiable; this
is the purpose of the CQ qA given below. To this end, we need a mechanism that allows us to ensure that
an assignment for φi is consistent among its clauses, i.e., a variable is assigned the same value in every
clause that it appears. This can be done via the following “consistency” atoms that form the database
DA,2:⋃

1≤i≤n

⋃
b∈{0,1}

{Cons(xi, b, xi, b),Cons(¬xi, b,¬xi, b)} ∪

⋃
1≤i≤n

⋃
b1,b2∈{0,1},
b1⊕b2=1

{Cons(xi, b1,¬xi, b2),Cons(¬xi, b1, xi, b2)} .

The database DA is defined as the union DA,1 ∪DA,2.
Let us now define the CQ qA(x). Its purpose is essentially to check whether there exists φi ∈ A that

is satisfiable, which can be done by checking that each clause of φi is satisfiable. This can be easily
achieved via the CQ qA(x) defined below, where all the involved variables, apart from x, are existentially
quantified; recall that var(ℓ) is the variable of the literal ℓ:∧

1≤j≤k

AClause
(
x, cj , y

1
j , z

1
j , y

2
j , z

2
j , y

3
j , z

3
j

)
∧

∧
1≤i≤m

∧
1≤j1,j2≤k,
1≤r1,r2≤3,

var(ℓr1
i,j1

)=var(ℓr2
i,j2

)

Cons
(
yr1
j1
, zr1
j1
, yr2
j2
, zr2
j2

)
.
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This completes the definition of qA. By construction, we get that:

Lemma 6.7. For each i ∈ {1, . . . ,m}, φi is satisfiable iff ⟨fi⟩ ∈ qA(DA).

The database DB and the CQ qB. Given a 3CNF formula ψi = Ci,1 ∧ · · · ∧ Ci,k from B with
Ci,j = (ℓ1

i,j ∨ ℓ2
i,j ∨ ℓ3

i,j), the database DB assigns to the variables of ψi both the values true and false,
and it also stores all the clauses of ψi. The latter is achieved via a 5-ary predicate BClauses1s2s3 , where
s1, s2, s3 ∈ {p, n}. For example, the clause Ci,j = xi1 ∨ xi2 ∨ ¬xi3 is encoded via the atom

BClauseppn(fi, cj , xi1 , xi2 , xi3),

with the superscript ppn indicating that the variable of the first (resp., second, third) literal appears
positively (resp., positively, negatively) in Ci,j . Moreover, DB stores some auxiliary atoms that would
allow us to check (via a fixed set Σ ∈ G⊥) whether ψi is unsatisfiable. We proceed to formally define DB .

For a literal ℓ, let sign(ℓ) = p (resp., sign(ℓ) = n) if ℓ = x (resp., ℓ = ¬x) for a variable x. For a clause
Ci,j of ψi, we write sri,j for sign(ℓri,j), where r ∈ {1, 2, 3}. Recall that var(ℓ) is the variable of the literal ℓ.
The database DB is defined as⋃

1≤i≤m

⋃
1≤j≤n

{True(fi, xj),False(fi, xj)} ∪

⋃
1≤i≤m

⋃
1≤j≤k

{
BClauses

1
i,j ,s

2
i,j ,s

3
i,j

(
fi, cj , var(ℓ1

i,j), var(ℓ2
i,j), var(ℓ3

i,j)
)}

∪

⋃
1≤i≤m

⋃
0≤j≤k−1

{SuccCl(fi, cj , cj+1)} ∪

⋃
1≤i≤m

{MinCl(fi, c0),MaxCl(fi, ck),Unsat(fi)}.

The sequence of atoms (SuccCl(fi, cj , cj+1))0≤j≤k−1 essentially tells us that in ψi the clause Ci,j comes
immediately after the clause Ci,j−1. The fact that the first atom of the sequence refers to the clause Ci,0,
which does not exist, is a technicality that will become clear below. The remaining atoms give us access
to the (virtually) first clause Ci,0 and the last clause Ci,k of ψi, and also state that ψi is unsatisfiable.

The CQ qB(x), is defined as the atomic query Unsat(x), which simply asks whether there exists a
formula in B that is unsatisfiable.

We claim that there exists a set Σ ∈ G⊥ such that, for each i ∈ {1, . . . ,m}, ψi is unsatisfiable iff
⟨fi⟩ ∈ certIAR(qB , DB ,Σ). In particular, Σ = Σcons ∪ Σsat with Σcons being a set of NCs that perform a
consistency check (i.e., a variable is either true of false, and a formula is either satisfiable or unsatisfiable),
and Σsat being a set of guarded TGDs that evaluates each formula ψi ∈ B and derives the atom Sat(fi) if
ψi is satisfiable. More precisely, Σcons consists of the NCs:

True(x, y),False(x, y) → ⊥
Sat(x),Unsat(x) → ⊥.

The set Σsat consists of the following TGDs; a ⋆ symbol is a placeholder for p or n, while, as usual, _ is a
“don’t care” variable that occurs only once:

BClausep⋆⋆(x, y, z,_,_),True(x, z) → SatCl(x, y)
BClausen⋆⋆(x, y, z,_,_),False(x, z) → SatCl(x, y)
BClause⋆p⋆(x, y,_, z,_),True(x, z) → SatCl(x, y)
BClause⋆n⋆(x, y,_, z,_),False(x, z) → SatCl(x, y)
BClause⋆⋆p(x, y,_,_, z),True(x, z) → SatCl(x, y)
BClause⋆⋆n(x, y,_,_, z),False(x, z) → SatCl(x, y)

MinCl(x, y) → SatChain(x, y)
SatChain(x, y),SuccCl(x, y, z),SatCl(x, z) → SatChain(x, z)

MaxCl(x, y),SatChain(x, y) → Sat(x).

This completes the construction of Σ. By construction, we get that:
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Lemma 6.8. For i ∈ {1, . . . ,m}, ψi is unsatisfiable iff ⟨fi⟩ ∈ certIAR(qB , DB ,Σ).

The database DA,B and the CQ qA,B. We can now easily construct the database DA,B and the
Boolean CQ qA,B with the desired property:

DA,B = DA ∪DB and qA,B = ∃x(qA(x) ∧ qB(x)).

Indeed, we can show the following, where Σ ∈ G⊥ is the set devised above:

Lemma 6.9. The following are equivalent:

1. There exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is unsatisfiable.

2. certIAR(qA,B , DA,B ,Σ) ̸= ∅.

Proof. We rely on the following key observation, which is easy to verify since DA is always consistent
with Σ:

⋂
D∈reps(DA,B ,Σ)

D = DA ∪

 ⋂
D∈reps(DB ,Σ)

D

 . (6)

We can now proceed with the proof of the claim.
(1) ⇒ (2). By Lemma 6.7 and 6.8, we get that ⟨fi⟩ ∈ qA(DA) and ⟨fi⟩ ∈ certIAR(qB , DB ,Σ). Therefore,

by (6), ⟨fi⟩ ∈ certIAR(qA(x) ∧ qB(x), DA,B ,Σ), which in turn implies that certIAR(qA,B , DA,B ,Σ) ̸= ∅.
(2) ⇒ (1). By hypothesis, there exists i ∈ {1, . . . ,m} such that ⟨fi⟩ ∈ certIAR(qA(x) ∧ qB(x), DA,B ,Σ).

By the equality (6), we can conclude that ⟨fi⟩ ∈ qA(DA) and ⟨fi⟩ ∈ certIAR(qB , DB ,Σ). Therefore, by
Lemma 6.7 and 6.8, we get that φi is satisfiable and ψi is unsatisfiable, and the claim follows.

With Lemma 6.9 in place, we can conclude that

#A > #B ⇐⇒ certIAR(qA,B , DA,B ,Σ) ̸= ∅

for a fixed Σ ∈ G⊥, and thus, QAnsIAR(G⊥) is ΘP
2 -hard in fp-complexity.

Theorem 6.5. QAnsIAR(G⊥) is coNP-hard in d-complexity.

The proof of the above result exploits the unsatisfiability problem of Boolean formulas in negation
normal form. A Boolean formula is in negation normal form (NNF) if it uses only ¬, ∧ and ∨, and ¬ is
only applied to variables. The coNP-hard problem of interest follows:

PROBLEM : NNF-UNSAT
INPUT : A Boolean formula φ in NNF.
QUESTION : Is φ unsatisfiable?

We can now proceed with the proof of Theoram 6.5.

Proof of Theorem 6.5. Given a formula φ in NNF over the variables x1, . . . , xm, we define the database
Dφ as follows:

{And(ψ,ψ1, ψ2) | ψ = ψ1 ∧ ψ2 is a subformula of φ}
∪ {Or(ψ,ψ1, ψ2) | ψ = ψ1 ∨ ψ2 is a subformula of φ}
∪ {Not(ψ,ψ′) | ψ = ¬ψ′ is a subformula of φ}
∪ {True(xi),False(xi) | 1 ≤ i ≤ m} ∪ {Unsat(φ)},

which essentially stores the formula φ, it assigns to each variable in φ both the value 1 and the value 0,
and it states that φ is unsatisfiable.
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c-complexity ba-complexity fp-complexity d-complexity
G⊥ 2ExpTime ExpTime ΘP

2 coNP
L⊥ PSpace ΠP

2 ΘP
2 coNP

A⊥ PNExpTime PNExpTime ΘP
2 coNP

S⊥ ExpTime ΠP
2 ΘP

2 coNP

Table 4: Complexity of QAnsICR(C⊥), where C ∈ {G, L,A,S}. These are completeness results.

It is not difficult to show that φ is unsatisfiable iff certIAR(Unsat(φ), Dφ,Σ) ̸= ∅, where Σ consists of
the guarded TGDs

And(x, y, z),True(y),True(z) → True(x)
Or(x, y, z),True(y) → True(x)
Or(x, y, z),True(z) → True(x)
Not(x, y),False(y) → True(x),

which are responsible for evaluating the formula φ, and the NCs

True(x),False(x) → ⊥
True(x),Unsat(x) → ⊥

with the obvious meaning. We proceed to show that the above is a reduction.

(⇒) Assume that certIAR(Unsat(φ), Dφ,Σ) = ∅. Hence, there exists D′ ∈ reps(D,Σ) such that
Unsat(φ) ̸∈ D′. By definition of repairs, True(φ) ∈ D′. Therefore, D′ encodes a satisfying assignment for
φ; simply set xi to 1 (resp., 0) if True(xi) ∈ D′ (resp., False(xi) ∈ D′). Thus, φ is satisfiable, as needed.

(⇐) Conversely, assume that φ is satisfiable. Thus, there is D′ ∈ reps(D,Σ) such that Unsat(φ) ̸∈ D′;
otherwise, the NC True(x),Unsat(x) → ⊥ would be violated. Hence, Unsat(φ) ̸∈

⋂
D′∈reps(D,Σ) D

′, which
in turn implies that certIAR(Unsat(φ), Dφ,Σ) = ∅, and the claim follows.

7 Intersection of closed repairs semantics
We now concentrate on QAnsICR(C⊥), where C is one of the classes of TGDs in question. The main result
of this section follows:

Theorem 7.1. The t-complexity of QAnsICR(C⊥), where t ∈ {c, ba, fp, d} and C ∈ {G, L,A, S}, is as shown
in Table 4.

The rest of the section is devoted to establishing the above result. We first show, in Section 7.1, the
upper bounds, and then, in Section 7.2, the lower bounds.

7.1 Upper bounds
We can partition the cells of Table 4 into five groups in such a way that the claimed upper bounds can be
established in a uniform way:

1. The c-complexity for C⊥, where C ∈ {G,S}.

2. The c-complexity for A⊥.

3. The c-complexity for L⊥.

4. The ba-complexity and the d-complexity for C⊥, where C ∈ {G, L,A,S}.

5. The fp-complexity for C⊥, where C ∈ {G, L,A,S}.

We proceed to give more details for each of the above groups.
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ∈ certICR(q,D,Σ); otherwise, reject

D⋆ := ∅
foreach α ∈ B(D,Σ) do

if certAR(α,D,Σ) ̸= ∅ then
D⋆ := D⋆ ∪ {α}

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return accept

else
return reject

Algorithm 5: AlgorithmICR1

7.1.1 The c-complexity for C⊥, where C ∈ {G,S}

The upper bounds are obtained via the procedure AlgorithmICR1, depicted in Algorithm 5, which constructs
the intersection of closed repairs D⋆, and accepts if the given tuple c̄ belongs to cert(q,D⋆,Σ); otherwise,
it rejects. The intersection of closed repairs D⋆ is constructed by keeping from B(D,Σ), i.e., the set of
all ground atoms that can be formed using constants from dom(D) and predicates occurring in Σ, only
the atoms α that belong to cl(D′, τ(Σ)) for each D′ ∈ reps(D,Σ), or, equivalently, for which certAR(α,D,
Σ) ̸= ∅. The fact that B(D,Σ) consists of exponentially many atoms, allows us to conclude that, for a
class C of TGDs, if QAnsAR(C⊥) is in C ∈ {ExpTime, 2ExpTime} in c-complexity (and thus, QAns(C) is
in C in c-complexity), and the complexity bound inherited from the algorithm underlying the membership
of QAns(C) in C in c-complexity depends polynomially on the input database, then AlgorithmICR1 shows
that QAnsICR(C⊥) is also in C in c-complexity. By Theorem 5.1, QAnsAR(G⊥) is in 2ExpTime, and
QAnsAR(S⊥) is in ExpTime in c-complexity. Moreover, we know from [10] that the complexity bound
inherited from the algorithm underlying the fact that QAns(G) is in 2ExpTime in c-complexity depends
polynomially on the input database. The same holds for the class S [13], and the desired upper bounds
follow.

7.1.2 The c-complexity for A⊥

For showing that QAnsICR(A⊥) is in PNExpTime in c-complexity, we rely again on AlgorithmICR1, but we
need a more refined complexity analysis than the one given above for the classes G⊥ and S⊥. Since
(i) B(D,Σ) consists of exponentially many atoms, (ii) QAnsAR(A⊥) is in PNExpTime in c-complexity by
Theorem 5.1, (iii) QAns(A) is in NExpTime in c-complexity by Proposition 3.3, and (iv) the complexity
bound inherited from the algorithm underlying the fact that QAns(A) is in NExpTime in c-complexity
depends polynomially on the input database, AlgorithmICR1 allows us to conclude that QAnsICR(A⊥) is in
NExpTimeNExpTime in c-complexity. We know that PNExpTime is included in NExpTimeNExpTime, but
we also know from [46] that the two complexity classes coincide if, whenever the NExpTime oracle is
called, its input is of polynomial size, which gives rise to the complexity class NExpTimeNExpTime[poly]

(we borrow the notation from [46]). We now observe that during the execution of AlgorithmICR1, the
input to the NExpTime oracle, which is responsible for checking whether certAR(α,D,Σ) ̸= ∅ for an
atom α ∈ B(D,Σ), is always of polynomial size w.r.t. D and Σ. This implies that QAnsICR(A⊥) is in
NExpTimeNExpTime[poly] (and thus, in PNExpTime) in c-complexity, and the claim follows.

7.1.3 The c-complexity for L⊥

For showing that QAnsICR(L⊥) is in PSpace, we need to rely on a refined version of the procedure
AlgorithmICR1. Indeed, AlgorithmICR1 only shows that QAnsICR(L⊥) is in ExpTime in c-complexity,
despite the fact that QAnsAR(L⊥) is in PSpace in c-complexity, since B(D,Σ) consists of exponentially
many atoms. The key ingredient underlying this refined procedure is the following property of linear
TGDs, which is implicit in [11], that essentially states that for computing the certain answers of a CQ,
we only need linearly many database atoms.

Lemma 7.1. Consider a database D, a set Σ ∈ L, a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|. The following
are equivalent:
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Input: database D, set Σ ∈ L⊥, CQ q(x̄), tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ∈ certICR(q,D,Σ); otherwise, reject

guess a database D⋆ ⊆ B(D,Σ) with |D⋆| ≤ |q|
foreach α ∈ D⋆ do

if certAR(α,D,Σ) = ∅ then
return reject

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return accept

else
return reject

Algorithm 6: AlgorithmICR2

Input: database D, set Σ of TGDs and NCs, CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ̸∈ certICR(q,D,Σ); otherwise, reject

guess a database D⋆ ⊆ cl(D, τ(Σ))
foreach α ∈ cl(D, τ(Σ)) \D⋆ do

guess a database Dα ⊆ D
if α ∈ cl(Dα, τ(Σ)) then

return reject
else

foreach β ∈ D \Dα do
if there is no σ ∈ ν(Σ) s.t. cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅ then

return reject

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return reject

else
return accept

Algorithm 7: AlgorithmICR3

1. c̄ ∈ cert(q,D,Σ).

2. There exists D′ ⊆ D with |D′| ≤ |q| such that c̄ ∈ cert(q,D′,Σ).

By Lemma 7.1, we obtain the decision procedure AlgorithmICR2, depicted in Algorithm 6, for
QAnsICR(L⊥) by adapting AlgorithmICR1 as follows: instead of deterministically computing the intersection
of closed repairs, we simply guess |q| atoms of B(D,Σ), and then verify that are indeed members of
the intersection of closed repairs. Since, by Theorem 5.1, QAnsAR(L⊥) is in PSpace in c-complexity,
AlgorithmICR2 uses polynomial space, and the claim follows.

7.1.4 The ba-complexity and the d-complexity for C⊥, where C ∈ {G, L,A,S}

The upper bounds are obtained via the simple procedure AlgorithmICR3, depicted in Algorithm 6, which
is similar in spirit to the procedure AlgorithmIAR1, and checks whether there exists a superset of the
intersection of closed repairs that does not entail the given tuple c̄ of constants. More precisely, the
algorithm guesses a subset D⋆ of cl(D, τ(Σ)), that is, the set of ground atoms that can be entailed by
D and τ(Σ), and then checks that for every atom α ∈ cl(D, τ(Σ)) \ D⋆, there exists Dα ∈ reps(D,Σ)
such that α ̸∈ cl(Dα, τ(Σ)), and thus, α is not in the intersection of closed repairs. This implies that D⋆

is a superset of the intersection of closed repairs. Finally, the algorithm rejects if c̄ ∈ cert(q,D⋆, τ(Σ));
otherwise, it accepts. This is correct due to the following lemma that can be shown as Lemma 6.1:

Lemma 7.2. Consider a database D, a set Σ of TGDs and NCs, a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|.
The following are equivalent:

1. c̄ ̸∈ certICR(q,D,Σ).

2. There is D⋆ ⊇
⋂
D′∈reps(D,Σ) cl(D′, τ(Σ)) such that c̄ ̸∈ cert(q,D⋆, τ(Σ)).
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Input: database D, set Σ of TGDs and NCs, CQ q(x̄), tuple c̄ ∈ dom(D)|x̄|

Output: accept if c̄ ∈ certICR(q,D,Σ); otherwise, reject

D⋆ := B(D,Σ)
foreach α ∈ B(D,Σ) do

if there exists Dα ∈ reps(D,Σ) such that α ̸∈ cl(Dα, τ(Σ)) then
D⋆ := D⋆ \ {α}

if c̄ ∈ cert(q,D⋆, τ(Σ)) then
return accept

else
return reject

Algorithm 8: AlgorithmICR4

Since we focus on predicates of bounded arity, the non-deterministic procedure AlgorithmICR3 runs
in polynomial time, assuming access to an oracle that is powerful enough for solving QAns(C), where C
is the class from which the input set of TGDs is coming from. Notice that for computing the database
cl(D, τ(Σ)) (or cl(Dα, τ(Σ))) we simply need to enumerate the polynomially many ground atoms that
can be formed using constants from dom(D) and predicates occurring in Σ, and for each such atom γ
check whether cert(γ,D, τ(Σ)) ̸= ∅. Therefore:

Lemma 7.3. For a class C of TGDs, QAnsICR(C⊥) is in coNPC in t-complexity, where t ∈ {ba, d},
assuming that QAns(C) is in C in t-complexity.

Since, by Lemma 7.2, AlgorithmICR3 is correct, the desired upper bounds for Group 2 are obtained
from Propositions 3.1, 3.2, 3.3 and 3.4, Lemma 7.3, and the usual complexity facts that have been
discussed in the previous sections.
Remark. Let us observe that we could also employ the procedure AlgorithmICR1 for obtaining the Exp-
Time and PNExpTime upper bounds for QAnsICR(G⊥) and QAnsICR(A⊥), respectively, since, by Theorem 5.1,
QAnsAR(G⊥) is in ExpTime, and QAnsAR(A⊥) is in PNExpTime in ba-complexity.

7.1.5 The fp-complexity for C⊥, where C ∈ {G, L,A,S}

We finally discuss how the ΘP
2 = PNP[O(logn)] upper bound for QAnsICR(C⊥), where C ∈ {G, L,A, S}, can

be established. Actually, this is done by exploiting the procedure AlgorithmICR4, depicted in Algorithm 8,
which is an adaptation of AlgorithmIAR2, that constructs the intersection of closed repairs D⋆, and accepts
if the given tuple c̄ belongs to cert(q,D⋆, τ(Σ)); otherwise, it rejects. The intersection of closed repairs
D⋆ is constructed by starting from B(D,Σ), i.e., the set of all ground atoms that can be formed using
constants from dom(D) and predicates occurring in Σ, which are polynomially many since the arity is
bounded, and removing all the atoms α for which there exists at least one repair Dα ∈ reps(D,Σ) such
that α ̸∈ cl(Dα, τ(Σ)). More precisely, D⋆ is constructed via polynomially many parallel calls to an
NP-oracle. In fact, for each atom α ∈ B(D,Σ), we call in parallel an NP-oracle that does the following:

1. Guess a database Dα ⊆ D.

2. If α ∈ cl(Dα, τ(Σ)), then reject.

3. For each atom β ∈ D \ Dα, if there is no σ ∈ ν(Σ) such that cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅, then
return reject; otherwise; return accept.

The checks α ∈ cl(Dα, τ(Σ)) and cert(qσ, Dα ∪ {β}, τ(Σ)) ̸= ∅ are feasible in polynomial time since
τ(Σ) and qσ are fixed, while for each C ∈ {G, L,A,S}, QAns(C) is in PTime in d-complexity. Therefore,
the above oracle is indeed an NP-oracle. It is clear that, for an atom α ∈ B(D,Σ), if the above oracle
returns accept, then α does not belong to the intersection of closed repairs. Consequently, the intersection
of closed repairs D⋆ is constructed by simply removing from D all the atoms α for which the oracle
returns accept. Since D⋆ can be constructed in polynomial time via parallel NP-oracle calls, we can
conclude that it can also be constructed in polynomial time via logarithimically many NP-oracle calls;
see, e.g., [42]. Once we have D⋆ in place, we need one more call to an NP-oracle for checking whether
c̄ ∈ cert(q,D⋆, τ(Σ)); the latter is indeed in NP since, for each C ∈ {G, L,A,S}, QAns(C) is in NP in
fp-complexity. The claim follows.
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7.2 Lower bounds
We now concentrate on the complexity lower bounds claimed in Table 4. The C-hardness results, where
C ∈ {PSpace,ExpTime, 2ExpTime}, are coming for free since QAns(C) is C-hard. Therefore, to complete
the picture, it suffices to establish the following hardness results:

1. QAnsICR(A⊥) is PNExpTime-hard in ba-complexity.

2. QAnsICR(NC) is ΠP
2 -hard in ba-complexity.

3. QAnsICR(C⊥), where C ∈ {L,A,S}, is ΘP
2 -hard in fp-complexity.

4. QAnsICR(C⊥), where C ∈ {L,A,S}, is coNP-hard in d-complexity.

The rest of the section is devoted to establishing the above lower bounds. But let us first establish an
auxiliary lemma, which will be useful for our later analysis. It states that for ground atomic CQs the AR
and the ICR semantics coincide:

Lemma 7.4. Consider a database D, a set Σ of TGDs and NCs, and a ground atom α. Then, certAR(α,
D,Σ) ̸= ∅ iff certICR(α,D,Σ) ̸= ∅.

Proof. (⇒) By hypothesis, for every D′ ∈ reps(D,Σ), cert(α,D′, τ(Σ)) ̸= ∅. This implies that, for every
D′ ∈ reps(D,Σ), α ∈ cl(D′, τ(Σ)). Therefore, α ∈

⋂
D′∈reps(D,Σ) cl(D′, τ(Σ)), which means that certICR(α,

D,Σ) ̸= ∅, as needed.
(⇐) Conversely, assume that certAR(α,D,Σ) = ∅. Hence, there exists Dα ∈ reps(D,Σ) such

that cert(α,Dα, τ(Σ)) = ∅, and thus, α ̸∈ cl(Dα, τ(Σ)). Assume now that cert(α,D⋆, τ(Σ)) ̸= ∅
with D⋆ =

⋂
D′∈reps(D,Σ) cl(D′, τ(Σ)). This implies that there exists D′′ ⊆ cl(Dα, τ(Σ)) such that

cert(α,D′′, τ(Σ)) ̸= ∅. But this allows us to conclude that α ∈ cl(Dα, τ(Σ)), which is a contradiction.
Therefore, cert(α,D⋆, τ(Σ)) = ∅, which means that certICR(α,D,Σ) = ∅.

We proceed with the proofs of the claimed lower bounds.

Theorem 7.2. QAnsICR(A⊥) is PNExpTime-hard in ba-complexity.

Proof. By Lemma 7.4, we can apply the proof for the fact that QAnsAR(A⊥) is PNExpTime-hard in ba-
complexity. Recall that for showing the latter we reduce from the extended exponential tiling problem.
In fact, given an extended tiling system E , we construct a database DE , and a set ΣE ∈ A⊥ that mentions
only predicates of bounded arity, such that E is valid iff certAR(Yes(), D,Σ) ̸= ∅, where Yes is a 0-ary
predicate indicating that E is indeed valid. By Lemma 7.4, we can conclude that certAR(Yes(), D,Σ) ̸= ∅
iff certICR(Yes(), D,Σ) ̸= ∅, which shows that QAnsICR(A⊥) is PNExpTime-hard in ba-complexity.

Theorem 7.3. QAnsICR(NC) is ΠP
2 -hard in ba-complexity.

Proof. The proof of Theorem 6.3, showing that QAnsIAR(NC) is ΠP
2 -hard in ba-complexity, applies also to

the ICR semantics. The reason is that cl(D,Σ) = D for every database D and Σ in NC, since Σ does not
include any TGD. Hence, the IAR and ICR semantics coincide for the class NC.

Theorem 7.4. QAnsICR(C⊥), where C ∈ {L,A,S}, is ΘP
2 -hard in fp-complexity.

Proof. We reduce from Comp3SAT [32, 33]. Recall that given two sets A and B of 3CNF formulas, this
problem asks whether #A > #B, i.e., whether A contains more satisfiable formulas than B. Recall also
that this problem remains ΘP

2 -hard even if |A| = |B|, all formulas in A and B are over the same set of
variables and have the same number of clauses, and A = {φ1, . . . , φm}, B = {ψ1, . . . , ψm} are such that
φi+1 (resp., ψi+1) is satisfiable implies φi (resp., ψi) is satisfiable, for each i ∈ {1, . . . ,m− 1}. Clearly,
#A > #B iff there exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is unsatisfiable.

Given A = {φ1, . . . , φm} and B = {ψ1, . . . , ψm}, our goal is to construct a database DA,B and a
Boolean CQ qA,B such that the following are equivalent:

1. There exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is unsatisfiable.

2. certICR(qA,B , DA,B ,Σ) ̸= ∅ for some fixed Σ ∈ C⊥, where C ∈ {L,A,S}.
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In fact, the construction is along the lines of the one given in Section 6 for showing that QAnsIAR(G⊥)
is ΘP

2 -hard in fp-complexity. We first construct a database DA and a CQ qA(x) such that, for each
i ∈ {1, . . . ,m}, φi is satisfiable iff ⟨fi⟩ ∈ qA(DA); the constant fi should be understood as the identifier
for the formula φi. Moreover, we construct a database DB and a CQ qB(x) such that, for i ∈ {1, . . . ,m},
ψi is unsatisfiable iff ⟨fi⟩ ∈ certICR(qB , DB ,Σ) ̸= ∅ for some fixed set Σ ∈ C⊥, for C ∈ {L,A,S}; here, fi
is the identifier of ψi. Once we have the above in place, we can easily construct DA,B and qA,B. We
assume that all the formulas in A and B are over the variables x1, . . . , xn and have k clauses.

The database DA and the CQ qA. Actually, for DA and qA we can use exactly the same construction
as in the proof of the fact that QAnsIAR(G⊥) is ΘP

2 -hard in fp-complexity given in Section 6.

The database DB and the CQ qB. Let us now explain the construction of DB and qB, which
is significantly different (at least the construction of DB) than the one given in the previous section.
Given a 3CNF formula ψi = Ci,1 ∧ · · · ∧ Ci,k from B with Ci,j = (ℓ1

i,j ∨ ℓ2
i,j ∨ ℓ3

i,j), the database DB

essentially stores all the possible truth assignments for each clause of ψi. To this end, we use a 5-ary
predicate BClauses1s2s3

b1b2b3
, where s1, s2, s3 ∈ {p, n} and b1, b2, b3 ∈ {0, 1}. For example, given the clause

Ci,j = xi1 ∨ xi2 ∨ ¬xi3 , the atom

BClauseppn
101(fi, cj , xi1 , xi2 , xi3)

encodes the clause itself, with the superscript ppn indicating that the variable of the first (resp., second,
third) literal appears positively (resp., positively, negatively) in Ci,j , and at the same time encodes the
truth assignment that sets xi1 to true, xi2 to false, and xi3 to true. We proceed to formally define DB .

Recall that for a literal ℓ, sign(ℓ) = p (resp., sign(ℓ) = n) if ℓ = x (resp., ℓ = ¬x). For a clause Ci,j of
φ, we write sri,j for sign(ℓri,j), where r ∈ {1, 2, 3}. Recall that var(ℓ) is the variable of the literal ℓ. The
database DB is defined as⋃

1≤i≤m

⋃
1≤j≤k

⋃
b1,b2,b3∈{0,1}

{
BClauses

1
i,js

2
i,js

3
i,j

b1b2b3

(
fi, cj , var(ℓ1

i,j), var(ℓ2
i,j), var(ℓ3

i,j)
)}

.

Regarding the CQ qB(x), is defined as the atomic query Unsat(x), which simply asks whether there exists
a formula in B that is unsatisfiable.

We claim that there exists a set Σ ∈ C⊥, for C ∈ {L,A,S}, such that, for each i ∈ {1, . . . ,m}, ψi is
unsatisfiable iff ⟨fi⟩ ∈ certICR(qB , DB ,Σ). In particular, Σ = Σcons ∪ Σunsat with Σcons being a set of NCs
that performs a consistency check on the truth assignment for ψi, i.e., each variable of ψi is assigned
exactly one value, and Σunsat being a set of TGDs that entails the ground atom Unsat(fi) whenever a
clause of ψi evaluates to false. More precisely, Σcons consists of the following NCs; a ⋆ symbol in the
superscript is a placeholder for p or n, a ⋆ in the subscript is a placeholder for 0 or 1, and, as usual, _ is
a “don’t care” variable:

BClause⋆⋆⋆1⋆⋆(x,_, y,_,_),BClause⋆⋆⋆0⋆⋆(x,_, y,_,_) → ⊥
BClause⋆⋆⋆1⋆⋆(x,_, y,_,_),BClause⋆⋆⋆⋆0⋆(x,_,_, y,_) → ⊥
BClause⋆⋆⋆1⋆⋆(x,_, y,_,_),BClause⋆⋆⋆⋆⋆0(x,_,_,_, y) → ⊥
BClause⋆⋆⋆⋆1⋆(x,_,_, y,_),BClause⋆⋆⋆0⋆⋆(x,_, y,_,_) → ⊥
BClause⋆⋆⋆⋆1⋆(x,_,_, y,_),BClause⋆⋆⋆⋆0⋆(x,_,_, y,_) → ⊥
BClause⋆⋆⋆⋆1⋆(x,_,_, y,_),BClause⋆⋆⋆⋆⋆0(x,_,_,_, y) → ⊥
BClause⋆⋆⋆⋆⋆1(x,_,_,_, y),BClause⋆⋆⋆0⋆⋆(x,_, y,_,_) → ⊥
BClause⋆⋆⋆⋆⋆1(x,_,_,_, y),BClause⋆⋆⋆⋆0⋆(x,_,_, y,_) → ⊥
BClause⋆⋆⋆⋆⋆1(x,_,_,_, y),BClause⋆⋆⋆⋆⋆0(x,_,_,_, y) → ⊥.
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Moreover, the set of TGDs Σunsat consists of:

BClausennn
111(x,_,_,_,_) → Unsat(x)

BClausennp
110(x,_,_,_,_) → Unsat(x)

BClausenpn
101(x,_,_,_,_) → Unsat(x)

BClausenpp
100(x,_,_,_,_) → Unsat(x)

BClausepnn
011(x,_,_,_,_) → Unsat(x)

BClausepnp
010(x,_,_,_,_) → Unsat(x)

BClauseppn
001(x,_,_,_,_) → Unsat(x)

BClauseppp
000(x,_,_,_,_) → Unsat(x).

Observe that Σunsat falls in C, for each C ∈ {L,A,S}. We proceed to show that:

Lemma 7.5. For i ∈ {1, . . . ,m}, ψi is unsatisfiable iff ⟨fi⟩ ∈ certICR(qB , DB ,Σ).

Proof. (⇒) Consider an arbitrary repair D ∈ reps(DB ,Σ). It is easy to verify that, due to Σcons, D
encodes a consistent assignment µD of truth values to the variables of ψi, i.e., for each clause Ci,j of ψi,
D contains exactly one atom of the form

BClauses
1
i s

2
i s

3
i

b1b2b3

(
fi, cj , var(ℓ1

i,j), var(ℓ2
i,j), var(ℓ3

i,j)
)
.

Since, by hypothesis, ψi is unsatisfiable, there exists a clause Ci,j of ψi such that, according to µD,
evaluates to false. This implies that a TGD of Σunsat will be triggered, and thus, Unsat(fi) ∈ cl(D, τ(Σ)).
Hence,

Unsat(fi) ∈
⋂

D′∈reps(DB ,Σ)

cl(D′, τ(Σ)),

which in turn implies that ⟨fi⟩ ∈ certICR(qB , DB ,Σ).
(⇐) Conversely, assume that ψi is satisfiable, and let µ be a satisfying assignment that witnesses this

fact. It is easy to verify that there is a repair Dµ ∈ reps(DB ,Σ) that encodes µ. Since µ is a satisfying
assignment, all the clauses of ψi evaluate to true. This means that none of the TGDs of Σunsat will be
triggered, and thus, ⟨fi⟩ ̸∈ certAR(qB , DB ,Σ). By Lemma 7.4, we can conclude that ⟨fi⟩ ̸∈ certICR(qB ,
DB ,Σ) = ∅, and the claim follows.

The database DA,B and the CQ qA,B. We can now easily construct the database DA,B and the
Boolean CQ qA,B with the desired property:

DA,B = DA ∪DB and qA,B = ∃x(qA(x) ∧ qB(x)).

With Σ being the set devised above, it is not difficult to verify that

⋂
D∈reps(DA,B ,Σ)

cl(D,Σ) = DA ∪

 ⋂
D∈reps(DB ,Σ)

cl(D,Σ)


since DA is consistent with Σ. By exploiting this observation, and Lemmas 6.7 and 7.5, we can provide a
proof that mimics the one of Lemma 6.9, and show that:

Lemma 7.6. The following are equivalent:

1. There exists i ∈ {1, . . . ,m} such that φi is satisfiable and ψi is unsatisfiable.

2. certICR(qA,B , DA,B ,Σ) ̸= ∅.

With Lemma 7.6 in place, we can conclude that

#A > #B ⇐⇒ certICR(qA,B , DA,B ,Σ) ̸= ∅

for a fixed Σ ∈ C⊥, for C ∈ {L,A,S}, which implies that QAnsICR(C⊥) is ΘP
2 -hard in fp-complexity, and

the claim follows.
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Theorem 7.5. QAnsICR(C⊥), where C ∈ {L,A,S}, is coNP-hard in d-complexity.

The proof of the above exploits the coNP-hard problem of deciding whether a 3CNF formula is
unsatisfiable:

PROBLEM : 3UNSAT
INPUT : A 3CNF Boolean formula φ.
QUESTION : Is φ unsatisfiable?

We now proceed with the proof of Theorem 7.5.

Proof of Theorem 7.5. The construction of the database is essentially the same as the one given in the
previous proof for the database DB , with the difference that we have to deal only with one formula and
not a set of formulas. Although it is easy to modify the construction given above, we give it here for the
sake of completeness.

For a 3CNF formula φ = C1∧· · ·∧Ck over the variables x1, . . . , xn with Ci = (ℓ1
i ∨ℓ2

i ∨ℓ3
i ), the database

Dφ stores all the possible truth assignments for a clause of φ. To this end, we use a 4-ary predicate
Clauses1s2s3

b1b2b3
, where s1, s2, s3 ∈ {p, n} and b1, b2, b3 ∈ {0, 1}. For example, for Ci = xi1 ∨ xi2 ∨ ¬xi3 , the

atom
Clauseppn

101(ci, xi1 , xi2 , xi3)
encodes the clause itself, with the superscript ppn indicating that the variable of the first (resp., second,
third) literal appears positively (resp., positively, negatively) in Ci, and at the same time encodes the
truth assignment that sets xi1 to true, xi2 to false, and xi3 to true. We proceed to formally define Dφ.

As usual, for a literal ℓ, sign(ℓ) = p (resp., sign(ℓ) = n) if ℓ = x (resp., ℓ = ¬x) for some variable x.
For a clause Ci of φ, we write sji for sign(ℓji ), where j ∈ {1, 2, 3}. Recall that var(ℓ) is the variable of the
literal ℓ. The database Dφ is⋃

1≤i≤k

⋃
b1,b2,b3∈{0,1}

{
Clauses

1
i s

2
i s

3
i

b1b2b3

(
ci, var(ℓ1

i ), var(ℓ2
i ), var(ℓ3

i )
)}
.

This completes the definition of Dφ.
We claim that there exists a set Σ of TGDs and NCs such that φ is unsatisfiable iff certICR(Unsat(),

Dφ,Σ) ̸= ∅. In particular, Σ = Σcons ∪ Σunsat with Σcons being a set of NCs that performs a consistency
check on the truth assignment for φ, i.e., each variable of φ is assigned exactly one value, and Σunsat being
a set of TGDs that entails the ground atom Unsat() whenever a clause of φ evaluates to false. More
precisely, Σcons consists of the following NCs; a ⋆ symbol in the superscript is a placeholder for p or n, a ⋆
in the subscript is a placeholder for 0 or 1, and, as usual, _ is a “don’t care” variable that occurs only
once:

Clause⋆⋆⋆1⋆⋆(_, x,_,_),Clause⋆⋆⋆0⋆⋆(_, x,_,_) → ⊥
Clause⋆⋆⋆1⋆⋆(_, x,_,_),Clause⋆⋆⋆⋆0⋆(_,_, x,_) → ⊥
Clause⋆⋆⋆1⋆⋆(_, x,_,_),Clause⋆⋆⋆⋆⋆0(_,_,_, x) → ⊥
Clause⋆⋆⋆⋆1⋆(_,_, x,_),Clause⋆⋆⋆0⋆⋆(_, x,_,_) → ⊥
Clause⋆⋆⋆⋆1⋆(_,_, x,_),Clause⋆⋆⋆⋆0⋆(_,_, x,_) → ⊥
Clause⋆⋆⋆⋆1⋆(_,_, x,_),Clause⋆⋆⋆⋆⋆0(_,_,_, x) → ⊥
Clause⋆⋆⋆⋆⋆1(_,_,_, x),Clause⋆⋆⋆0⋆⋆(_, x,_,_) → ⊥
Clause⋆⋆⋆⋆⋆1(_,_,_, x),Clause⋆⋆⋆⋆0⋆(_,_, x,_) → ⊥
Clause⋆⋆⋆⋆⋆1(_,_,_, x),Clause⋆⋆⋆⋆⋆0(_,_,_, x) → ⊥.

Moreover, the set of TGDs Σunsat consists of:

Clausennn
111(_,_,_,_) → Unsat()

Clausennp
110(_,_,_,_) → Unsat()

Clausenpn
101(_,_,_,_) → Unsat()

Clausenpp
100(_,_,_,_) → Unsat()

Clausepnn
011(_,_,_,_) → Unsat()
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c-complexity ba-complexity fp-complexity d-complexity
F ExpTime NP NP PTime

WG 2ExpTime ExpTime ExpTime ExpTime
WA 2ExpTime 2ExpTime NP PTime
WS 2ExpTime 2ExpTime NP PTime

Table 5: Complexity of QAns(C), where C ∈ {F,WG,WA,WS}; these are completeness results.

Clausepnp
010(_,_,_,_) → Unsat()

Clauseppn
001(_,_,_,_) → Unsat()

Clauseppp
000(_,_,_,_) → Unsat().

Observe that Σunsat falls in C, for each C ∈ {L,A, S}. This completes the definition of Σ. By providing a
proof that mimics the one for Lemma 7.5, we can show that φ is unsatisfiable iff certICR(Unsat(), Dφ,
Σ) ̸= ∅, and the claim follows.

Remark. Observe that in the above reduction the query is a ground atomic CQ, that is, Unsat(). This
fact, together with Lemma 7.4, implies that φ is unsatisfiable iff certAR(Unsat(), Dφ,Σ) ̸= ∅. Thus,
the above reduction provides an alternative proof for the fact that QAnsAR(C⊥), where C ∈ {L,A,S}, is
coNP-hard in d-complexity. However, the proof given in Section 5 shows that the coNP-hardness holds
even without TGDs, but it exploits a more complex CQ.

8 Full dependencies and beyond
A central class of TGDs, which is incomparable (at the syntax level) to all the classes that we have seen
so far, is the class of full TGDs, i.e., TGDs without existentially quantified variables, which we denote by
F. Indeed, this class forms a powerful language for modeling ontologies that has been used in several
different scenarios. For example, it is known that the logical core of the RL profile of OWL 2, which
is aimed at applications that require efficient reasoning without sacrificing too much expressive power,
corresponds to full TGDs.7 Interestingly, the main classes of TGDs that we have seen in the previous
sections based on the notions of guardedness, acyclicity and stickiness, come with their “weakly” version
that incorporates full TGDs: weakly-guarded (WG) [10], weakly-acyclic (WA) [21], and weakly-sticky (WS),
respectively. The definition of all these “weakly” versions follows the same principle: the underlying
syntactic condition is relaxed in such a way that only certain “harmful” variables are taken into account;
for details we refer the reader to the references given above.

The complexity of QAns(C), where C ∈ {F,WG,WA,WS}, is by now well-understood and is summarized
in Table 5. The results for QAns(F) are coming from the Datalog literature since a set of full TGDs
is essentially a Datalog program [17]. For all the other classes, we refer the reader to the references
mentioned above. But what about the complexity of consistent query answering under the semantics that
we have seen so far, when the above classes of TGDs are combined with NCs? It turned out that the
analysis performed in the previous sections for the less expressive classes of TGDs allows us to easily
complete the picture.

Theorem 8.1. The t-complexity of QAnss(C⊥), where t ∈ {c, ba, fp, d}, s ∈ {AR, IAR, ICR}, and C ∈ {F,
WG,WA,WS}, is as shown in Table 6.

Let us briefly summarize how the above complexity results are obtained by exploiting the algorithms
and the reductions devised in the previous sections:

AR semantics. The upper bounds are obtained via the procedure AlgorithmAR. The 2ExpTime and Ex-
pTime lower bounds are inherited from QAns(C), while the ΠP

2 and coNP lower bounds are inherited
from QAnsAR(NC).

IAR semantics. All the upper bounds, apart from the ΘP
2 ones, are obtained via AlgorithmIAR1, while

the ΘP
2 upper bounds via AlgorithmIAR2. As above, the 2ExpTime and ExpTime lower bounds are

inherited from QAns(C), while the ΠP
2 one from QAnsIAR(NC). For the ΘP

2 and coNP lower bounds,
7https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
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c-complexity ba-complexity fp-complexity d-complexity
AR ExpTime ΠP

2 ΠP
2 coNP

F⊥ IAR ExpTime ΠP
2 ΘP

2 coNP
ICR ExpTime ΠP

2 ΘP
2 coNP

AR 2ExpTime ExpTime ExpTime ExpTime
WG⊥ IAR 2ExpTime ExpTime ExpTime ExpTime

ICR 2ExpTime ExpTime ExpTime ExpTime
AR 2ExpTime 2ExpTime ΠP

2 coNP
WA⊥ IAR 2ExpTime 2ExpTime ΘP

2 coNP
ICR 2ExpTime 2ExpTime ΘP

2 coNP
AR 2ExpTime 2ExpTime ΠP

2 coNP
WS⊥ IAR 2ExpTime 2ExpTime ΘP

2 coNP
ICR 2ExpTime 2ExpTime ΘP

2 coNP

Table 6: Complexity of QAnss(C⊥), where C ∈ {F,WG,WA,WS}. For each class, the first (resp., second,
third) row corresponds to AR (resp., IAR, ICR); these are completeness results.

IAR 

= 1-support 

= 0-lazy 

2-support 

3-support 

k-support 

... 

k-defeater 

2-defeater 

... 

1-defeater 

ICR 

AR 

non-objection 

brave 

= 0-defeater 

CAR 

ICAR k-lazy 

Figure 1: Complete picture of the relationships among inconsistent-tolerant semantics [4]. The semantics
to which the arrow points is a complete approximation of the semantics from where the arrow starts; e.g.,
both AR and ICAR entail all the ICR answers, and ICR all the IAR answers.

it suffices to observe that the proof for the fact that QAnsIAR(G⊥) is ΘP
2 -hard in fp-complexity and

coNP-hard in d-complexity exploits only full TGDs.

ICR semantics. The c-complexity upper bounds are obtained via AlgorithmICR1. The ba- and d-
complexity upper bounds, as well as the fp-complexity upper bound in the case of WG⊥, are
obtained via AlgorithmICR3. The ΘP

2 upper bounds are established by using AlgorithmICR4. The
2ExpTime and ExpTime lower bounds are inherited from QAns(C), while the ΠP

2 one from
QAnsICR(NC). Finally, for the ΘP

2 and coNP lower bounds, observe that the proofs for showing that
QAnsICR(C′

⊥) is ΘP
2 -hard in fp-complexity and coNP-hard in d-complexity, for C′ ∈ {L,A,S}, use

only full TGDs.

9 Related work
There has been an extensive body of work on querying inconsistent knowledge bases in the context of
DL and existential rule languages. Arguably, as discussed in the introduction, the AR, IAR, and ICR
semantics have been the most prominent inconsistency-tolerant semantics. The AR semantics (known
in the database literature as consistent query answering) was first developed for relational databases
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in [1], and then applied to several DLs in [28, 31]. Intuitively, the AR semantics entails the set of answers
that are classically entailed in every possible repair. The intractability of the AR semantics was first
established in [31], which showed that ontological UCQ answering is coNP-complete in data complexity.
This result was then strengthened in [28], which showed that the coNP-hardness holds even for ground
atomic queries and when the knowledge base is expressed in DL-Litecore (the least expressive logic in the
DL-Lite family). The work of [44] studied both the data and the combined complexity for a wide spectrum
of DLs, while [3] identified cases for simple ontologies (within the DL-Lite family) for which tractable data
complexity results can be obtained. In [37, 38, 40], the data and different types of combined complexity of
the AR semantics have been studied for ontologies modeled via existential rules and negative constraints.

The IAR semantics was introduced in [28] as a sound (under-)approximation of AR, as it entails the
set of answers that are classically entailed from the intersection of all repairs. The work of [28] showed
that ontological UCQ answering is in PTime in data complexity for DL-LiteA. On the other hand, [29]
showed that ontological CQ answering under the IAR semantics is first-order rewritable for DLs of the
DL-Lite family. The combined complexity of the IAR semantics for ontology languages of the DL-Lite
family was investigated in [9]. The work of [6] analyzed the data and combined complexity of ontological
query answering under the AR and IAR semantics for different notions of maximal repairs focusing on the
lightweight logic DL-LiteR. Practical implementations of the AR and IAR semantics have been developed
in [7, 30].

The ICR semantics was introduced in [3], where it was also shown that ontological CQ answering is in
PTime in data complexity for simple DL ontologies. The ICR semantics entails the set of classical answers
obtained from the intersection of the logical closure of all possible repairs, and it is an over-approximation
of IAR (i.e., IAR answers are ICR answers, but the reverse does not hold) and an under-approximation of
AR. The complexity of ontological query answering under the IAR and ICR semantics for a wide range of
existential rule languages and for different complexity measures has been investigated in [34]. The work
of [36] investigated the complexity of ontological query answering under the AR, IAR, and ICR semantics
for several existential rule languages and complexity measures when repairs are cardinality-maximal.

The work of [28] also introduces other semantics that under and over approximate AR, namely CAR
and ICAR, which stand for Closed ABox Repairs and Intersection of Closed ABox Repairs, respectively.
The rationale for the CAR semantics is that AR is dependant of the syntax of the database, which means
that logically equivalent knowledge bases may yield different answers under the AR semantics. CAR is an
over-approximation of AR based on repairs that are computed from the consistent closure of the database
with respect to the (DL-based or rule-based) ontology Σ; intuitively, the consistent closure is the set of
all atoms that can be consistently derived from the database and Σ, i.e., such that no negative axiom is
violated in the derivation. A repair is now any subset of the consistent closure that “maximally preserves”
the content of the original database. The CAR semantics corresponds then to the set of answers that are
classically entailed from every closed repair, and contains all AR answers. Therefore, it is a complete
approximation, but there are answers that are true under the CAR semantics that are not true under
the AR semantics. In [3, 44] it is shown that ontological query answering for DL-Litecore under CAR is
in PTime in data complexity when we focus on atomic queries, and coNP-complete for UCQs. It has
been also shown that for the DL EL, ontological UCQ answering under CAR is DP-complete in data
complexity. Analogously to IAR, [28] defines the ICAR semantics, a sound approximation to CAR that
computes the answers from the intersection of all closed repairs.

Following these families of under and over approximations to the AR semantics, further semantics
where developed trying to formalize more granular conflict resolution techniques. The notion of k-lazy
consistent answers, proposed in [38], provides an alternative semantics that offers a compromise between
quality of answers and computation time. Lazy answers are based on a “budget” (the parameter k) that
restricts the size of removals that need to be made in an inconsistent set of facts in order to make it
consistent; if the budget is large enough, then all possible ways of resolving the conflicts within the budget
are considered, but if it is not enough then the whole inconsistent set is removed. If we think of the
problem of querying inconsistent KBs as a reasoning task for an intelligent agent, then the value of the
budget would be a bound on its reasoning capabilities (more complex reasoning can thus be afforded
with higher budgets). The k-lazy semantics is non-monotonic with respect to k in the sense that the
answers obtained under the semantics with parameter k may not be a subset of those obtained with
k + 1; nevertheless, the union-k-lazy extension proposed in [41] allows to monotonically expand the set of
consistent answers. Although the k-lazy approach is not strictly based on the same notion of repair, it
was shown that there always exists a value k for which k-lazy and AR coincide.

The k-support semantics [9] increasingly produces more fine-grained under (sound) approximations
of the AR semantics. On the other hand, [9] also proposed the k-defeater semantics, which provides
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increasingly tighter upper (complete) approximations of the AR semantics. The k-support semantics
restricts the number of distinct supports (i.e., consistent derivations for an answer) that can cover all
the repairs; with k = 1, the same support must be present in every repair, so it coincides with IAR
– increasing parameter k yields larger sets of answers until AR is reached. On the other hand, in the
k-defeater semantics, only sets of size k that create a contradiction w.r.t. every minimal support for an
answer are considered; clearly, when k = 0 the semantics coincides with the brave semantics, i.e., the set
of answers that can be obtained from some repair. As k increases, larger defeater sets are considered
and the set of answers are incrementally reduced until the set of AR answers is reached. Both semantics
enjoy desirable computational properties; however, note that k-defeater may entail answers that are
conflicting among each other (even for the same value of k). Figure 1, reproduced from [4], summarizes
the relationship among the main inconsistency-tolerant semantics defined so far in the literature. We
refer the reader to [4] for more details on the semantics and complexity results for several families of DLs.

The AR semantics was extended to the generalized repair (GR) semantics, and its computational
complexity was analyzed in [20]. In the GR semantics, not only atoms from the database, but also
ontological axioms may be removed and considered as part of the repairs; notice, however, that some
database atoms and axioms may be specified to be non-removable. The generalized repair semantics was
applied to the IAR and ICR semantics in [34], where its complexity was analyzed for different existential
rule languages and complexity measures.

Recently, inconsistency-tolerant semantics for ontological query answering has also been considered
from an explanation perspective. A (minimal) explanation for an ontological query can be defined in
different ways. However, the literature has lately focused on a quite natural definition in which a (minimal)
explanation for an ontological query is a (minimal) set of facts that, together with the ontology, entail
the query (see [7, 15] for the DL setting, and [14] for the existential rule setting, and the references
therein). This concept of explanation has been extended to the inconsistency-tolerant semantics, in which,
intuitively, an explanation in terms of (sets of) facts is provided to justify why a query is entailed under
the AR, IAR, ICR, semantics (see [7] for the DL setting, and [35] for the existential rule setting).

10 Conclusion
We performed a thorough complexity analysis of consistent query answering under the main classes of
TGDs based on the notions of guardedness, linearity, acyclicity, and stickiness, and extensions thereof.
In our analysis, we focused on the standard inconsistency-tolerant semantics (AR semantics), as well as
the main sound approximations of it (IAR and ICR semantics), and we considered different complexity
measures with the aim of understanding how the complexity is affected when key parameters of the input
are considered to be fixed.

Another goal of our analysis, apart from clarifying the complexity landscape, was to understand
whether the IAR and ICR semantics have the desired effect on the data complexity of our problem,
i.e., whether they lead to tractability. It turned out that this is not the case, as the problem remains
coNP-hard in most of the cases. The only exceptions are the classes based on linearity, acyclicity, and
stickiness when we focus on the IAR semantics. In these cases, we show that the problem is in AC0 in
data complexity. This is established via FO-rewritability, which in turn relies on the fact that the classes
in question are UCQ-rewritable.

As for future work, apart from performing a complexity analysis with other semantics, we believe that
it is important to empirically evaluate the performance of the various inconsistency-tolerant semantics
with respect to their expressive power. Many of the semantics proposed in the literature have been
designed to trade off expressive power for computational tractability. Many also maintain soundness
with respect to the AR semantics as a kind of quality guarantee that is difficult to evaluate in practice.
One way to compare the performance of the various alternative semantics is therefore to design quality
metrics that yield objective comparisons of expressive power in practice. This would also shed light on
the performance of semantics that go beyond the classical concept of data repair, which are typically
not designed to be sound with respect to the AR semantics. The main challenges in this line of work
involve selecting adequate real-world datasets, as well as designing well-founded methods to synthetically
generate datasets.
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