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Abstract
Machine learning classifiers are increasingly used to inform, or even make, decisions significantly affecting human lives. 
Fairness concerns have spawned a number of contributions aimed at both identifying and addressing unfairness in algorithmic 
decision-making. This paper critically discusses the adoption of group-parity criteria (e.g., demographic parity, equality of 
opportunity, treatment equality) as fairness standards. To this end, we evaluate the use of machine learning methods relative 
to different steps of the decision-making process: assigning a predictive score, linking a classification to the score, and adopt-
ing decisions based on the classification. Throughout our inquiry we use the COMPAS system, complemented by a radical 
simplification of it (our SAPMOC I and SAPMOC II models), as our running examples. Through these examples, we show 
how a system that is equally accurate for different groups may fail to comply with group-parity standards, owing to different 
base rates in the population. We discuss the general properties of the statistics determining the satisfaction of group-parity 
criteria and levels of accuracy. Using the distinction between scoring, classifying, and deciding, we argue that equalisation 
of classifications/decisions between groups can be achieved thorough group-dependent thresholding. We discuss contexts 
in which this approach may be meaningful and useful in pursuing policy objectives. We claim that the implementation of 
group-parity standards should be left to competent human decision-makers, under appropriate scrutiny, since it involves 
discretionary value-based political choices. Accordingly, predictive systems should be designed in such a way that relevant 
policy goals can be transparently implemented. Our paper presents three main contributions: (1) it addresses a complex pre-
dictive system through the lens of simplified toy models; (2) it argues for selective policy interventions on the different steps 
of automated decision-making; (3) it points to the limited significance of statistical notions of fairness to achieve social goals.
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1  Introduction: predictions and decisions 
in machine learning

As the use of machine learning (ML) methods in decision-
making processes has become pervasive, having the poten-
tial to significantly affect human lives, fairness concerns 
have grown (Barocas et al. 2017; Mayer-Schönberger and 
Ramge 2018; Hildebrandt 2020; Vinuesa et al. 2020). These 
concerns have spawned many contributions aimed at iden-
tifying and measuring unfairness in decision-making and 
at proposing remedies (Žliobaitė 2017; Zafar et al. 2017; 
Joseph et al. 2016; Hajian and Domingo-Ferrer 2012; Hell-
man 2020; O’Neil 2016; Kusner et al. 2017).

Most contributions have focused on the outcomes of 
machine learning systems that disparately affect sensitive 
groups (e.g., groups identified by race or gender).
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On one hand, such outcomes, or rather the decisions 
based on them, have been evaluated by applying categories 
of anti-discrimination laws, such as the distinction between 
disparate treatment (also called direct discrimination) and 
disparate impact (also known as indirect discrimination). In 
the first case, the detrimental outcome is based on prohibited 
features. In the second case, such an outcome is based on 
apparently neutral features, criteria, and practices (Barocas 
and Selbst 2016; De Vos 2020) the consideration of which 
disproportionately affects a protected group, without an 
acceptable rationale (see Friedman and Nissenbaum 1996).

On the other hand, some abstract criteria and metrics have 
been developed to determine when the outcomes of machine 
learning systems affect individuals and groups differently 
(Angwin et al. 2016; Dieterich et al. 2016; Hardt et al. 2016; 
Chouldechova 2017; Kleinberg et al. 2016; Berk et al. 2018). 
According to these criteria, a decision process is called 
“fair,” under a particular criterion, if its outcomes, relative 
to the groups  being considered, equally satisfy certain sta-
tistical properties. For instance, a classifier is deemed fair 
under the statistical parity criterion if it provides an equal 
proportion of positive and negative predictions across all 
groups. These fairness notions depart from the concepts of 
fairness so far used in social and philosophical disciplines 
(see Rawls 2001; Rescher 2002). They point to group differ-
ences, which may have different grounds, depending on the 
predictive system’s biased functioning or on differences in 
the underlying populations.

The fairness analyses of decisions based on machine 
learning usually do not distinguish the different steps 
involved in a decision-making process. Consequently, they 
are unable to identify the ways in which decision-making 
processes can be improved through specific interventions. 
To fill this gap, we distinguish the following steps: assign-
ing a predictive score, linking a classification to that score, 
and taking a decision (i.e., selecting actions) based on that 
classification.

The first step fundamentally consists in an epistemic 
determination: it provides a factual assessment, usually 
expressed through a numeric score, that approximates the 
likelihood that things are in a certain way, or that they will 
evolve in a certain direction. On the contrary, both classifica-
tion and decision-making involve practical judgements based 
on the epistemic determination provided by the score: they 
are geared toward achieving the goals (economic, ethical, 
political, etc.) driving the decision-making process, includ-
ing a fair treatment of individuals. By separating out epis-
temic and practical determinations, it may be possible to 
achieve a less controversial and more focused assessment of 
automated decisions. In some cases, we may agree that the 
system’s predictions are epistemically faulty; in other cases, 
while agreeing on their epistemic correctness, we may disa-
gree on the appropriateness of the following classifications 

and decisions, if we differ about the political-ethical values 
at stake or about their relative weight.

In the following, we first distinguish the three stages 
mentioned above, i.e., (1) the computation of a probabilis-
tic score, (2) the classification based on the score, and (3) 
the decision based on the classification. Then we focus on 
the use of predictive technologies to evaluate the risk of 
recidivism. We briefly introduce the COMPAS system, the 
Loomis case in which it was challenged, and the ensuing 
debate on COMPAS's fairness.

To provide clearer insights and to support appropriate 
generalizations, we provide a simplified version of COM-
PAS, which we call SAPMOC I, and assess its outcomes 
using some standards for group parity. We show how a sys-
tem equally accurate for two groups may fail to comply with 
some parity standards owing to different base rates in the 
population.

We discuss the general properties of the statistics deter-
mining the satisfaction of parity criteria and levels of accu-
racy. By expanding our toy example into SAPMOC II, we 
show that equalization of classifications/decisions between 
groups can be achieved by way of group-dependent thresh-
olding. We discuss contexts in which this approach may be 
meaningful, and useful in pursuing policy objectives in light 
of socio-political preferences. We argue that predictive sys-
tems should be built in such a way that relevant preferences 
can be transparently introduced by human decision-makers.

Our paper presents three main contributions: (1) it 
addresses a complex predictive system (COMPAS) through 
the lens of simplified toy models (SAPMOC I and SAPMOC 
II); (2) it argues for selective policy interventions on the 
different steps of automated decision-making (i.e., scoring, 
classifying, deciding); (3) it points to the limited signifi-
cance of statistical notions of fairness to achieve social goals 
in different contexts.

2  The anatomy of decisions

As noted by Agrawal et al. (2018), machine learning systems 
can be viewed as “prediction machines-” In comparison to 
human decision-making, they provide in many domains for 
more precise and cheaper predictions, and consequently lead 
to a much greater number of predictions being made. Predic-
tions may concern both the existence of factual precondi-
tions for engaging in certain actions, as well as the expected 
outcomes of such actions. As examples in the medical 
domain, consider the prediction that a patient has a certain 
pathology as opposed to the prediction that a certain therapy 
will be effective. As examples in the justice domain, com-
pare the prediction that a certain individual will recidivate 
(reoffend), and the prediction that a correctional measure 
will be effective for his or her social reintegration.
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It is important to remark that predictions only are one 
component in a larger process. Decision-making is not lim-
ited to predicting but also requires specifying the goals to 
be pursued, identifying the applicable ethical or legal con-
straints, evaluating the predicted consequences of alterna-
tive courses of action, and selecting the action best suited to 
goals and constraints.

As shown in Fig. 1, we distinguish three main steps in 
a decision-making process supported by predictive algo-
rithms: scoring, classifying and deciding.

2.1  Predictive scoring

The first step is predictive scoring, which consists in assign-
ing a score to an entity. The score expresses the likelihood 
that the entity has the predicted property (see Citron and 
Pasquale 2014). Depending on the domain, different target 
properties can be predicted. For instance, when the task is 
to determine whether an industrial product may be defec-
tive, the score expresses the likelihood that the product is 
indeed faulty. Where the risk of fraud is being predicted, the 
score indicates the likelihood that a transaction will indeed 
be fraudulent. This first step, as we shall argue, should be 
fundamentally based on epistemic considerations, namely, 
on getting scores that most accurately reflect the likelihood 
of the target properties being present.

As shown in Fig. 1, where machine learning methods are 
adopted, the score is the outcome delivered by a model (a 
learned algorithm) that is constructed by another algorithm 
(the learning algorithm). Supervised learning is based on a 
training set, i.e., a set of examples, each linking the values 
of certain features (the predictors) in a particular case to 
the value of the feature being predicted (the label) in the 

same case. For instance, in medical diagnosis, each exam-
ple may link the features of particular patient (e.g., medical 
history and scans) to the pathologies by which the patient 
is affected. In the case of recidivism, each example may 
link the features of a past offender (e.g., criminal record and 
psychological traits) to the offender’s behavior after release.

2.2  Classification

The second step in the pipeline—classification—is consti-
tutive rather than descriptive. Classification is not meant to 
identify “objective” features of the entities to which it is 
applied, but rather to provide triggers for action. It must 
be considered in connection with the decisions that may 
be taken or considered depending on the labels ascribed 
through classification.

More to the point, classification mediates threshold scores 
and decisions, as shown in Fig. 2. For instance, by clas-
sifying entities (within a certain score interval) as having 
a high, medium, or low likelihood of possessing the target 
feature, we anticipate the way in which such entities are 
going to be treated. For instance, assume that a hospital has 
a policy under which high-risk patients are to undergo cer-
tain medical tests. By choosing to classify as high-risk all 
patients whose score indicates a greater than 20% chance 
of having a certain pathology, we determine what patients 
will be subject to these tests. Similarly, assume that a policy 
exists under which transactions with a high risk of fraud 
will be addressed by blocking the credit cards of the parties 
involved. By choosing to classify as high-risk only those 
transactions that have a greater than 85% chance of being 
fraudulent, we determine what transactions will trigger this 
measure.

Fig. 1  The anatomy of decisions
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As these examples show, threshold-setting and the con-
sequent classifications are non-neutral: they are rather goal- 
and cost-driven. In the medical-testing example, the thresh-
old was set low, given the high cost of failing to detect an 
instance of disease. In the fraud-detection example, a high 
threshold was set in view of the cost, in terms of reduced 
customer satisfaction, of blocking the credit card of an inno-
cent user.

Figure 3 shows the function of score thresholds: they 
separate those cases that are to be treated as having the tar-
get feature from those cases that are to be treated as missing 
such feature. Thus, thresholds can be said to introduce a 
kind of presumption relative to the possession of the target 
feature, based on cost-effectiveness analyses combining the 
expected benefits and the costs of interventions. All enti-
ties above the threshold are considered to be positive, even 
if only some of them, i.e., those having the target feature, 
will be true positives, the others being false positives. Simi-
larly, all entities below the threshold are considered to be 
negative, even if only some of them, i.e., those missing the 
target feature, will be true negatives, the others being false 
negatives. For instance, in tools assessing the risk of recid-
ivism, setting a certain threshold for high risk will entail 
that all those above the threshold will be considered future 
recidivists (including false positives) and all those below it 
will be considered as future non-recidivists (including false 
negatives).

2.3  Decision

The final step is decision. Decision may be entrusted to 
a human decision-maker, who may take other situational 
aspects into account, or it may be automatically linked to 
classification by means of a computable rule. As an example 
of a human decision based on an automated classification/
score, consider a physician who evaluates a diagnosis sug-
gested by a predictive system and decides the appropriate 
treatment accordingly. Similarly, a judge may consider the 
recidivism prediction and risk-classification of defendants 
in deciding on a correctional or treatment program (as in 
the COMPAS case, which will be extensively considered 
in what follows). As an example of an automated decision, 
consider a loan application which is automatically rejected 
by a computer system, since the applicant is classified as 
high risk. Similarly, a product classified as defective can be 
automatically discarded.

3  The COMPAS system and the Loomis case

In this section, we examine COMPAS (Correctional 
Offender Management Profiling for Alternative Sanctions), 
an actuarial risk and need-assessment instrument widely 
used in the United States. COMPAS is deployed in the crimi-
nal justice system for evaluating defendants’ risk profiles: 
risk of recidivism, risk of violence, and risk of failure to 
appear in court.

Fig. 2  General classification Fig. 3  Binary classification
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The assessments made by COMPAS are taken into 
account by judges in deciding whether to grant the ben-
efit of parole/probation. Risk is assessed through statisti-
cal algorithms and quantified into risk scores. Such scores 
are computed on the basis of multiple data points, which 
include static-historical factors (such as criminal history, 
age of first arrest, criminal associates) and dynamic-crim-
inogenic factors (such as residential stability, employment 
status, community ties, substance abuse, social inclusion 
and relationships, and family status), as well as answers to 
137 multiple-choice questions. COMPAS has two primary 
risk models: General Recidivism and Violent Recidivism. 
The General Recidivism Risk Scale is used to predict new 
offences. The Violent Recidivism Risk Scale focuses on the 
probability of violent crimes, i.e., murder, manslaughter, 
rape, robbery, and aggravated assault. COMPAS scale scores 
are transformed into decile scores by dividing these scores 
into ten equally sized groups. In particular, scores in deciles 
from 1 to 4 are labelled “Low” risk; from 5 to 7 “Medium”; 
and from 8 to 10 “High.”

3.1  A legal challenge: the Loomis case

The use of COMPAS has been widely debated in the wake of 
the case of Loomis v. Wisconsin.1 Eric Loomis was charged 
with driving a stolen vehicle he used in a shooting and flee-
ing from police. Before deciding the case, the Circuit Court 
of Wisconsin ordered a presentencing investigation in part 
based on the COMPAS assessment. As a result, Loomis was 
classified as being at high risk of reoffending (Brennan et al. 
2009) and was sentenced to 6 years of imprisonment and 
5 years of extended supervision.

Loomis appealed the Court’s decision, arguing that the 
Court’s reliance on COMPAS violated his due process rights, 
on the following grounds.2 First, COMPAS does not disclose 
how risk scores are computed. This lack of transparency 
prevents defendants from challenging the scientific validity 
and accuracy of such scores. Second, COMPAS reflects race 
and gender biases. In particular, black men have a higher 
likelihood of being mistakenly predicted to reoffend, and 
females are assigned a lower risk score, all the rest being 
equal. Third, the system’s predictions are based on statisti-
cal correlations. Thus, the court’s use of COMPAS infringes 
both the right to an individualized sentence and the right to 
be sentenced on accurate information.3 The Supreme Court 
of Wisconsin rejected the defendant’s arguments. Regarding 
the COMPAS system’s opacity and accuracy, the court held 
that even though Loomis could not review and challenge 

COMPAS computations, he could still review and challenge 
the resulting risk scores and the factors on which they were 
based, some being publicly available and other being pro-
vided by the defendant.

The Supreme Court of Wisconsin denied that COMPAS 
discriminates against men, stating that the use of gender as a 
factor in risk assessment serves the non-discriminatory pur-
pose of promoting accuracy. Regarding the race discrimina-
tion issue—i.e., the allegation that COMPAS systematically 
attributes higher risk scores to black offenders than to white 
ones—the Wisconsin Supreme Court merely highlighted the 
importance of adequately informing COMPAS users about 
the related debate.

Finally, the Court admitted that COMPAS statistical 
algorithms are based on generalizations, since the likeli-
hood that a person reoffends is computed on the basis of 
the past behavior of similar individuals. However, the court 
explained that COMPAS is merely meant to enhance the 
evaluation of judges, who should weigh all the available 
evidence in determining an individualized program appro-
priate to the defendant.

3.2  A statistical challenge: the ProPublica study

The Loomis case has been widely reported and debated in 
the scholarly literature (Angwin et al. 2016; Flores et al. 
2016) and beyond (Angwin et al. 2016; Yong 2018; Liptak 
2017; Tashea 2017), which has challenged the accuracy 
and fairness of COMPAS. In 2016 ProPublica, a nonprofit 
organization specialized in investigative journalism, pub-
lished an extensive study (Angwin et al. 2016) based on 
11,757 defendants in Broward County, Florida, assessed 
by COMPAS in 2013 and 2014. The study compared the 
recidivism risk rates predicted by COMPAS with the actual 
recidivism rates of defendants within 2-year span so as to 
determine the extent to which COMPAS predictions come 
true for different race-based groups (black, white, Hispanic, 
Asian, and Native American).

On this basis, ProPublica raised several criticisms, among 
which the following. Firstly, it argued that COMPAS is inac-
curate: in many cases individuals classified as high risk did 
not reoffend, while those flagged as medium or low risk 
committed new crimes. COMPAS correctly predicted  recid-
ivism 61% of the time, and it only correctly predicted violent 
recidivism in 20% of cases (Larson et al. 2018).

Secondly, and most importantly, ProPublica claimed that 
COMPAS was racially unfair. The average probability to 
be predicted at a high risk of recidivism was much higher 
for blacks than for whites . Furthermore, the proportion of 
black defendants misclassified as high risk (relative to the 
total number of blacks who did not reoffend) was much 
higher than the corresponding percentage of whites (45% as 
opposed to 23%).  Conversely, white defendants were more 

1 State v. Loomis, 881 N.W.2d 759 (Wis. 2016).
2 Loomis, 881 N.W.2d at 756.
3 Loomis, 881 N.W.2d 759 (Wis. 2016).
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often predicted to be less risky than they were. White reof-
fenders were mistakenly labeled as low risk almost twice 
as much as black ones (48% as against 28%) (Larson et al. 
2018).

Consequently, it appeared the COMPAS’s assessment 
were affected by racial bias. On one hand, black non-recidi-
vists were more likely than white non-recidivists to be erro-
neously subjected to the detrimental consequences linked to 
a recidivism prediction. On the other hand, white recidivists 
were more likely than black recidivists to erroneously obtain 
the more favorable treatment for expected non-recidivists.

In 2016, scientists from Northpointe, Inc. (Dieterich et al. 
2016), challenged ProPublica’s report (Angwin et al. 2016), 
claiming that it was based on several statistical and techni-
cal errors. Especially, the report did not take into account 
the different base rates of recidivism for blacks and whites. 
The Northpointe scientists argued that COMPAS was not 
racially biased, since the prediction that an individual would 
or would not reoffend was equally correlated, for both blacks 
and whites, with the likelihood that the individual would 
actually reoffend.

Black defendants who were predicted to reoffend actually 
did recidivate at a slightly higher rate than their white coun-
terparts (63% as against 59%). Similarly, white defendants 
who were predicted not to recidivate did not reoffend at a 
slightly higher rate than black defendants (71% as against 
65%). These findings provided evidence of predictive parity4 
for blacks and whites in the target population.

The authors also demonstrated that both the Recidivism 
Risk Scale and Violent Recidivism Risk Scale were equally 
accurate for blacks and whites. Finally, they pointed out that 
COMPAS accuracy should be evaluated with respect to the 
accuracy of human judgments, which on average is lower 
than that of the system (Dieterich et al. 2016).

3.3  From COMPAS to SAPMOC: A mock predictive 
system

Technical contributions addressing the COMPAS system 
have shown that different fairness evaluations can be made 
by applying different group parity standards. Understanding 
the ethical and legal significance of these outcomes in the 
COMPAS case is difficult, given the high complexity of such 
a system. Lawyers and other non-experts in statistical analy-
sis/machine learning are consequently puzzled and unable to 
take a reasoned position in the COMPAS debate, as in other 
issues pertaining to algorithmic fairness.

To illustrate and clarify such issues and make them 
accessible to a nontechnical audience, we have adopted 
the following methodological approach. We have defined 
a toy example, which we call SAPMOC (by inverting the 
“COMPAS” name), which exemplifies the main source of 
the COMPAS controversies: the application of statistical 
predictions to populations characterized by different base 
rates relative to both the predictors and the target property. 
This helps us to address some key points, without getting 
bogged down in details and complexities. We will introduce 
two versions of SAPMOC, a simpler version, SAPMOC I, 
which only uses a single binary input feature, and a more 
complex version, SAPMOC II, using multiple input features.

3.4  Meet SAPMOC I

Like COMPAS, SAPMOC I assesses the risk of recidivism. 
However, rather than 130 input features, it only uses a single 
binary feature, i.e., whether the defendant committed previ-
ous offences. A realistic system for predicting recidivism 
should consider multiple features—education, family situ-
ation, job, income level, character, etc.—though it has been 
argued that the functioning of COMPAS can be reproduced 
using only a few features (Rudin 2019). For our explanatory 
purposes, however, a single feature will do.

We consider a population (P) of NP = 3000 defend-
ants, divided into two groups, the Blue (B) or the Green 
(G) group, such that P = B ∪ G and B ∩ G = ∅ . We denote 
the number of individuals in each group by NB = 1500 and 
NG = 1500 , so that NP = NB + NG.

Only for the sake of our example, and with no link to any 
real context, we assume that our input feature has a high 
predictive capacity: defendants having a criminal record 
reoffend in 80% of cases, while defendants with no criminal 
record reoffend in 20% of cases. We also presume that 1000 
individuals in the Blue group have a criminal record, while 
only 500 individuals in the Green group do.

Applying the general decision-making framework 
sketched above—where we distinguish between assigning 
a score, making a classification depending on whether the 
score is above or below a certain threshold, and deciding 
accordingly—we get the simplified account in Fig. 4. Note 
that, given the binary nature of our predictions, just two pos-
sible scores can be assigned, e.g., 800 for having a criminal 
record and 200 for not having it. We assume that all those 
with a score of 800 are classified as high risk, i.e., as (likely) 
reoffenders, and all those with a score of 200 are classified as 
(likely) non-reoffenders. Consequently, the first are denied 
probation, while the second are accorded it. Note, however, 
that the assignment of scores is here redundant, since the 
functioning of SAPMOC I could be adequately captured by 
directly linking the presence of the input feature to the cor-
responding classification.

4 A classifier exhibits “Predictive parity” if it delivers similar predic-
tive values for two different groups (e.g., blacks and whites), such as 
the probability of reoffending, given a similar score for such groups.
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3.5  SAPMOC I’s overall performance

Tables 1 and 2 reflect the correlation between criminal 
record (previous convictions) and recidivism across the 
whole population (without distinguishing Blue and Green 
individuals) in SAPMOC I.

SAPMOC I has classified as recidivists all individuals 
having a criminal record (1500). In so doing, it has errone-
ously classified 300 individuals (all those having a criminal 
record who did not recidivate). Similarly, it has classified 
as non-reoffenders all individuals without a criminal record 
(1500), thus erroneously classifying 300 individuals (all 
those not having a criminal record who did reoffend). As a 
result, SAPMOC I has incurred in 600 errors. In assessing 
the functioning of SAPMOC I, we must consider that errors 

are committed by any predictor operating under real-world 
circumstances. The issue is whether the error rate is accept-
able in the context of the application domain, in comparison 
with the available alternatives.

Independently of how binary predictive systems work 
internally, their performance can be characterized by their 
confusion matrix, which relative to SAPMOC I takes the 
form in Table 3.

Each row represents the instances in actual classes, while 
each column represents the instances in a predicted class:

1. TP is the number of true positives, i.e., those individu-
als for whom the prediction is positive (recidivism is 
predicted) and that prediction is true (the individual will 
reoffend),

2. FN is the number of  false negatives, i.e., the individu-
als for which the prediction is negative (no reoffence is 
predicted) but that prediction is false (the individual will 
reoffend),

3. TN is the number of true negatives, i.e., the individu-
als for whom the prediction is negative (no reoffence is 
predicted) and that prediction is true (the individual will 
not reoffend), and

4. FP is the number of false positives, i.e., the individuals 
for whom the prediction is positive (reoffence is pre-
dicted) but that prediction is false (the individual will 
not reoffend).

When needed, quantities related to entire populations are 
indicated with a superscript P, while those referring to only 
one of the two sub-populations (the Blues or the Greens) are 
indicated with the superscripts B or G. Hence, for example, 
 TPP is the number of individuals in the global population 
that are predicted to be recidivist and will indeed commit 
further offences, while  TPB is the corresponding number of 
Blue individuals, etc.

3.6  Distribution of recidivism in different 
sub‑populations

Consider now the Blue and the Green population separately. 
As above, we assume that our input feature (having crimi-
nal record) is not equally distributed across the two groups: 
1000 Blue defendants have a criminal record, while only 

Fig. 4  Binary classification by SAPMOC I

Table 1  Real outcomes

Record No record

Recidivism 1200 300
No recidivism 300 1200
Total 1500 1500

Table 2  SAPMOC predictions

Record No record

Recidivism 1500 0
No recidivism 0 1500
Total 1500 1500

Table 3  SAPMOC's overall performance

Predicted recidivist Predicted 
non-recid-
ivist

Recidivist TP = 1200 FN = 300
Non-recidivist FP = 300 TN = 1200
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500 Green ones do. Within each group the criminal record 
is equally correlated with recidivism.

Table 4 reports the base rate of our population, i.e., the 
proportion of individuals who have or have not reoffended, 
relative to the total amount of individuals within each group. 
For instance, since the Blue group includes 1,000 defendants 
with a criminal record and 500 defendants without such a 
record, and the former will reoffend in 80% of cases, while 
the latter only in 20%, it follows that 1000 × 80% = 800 indi-
viduals with a criminal record and 500 × 20% = 100 without 
such a record will reoffend, i.e., a total of 900 Blues. Given 
that the Blue group includes 1,500 individuals, 900 reoffend-
ers (i.e., positive individuals) represent 60% of Blues. As 
shown in Table 4, similar considerations apply to the other 
classes (i.e., Blue negatives, Green positives, and Green 
negatives). Base rates of positives and negatives is different 
for Blues and Greens due to the different number of previous 
offenders in each group.

As in the ProPublica analysis, we assume to know both 
the SAPMOC I’ predictions and the actual outcomes. This 
information is shown in Table 5.

As noted above, SAPMOC I predicted that all previous 
offenders, e.g., all Blues with a criminal record (1000), 
would reoffend  (TPB +  FPB). Since previous offenders reof-
fend in 80% of cases, with regard to the Blue group predic-
tions are correct for 800 defendants  (TPB) and incorrect for 
200  (FPB) defendants. Similarly, SAPMOC predicted that 
all those with no criminal records, e.g., 500 Blues, would 
not recidivate. Since those without a criminal history do not 
reoffend in 80% of cases, SAPMOC’s predictions are correct 
in 400 cases  (TNB) and incorrect in 100 cases  (FNB). Similar 
considerations apply to the Green group.

3.7  Evaluating SAPMOC I’s predictions 
under fairness criteria

In the following we examine SAPMOC I’s predictions under 
some criteria used in recent literature on fairness in machine 
learning (Berk et al. 2018; Kleinberg et al. 2016). These 

criteria are the practical and most frequently used instances 
of formal nondiscrimination rules taxonomized, for example, 
in Barocas et al. (2021).

3.7.1  Statistical/demographic parity

Statistical parity requires the proportion of positive (recidi-
vism) and negative (no recidivism) predictions to be equal 
in each group. Moving from proportions to probabilities, the 
probability of a positive or negative classification should be 
equal for all individuals in the two groups. Statistical parity 
is not satisfied in our model, since 67% of Blues are classi-
fied as positives, while only 33% of Greens get a recidivism 
prediction, as shown in Table 6 (percentages rounded to the 
integer).

Such a divergence depends on the different base rate in 
the groups. To comply with statistical parity, we should con-
sider as non-recidivists some Blues with a criminal record 
or, alternatively, as recidivists some Greens without such a 
record. However, in both cases, SAPMOC accuracy would 
decrease. This would also introduce a disparate treatment, 
which is not justified by the individuals’ features: we would, 
for example, consider some Blues with a criminal record as 
non-recidivists, even though they would have been classified 
as recidivists had they been Green.

3.7.2  Conditional procedure accuracy equality/equality 
of opportunity

According to conditional procedure accuracy equality (Berk 
et al. 2018), the members in each group who exhibit the 
same behavior should be treated equally in equal propor-
tion. The values reported in Table 7 show that this criterion 
remains unsatisfied. Blue recidivists are more likely than 
Green ones to be correctly classified as positives, and less 
likely to be misclassified as negatives. The opposite is true 
for negative predictions, where Green non-recidivists are 
more likely to be correctly classified as negatives than Blues, 
and less likely to be wrongly classified as positives.

Table 4  The base rate in the Blue and Green groups

Blue (%) Green (%)

Recidivists TP+FN

TP+TN+FN+FP
60 40

Non-recidivists TN+FP

TP+TN+FN+FP
40 60

Table 5  Confusion matrices in SAPMOC

Blue Green

TP = 800 FN = 100 TP = 400 FN = 200
FP = 200 TN = 400 FP = 100 TN = 800

Table 6  Statistical parity in SAPMOC

Blue (%) Green (%)

Positive class TP+FP

TP+TN+FN+FP
67 33

Negative class TN+FN

TP+TN+FN+FP
33 67

Table 7  Conditional procedure accuracy equality in SAPMOC

Blue (%) Green (%)

Positive class TP

TP+FN
89 67

Negative class TN

TN+FP
67 89
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The violation of this criterion negatively affects the Blues, 
since they are subject to a higher number of errors leading 
to a detrimental treatment (i.e., mistaken recidivism ascrip-
tions). Equality of opportunity is violated, since the propor-
tion of Greens correctly classified as non-recidivist  (TNG), 
relative to all Greens who did not recidivate  (TNG +  FPG) 
is higher than the corresponding proportion for the Blues. 
Here, too, such differences are due to the different base rate 
within the groups, i.e., to the higher number of individuals 
with a criminal history in the Blue group. Since all indi-
viduals having a criminal record are classified as positives, 
and all individuals without one are classified as negatives 
(resulting in a 20% chance of prediction error), the related 
errors add up in the group that includes the higher number 
of previous offenders.

A similar criterion is the false positive rate, which reflects 
the frequency with which the classifier makes a mistake. In 
our case, that is the proportion between false positives (FP) 
and all the individuals who did not recidivate (FP + TN). 
Thus, it indicates the proportion of non-recidivists erro-
neously classified as recidivists. Such a ratio is higher in 
the Blue group, as shown in Table 8. Conversely, the false 
positive rate is the proportion between false positives (FN) 
and all the individuals who did recidivate (FN + TP). In the 
Green group, the ratio between false negatives  (FNG) and 
all the individuals who actually recidivated is higher than 
in the Blue group.

3.7.3  Calibration/conditional use accuracy equality

According to calibration (Berk et  al. 2018; Kleinberg 
et al. 2016), the proportion of correct predictions should 
be equal for each class within each group. Thus, the ratio 
between true positives (TP) and the total positive predictions 
(TP + FP) should be the same for both groups. Similarly, the 
ratio between true negatives (TN) and total negative predic-
tions (TN + FN) should be equal in the two groups. In our 
example, the calibration criterion is satisfied, as the predictor 
is uniformly correlated with the outcome, and so the propor-
tion of correct predictions is equal to 80% in each group and 
class, as reported in Table 9.

3.7.4  False rate/conditional use error

The false rate criterion can be considered as the other side 
of calibration. It measures the proportion of erroneous 

predictions for each class relative to the total predictions 
(Binns 2020; Chouldechova 2017; Barocas and Selbst 2016). 
To satisfy this criterion, it is necessary that the ratio between 
false positives (FP) and the total amount of positive predic-
tions (TP + FP) be equal in the two groups. The same applies 
to the negative class, where the ratio between false negatives 
(FN) and the total amount of negative predictions (TN + FN) 
should be equal within both groups. Table 10 shows that the 
criterion is satisfied in our example.

3.7.5  Treatment equality

According to treatment equality, the ratio between errors in 
positive and negative predictions should be equal across all 
groups. Thus, in our example, the ratio between individuals 
erroneously classified as recidivists (FP) and those errone-
ously classified as non-recidivists (FN) should be equal for 
Blues and Greens. This criterion is aimed at ensuring that 
no group will be favored by the system’s misclassifications.

With regard to SAPMOC I, this condition is clearly not 
satisfied, since for Blues the ratio between detrimental errors 
(FP) and favorable errors (FN) is about four times higher 
than for Greens, as reported in Table 11.

If is worthwhile noting that some criteria are interdepend-
ent, in the sense that if equality under one of them is satis-
fied, then equality under the other is satisfied as well, For 
instance, conditional procedure accuracy equality for the 
positive class is equivalent to the equality of false negative 
rates and, vice versa, equality of opportunity (i.e., condi-
tional procedure accuracy equality for the negative class) is 
equivalent to equality of false positive rates.

Table 8  False positive/false negative rates in SAPMOC

Blue (%) Green (%)

Positive class FP

FP+TN
33 11

Negative class FN

FN+TP
11 33

Table 9  Calibration in SAPMOC

Blue (%) Green (%)

Positive class TP

TP+FP
80 80

Negative class TN

TN+FN
80 80

Table 10  False rate in SAPMOC

Blue (%) Green (%)

Positive class FP

TP+FP
20 20

Negative class FN

TN+FN
20 20

Table 11  Treatment equality in SAPMOC

Blue (%) Green (%)

Positive class FP
FN

200 50

Negative class FN
FP

50 200
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3.7.6  Preliminary considerations on “fairness” criteria

The analysis of the above criteria is quite puzzling. SAMOC 
I is apparently unbiased: it focuses on a single feature (hav-
ing a criminal record) which in both groups is equally cor-
related with recidivism, and in both groups, it always links 
having or missing this feature to the same classifications. 
However, only calibration and false rates parity are satisfied. 
The different base rates in the two groups prevents other 
criteria from being satisfied.

In the following, we address this puzzling situation 
through a general discussion of binary classifications and 
the ways in which they may affect different groups.

4  Some general facts about binary 
prediction and group‑parity criteria

Here, we provide a general account of the way in which 
a binary predictive system addresses different groups. Our 
analysis concerns the domain also explored by Berk et al. 
(2018) and Kleinberg et al. (2016), as we will show that the 
achievement of group-parity criteria poses constraints on 
the statistics of the underlying population, which leads to 
certain mutual exclusions and possible tradeoffs. Though 
several sophisticated results can be derived working in this 
direction, we here highlight the most straightforward ones 
that can be arrived at using the differentiated thresholding 
technique we shall propose.

We assume that our system may commit errors. An ide-
ally accurate performance ( FN = FP = 0 ) can never be 
achieved in practice, this owing to the statistical nature of 
the relationship between the observed features (and thus the 
scores based on them) and the outcomes to be predicted.

The confusion matrices for the whole population and for 
the Blue and Green groups are strictly related since they 
cover the same individuals. Hence, we may lay out the fol-
lowing set of equalities and inequalities:

(1)NB + NG = NP

(2)TPB + TNB + FNB + FPB = NB

(3)TPG + TNG + FNG + FPG = NG

(4)TPB + TPG = TPP

(5)TNB + TNG = TNP

(6)FNB + FNG = FNP

which define the set of possible individual counts in the 
three confusion matrices.

As shown in Sect. 5, parity standards are commonly 
based on a function of the confusion matrix, which we 
call focus and indicate as f  . A predictive system, then, 
provides group parity relative to a focus f  when the appli-
cation of f  to the confusion matrix for the Blue group and 
for the Green group yields the same value, i.e., when

Focuses are defined as ratios between two linear com-
binations ( a and b ) of the confusion matrix entries, i.e., as

for proper choices of the binary coeff icients 
aTP,aTN, aFN, aFP ∈ {0, 1} and bTP,bTN, bFN, bFP ∈ {0, 1} . 
Among all the possible choices we restrict our attention to 
those in which a ≠ b , and the number of non-null coeffi-
cients in b is not smaller than the number of non-null coef-
ficients in a . The family F  of the focuses with these features 
is wide enough to contain most of the fairness criteria pro-
posed in the literature (Kleinberg et al. 2016; Berk et al. 
2018).

With this definition, we can prove a simple property: if 
the two groups are treated equally by the predictive sys-
tems from a certain point of view, then they are treated in 
the same way as the whole population.

Property 1 For any focus f �F  , if the prediction system is 
such that if

then

where TPP, TNP, FNP, FPP are the entries in the confusion 
matrix for the total population.

(7)FPB + FPG = FPP

(8)TPB,TNB, FNB, FPB ≥ 0

(9)TPG,TNG, FNG, FPG ≥ 0

f
(

TPB, TNB, FNB, FPB
)

= f
(

TPG, TNG, FNG, FPG
)

(10)

f (TP, TN, FN, FP)

=
a(TP, TN, FN, FP)

b(TP, TN, FN, FP)

=
a
TP
TP + a

TN
TN + a

FN
FN + a

FP
FP

b
TP
TP + b

TN
TN + b

FN
FN + b

FP
FP

f
(

TPB, TNB, FNB, FPB
)

= f
(

TPG, TNG, FNG, FPG
)

f
(

TPB, TNB, FNB, FPB
)

= f
(

TPP, TNP, FNP, FPP
)
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Property 1 reveals that all parity requirements can be 
trivially satisfied when all groups have the same statistics 
as the whole population. When different groups have dif-
ferent statistics—as happens in real cases—satisfying one 
criterion means failing to satisfy other criteria.

Let us consider, for example, the statistical parity cri-
terion with focus

Group-parity requires that the fraction of individuals 
with a positive prediction is identical in each group. To 
achieve this result, i.e., to force this invariance, for groups 
having different base rates, it is necessary to misalign pre-
dictions from the probability that the members of the two 
groups possess the predicted features. For instance, in the 
SAPMOC example, having both groups with a positive 
rate (11) of 33% would require considering as non-recid-
ivist 500 of the 1000 Blue individuals having a criminal 
record (and thus a higher probability of recidivism), while 
considering all Green individuals in the same condition as 
recidivists. In groups in which individuals do not share the 
same input features (predictors) in the same proportions, 
it is necessary to treat individuals differently in the two 
groups who share the same features.

Some focuses f ′ and f ′′ may be defined so that, if the 
predictor is fair with respect to the criterion implied by f ′ , 
it is also fair with respect to the criterion implied by f ′′ , 
and vice versa. When this does not happen, we will say 
that the focuses are independent. For independent crite-
ria we have the following property, whose proof is in the 
appendix.

Property 2. For any two independent focuses f ′ and f ′′ , if 
a prediction system is fair with respect to f ′ and f ′′ , then its 
statistical behaviour changes from one group to another only 
by scaling with respect to the number of individuals, as in 
the following expressions:

where � = N
B∕NP.

(11)f (TP, TN, FN, FP) =
TP+FP

TP + TN + FN+FP

(12)

TPB = �TPP

TNB = �TNP

FNB = �FNP

FPB = �FPP

TPG = (1 − �)TPP

TNG = (1 − �)TNP

FNG = (1 − �)FNP

FPG = (1 − �)FPP

Note how Property 2 implies that the satisfaction of any 
two independent criteria entails the satisfaction of any other 
parity criterion. Yet, to obtain this, the population must be 
completely homogeneous, and this clearly is not a realistic 
assumption, nor is it a reasonable requirement to place on 
real-world prediction systems.

5  SAPMOC II. Scores and thresholds

SAPMOC I worked on the basis of a binary feature, i.e., 
the presence of a criminal record. To adequately implement 
the decision model discussed in Sect. 2, we need to slightly 
complicate the model and assume that the score depends 
on multiple input features. For instance, we could assume 
that the score depends on predictors such as the number of 
previous convictions, age, and psychological profile. Indeed, 
almost all binary classifiers rely on a score and most of the 
design effort is usually spent in modelling the possibly com-
plicated function that maps features to scores. For simplic-
ity’s sake, here we do not model the connection between 
input features and scores, but will only assume that the 
scores are distributed along a scale. The scores can cover any 
interval (for instance, from 1 to 1000, as in Figs. 2 and 3), 
but here we assume that the SAPMOC II score is a number 
in the interval [0, 1] and it is designed so that the likelihood 
of recidivism increases as the score increases.

5.1  Score densities and SAPMOC II’s performance

The relationship between the score and the likelihood of 
recidivism can be expressed using densities. The recidivist 
density dR(s) is a function of the score, and its graphic is 
such that the area beneath the curve between any two values 
s′ < s′′ is the number of recidivists that are given a score s in 
the interval 

[

s′, s′′
]

 . The non-recidivist density d
R
(s) is a func-

tion of the score, and its graphic is such that the area beneath 
the curve between any two values s′ < s′′ is the number of 
non-recidivists who are given a score s in the interval 

[

s′, s′′
]

.
Intuitively, densities are histograms with infinitesimal 

width bars modelling fine-grain details of the distribution 
of the score across the population. As an example, consider 
Figure 5, where we represent densities with respect to the 
SAPMOC II score s of recidivists (red curves) and of non-
recidivists (gray curves) for the Blue group (upper pair) and 
for the Green group (lower pair). In each graph, the number 
of recidivists/non-recidivists whose scores lie within the 
interval 

[

s′, s′′
]

 corresponds to the emphasized area beneath 
the corresponding section of curve. Clearly, by assuming 
s� = 0 and s�� = 1 , we are counting all recidivist/non-recid-
ivists, such that Fig. 5 tells us that in the Blue group there 
are 900 recidivists and 600 non-recidivists (60% base rate), 
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while in the Green group we have 600 recidivists and 900 
non-recidivists (40% base rate).

The fact that the score is designed to express the like-
lihood to reoffend reflects the trends of the densities: the 
density of recidivists has most of the area over large values 
on the score axis s, while the density of non-recidivists has 
most of the area over small values on the same axis.

Like most binary decision systems, SAPMOC II matches 
the score s with a threshold t . Individuals with a score higher 
than t are predicted to be  recidivists, while individuals with 
a score lower than t are predicted to be non-recidivists. The 
confusion matrix is defined by the mechanism summarized 
in Fig. 6, in which the areas corresponding to (the num-
ber of) the individuals concerned are highlighted. Errors 
are committed for all recidivists whose score is lower than 
t  (False Negatives) and for non-recidivists whose score is 
higher than t (False Positives).

With this insight on SAPMOC II, we recall the impli-
cations of Property 1 and consider, for example, the equal 
opportunity criterion, whose focus

(13)f (TP, TN, FN, FP) =
TP

TP + FN

may be read as the probability that an individual is pre-
dicted to be a recidivist when he/she will actually reoffend. 
Assuming that predictions for both groups only depend on 
the score, equality with respect to this criterion would imply 
that the individuals in the Blue and Green groups who will 
reoffend have the same probability of having a score no 
lower than t . This is a strict constraint, since the predictors’ 
statistics may be very different between groups, as exempli-
fied by the different densities we laid out in Fig. 5.

As a final example, consider the calibration criterion, 
whose focus

may be read as the probability that a positive prediction will 
be true. Again, due to the SAPMOC II mechanism, equal-
ity with respect to this criterion implies that the probability 
that an individual with a score no lower than t be a recidivist 
must be equal in the Blue group and in the Green one.

To assess the merit and rationale of fairness standards, we 
need to consider the reasons why a predictive system may 
deliver different outcomes for different groups.

f (TP, TN, FN, FP) =
TP

TP + FP

Fig. 5  Densities with respect to the SAPMOC score s of recidivists (red curves (a) and (c)), and of non-recidivists (cyan curves (b) and (d)), for 
the Blue group (upper pair (a) and (b)), and for the Green group (lower pair (c) and (d))
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Failure to meet a group-parity standard may depend on 
the training set being biased (for instance, a group may 
appear to reoffend less, since crimes in that group are 
less frequently detected). The selection of predictors may 
also be biased, in the sense that certain predictors may 
be less correlated with the target in one group than in the 
other group (e.g., drug abuse, or lack of education, may 
be more strongly correlated with criminal behavior in one 
group than in the other). On the other hand, the failure to 
meet a group parity standard may depend on a different 
base rate, such that, as in SAPMOC II, the different sta-
tistics reflect this ground truth. If the different statistics 
only depend on a different base rate, rather than on data 
or predictors being biased, calibration should hold, but 
the other equality criteria may still be violated.

Different base rates may indeed exist between different 
groups, e.g., between offenders in different age ranges 
(young people having a higher propensity to reoffend 
than older people), between different genders (men hav-
ing a higher propensity than women), or between different 
races (as in the COMPAS case). Such differences may 
depend on a multiplicity of factors, which in some cases 

(as for the difference between different racial groups) may 
be connected to social injustices.

5.2  From scores to outcomes via thresholds

A simple and transparent method for implementing policy 
goals through a predictive system consists in establishing 
appropriate classification thresholds. In this way, different 
confusion matrices can be obtained.

Figure 6 clarifies that there is a trade-off between false 
positives and false negatives. If threshold t for high recidi-
vism is increased, the false negative area (the leftmost part 
of the recidivist density, indicating the number of individuals 
wrongly classified as non-recidivists) increases, while the 
false positive area (the rightmost part of the non-recidivist 
density, indicating the number of individuals wrongly clas-
sified as recidivists) decreases.

To capture such a trade-off and assess how well the deci-
sion-making procedure addresses it, we may express errors 
in prediction as probabilities considering on the one hand the 
proportion of erroneous predictions relative to non-recidi-
vist, i.e., false positive rate FPR = FP∕(TN + FP) and on the 
other hand the proportion of erroneous predictions relative to 
recidivists, i.e., the false negative rate FNR = FN(TP + FN) . 
These two probabilities depend on t  , and their pair (FPR, 
FNR) can be used as coordinates for a point on a plane that 
changes as t varies.

Letting t  assume all possible values, we obtain a set 
of points in that plane that is commonly indicated as the 
Detection Error Trade-off (DET) curve.  Fig. 7,  shows the 
DET curves for the Blue group and for the Green group, 

Fig. 6  From densities to confusion matrix by thresholding

Fig. 7  DET curves for the Blue group and the Green group
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starting from the densities in Fig. 5. The DET curve is fully 
contained in the unit square and connects the two points 
(FPR = 0%, FNR = 100%) and (FPR = 100%, FNR = 0%) 
with a downward trend that represents the trade-off between 
avoiding false positives and  false negatives.

For some intuitive insight on the information provided by 
DET curves, assume that we start from a threshold t = 0.5 , 
which leads to the confusion matrices in Table 5 and to the 
false rates reported in Table 8. This setting is represented 
by points B0 and G0 in Fig. 7, and reflects the idea that it is 
equally important to avoid false positives and false nega-
tives. We may think that a false positive rate of 33% in the 
Blues is too high and that we should therefore reduce it. This 
can be done by increasing the threshold so that only individ-
uals with very high scores are classified as recidivists. For 
example, to reduce FPRB down to 11% (the original FPRG ), 
we need to increase the threshold for Blues to t = 0.77 , thus 
sliding along the blue DET curve from point B0 to point B1 . 
Hence, the decrease in FPRB causes an increase in FNRB that 
reaches 48%. In parallel, adopting the same threshold for the 
Greens causes a movement toward the new point G1 with 
FPRG = 0% (no Green individual is erroneously predicted 
to be a recidivist) and a parallel increase in FNRG to 65%.

This example highlights two phenomena. First, different 
statistical features (densities) in different groups imply dif-
ferent DET curves and thus different performances of the 
prediction system. In general, since the lower the error rates, 
the better, one may assess the quality of the scoring with the 
area beneath the DET curve (the shaded regions in Fig. 7), 
a zero area identifying a DET curve that contains the point 
FPR = FNR = 0% and thus can yield perfect predictions. In 
our example, the symmetry between the two groups’ statis-
tics causes the DET curves to also be symmetric and with 
an equal underlying area. This means that, in principle, the 
scoring procedure is equally accurate in the two groups.

Second, despite the equivalent accuracy in the two 
groups, adopting the same threshold in both leads to differ-
ent outcomes (in the sense of a different balance between 
false positives and false negatives) and, more generally, 
to different confusion matrices. This is coherent with the 
discussion in Sect. 6 on different criteria for assessing the 
behavior of predictive systems in groups with potentially 
different statistical features, and it focuses attention on an 
internal detail of the prediction mechanism: threshold t.

5.3  Group‑dependent thresholding

As noted in Sect. 2, the computation of a score is conceptu-
ally distinct from the final decision. In taking the decision, 
less automated procedures, possibly based on human judge-
ment, may help in adapting statistical assessments to dif-
ferent policy objectives, possibly reflecting social realities. 

The adaptation may consist in basing the classification on 
different thresholds for different groups.

To explore this direction, assume that we may set two 
thresholds, tB and tG , to give the final prediction for the Blue 
and Green groups, respectively. In light of the discussion in 
Sect. 6, we can see that setting different thresholds means 
decoupling the confusion matrix for the Blue group from the 
one for the Green group. Though a complete formal treat-
ment of this new degree of freedom is beyond the scope of 
this paper, it is worthwhile to notice that decoupling such 
matrices relaxes some constraints to which the matrices are 
jointly subject in the case of a single threshold. More spe-
cifically, since there is no unique threshold, the confusion 
matrix for the whole population is not defined per se, but 
is the sum of the confusion matrices for the Blues and for 
the Greens. Hence (4)–(7), though still valid, are no longer 
constraints.

This paves the way for satisfying even multiple criteria 
without making overly unrealistic assumptions about non-
modelled uncertainty in classification.

The simple structure of SAPMOC II allows us to exem-
plify this point. Figure 8 reports the trends of the focus 
functions for the equal opportunity (13) criterion against 
the value of the threshold t , for the Blue and Green groups. 
We assume that the densities are those reported in Figure 5.

Clearly, no choice of a unique threshold would be able to 
ensure group parity with respect to such a criterion, since 
the two curves do not intersect except at t = 0 or t=1, which 
are unrealistic values.

Yet it is also intuitive that for any level O of the opportu-
nity focus, we may find two values for tB and tG at which the 
corresponding curves have the same value. This is a quite 
general property that makes it possible to tune tB and tG inde-
pendently to satisfy a single group-parity criterion, avoiding 
the need for the underlying population statistics to satisfy 
special constraints, as formalized by Property 1.

Fig. 8  Opportunity for the Blue and Green groups with score densi-
ties as in Fig. 5
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Independent thresholding may even allow two group-
parity criteria to be simultaneously satisfied. To see how, 
consider, for each criterion, a plot like Fig. 8, and for every 
possible level of a certain focus function, take note of the 
two thresholds tB and tG that are required to satisfy that cri-
terion. The set of ( tB , tG ) pairs defines a satisfaction curve 
in the unit square. Whatever point we consider on such a 
curve, the criterion is satisfied if we adopt the corresponding 
thresholds for the two groups.

We may then plot the satisfaction curves for all the crite-
ria of interest on the same plane and obtain something like 
Fig. 9, which displays the curves for the calibration criterion, 
the equal opportunity criterion, and for the false negative 
rate. Every intersection of two of those curves yields a pair 
of thresholds that simultaneously guarantee group parity 
with respect to the corresponding criteria. In our example, 
it is possible to design a prediction system that is both cali-
brated and yields equal opportunities (point A in Fig. 9), or 
one that is calibrated and results in equal false positive rates 
(point B in Fig. 9), or one that yields equal opportunity and 
results in equal false-positive rates (point C in Fig. 9). Note 
that this may happen without requiring the complete statisti-
cal uniformity that, in the case of a single threshold, would 
be implied by Property 2.

6  Thresholds and policy goals

In Sects. 5.2 and 5.3 we saw how the outcomes of a binary 
predictive system can be changed by modifying its thresh-
olds, without interfering with its scoring mechanism.

First, we saw that by raising the threshold for the whole 
population, false positives diminish and false negatives 
increase, while the opposite happens by decreasing the 
threshold. Thus, a threshold setting reflects the comparative 
importance of avoiding errors in the two classes (i.e., false 

positives and false negatives) and the corresponding costs. 
In our example, the cost of a person being erroneously clas-
sified as recidivist (and thus, e.g., being denied release on 
parole) must be compared with the cost of that person being 
erroneously considered non-recidivist (and thus committing 
a crime upon release). Note, however, that the cost of the 
misclassification depends on its legal and social implications 
and may be assessed differently depending on the different 
preferences and values. Similar considerations apply in other 
domains, such as medical diagnosis, where avoiding a false 
negative is usually much more important than avoiding a 
false positive.

Second, we saw that by setting different thresholds for 
different groups, different statistical-equality criteria can be 
satisfied. In SAPMOC II, using the same threshold for the 
two groups, we satisfied the calibration criterion, meaning 
that in both groups an equal likelihood of recidivism gave 
rise to the same score and therefore to the same classifi-
cation. As we have shown, the other side of calibration is 
equality of false rates.

Other group-equality standards can be implemented by 
setting different thresholds for the two groups. Obviously, 
this involves differential treatment of individuals sharing the 
same score, including those having the same values relative 
to all input features used by the system (except for their 
group type). The different treatment of individuals sharing 
the same score may  be justified in certain context, either to 
remedy  biases affecting the input data or the selection of 
features, or according to policy goals that require affirmative 
action (for a discussion, see Wachter et al. 2021).

As an example of bias in the input data consider, for 
instance, the case in which a group is subject to more care-
ful controls, so that instances of recidivism are detected 
to a greater extent (for further discussion on algorithmic 
biases and policing see, for instance, Chouldechova (2017) 
and Oswald and Babuta (2019)). In this case, the predictive 
system will mirror the historical prejudices and inequalities 
embedded in the input data. Because of the training process, 
members of the more controlled group may be assigned a 
higher score than members of other groups, equally likely 
to reoffend. As an example of a biased selection of fea-
tures, consider a system predicting that a curriculum will 
be successfully completed given favoruable factors that only 
apply to a certain group, such as attendance at expensive top 
schools (for further discussion on algorithmic biases and 
education see Zeide (2017) and Regan and Jesse (2019)). In 
both cases, the calibration of the system relative to real out-
comes (i.e., the alignment of predictions and probabilities) 
may be obtained by setting different thresholds.

As an example of policy goals to be achieved, consider 
the goal of increasing diversity or balancing access to educa-
tion, types of jobs, or positions. In such cases, the desired 

Fig. 9  Satisfaction curves for different criteria with score densities as 
in Fig. 5
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results could be achieved by setting lower thresholds for dis-
advantaged groups, so that group-parity is achieved, or the 
distance from such parity is reduced as desired. However, 
where scores in the two groups are calibrated, i.e., equally 
correlated with the predicted classifications, introducing 
different thresholds will entail diminished accuracy of the 
system (at least for one of the two groups).

Whether the equalization of two groups under certain 
parity standards—or at least a reduced distance between 
them—should be aimed at, depends on the purpose of the 
binary classification as well as on policy goals. Whether a 
predictive system is made fairer by enforcing such criteria 
is highly context-dependent. To further qualify this point, 
consider a system that aims to predict the onset of a disease 
(e.g., diabetes) so as to take appropriate health measures 
(e.g., clinical testing and diet recommendations). Assume 
that the disease is more prevalent in a group in which causal 
factors positively correlated with that disease (e.g., obesity 
or some genetic factors) are more frequent. Achieving sta-
tistical parity (or another parity standard other than calibra-
tion) would require decreasing the number of individuals 
with a positive prediction in the more affected sub-group or 
increasing that number in the less affected sub-group.

Similar considerations would apply to a system aimed 
at detecting socio-economic hardship so as to provide aid. 
Equalizing under any parity criterion (other than calibration 
and false rate) would mean considering a greater number of 
individuals in the wealthier group and/or a lower number of 
individuals in the poorer group to be in a situation of hard-
ship. Thus, in these two examples, applying group-parity 
criteria would entail questionable implications: (a) different 
classifications for individuals (belonging to different sub-
groups) having the same level of risk; (b) a greater number 
of erroneous predictions, entailing wrong decisions; and (c) 
possibly increased differences in health or welfare between 
the sub-groups.

On the other hand, different thresholds could justifiably 
be adopted in certain contexts for purposes of affirmative 
action. This applies especially when a limited number of 
advantageous positions (e.g., access to certain curricula or 
jobs) need to be allocated. In such cases, members of the 
underrepresented groups may be granted a lower threshold 
for accessing such positions. If the system is calibrated, this 
should entail a diminished accuracy of its predictions, since 
individuals more likely to possess the target property (suc-
cessful completion of the curriculum) are substituted by 
individuals less likely to have it. However, accuracy may 
not diminish if the system is not calibrated with regard to 
changing social realities (in which the disadvantaged groups 
are more likely to satisfy the prediction in comparison to the 
instances of them in the training set), so that different thresh-
olds may even ensure more accurate predictions.

In cases pertaining to law enforcement and crime prevention, 
adopting different thresholds for different groups seems difficult 
to justify. Thus, calibration is likely to be the key group-fairness 
criterion. Let us assume that the social and individual costs 
associated with extending detention for predicted recidivists 
are deemed excessive because of the way in which detention 
affects the false positives (those who would not reoffend). For 
instance, extended detention based on an erroneous predic-
tion of recidivism may reinforce the criminal attitudes of the 
concerned individuals, make their social reintegration more 
difficult or adversely affect their families. Such costs can be 
reduced by raising the threshold for all groups, thereby dimin-
ishing positive predictions. This would provide a greater benefit 
to the group having a larger proportion of predicted recidivists 
(in comparison to the other group), since raising the threshold 
would mean that a larger number of members of that group 
would no longer be predicted to be recidivist. On the other 
hand, as noted above, raising the threshold would decrease the 
accuracy of the system: the decrease in mistaken prediction of 
recidivism would be matched by a larger increase in mistaken 
prediction of non-recidivism.

Finally, it is possible to improve the fairness of a decision-
making process without interfering with classifications, i.e., 
by intervening on the last step of the decision-making process, 
namely, the determinations based on such classifications. In 
the recidivism domain, the socio-legal consequences associ-
ated with prediction of recidivism (and in particular of vio-
lent recidivism) can be changed, for instance, by substituting 
extended detention with re-integrative measures and controls 
compatible with releasing the offender (see Barabas et al 
2018). This approach would be comparatively more benefi-
cial to the group with a larger number of predicted recidivists. 
More generally, we may question the very idea that individu-
als predicted to have higher probability to engage in future 
crimes should be targeted with measures that adversely affect 
them. This idea has been challenged by argueing that such an 
approach is inherently unfair: given the correlation between 
social deprivations (poverty, lack of education, unemploy-
ment, etc.) and criminality,  it selectively harms disadvantaged 
individuals, while contributing little to the reduction of crime 
(Harcourt 2008). However, such considerations may not apply 
to the use of predictive tools for identifying situations of risk 
that are addressed by supportive measures (van Eijk 2020).

7  Deconstructible AI and awareness in joint 
human–machine decision

In this section, we argue that the idea we have presented—
i.e., aligning decision-making systems with policy goals by 
explicitly adjusting thresholds—can be generalized to ena-
ble finer analyses of decision-making processes and more 
targeted interventions. To this end, different stages in the 
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automated decision-making need to be distinguished, so 
that the outcome at each stage can be an object of specific 
analyses and interventions. This approach may favour the 
flexible and transparent deployment of predictive systems, 
their adaptation to social goals and standards of justice, and 
their critical assessment.

It is indeed true that a binary prediction system, in its 
most general embodiment, accepts many predictors as 
inputs, each commonly encoded as a cluster of scalar quan-
tities, and that this system performs potentially complicated 
calculations that produce a single output bit correspond-
ing to its Yes/No prediction. However, these calculations 
are often organized in stages (think, for example, of a deep 
neural-prediction system): a certain number of computa-
tions that are performed sequentially, where the results of 
the previous step are the input for the following one. Usually, 
the first part of the system’s computation are highly dimen-
sional, i.e., they receive a large set of inputs, and send out a 
large set of outputs. On the contrary, in the final stages the 
inputs—which we may call pre-scores—are transformed into 
a smaller number of outputs, working up to the last stage, 
which computes the single score on which the final predic-
tion/classification is based. This structure is illustrated in 
Fig. 10, in which we exemplify the last two stages of such 
a system, i.e., one taking the three intermediate quantities 
resulting from a potentially multidimensional processing and 
reducing them to two quantities, and the subsequent one 
taking these two quantities and producing the final score.

In the examples in Sects. 5.1 to 5.3, the computation 
of scores in SAPMOC II were viewed as a single process, 
delivering a score based on the input data. In SAPMOC II, 
a higher score indicates a greater likelihood of recidivism, 
and one or more thresholds can be set to produce the binary 
prediction. By pairing the statistical characterization with 
thresholds and applying this paring to the total population or 
to subgroups, we obtain confusion matrices for the predic-
tion system. In turn, confusion matrices give information 
on the quality of the decision and may be used to verify or 
enforce group-parity criteria or other desired standards.

Though practical feasibility will depend on the struc-
ture of the prediction system, in principle nothing prevents 
this deconstruction from proceeding further and exposing 
the last two or even three stages, as we do at the bottom of 
Fig. 10 by imagining grey paths from the inner stages to the 
final prediction blocks. In Fig. 10, we indeed assume that the 
last stages of this process can be separately analysed.

The outcome to be predicted has a relationship with the 
quantities produced by earlier stages, which in our case are 
represented by the three- and two-dimensional heat maps5 
at the top of Fig. 10. Note that on multidimensional maps, 
regions leading to different predictions may have shapes that 

Fig. 10  Progressive exposition of AI internals along with their statistical characterization

5 The heat maps used here represent densities as defined in Sect. 7, 
possibly generalized to densities with respect to more than one pre-
score, and have to be considered only as an intuitive summary of the 
elements involved in building the final prediction.
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are much more sophisticated than simple thresholding. Such 
regions give rise to confusion matrices that are defined by 
greater degrees of freedom, potentially making it possible to 
address complicated trade-offs between accuracy, fairness, 
etc., as well as to accommodate predictions subject to politi-
cal or social constraints. Providing this deconstruction may 
allow for an informed interaction between the prediction 
system and its users, the latter being able to match the final 
decisions with the desired statistical effects on the target 
population, by playing with the prediction regions.

Though far beyond the scope of this paper, design guide-
lines might be set out stressing the need for machines whose 
last stages are easy to interpret or at least to characterize 
from a statistical point of view., Notice that, though this 
approach is not equivalent to requiring that a prediction sys-
tem be explainable per se,6 it may make such a system more 
flexible and acceptable in some applicative environments, 
such as those involving critical judicial or societal problems.

8  Conclusion

In this paper, we discussed group-parity criteria as fairness 
standards for automated prediction and decision-making. 
Throughout our inquiry we have used the COMPAS system, 
complemented by radical simplifications of it (our SAPMOC 
I and SAPMOC II models), as our running example.

We distinguished three stages in a (partially or totally) 
automated decision-making process—scoring, classifying, 
and deciding—and have argued that each stage may require 
specific interventions to ensure fairness as well as other 
policy goals.

We then focused on group-parity standards and on their 
application to assess the fairness of decisions concern-
ing individuals in the justice domain. We introduced the 
COMPAS system and the debate on whether its use reveals 
unlawful or unethical discrimination. To exemplify such 
issues, we presented in detail a simpler system, SAPMOC 
I, grounding a prediction of recidivism in a single factor 
(i.e., criminal record). To this system’s outcomes we applied 
multiple group-parity metrics. This analysis has shown how 
SAPMOC I, like COMPAS, satisfies the calibration crite-
rion: it does so by uniformly treating individuals in different 
groups having the same probability of recidivism. However, 
the system fails to implement other group-parity standards. 
This led us to consider the connection between group-parity 
standards and the commonsense and philosophical concepts 
of fairness. We  refined our analysis of confusions matrices 

by examining the connection between the satisfaction of 
group-parity criteria and base-rates in different groups.

Then we  turned to a more complex model, SAPMPOC 
II, which aggregates multiple predictors in a score along a 
continuous scale. We observed how the system’s correct and 
erroneous predictions are distributed across the two groups 
along the ROC curves, and how by shifting thresholds we 
can change predictions, and consequently modify the sets of 
individuals who stand to be positively and negatively classi-
fied. We observed that there is a trade-off between diminish-
ing/increasing false positives and decreasing/increasing false 
negatives. We considered how parity along some criteria—
or a diminution of distances—can be achieved by adopting 
different thresholds for different groups.

We then focused on the rationale of modifying thresholds 
to meet group-parity standards. We observed that the viola-
tion of such standards may be related to biases in the data 
or in the system predictors, or rather to different base rates 
in the populations. We claimed that modifying thresholds to 
achieve or move closer to parity standards only makes sense 
in some contexts, in connection with policy aims. Conse-
quently, we considered that decisional processes supported 
by predictive systems should allow for human analysis and 
intervention to adapt them to policy goals as needed.

We hope our analysis may contribute to the current debate 
on the fairness of predictive systems. The analysis suggests 
a careful and to some extent skeptical view of group-parity 
standards. Such standards do not substitute the (debatable, 
controversial, and fuzzy) notions of fairness in common-
sense understanding and in political/philosophical debates. 
They rather point to all those cases in which a system 
delivers relevantly different outcomes for different groups. 
Whether these differences point to unfairness in the deci-
sion-making process requires further analysis. Differences 
between the statistical distribution of the scores assigned to 
different groups may depend on the fact that the predictive 
system is not calibrated: it assigns to the members of certain 
groups scores that under or over-estimate the probability 
that they possess the predicted property. Alternatively, the 
system may unduly affect disadvantaged groups when the 
threshold for ascribing an unfavourable prediction is set 
too low for everybody, which entails many false positives, 
mostly affecting the disadvantaged groups.

A system which is calibrated, and whose thresholds are 
appropriately set, may still violate group-parity criteria to 
the disadvantage of some groups. Whether having different 
thresholds for different groups may be desirable, providing 
a benefit to disadvantaged groups without entailing an unac-
ceptable differential treatment of individuals in other groups, 
requires ethical and policy considerations that typically per-
tain to the logic of affirmative action. In any case, the parity 
criteria we have considered can at most be viewed as proxies 
for fairness or as clues to possible instances of injustice, 

6 High-dimensional processing is inherently unexplainable except 
in presence of strong regularities that reduce the number of effective 
dimensions.
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whose ascertainment and remedy requires deeper inquiries. 
Remedying possible instances of unfairness does not require 
“optimizing” the concurrent satisfaction of the group-parity 
criteria proposed in the literature, but rather demands a tai-
lored intervention on the decision-making process, in full 
awareness of its social function and impacts on individuals.

Appendix

Proof of Property 1 Assume that the total number of indi-
viduals in the population is normalized to 1 and consider 
TPP , TNP , FNP , FPP , TPB , TNB , FNB , FPB , TPG , TNG , FNG , 
FPG , NB , and NG as free variables.

We know that these free variables must satisfy (1)–(9) in 
Sect. 4 above, which can be normalized so that the total 
population is set to NP = 1 . The proof can be automatized by 
spanning all f �F  and, for each of them, using any algebraic 
manipulation tool (we used Mathematica, Inc. W. R. (2020)) 
to reduce the following system of equalities and inequali-
ties that should be satisfied simultaneously. 

For each case, the reduction proves that the above condi-
tions are incompatible with each other. Hence, if one knows 
that

then it must also be

Proof of Property 2 First, note that, thanks to Property 1, 
fairness with respect to f ′ and f ′′ implies

Assume now that TPP , TNP , FNP , and FPP are 
f i xe d ,  s o  t h a t  f
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 can be considered as 
constants.

By distinguishing the numerator a′ and the denominator 
b′ of f ′ , as well as the numerator a′′ and the denominator b′′ 
of f ′′ , we may lay down the following set of linear equali-
ties that must be satisfied simultaneously.

 by setting appropriate values for the ten free variables 
TPB , TNB , FNB , FPB , TPG , TNG , FNG , FPG , NB , and NG.

By direct inspection of the corresponding matrix rank, it 
is easy to ascertain that six out of the seven equalities (1)–
(7) are linearly independent. By assumption, the last four 
linear equalities in the last system of equations above are 
also linearly independent. From this we get that this system 
has a unique solution that may be easily verified to be (12).

In such a solution, the entries of the confusion matrix for 
the Blue and Green groups are proportional to those of the 
confusion matrix of the whole population. Since any f �F  
is defined as the ratio of linear combinations (10), its value 
is identical for the Blues and for the Greens.
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