
����������
�������

Citation: Musiani, F.; Rigobello, L.;

Iommarini, L.; Carelli, V.; Degli

Esposti, M.; Ghelli, A.M. New

Insights on Rotenone Resistance of

Complex I Induced by the

m.11778G>A/MT-ND4 Mutation

Associated with Leber’s Hereditary

Optic Neuropathy. Molecules 2022, 27,

1341. https://doi.org/10.3390/

molecules27041341

Academic Editors:

Francesca Giampieri and Gunter

Peter Eckert

Received: 20 December 2021

Accepted: 11 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

New Insights on Rotenone Resistance of Complex I Induced by
the m.11778G>A/MT-ND4 Mutation Associated with Leber’s
Hereditary Optic Neuropathy
Francesco Musiani 1 , Laura Rigobello 1, Luisa Iommarini 1, Valerio Carelli 2,3,* , Mauro Degli Esposti 4 and
Anna Maria Ghelli 1,*

1 Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, I-40126 Bologna, Italy;
francesco.musiani@unibo.it (F.M.); laura.rigobello@studio.unibo.it (L.R.); luisa.iommarini2@unibo.it (L.I.)

2 Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna,
I-40100 Bologna, Italy

3 IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, I-40139 Bologna, Italy
4 Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210,

Mexico; mauro1italia@gmail.com
* Correspondence: valerio.carelli@unibo.it (V.C.); annamaria.ghelli@unibo.it (A.M.G.)

Abstract: The finding that the most common mitochondrial DNA mutation m.11778G>A/MT-ND4
(p.R340H) associated with Leber’s hereditary optic neuropathy (LHON) induces rotenone resistance
has produced a long-standing debate, because it contrasts structural evidence showing that the ND4
subunit is far away from the quinone-reaction site in complex I, where rotenone acts. However, recent
cryo-electron microscopy data revealed that rotenone also binds to the ND4 subunit. We investigated
the possible structural modifications induced by the LHON mutation and found that its amino acid
replacement would disrupt a possible hydrogen bond between native R340 and Q139 in ND4, thereby
destabilizing rotenone binding. Our analysis thus explains rotenone resistance in LHON patients as a
biochemical signature of its pathogenic effect on complex I.

Keywords: complex I; LHON; mtDNA mutations; rotenone

1. Introduction

In the last 10 years, our knowledge of the respiratory complex I (CI) structure has
dramatically improved thanks to a wealth of atomic data obtained from both X-ray crys-
tallography and cryo-electron microscopy (cryo-EM) technologies [1,2]. These different
approaches have provided valuable information to clarify the mechanism that couples
NADH: ubiquinone oxidoreduction to proton pumping. The overall structure of CI is con-
served (Figure 1) and consists of a peripheral and a membrane arm containing 14 conserved
catalytic “core subunits” [3]. In addition, depending on the organism, there is a variable
number of “supernumerary” subunits that contribute to the regulation, stability, and as-
sembly of this enzyme [4,5]. CI can be divided into three main functional modules: N- and
Q-modules located in the peripheral arm and the P-module corresponds to the membrane
arm [6]. The N-module contains one noncovalently bound flavin mononucleotide (FMN)
and six [4Fe4S] and two [2Fe2S] iron–sulfur (FeS) clusters as primary electron acceptors,
whereas the Q-module encloses the last [4Fe4S] cluster (N2) and the quinone binging site
in which ubiquinone (Q) is reduced [6]. Lastly, the P-module contains proton pumping
devices consisting of ND1, ND6, and ND4L subunits forming together the so-called E-
channel, and the antiporters subunits ND2, ND4, and ND5 [6]. Combination of structural
kinetic, spectroscopic, and computational analysis led to the proposal of several molecular
mechanisms to explain the coupling between the energy released by the electron transport
from NADH to ubiquinone and proton pumping (reviewed in [1,2]). Specific inhibitors
of CI, such as plant-derived rotenone, a classical inhibitor of mitochondrial respiration,
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have been instrumental for several of these proposals [7–9]. Nowadays, CI is co-crystalized
with substrate-like inhibitors, such as piericidin A, 2-decyl-4-quinazolinyl amine, aceto-
genins, and rotenone itself [10–14]. The picture emerging from structural data is that these
CI inhibitors bind to two different sites along the wormhole-like cavity accommodating
the Q substrate in its various redox states within the enzyme complex (reviewed in [1]
and [10,11]). Such a picture would explain early evidence for two rotenone and piericidin
A binding sites in mammalian CI and their mutual exclusivity, but mixed antagonist action
versus Q substrates [7,15].
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Figure 1. Structure of ovine respiratory CI (PDB ID 6ZKC) in ribbon representation [11]. Core
subunits are colored, while supernumerary ones are in grey. The cofactors are reported as spheres
colored according to the atom type, as well as the decyl-quinone molecules found in the structure.
EPR visible FeS clusters are named according to [1,16]. The rotenone binding sites are also indicated:
two sites correspond to the decyl-quinone sites, while the third site is located in the P-module in the
ND4 subunit (dashed red circle).

Very recently, Kampjut and Sazanov reported cryo-EM structures of ovine CI in
the presence or absence of both substrates (NADH and decyl-ubiquinone) and rotenone,
showing that the latter also binds to a third site in the ND4 subunit (Figure 1) [11].

This recent structural information can be correlated with the finding that we reported
in 1994—that human mitochondria harboring a pathogenic mutation in the mitochondrially
encoded ND4 subunit (MT-ND4) displays resistance to rotenone [17]. In particular, the mito-
chondrial DNA (mtDNA) primary mutation, m.11778G>A/MT-ND4 (p.R340H), pathogenic
for Leber’s hereditary optic neuropathy (LHON), induced a reduction in rotenone sensi-
tivity to its inhibitory effect in vitro [17]. However, for a long time, it has been difficult to
explain such a reduced sensitivity to rotenone inhibition implying reduced binding to the
complex, since the ND4 subunit is located far away from the Q-site, where rotenone and
other Q-antagonist inhibitors predominantly bind to CI. We can now explain the rotenone
resistance found in LHON patients carrying the most frequent LHON mutation p.R340H
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on the basis of the new atomistic resolution data from the cryo-EM structure of ovine CI
bound to rotenone [11].

2. Results and Discussion

In two recent cryo-EM ovine structures of CI bound to rotenone [11] (PDB ID 6ZKM
and 6ZKN), an additional binding site for the inhibitor was found. In particular, this
third site for rotenone lies within the ND4 subunit (Figure 1). ND4 is a highly conserved
transmembrane protein with 35% conserved amino acids in Eukaryota, 63% in Vertebrata,
and more than 77% in Mammalia (see Table 1).

Table 1. Aligned protein sequences and conservation.

ND1 ND2 ND3 ND4 ND4L ND5 ND6

Eukaryota

Aligned sequences 159 166 158 105 331 109 129
Average conservation (%) 70 60 61 59 69 55 44
Conserved residues (%) 56 34 42 35 57 26 11
Invariant residues (%) 2 1 2 3 1 4 0

Vertebrata

Aligned sequences 109 127 101 62 279 59 84
Average conservation (%) 82 70 75 77 77 73 58
Conserved residues (%) 77 51 62 63 64 56 29
Invariant residues (%) 26 10 20 20 5 17 6

Mammalia

Aligned sequences 79 95 74 44 256 39 43
Average conservation (%) 85 77 80 83 80 79 71
Conserved residues (%) 79 62 70 77 69 68 55
Invariant residues (%) 39 20 31 38 17 32 23

The most conserved residues in the 14 transmembrane helices can be seen in
Figure 2A,B and in Supplementary Figure S1, forming a hydrophilic axis along the middle
plane of the mitochondrial membrane, which is critical for the proton pumping mechanism,
as previously reported [12].

Rotenone is buried within helices TM5, TM6, and TM7 of ND4, and forms extensive
interactions with 13 highly conserved residues (Figure 2B and Supplementary Figure S1).
Indeed, 10 out of these 13 residues are invariant in vertebrates, highlighting their functional
roles. In particular, W215 and L231 are invariant in eukaryotes, while K206, which is
critically involved in forming the proton channel contributed by the ND4 subunit, is almost
invariant [11]. Rotenone also forms multiple interactions with four amino acids belonging
to the ND2 subunit that highly conserve, especially in vertebrates, such as R295 and Y298
(Figure 2C and Supplementary Figure S2).

The analysis of the third rotenone binding pocket reveals some striking structural
differences in ND4 and the closely associated ND2 after binding of the inhibitor (Figure 3A and
Figure 3B, respectively).
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Figure 2. (A) Residue conservation mapped on the structure of rotenone bound ND4 and ND2
subunits (PDB ID 6ZKM) for Mammalia (left panels) and Vertebrata (right panels). The ribbon color
goes from white (0% conservation) to light blue (70%), medium blue (90%), and dark blue (100%). The
rotenone is reported in a space-fill representation, colored according to the atom type. (B,C) Multiple
alignment and conservation analyses of ND4 and ND2 protein regions binding rotenone. Alignments
of protein sequences from mammals, including Homo sapiens used as the reference sequence, are
reported. Different shading corresponds to increasing conservation levels: amino acid conservation
between 70% and 90% are highlighted in light blue, amino acid conservation between 90% and 99%
are highlighted in medium blue, and invariant positions (100% conservation) are highlighted in dark
blue. Alignment gaps are indicated by a dash (-). Amino acids involved in rotenone binding are
boxed in pink, while those undergoing conformational changes in LHON mutant are boxed in yellow.
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Figure 3. (A) Details of the rotenone binding site without the inhibitor (PDB ID 6ZKC). The ND4
and the ND2 subunits are reported as light blue and blue ribbons, respectively. The amino acids
discussed in the text are reported as sticks, colored according to the atom type. (B) The same region of
panel A in a CI structure bound to rotenone (PDB ID 6ZKM). Rotenone is shown as balls-and-sticks,
colored according to the atom type. The two tunnels starting from the rotenone binding pocket are
reported as purple and green surfaces. The H-bond between R340 and Q139 is highlighted using a
red dashed line. (C) The same as panel B, but with R340 mutated in silico into a histidine residue. In
all panels, the orientation of the protein is rotated by 90◦ around the horizontal axis, with respect to
the orientation reported in Figure 1.

The rotenone-binding pocket is located between helices TM5 and TM6 of ND4, where
the inhibitor is able to block one of the proton translocation pathways of CI [11]. Specifically,
rotenone induces a conformational change in ND4 helix TM6 and in ND2 helix TM10 [11].
Using the MOLEonline 2.5 software (https://mole.upol.cz/, accession date 27 July 2021),
we observed that such conformational rearrangement produces a large cavity between
ND4 helices TM5 and TM6, which is large enough to accommodate the bulky rotenone

https://mole.upol.cz/


Molecules 2022, 27, 1341 6 of 10

molecule (Figure 3B). The role of R340 in this rotenone binding site would appear to be
elusive, since the residue lies on the loop connecting ND4 helices TM11 and TM12 that is
not in direct contact with the inhibitor-binding pocket (Figure 3A,B, and [11]). However, a
180◦ rotation of the Q139 Cδ–Cγ bond, a mildly conserved residue in the proximity of R340,
suggests the possible formation of a hydrogen bond between the R340 Nω1 atom and the
Q139 Oε1 atom (Figure 3B). Q139 lies between some highly-conserved residues involved
in the formation of the rotenone binding cavity (i.e., I133, T134, A145, and G146) [11].
Reproduction of the LHON mutation in silico shows that R340 replacement with histidine
prevents the formation of any possible hydrogen bond with Q139 (Figure 3C). Therefore,
we hypothesize that the modeled R340-Q139 hydrogen bond would be able to maintain
the ND4 helix TM6 in a conformation distant from helix TM5, favoring the formation
of the third rotenone-binding cavity. On the other hand, the absence of the R340–Q139
hydrogen bond can cause a larger conformational mobility of the ND4 helix TM6, reduc-
ing the probability of successful rotenone interactions. This would explain the observed
mild resistance to rotenone (about three-fold on average) in mitochondria harboring the
m.11778G>A/MT-ND4 mutation [17,18]. This resistance is mild, likely because most of the
rotenone-inhibitory effect depends on its binding into the Q-site cavity, but very specif-
ically. Indeed, in the same platelet mitochondria, we demonstrated that the sensitivity
to rolliniastatin-2, one of the most powerful Q-inhibitors of CI, was unaltered in LHON
patients; moreover, the sensitivity of other CI inhibitors, such as stigmatellin and amytal,
was also the same in the controls and patients’ mitochondria [17,18]. It was reported that
CI shows rotenone resistance in its de-active form [19], but this situation could hardly apply
to our biochemical assays of CI, which were performed after the incubation with NADH
(i.e., with the equilibrium shifted towards the active form of CI [19]). This rules out the
possibility that the observed resistance to rotenone may derive from a different proportion
of the de-active form CI in controls and LHON patients [17,18]. Notably, the third binding
site of rotenone in ND4 is close to the proton pumping machinery of CI, in which ND4 plays
a critical role (Figure 1, cf. [11]). The structural change imposed by the LHON mutation
p.R340H may thus reduce the energy conservation capacity of CI and determine its patho-
logical role. In this view, rotenone inhibition, also reflecting its binding to the third site,
becomes a biochemical tool to highlight the structural alteration underlying the mitochon-
drial dysfunction in LHON patients. Remarkably, our previous observation of rotenone
resistance in platelets of LHON patients carrying the p.R340H change was instrumental
in defining the pathogenic role of this variant. Indeed, we and others failed to document
a significant and specific impairment on CI electron transfer activity [18,20], which was
shown to be only slightly reduced [21,22]. Before this evidence, the pathogenicity of LHON
p.R340H change was considered to arise only from a general reduction in NADH respira-
tion [23]. Conversely, the less frequent LHON mutation m.3460G>A/MT-ND1 (p.A52T)
clearly affected the electron transfer to the quinone substrate, as well as the sensitivity to
rotenone inhibition [18,20–22,24,25]. In this case, the biochemical alteration fitted well with
the role of the ND1 subunit in binding Q and its antagonist inhibitors. Indeed, the ND1
subunit was later found to form the entrance of the Q wormhole-like site of CI [1]. Last,
the third (and universally recognized as less severe) LHON mutation, m.14484T>C/MT-
ND6 (p.M64V), also leaves the electron transfer substantially unaffected, while altering
sensitivity of CI to myxothiazol and nonyl-benzoquinol, but not to rotenone [26]. Several
years ago, we interpreted these changes in rotenone sensitivity as suggestive of an altered
catalytic activity of CI leading a partial decrease of net energy production and a chronic
increase of oxidative stress that in turn induced cell death [17,18,27–30]. Subsequent studies
demonstrated that in LHON cells, CI-driven ATP synthesis was severely affected, reactive
oxygen species (ROS) production was increased, and cells were prone to undergo apoptosis.
Furthermore, in vivo results demonstrated a defective ATP synthesis in skeletal muscles
and/or the brain using the 31P magnetic resonance spectroscopy in LHON patients [31,32].

In light of the current results, integrated with the previous biochemical phenotyping
of the three CI LHON mutations affecting, respectively, the ND4, ND1, and ND6 subunits,
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we may envisage an overall scenario. The m.3460G>A/MT-ND1 (p.A52T) mutation is
the only one to affect the electron transfer, thus directly impinging on redox activity of
CI, decreasing the quinol formation and downstream electron flow and proton pumping.
This ultimately reflects the overall oxidative phosphorylation efficiency with increased
ROS production, even if the relative weight of the two effects on the final mitochondrial
dysfunction and disease pathogenesis remain unclear. As far as the other two mutations
are concerned, the most frequent and severe m.11778G>A/MT-ND4 and the less frequent
and severe m.14484T>C/MT-ND6 do not seem to consistently affect electron transfer to
the quinone, while possibly affecting proton translocation across the inner mitochondrial
membrane and, ultimately, energy conserving efficiency. Measuring final net ATP synthe-
sis [33] and respiration [21], all three mutations clearly affect both outcomes. Again, the
contribution of ROS production by each mutation is less clear, as electron flow remains
relatively unaffected with the latter two. Overall, we faced two slightly different mech-
anisms of CI impairment, which may impact clinical phenotypes and therapy response,
as for the currently used quinone analogue idebenone [30,34]. Besides the biochemical
phenotypes, in fact, clinically, the m.11778G>A/MT-ND4 mutation is considered the most
severe, particularly regarding the lowest rate of spontaneous recovery of visual function in
LHON-effected individuals [35], whereas the m.3460G>A/MT-ND1 is somehow intermedi-
ate, and the m.14484T>C/MT-ND6 is the less severe, with the highest rate of spontaneous
visual recovery. Finally, another noticeable observation fitting the biochemical phenotype,
not the clinical one, concerns the degree of association of LHON mutations with specific
mtDNA haplotypes. Haplogroup J, characterized by population-specific variants affecting
CI and complex III, has the highest association with the m.14484T>C/MT-ND6 mutation,
for which it is proposed that this mtDNA background is needed to express LHON. Con-
versely, the m.11778G>A/MT-ND4 mutation has a weaker association with haplogroup
J, and the m.3460G>A/MT-ND1 mutation is not associated, suggesting that this latter
mutation is sufficient by itself to produce enough disease penetrance [36,37].

3. Materials and Methods
3.1. Sequence Alignment and Conservation Determination

All of the reviewed protein sequences from ND1 to ND6 were downloaded from
UniProtKB (https://www.uniprot.org/help/uniprotkb, accessed on 12 November2021).
Fragment sequences were eliminated, and sequences were clustered in taxonomic groups,
namely Eukaryota, Vertebrata, and Mammalia. The final number of aligned sequences
was reported in Table 1. Sequences were aligned using Clustal Omega v:1.2.4 (https:
//www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 12 November 2021) with the default
parameters. The human sequences were set as reference sequences for numbering and
consensus sequences and percentages of identity were calculated for each alignment by
using Jalview v:2.11.1.4 [38]. Amino acids were considered as conserved if their sequence
identities surpassed the conservation threshold of 70%.

3.2. Structural Analyses of the Rotenone Binding Site in the ND4 Subunit

The tunnels starting from the rotenone binding pocket have been calculated using the
software MOLEonline [39] on the rotenone inhibited cryo-EM ovine structure, featuring
the highest resolution (PDB ID 6ZKM) [11]. Amino acids interacting with rotenone have
been identified considering those surrounding the inhibitor within a maximum distance
of 4.0 Å. The reported H-bond was calculated using the H-bonds tool included in UCSF
Chimera [40] and the R340H mutation was performed by using the swapaa tool from the
same software. H-bonds uses atom types and geometric criteria to identify possible H-
bonds, even in the absence of hydrogen atoms, as in the present structures. The geometric
criteria are based on a survey of small-molecule crystal structures, as described by Mills
and Dean [41]. Swapaa replaces amino acid sidechains using information from a rotamer
library. A residue can be changed to a different sidechain conformation of the same type
of amino acid or mutated into a different type. Rotamers are chosen automatically and

https://www.uniprot.org/help/uniprotkb
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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optimized to reduce the clashes with the neighboring atoms, to optimize the largest possible
number of H-bonds. In the mutant, the H340 side chain conformation was chosen from
the Dunbrack library [42]. The latter uses a continuous probability density estimating for
the non-rotameric degrees of freedom of amides, carboxylates, and aromatic sidechains.
Subsequently, the sidechains were modeled as functions of the backbone dihedrals and
rotamers of the remaining degrees of freedom [42].

3.3. Limitations

As with any modeling study, our model also has limitations. First of all, our consider-
ations are based on relatively low-resolution structures, although they can be considered
very good in the set of structures obtained so far by cryo-EM. Secondly, our hypothesis
is based on a static structure, whereas a dynamic characterization by means of molecular
dynamics calculations—which are beyond the scope of the present communication—could
support our hypothesis, as could the cryo-EM structure of the R340H mutant.

4. Conclusions

The structural explanation that we present here for the previously puzzling effect of
the m.11778G>A/MT-ND4 mutation on complex I now offers new opportunities to refine
the pathogenic mechanism of this and other mitochondrial DNA mutations. Moreover, the
deeper structural knowledge of CI further contributes to our understanding of LHON, an
elusive paradigm of mitochondrial diseases for which much effort has recently been placed
to find a cure to avoid blindness.

Supplementary Materials: The following supporting information can be downloaded online, Fig-
ure S1: Multiple alignment and conservation analysis of ND4 protein sequences; Figure S2: Multiple
alignment and conservation analysis of ND2 protein sequences.
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