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Abstract 1 

Background: The complexity of food structure is such as to hinder its inclusion in mathematical 2 

models predicting food properties and transformations, although a considerable impulse is 3 

being determined by using artificial intelligence. As a matter of fact, food definition currently 4 

neglects the structural description, even in those fields for which structure is demonstrated to 5 

have a decisive role, such as nutrition. Scope and approach: This review aims to analyse the 6 

current knowledge about the structure of foods and its potential use to numerically define the 7 

sensory and nutritional quality, as well as the stability properties. Starting from this information, 8 

a possible methodology is explored to build, even in an automated way, mathematical models 9 

for simulating and predicting the properties of food. A model pipeline has been proposed and 10 

applied to pasta, in particular exploiting the description of the structural changes occurring upon 11 

cooking. Key findings and conclusions: Foods may be designed in silico, based on automated 12 

pipelines for direct extraction of information on rheological and sensory properties as derived 13 

from structure images and from data on the dynamic state of the water. The ultimate goal of 14 

these approaches is to make more limited use of expensive and time-consuming experiments 15 

on physically prepared foods to get to use digital twins of foods designed in the laboratory. 16 

17 

Key words: food structure; bio-accessibility; bioavailability; functional food; digital twin; in 18 

silico food; digestion. 19 

20 
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1. Introduction21 

Although the description of food has traditionally been based on analytical chemical 22 

composition, many of the important properties of food are determined by structural elements. 23 

This limitation in the descriptive capacity of a food is also reflected in many mathematical 24 

models that currently aim to predict the sensory, functional, and nutritional properties, including 25 

for example digestibility. For this reason, the contribution of the structure of a food is often 26 

overlooked including when studying the effect of diet on health. In fact, the nutritionist tends 27 

to consult compositional databases when the correctness of a diet must be evaluated, having no 28 

indication on how to use any structural data even when available. Nevertheless, before 29 

collecting structural information, it would be necessary to establish how to use them to build 30 

predictive models for nutritional functions that depend on it. Understanding how the ingredients 31 

and each unit operation of food processes make up the structure of the foods and how this 32 

structure changes during its life or on eating will play a main role in the development and 33 

management of the food science and industry. For this reason, a tailored collection of scientific 34 

work described in the literature has been examined to pave the way for a future approach using 35 

matrix structural data to predict food functions, also exploiting artificial intelligence (AI). 36 

2. What is the structure of a food?37 

Most foods are complex, heterogeneous materials composed of structural elements or domains 38 

(co-) existing as solids, liquids and/or gases, where length scales span nanometres to millimetres 39 

(Guo, Ye, Bellissimo, Singh, & Rousseau, 2017). Many of the important properties of foods 40 

are determined by structural elements of micro-scale and above, such as bubbles, drops, strings 41 

and particles (Ubbink, Burbidge, & Mezzenga, 2008). Food products consist largely of 42 

carbohydrates, proteins, and lipids, forming clusters that behave as pseudo-molecules of higher 43 

molecular weight than the individual constituent molecules (Ubbink, et al., 2008). These 44 

interactions are primarily hydrogen-bonding interactions between the hydroxyl groups or Van 45 

der Waals interactions between nonpolar molecules, but also ionic or covalent bonds, such as 46 

disulphide or isopeptide, may be very important. The supramolecular organization of foods 47 

gives rise to their structure. Complex food structures are formed, not because of the abundance 48 

of elemental components, but because of the multiple interactions that proteins, lipids and 49 

polysaccharides undergo at different conditions in an aqueous medium. 50 

In natural and processed foods, the structure (or matrix) of a food is defined as the organization 51 

of its constituent molecules at multiple spatial length scales (Guo, et al., 2017). At one extreme, 52 

a food product is macroscopic, and at the other extreme, it is composed of molecules and atoms 53 
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characterized by molecular length scales (Ubbink, et al., 2008). The matrix of a food is in fact 54 

scale-sensitive, i.e., interactions may take place at several scales in the same food as shown in 55 

Figure 1.  56 

For example, the matrix in a bakery product responsible for the textural properties of the porous 57 

crumb are the protein-starch walls surrounding the air cells (Aguilera, 2019), and the relevant 58 

scale is on the order of a few hundred microns (Liu & Scanlon, 2003). Starch granules 59 

undergoing gelatinization may be regarded as inclusions in the continuous gluten matrix at a 60 

scale of approximately 10 m (Maeda, et al., 2013). At the nanoscale, gelatinized starch 61 

granules are the matrix onto which a-amylases exert their action during digestion to release 62 

glucose molecules (Li, Yu, Dhital, Gidley, & Gilbert, 2019). By and large, foods are systems 63 

of dispersed phases, such as mesoscale particulate structures (colloids) derived from natural 64 

food products constructed by self-assembly (e.g., granules, micelles, globules, and fibres) or 65 

are created artificially via food processing (R. Van der Sman & Van der Goot, 2009). Next to 66 

these mesoscale structures, food contains smaller molecular species, like salts, sugars, polyols 67 

and phospholipids, which moderate the properties of the continuous or dispersed phases, or 68 

their interfaces. The structure of a given food depends, however, enormously on the product, 69 

its constituents and which of the many length scales are dominant in establishing the product 70 

properties (Ubbink, et al., 2008). For an emulsion-based food such as mayonnaise, it is the 71 

droplet size of around 1μm which is the relevant length scale, whereas for dairy products it is 72 

typically the size of a casein micelle (∼50-100 nm) (de Kruif & Huppertz, 2012) and the size 73 

of the individual casein subunits (∼2 nm) that matter. The relevant length scale of food powders 74 

is typically between 10 and 500 μm, and the structure of starch is described at length scales 75 

between the macromolecular (∼1 nm) and the size of the starch granules (∼1 mm). Even length 76 

scales substantially smaller than 1 nm matter in foods, as diffusion and the interaction of water 77 

with the food matrix occur at these distances.  78 

Food structure is important at all dimensional scales for texture, sensory properties, shelf life 79 

and stability and can alter the kinetics and extent of food digestion (Guo, et al., 2017; H. Singh, 80 

Ye, & Horne, 2009). It plays a vital role in how food interacts with the gastrointestinal tract 81 

(GIT) (e.g., bodily fluids and receptors) and the resulting release and uptake of nutrients (Guo, 82 

et al., 2017) and post-prandial outcomes (Turgeon & Rioux, 2011) In addition, the breakdown 83 

of the food matrix is a major controlling factor for the perception of texture and flavour in the 84 

mouth (Harjinder Singh, Ye, & Ferrua, 2015). 85 

3. How to quantitatively measure food structure86 
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Several techniques can be applied to measure the structure of food materials either directly 87 

(optical and confocal microscopy, tomography, scanning and electron microscopy) or indirectly 88 

from measurements of the mechanical response or spectroscopy (Table 1). Some challenging 89 

techniques such as Differential Scanning Calorimetry (DSC) (Tester & Debon, 2000; Zhu, 90 

Zhou, & Sun, 2019), Thermogravimetric analysis (TGA) (Tavares, Santos, & Noreña, 2021), 91 

Nuclear Magnetic Resonance (NMR) spectroscopy and relaxometry (Kirtil & Oztop, 2016), 92 

Near-Infrared Reflectance spectroscopy (NIR) (Shi, Lei, Louzada Prates, & Yu, 2019), 93 

Attenuated Total Reflectance (ATR) spectroscopy (Cebi, Durak, Toker, Sagdic, & Arici, 2016) 94 

and FT-Raman spectroscopy provide quantitative parameters that are related to the interactions 95 

among molecules, thus making measurable physical-chemical properties that depend on the 96 

supramolecular structure of the food matter. However, imaging techniques are essentially 97 

dedicated to the investigation of the real 3D structure (Falcone, et al., 2006). Static Bragg-type 98 

diffraction of neutrons and X-rays has been applied to either fluid or viscous food systems to 99 

reveal the structure in the 10–100 nm length scale range (Ubbink, et al., 2008). Insight into lipid 100 

polymorphism, liquid crystallinity, protein folding, etc. can typically be gained by using these 101 

techniques. Because most common food properties are, however, directly related to the μm 102 

length scale, light scattering techniques are primarily exploited. The application of the dynamic 103 

light scattering (DLS) experiment to foods yields information on the diffusion coefficient of the 104 

scattering objects (Ubbink, et al., 2008). Tomographic techniques such as magnetic resonance 105 

imaging (MRI) and X-ray tomography are extremely powerful since they allow a full 3D 106 

reconstruction of the sample structure but tend to be limited in resolution and/or slow in 107 

acquisition times. Optical or Light Microscopy (LM) suffers from a similar limitation in 108 

resolution, in this case due to the wavelength of visible light, even though structures of the order 109 

of 1 μm can still be imaged using confocal microscopy. A further limitation of optical 110 

techniques is that the food sample should be sufficiently transparent. Conversely, a major 111 

advantage of optical microscopy is that dynamic processes on time scales larger than about 10 112 

ms can easily be followed (Ubbink, et al., 2008). In the imaging of samples using transmission 113 

electron microscopy (TEM), special staining, embedding and cutting techniques are 114 

indispensable, whereas the use of scanning electron microscopy (SEM) is much more 115 

straightforward (García-García, Cambero, Castejón, Escudero, & Fernández-Valle, 2019). An 116 

interesting development is the progress in so called environmental scanning electron 117 

microscopy (ESEM), which allows the analysis of samples at a desired relative humidity and 118 

thus avoids artifacts due to the dehydration of foodstuffs (Ubbink, et al., 2008). 119 
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Different methods for image acquisition (light microscopy, transmission electron microscopy 120 

and scanning electron microscopy) are generally coupled to digital analysis to quantitatively 121 

define, with structural parameters, food at different structural levels. This provides a 122 

measurement of different aggregation descriptors. The gel network can be characterized by 123 

structural parameters such as pore size, strand dimensions and how these are distributed in the 124 

volume. In the case of particulate gels, the diameter size of the pore is large, up to hundreds of 125 

microns, compared to the size of the particle, around microns (Langton & Hermansson, 1996). 126 

At low magnifications LM is used to estimate the size of the large pores. At higher 127 

magnifications TEM estimates the size of the particles forming the strands of networks. The 128 

pore size is more easily measured by digital image analysis than by evaluating the difference in 129 

aggregation of particles in the network. In SEM the fracture plane is visualized, and the fracture 130 

will follow the weakest structure, i.e., large pores. Thus, SEM micrographs tend to show larger 131 

pores. and smaller pores could be embedded in clusters or conglomerates. Stereology is a tool 132 

for measuring complex biopolymer gels, where no assumptions of the shape can be made. A 133 

stereological approach was used to classify the mode of aggregation by a group of experienced 134 

microscopists evaluating SEM-micrographs, to quantify pore size, particle size and amount of 135 

threads within the pores in volume weighted mean volumes (Langton & Hermansson, 1996). 136 

Five structural descriptors were quantified, namely porosity (number of pores), clusters (many 137 

particles attached to each other like bunches of grapes), conglomerates (as if the particles were 138 

joined together in non-linear, irregular, inhomogeneous order), strings of beads (as if the 139 

particles were attached to each other in a linear order forming strings of beads) and hairiness 140 

(as if small threads were attached to the surface of the particles and their outline is indistinct). 141 

The three-dimensional gel network is responsible for bulk properties such as diffusion and 142 

rheological properties, sensory quality and liquid holding capacity (Langton & Hermansson, 143 

1996). 144 

145 

4. The properties the food structure affects: sensory, stability, digestibility and146 

bioaccessibility 147 

The dimensions/size and shape/form of the particles, strands and pores create the different 148 

textural properties of the food products and expert panellists can detect differences between 149 

very small particles <1 μm3 in volume (Langton, Åström, & Hermansson, 1997). In fact, texture 150 

is a multi-parameter attribute, that derives from the molecular, microscopic or macroscopic 151 

structure of a food and is detected by several senses, the most important ones being the senses 152 

of touch and pressure (Szczesniak, 2002). Food structure, food texture, nutrients digestibility 153 
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and consumer product preferences and choices are intrinsically linked (Figure 1). Texture 154 

influences people's acceptance of food and may be more important than the flavour in some 155 

products (Clark, 1998). The sensory perception during food consumption depends not only on 156 

the concentrations of odour- and taste-active compounds but also on the texture of food matrix 157 

(Tournier, Sulmont-Rossé, & Guichard, 2007).  158 

Multivariate techniques are used to create models to describe groups of the sensory descriptors 159 

by some of the microstructural parameters (Janhøj, Frøst, & Ipsen, 2008; Pereira, Singh, Munro, 160 

& Luckman, 2003). Correlations between the microstructure and sensory descriptors have been 161 

found: grainy appearance, gritty texture, creamy texture and tendency to fall apart have a 162 

logarithmic dependence on the particle size, and size of small and large pores (Langton, et al., 163 

1997). The soft and springy textures are influenced by combinations of microstructural 164 

parameters, where the formation of strands into strings of beads or in clusters and 165 

conglomerates seems to play an important role. Conversely, the sticky texture is negatively 166 

correlated to the proportion of threads within the pores (Langton, et al., 1997). Stability can be 167 

fully grasped only if food molecular dynamics and structure are taken into consideration, i.e., 168 

an appropriate understanding of the behaviour of food products requires knowledge of its 169 

composition, structure and molecular dynamics, through the three-dimensional arrangement of 170 

the various structural elements and their interactions (Wu, et al., 2020). In addition to water, 171 

other structural elements can be identified in foods at a supramolecular structure level, such as 172 

oil droplets, gas cells, fat crystals, strands, granules, micelles and interfaces. These structural 173 

elements, composed of proteins, carbohydrates and lipids (in various combinations and 174 

proportions), can exist in different states (glassy/rubbery/crystalline/liquid and solubilised) 175 

even at uniform temperatures and water activity. This structural heterogeneity will necessarily 176 

affect the molecular dynamics in the system and consequently the macroscopic food quality 177 

attributes and their behaviour along storage. Physically separating the reactants in 178 

microstructural locations can control the biochemical activity by avoiding the reactants to be in 179 

contact.  180 

It is a matter of fact that the gastrointestinal fate of lipids depends on their level, type, and 181 

structural organization in foods (McClements, 2018). Matrices could be formed by controlled 182 

gelation of single or mixed biopolymer systems around lipid droplets, by dehydration of oil-in-183 

water emulsions containing biopolymers or other wall materials, or by thermal treatment or 184 

extrusion of starch matrices containing lipid droplets. Several studies have recently investigated 185 

the impact of the food matrix on the digestibility of lipids using either in vitro or in vivo 186 

digestion models (Corstens, et al., 2017; Dias, Zhu, Thompson, Singh, & Garg, 2019; J. Singh, 187 
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Dartois, & Kaur, 2010). When oil droplets are dispersed in a solid-like food matrix (e.g., cheese 188 

or strained-type yogurt), the structure of the surrounding food matrix becomes the dominant 189 

factor controlling digestion. For instance, the size of lipid droplets dispersed of oil-in-water 190 

emulsions and nano emulsions can affect, during digestion, oil-soluble vitamins (vitamins A, 191 

D, E and K) bioavailability in fortified foods (Tan & McClements, 2021); increasing oil droplet 192 

size reduces the bioaccessibility by inhibiting lipid digestion and reducing micelle solubilisation 193 

(Tan, Zhang, Liu, Xiao, & McClements, 2020). The knowledge advances provided by these 194 

studies are setting the foundation for modulating fat digestion through food structure design, as 195 

exhaustively reviewed by Guo, et al. (2017). In this sense, food structure design can be a tool 196 

to develop foods that enable to control the body district as well as the extent and rate of release 197 

of food lipids along the digestion process. 198 

During digestion, the 3D network structure within a food matrix can obstruct the diffusion of 199 

enzymes towards the surface of dispersed oil droplets. That is the reason why bile salts are 200 

produced by the intestinal tract and released during food digestion to create an emulsion where 201 

the digestive enzymes can act onto the food lipids. 202 

Compared to interfacial films, the solid like-food matrix is potentially capable of providing 203 

enhanced protection against lipolysis (Guo, et al., 2017). Evidence is accumulating that a 204 

structured food with a high protein content may show slower lipid digestion (Salentinig, 2019). 205 

An investigation on near forty food types, based on the harmonized INFOGEST digestion 206 

method (Brodkorb, et al., 2019), found that those with medium and low lipid content showed a 207 

limited lipolysis extent when the content of protein or starch was high (Calvo‐Lerma, Fornés‐208 

Ferrer, Heredia, & Andrés, 2018). In protein-rich foods such as cheese, the disintegration of the 209 

protein network occurs mainly in gastric and intestinal steps, thus facilitating the subsequent 210 

release of fat aggregates from the degraded matrix (Žolnere, Arnold, Hull, & Everett, 2019). 211 

These results underline the importance of microstructure and the digestive environment on the 212 

release of cheese components. 213 

The in vitro digestion rate of lipids and starch was also reduced due to the intact vegetal cell 214 

walls (Dhital, Bhattarai, Gorham, & Gidley, 2016). The intact cell wall structure and protein 215 

matrices are impervious to amylase and can prevent or slow down enzyme diffusion to 216 

substrate. In general, the intactness of cell walls is related to particle size, which is dependent 217 

on mastication habits and processing conditions, for example, milling and heating (Li, Gidley, 218 

& Dhital, 2019). The hydrolysis of intracellular starch and protein in the essentially intact cells 219 

was 2–3%, whereas this increased to 40–45%, when the cells were mechanically broken and 220 

digested, suggesting a barrier effect of intact cell walls to digestive enzyme access to starch and 221 
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proteins substrate (Ogawa, et al., 2018). In support to this hypothesis, it has been shown that 222 

solubilisation of pectin cell walls, induced by thermal treatment of bean, exerted higher degrees 223 

of cell wall permeability so that starch hydrolysis increased proportionally to the cell damage 224 

(Pallares, et al., 2018). The morphology and the particle size of starch granules from different 225 

plants is also considered an important factor affecting their digestion, as smaller granules have 226 

greater enzymatic susceptibility regardless of botanical origin, due to their larger specific 227 

surface area (Lehmann & Robin, 2007; Romano, et al., 2018; Romano, et al., 2016). Moreover 228 

starch granules vary in the level of porosity and can have openings (pores) on the surface of the 229 

granule (Fannon, Hauber, & Bemiller, 1992). 230 

During processing, starch granules swell and lose their crystallinity and molecular organization 231 

in a process commonly known as gelatinization. In vitro studies have demonstrated that the rate 232 

of enzyme breakdown of gelatinized starch is much higher than that of native starch; native 233 

wheat starches are degraded by only 10–15%, but after partial gelatinization the rate of 234 

enzymatic degradation increased three-fold (Tian, et al., 2019). Therefore, gelatinization may 235 

strongly influence the rate at which starch is digested and elicits the glycaemic response.  236 

Starch–protein interaction in white flours might account for a decrease in in vivo glycaemic 237 

response as well as for a reduction in in vitro digestibility, so that the removal of gluten from 238 

wheat flour induces a high GI value in 11 kinds of gluten-free bread. In addition to acting as an 239 

enzyme barrier, proteins also affect the properties of starch (gelatinization, retrogradation, etc.) 240 

which is then less digestible (de la Hera, Rosell, & Gomez, 2014). If proteins are present in a 241 

structured matrix or a clot-like structure is formed in the gastric environment, gastric juice needs 242 

to penetrate this structured matrix to digest the protein. A 2–10 reduction factor for the diffusion 243 

coefficient of pepsin has been measured in a structured matrix as compared to water. The 244 

diffusion of pepsin is one of the limiting factors in the digestion rate of a structured food matrix 245 

(E. Capuano & A. E. M. Janssen, 2021). Different egg-white gel structures, with a similar 246 

protein composition, induced different proteolysis kinetics and provoked the release of different 247 

specific peptides (Nyemb, et al., 2016). 248 

Proteins can form supramolecular assemblies also because of thermal treatment. The formation 249 

of aggregates may hide peptide bonds from proteases compared to denatured but isolated 250 

molecules. The effect of cooking on the digestibility of meat proteins is a good example of such 251 

complex relationships. Meat digestibility of regular-cooked beef was higher (95% digested) 252 

than that of ‘well-done’ cooked beef (90% digested). Meat analogues are a class of food 253 

products that imitate the sensory attributes of meat products but are produced from protein from 254 

more sustainable sources, e.g., plant protein isolates, that are subjected to extrusion or shear-255 
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cell technology. In these products, the presence of other food ingredients or components, such 256 

as lipids and polyphenols, may affect protein digestibility. These effects are still poorly 257 

understood for the lack of knowledge of the matrices and by the absence of predictive models. 258 

Therefore, in the design of novel foods the effects of components on protein digestibility should 259 

be carefully considered in the optimization of the processing parameters (E. Capuano & A. E. 260 

Janssen, 2021). The process-induced modifications, in primis the Maillard reaction, could also 261 

play a role in modulating the food digestibility and the bioavailability of protein amino acids, 262 

by altering the chemical structural of protein networks and in turn the food microstructure: this 263 

is the case of bread, dairy and meat products. Not secondarily, these modifications can also 264 

affect the food allergenicity, through the interactions of protein-bound advanced glycation end-265 

products (AGE) with immune cells receptors, as evidenced for egg, dairy and peanut allergens 266 

(Mueller, et al., 2013; Teodorowicz, Van Neerven, & Savelkoul, 2017; Toda, Hellwig, Henle, 267 

& Vieths, 2019). 268 

 269 

5. The importance of structure in food design: driver for functional foods? 270 

The main objective of the food industry is to create products with specific properties and 271 

characteristics which have a positive consumer impact. In recent years, the food industry, aware 272 

of resource scarcity, is looking for nutritional alternatives, including functional foods, that 273 

promote optimal health and help reduce the risk of disease and are “tailored”. Tailoring is a 274 

process whereby the provision of information, advice and support is individualized to the user 275 

(Lustria, et al., 2013). Mimic foods to be substituted, include also new functional ingredients in 276 

formulation. The attempt to design new foods starting from more sustainable or more nutrient-277 

rich ingredients, with optimal characteristics for target population groups with specific needs, 278 

has always clashed with the need to make these new foods at least as palatable, if not preferable, 279 

to traditional ones. The limit is often in the obtainment of a desirable structure. In fact, unlike 280 

some homogeneous foods, such as drinks, extracts or oils, most foods are heterogeneous 281 

multiphase mixtures, having nutritional and sensory characteristics that strongly depend on the 282 

placement with which the different phases are distributed in space, while forming the food 283 

matrix. For this reason, the food technologists make use of structure-targeted toolboxes to 284 

mimic successful matrices or invent new ones with even more performing characteristics. This 285 

is usually carried out empirically in lab scale plants but, to avoid prolonged and expensive 286 

physical research trials, the structure of the food could be preliminarily built in-silico also in 287 

the design phase. This effective approach could be realized using conceptual toolboxes 288 

(simulating unit operations, order of sequential steps, formulations) assisted by mathematical 289 
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prediction models. The purpose of designing the most suitable structures is then fulfilled, 290 

through combinations of formulations and processes, to achieve the desired outcomes, like the 291 

optimized durability, palatability, bioaccessibility and bioavailability of nutrients. This way, 292 

food design considers not only composition, but also structure affecting chemical stability, 293 

texture and dynamics of digestion and absorption of a food or its components. In this 294 

perspective, tailored foods provide not only the necessary nutrients but also new functions, 295 

linked to the matrix structure, targeted for specific populations groups such as the elderly, 296 

babies, athletes, allergic peoples, vegans or for special diets such as low salt, sugars and fats, 297 

or lactose- and gluten-free, and to increase the quantity of proteins, vitamins, dietary fibres, and 298 

bioactive phytochemicals. Designer-made supramolecular food materials may form the basis 299 

for personalized, health-promoting diets of the future (Norton, Espinosa, Watson, Spyropoulos, 300 

& Norton, 2015). As already described in the previous section (Table 1), foods are made by 301 

colloids toolboxes provided by nature, to which food technologists have added ‘artificial’ 302 

colloids, e.g., gas bubbles, oil droplets, ice crystals, fat crystals, and protein aggregates, created 303 

by external forces (e.g., extrusion, compression, electric fields) or heating applied by food 304 

processing equipment (R. Van der Sman & Van der Goot, 2009). With these ‘artificial’ colloids, 305 

foods adhere to the length scales dictated by our tasting senses, which are sensitive enough to 306 

detect structures of millimetre down to micrometre size (R. Van der Sman & Van der Goot, 307 

2009). In this sense, a palatable food must be designed by finely modulating these structures to 308 

enhance their nutritional function as well. 309 

The structure of all foods can be imagined as the result of combinations of structural elements 310 

provided by nature or imparted during processing and preparation. Food structure design is the 311 

dedicated conception and fabrication of foods in such a way as to attain specific structures, 312 

functions or properties (Guo, et al., 2017). Knowledge on how foods and beverages interact 313 

with the digestive system, where they transform into supramolecular structures, can in fact have 314 

a direct impact on the rational design of such advanced materials for functional food delivery 315 

applications. For example, delivering a complete diet with a content of hydrophobic, 316 

amphiphilic, and hydrophilic nutrients, which is personalized to the needs of the consumers, 317 

could be beneficial for clinical and infant nutrition (Salentinig, 2019). Otherwise as confirmed 318 

by recent studies on the use in pasta formulation of alternative flour from different sources, 319 

such as potato and pigeon pea flour (Sharma, Dar, Sharma, & Singh, 2021) or flours from 320 

legumes such as chickpea (El-Sohaimy, Brennan, Darwish, & Brennan, 2020; Garcia-Valle, 321 

Bello-Pérez, Agama-Acevedo, & Alvarez-Ramirez, 2021) or bean (Romero & Zhang, 2019), 322 

pasta nutritional profile is usually improved, leading to an increase in protein, ash, fibre 323 
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contents, and antioxidant compounds together with a decrease in the starch content and of in 324 

vitro starch digestibility. What is missing in these approaches, solely accounting for the 325 

nutritional profile, based on the composition of the ingredients, is the input related to the target 326 

structural characteristics at different scale lengths. Although structure has been shown to have 327 

an equally important impact on nutritional quality, a novel food is designed with great care for 328 

its composition, stability and acceptability but, often, its structural optimization for nutrient 329 

accessibility is omitted in the preliminary conceptualisation phase and studied only ex post. 330 

Ultimately, the food structure design has the potential to be personalized to digestive conditions 331 

and dietary nutrient requirements of the consumer or patient. From a nutritional perspective, 332 

the ability to control food digestion is extremely important to design food with desired 333 

characteristics: the key to control such process is to modulate the accessibility of digestive 334 

enzymes to their substrate. Recently, considerable interest has also arisen in the application of 335 

by-products of food processing with specific properties in food structure design, such as agar 336 

or locust bean gum substitutes.  337 

 338 

6. Predictive models for designing the optimal structures: choice of parameters for 339 

artificial intelligence 340 

As described in the previous section, stability, palatability, bioaccessibility and bioavailability 341 

of nutrients are the target properties of food optimization. These properties must be expressed 342 

using numerical descriptors, such as concentrations of degradation biomarkers, food sensory 343 

scores, preferably assessed by instrumental devices (electronic nose or tongue), post-prandial 344 

nutrients level in blood. Chemical and instrumental sensory analyses provide objective 345 

parameters intrinsic to the food, that are independent from the individual interaction with it. 346 

Conversely, parameters related to the digestive functions are strongly linked to the subjects’ 347 

variability. For this reason, experiments simulating different individual physiological and 348 

pathological conditions are necessary, even when characterizing the target properties of a single 349 

food.  Whereas in vivo experiments give a global indication of food nutrients digestibility in its 350 

full biological context, and in vitro experiments provide more insight into the different chemical 351 

and physical mechanisms, the mathematical, or in silico modelling can connect these two 352 

domains (E. Capuano & A. E. M. Janssen, 2021). The hydrolysis kinetics of the main 353 

macronutrients (proteins, starch, and lipids) are modelled to predict the concentration and their 354 

degree of hydrolysis in one or more compartments of the digestive system, or to predict the 355 

transport of the food through the digestive system. The most popular approaches assume the 356 

digestive tract as a series of bioreactors that can be described by mass balances, written as a set 357 
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of differential equations (Gim-Krumm, Donoso, Zuñiga, Estay, & Troncoso, 2018; Somaratne, 358 

et al., 2020). In recent years, models that also consider the food matrix together with the reaction 359 

and diffusion phenomena have been developed. Modelling of the swelling of protein gels by 360 

using the Flory-Rehner theory has been combined with the Gibbs-Donnan theory to include the 361 

distribution of ions between the gastric juice and the protein matrix to gain a better 362 

understanding of the phenomena that are essential in the digestion of the food matrix (R. G. M. 363 

van der Sman, Houlder, Cornet, & Janssen, 2020). Up to now, the role of modelling has been 364 

that of linking and explaining in vivo and in vitro experiments. However, a further step is 365 

required to use modelling for food properties prediction as a function of food structure. Suitable 366 

numerical descriptors of structure are required as inputs for AI systems, to predict properties 367 

that can define food in a functional way. 368 

In the next section, available emerging approaches and those foreseen for the next future are 369 

described, emphasizing how structure descriptors have been employed to predict sensory 370 

properties and stability toward chemical transformations. 371 

372 

6.1 Describing the structure with imaging 373 

The most straightforward way one can think of to parametrize food structure is through 374 

descriptors extracted from imaging. Given the number of existing imaging techniques 375 

(microscopy, spectral and hyperspectral imaging, nuclear magnetic resonance imaging, 376 

ultrasound, microwave, etc.), many different aspects of food structure can be characterized and 377 

digitalized. Furthermore, each imaging technique has its own array of analytics and descriptors, 378 

capable of grasping and describing physical quantities tied to the physical nature of the specific 379 

imaging technique. All these heterogeneous descriptors, together with general texture analysis 380 

and computer vision descriptors, that can be obtained from images under certain conditions, 381 

constitutes interesting inputs for artificial intelligence (machine and deep learning) frameworks. 382 

As a matter of fact, the role of artificial intelligence in describing food structure from images, 383 

is that of finding complex relationships between heterogeneous features describing different 384 

aspects of the structure and the different structure-dependent properties of a food. Furthermore, 385 

researcher in the field of deep learning, will rightfully argue that in the next future, a general 386 

characterization of structure directly from images without a-priori features and descriptors 387 

knowledge or assumptions could be possible. From an operative point of view, this means 388 

feeding a neural network, as complex as needed, each pixel (or voxel in 3D) of an image as an 389 

input and let the network learn how to build the best features to describe the problem (in this 390 

case, predict food properties from structure description). To reach this goal, huge quantities of 391 
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suitable training data are however required to avoid some known problems of deep learning 392 

architectures, such as overparameterization and overfitting. While some imaging techniques are 393 

inherently suitable for the high-throughput standardized data production (such as magnetic 394 

resonance imaging) required by deep learning architectures to achieve good prediction and 395 

generalization, other imaging techniques (such as electronic microscopy) suffer from a series 396 

of issues that make them less suitable for automation and high-throughput data production. 397 

Overall, we are quite far from the data production required to have a huge amount of labelled 398 

training data, especially regarding certain imaging techniques. In the next section, a high-399 

throughput imaging technique (MRI) and a high-resolution imaging technique (electronic 400 

microscopy) are compared in terms of descriptors and suitability for automation. This is done 401 

to outline possible directions to facilitate an efficient use of artificial intelligence at this stage 402 

of structure description. 403 

404 

6.2 On the suitability of data production and imaging parameters for AI: a comparison 405 

To grasp the meaning of what has been said in the previous section about data production and 406 

generality of descriptors, it may be useful to focus on a comparison between electronic 407 

microscopy (high-resolution, non-high-throughput) and magnetic resonance imaging (low 408 

resolution, high-throughput). Table 2 sums up the main categories of descriptors that can be 409 

extracted from images coming from these two different techniques, followed by a synopsis 410 

highlighting the upsides and downsides of each technique as far as automation and 411 

generalization are concerned. While MRI has many upsides when it comes to data production, 412 

generalization, automation of analysis and feature extraction for classification, a trade off exists 413 

in terms of spatial resolution. On the other hand, advocating the importance of high-resolution 414 

aspects in terms of food structure description implies the necessity of high-resolution imaging 415 

techniques. Electronic microscopy can fill in the role provided it becomes suitable for high-416 

throughput data production and data-driven modelling. At present, microscopic image 417 

production is not optimized for automatic extraction of general features and descriptions, which 418 

are at the core of frameworks using integrated data and automated workflows based on machine 419 

learning. The first issue comes from image acquisitions inherently suffering from parameter 420 

dependency. Lighting conditions and magnification which are obviously related to 421 

experimental purposes, tend to shift microscopic imaging production toward less generalizable 422 

datasets. Moreover, most canonical morphological and structural descriptors that are quantified 423 

from this type of imaging, while being directly related to physical and easily interpreted 424 

quantities, require specific assumptions (i.e., presence/absence of pores, spheres, shapes, fibers 425 
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etc.). Characterizing portions of images with ad-hoc assumptions is ill-suited for automation 426 

and generalized parameter extraction. On the other hand, the power in terms of spatial resolution 427 

of electronic microscopy cannot be overlooked when trying to characterize food structure. The 428 

solution may lie in shifting microscopy data production toward a more pipeline-oriented way. 429 

The creation of a consensus for data harmonization of microscopic images in the field, could 430 

lead to parameter and feature extraction based upon low level and more general operators, 431 

analogous to the ones used for MR images. This shift of paradigm in data production and 432 

descriptor extraction, may contribute to boost modelling by facilitating the linking of the many 433 

levels of complexity characterizing real life foods, using general parameters. A shift in data 434 

production is also needed to pave the way for efficient deep learning approaches. 435 

436 

6.3 Structure images and sensory quality 437 

Some scientific research, considered as an original reference works for these aspects, have laid 438 

the foundations for the way a set of fundamental or derived parameters X, defining the food 439 

structure, can be linked to a functional property Y through a mathematical function (Langton, 440 

et al., 1997). For instance, the microstructural parameters may be presented as the estimated 441 

model parameters A and B necessary to solve a correlating equation, e.g., Y=A+B log X, where 442 

Y is a sensory vector descriptor, X the model matrix for microstructural parameter. The 443 

exemplary work by Langton et al. (1997), carried out on whey protein gels, defined nine 444 

quantified microstructural parameters constituting the X vector feeding the model: four 445 

parameters were the output of the digital image analysis (i.e., pore size at x20 magnitude; pore 446 

size at x40 magnitude; particle size; amount of threads), and five parameters were mode of 447 

aggregation as perceived by the test panel and already explained at the end of section 3 448 

(Porosity; Clusters; Conglomerates; String of beads; Hairiness). Principal component analysis 449 

(PCA) of the textural sensory data identifies two groups: (i) grainy appearance, gritty, creamy 450 

and falling apart; and (ii) soft, springy, surface moisture and sticky. To find trends in groups of 451 

variables (microstructural and sensory variables), PCA on the whole data set was performed. 452 

The PCA had the purpose of creating, for each orthogonal component, linear combinations of 453 

variables characterized by a high degree of co-variance, thus evidencing their interdependence, 454 

by collecting them in different groups. One group of variables, defined by the large and small 455 

star volume of pores, the star volume of particles, porosity, clusters, gritty, falling apart and 456 

creamy (and acid) was found to take part in the systematic variation. Two groups of 457 

microstructural parameters and sensory descriptors were found: one group depending on the 458 
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dimensions of the overall network and the other depending on the shape of the strands and 459 

filling of the pores. This kind of data analysis made the model building a realizable approach. 460 

 461 

6.4 Structure images, water dynamics and chemical transformations 462 

Food systems behaviour is strongly dependent on water. Besides water content in a food 463 

material, it is important to understand the water state and dynamics for a proper comprehension 464 

of properties and stability of food structure. Understanding changes in location and mobility of 465 

water represents a significant step in food stability knowledge, since water “availability” within 466 

the matrix profoundly influences the chemical, physical and microbiological quality of foods. 467 

Water mobility/dynamics can be described as a manifestation how “freely” water molecules 468 

can participate in reactions or how easily water molecules diffuse to participate in reactions 469 

occurring in different sites (Fundo, Quintas, & Silva, 2015). 470 

Nuclear magnetic resonance is a powerful technique to investigate water dynamics and physical 471 

structures of foods, through analysis of nuclear magnetisation relaxation times, because it 472 

provides information on molecular dynamics of different components in dense complex 473 

systems. The application of this technique may be very useful in predicting food systems 474 

physicochemical changes, namely texture, viscosity or water migration (Fundo, et al., 2015). 475 

Finding correlations amongst parameters based on time domain (TD)-NMR T2 decays, 476 

describing water dynamics, and texture-derived features based on SEM images is a challenging 477 

issue, when the aim is the quantitative characterization and parametrization of porous food 478 

matrices and the transformation that food undergoes due to processing (such as cooking). A 479 

comprehensive pipeline for parameter extraction, describing the porous food at different 480 

cooking time, must be set accurately. TD-NMR raw data are preferable to classical exponential 481 

fitting parameters, for building a general model accounting for the water status, as different 482 

phenomena participate in the modulation of the relaxation times of the water population in the 483 

compartmentalized porous matrix. For this reason, when matrix effects are investigated with 484 

TD-NMR, a probabilistic PCA with Radial Base Function (RBF) kernel may constitute the 485 

solution to find a latent space explaining differences in data tied to different matrices (pasta 486 

type) and cooking times. The RBF kernel can take the non-linearity of decays into account, 487 

projecting data into a suitable latent space, as shown in section 8. 488 

 The next section outlines the necessity to take another level of complexity into account when 489 

trying to predict bioavailability and bioaccessibility: the physiological interaction with the 490 

human organism. 491 

 492 
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7. Digital twin of a food must include its structure 493 

Recently, a standardized food model (SFM) representing a typical US diet has been developed 494 

to facilitate these investigations. This model consists of caseinate-stabilized fat droplets, free 495 

casein, pectin, starch, sucrose, and sodium chloride. The SFM was stable to creaming for 2 496 

days, contained small particles (d ≈ 180 nm), and had a narrow particle size distribution (Zhang, 497 

Zhang, & McClements, 2019). It would, therefore, be beneficial to have an SFM with a 498 

harmonized composition and structure that could be used by researchers in different 499 

laboratories to test food matrix effects. This model would allow researchers to obtain 500 

reproducible results under standardized conditions, thereby leading to an improved systematic 501 

understanding of the influence of the food matrix on oral bioavailability of different bioactive 502 

agents. It may then be possible to establish general trends between bioactive type and the 503 

magnitude of food matrix effects (Zhang, et al., 2019). However, gathering an almost infinite 504 

set of model foods covering each possible category is a difficult, if not impossible, goal to 505 

achieve. For this reason, having an exemplary set of model foods available, the next step could 506 

be to create in silico models, derived from the mathematical combination of the basic models, 507 

to simulate each existing real food. In other words, starting from physical model foods, virtual 508 

simulator of foods can be generated. 509 

As previously stressed, in silico simulations of food as complex particle based soft matter, are 510 

strictly bound to the various length scales in the structure and occurring phenomena. As such, 511 

different properties must be simultaneously investigated at different scales, from mesoscale to 512 

nanoscale. While mesoscale properties (i.e. for emulsions and fat droplets) can be investigated 513 

using coarse-grained particle-based simulations (Morris & Groves, 2013), at finer length scales 514 

quantum-mechanical effects might occur. While hybrid multiscale models, capable of joining 515 

coarse and fine level descriptions, are already available (Bolnykh, et al., 2019), making 516 

predictive multiscale simulation approaches seemingly viable, the true complexity of food as a 517 

system is still unaddressed. A complete review of available simulation tools, with a breakdown 518 

of all the levels of complexity that must be addressed while trying to predict food properties 519 

and functionalities from its structure and molecular-level interactions, is provided by Barroso 520 

da Silva, et al. (2020). Amongst other issues, a predictive model relying solely upon multiscale 521 

simulation, can suffer from high computational complexity. Simulating systems consisting of 522 

extremely high number of particles, for which free-energy properties and kinetic properties 523 

must be computed for several time-steps, can easily lead to unrealistic computational time, even 524 

for specialized high-end hardware. However, machine and deep learning can prove useful in 525 

decoupling multiscale descriptions from approaches based exclusively on simulation. 526 
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Quantitative structure-activity relationship (QSAR) based approaches are, in example, very 527 

useful in predicting bio-chemical properties of compounds, including biological activity 528 

(Neves, et al., 2018). These approaches are based on linking sets of molecular descriptors to a 529 

given response variable; essentially the goal is to find a solution to a supervised learning 530 

problem by coming up with an optimal set of user-defined molecular descriptors and a suitable 531 

model to link them to the outcomes (response variable). A recent development of such a 532 

framework involves the use of deep learning architectures, using recurrent and convolutional 533 

neural networks (Chakravarti & Alla, 2019). The use of such neural networks allows for a 534 

generalization of the learning problem, by eliminating the necessity of an a priori definition of 535 

the molecular descriptors, at the cost of a very high pool of training data. Approaches of these 536 

types, when the interpretability of the network-extracted descriptors is ensured, can minimize 537 

the bias introduced by the users when choosing the descriptors and the difficulty of interpreting 538 

descriptors that are not directly related to chemical structures. Results from these types of 539 

framework, can furthermore be linked with outcomes from physiological experiments (i.e., 540 

experiments involving digestibility or involving health effects of certain compounds). In this 541 

way, the molecular scale and the macroscale of physiological effects are encased in a multiscale 542 

data-driven description. In a similar and more general fashion, many levels and scales of 543 

complexity can be linked through machine and deep learning, by finding ways of extracting 544 

general descriptors to be related to a response variable. Given the sheer complexity of food, 545 

data-driven description of the various levels of complexity of food structure and food-human 546 

interactions seems to be a promising way of predicting properties and health effects. 547 

In the next section, an example of how to extract joint general descriptors from different scales 548 

of complexity (water-matrix interaction and morphology) of a real-life food, that can be 549 

ultimately related to outcomes from physiological experiments, is presented. 550 

The example, set up by the authors, shows how to use SEM images in a more general way, by 551 

extracting texture analysis descriptors, when the acquisition experimental design is suitable. An 552 

example of how to correlate such structure descriptors to properties such as water mobility, 553 

using raw data and machine learning, is also proposed. 554 

555 

8. A case study: spaghetti pasta556 

8.1 Designing food structure for food shaping 557 

The structure is responsible for the sensorial, textural and nutritional properties of pasta, and its 558 

formation relates to the characteristics of the raw ingredients and to several unit operations of 559 

the manufacturing process (Scanlon, Edwards, & Dexter, 2005). In particular pasta structure 560 
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and quality depend on gluten and starch properties (Desai, Brennan, & Brennan, 2018; Witczak 561 

& Gałkowska, 2021) and on their physical-chemical modifications (protein denaturation, starch 562 

gelatinization and swelling, etc.), occurring during pasta production process as well as the time 563 

of cooking. Traditionally, dried spaghetti pasta is produced by mixing durum wheat (Triticum 564 

turgidum, subsp. Durum) semolina and water (generally ~30 g /100 g), followed by a series of 565 

unit operations such as extrusion, drying and packaging. The appropriate selection of 566 

ingredients and technological parameters is fundamental, since it directly influences pasta 567 

quality and structural features but, in turn, also affect content, digestibility and ultimately the 568 

bioavailability of macro-nutrients (starch, proteins) and micro-nutrients (minerals, 569 

phytochemicals). Since customers currently prefer pasta with uniform amber colour, firm 570 

texture (“al dente”) and shape retention when cooked, it is of commercial importance to analyse 571 

the cooking characteristics of pasta to design and develop a high-quality pasta that satisfy 572 

consumer demands. Furthermore the increasing demand for innovative pasta products is 573 

encouraging research on novel raw and processed materials such as dietary fibres, legume 574 

flours, rice, corn, emmer, cricket flour - to meet the consumer demand in terms of nutritional, 575 

sensory and technological value of pasta (Romano, Ferranti, Gallo, & Masi, 2021). In this 576 

regard, cooking properties such as texture parameters (e.g. firmness and elasticity and shape 577 

retention), cooking time, cooking loss, water absorption index, swelling index (Ficco, et al., 578 

2016; Susanna & Prabhasankar, 2013) are very important indicators of pasta quality. The 579 

texture of pasta is the most important consumer attribute of pasta that influences consumer 580 

acceptance (Susanna & Prabhasankar, 2013). In particular, firmness can be related to protein 581 

content as well as the starch composition and it is a reflection of the bond strength and the 582 

integrity of the protein matrix present in the pasta after the cooking process (Dexter & Matsuo, 583 

1979). Microstructural changes of starch and proteins during cooking depend on water 584 

availability, and the kinetics of solvation of each biopolymer have a major role on the final 585 

texture of cooked pasta (Bonomi, et al., 2012).In order to control the cooking quality of pasta, 586 

it is necessary to understand structural changes during the boiling process that affect textural 587 

and sensorial properties of pasta. Primarily made up of carbohydrates (70 g /100 g) and proteins 588 

(11.5 g / 100 g), cooked pasta is ingested as a solid food with a compact and “al dente” texture 589 

and requires a low degree of mastication before swallowing, after which the pasta arrives in the 590 

stomach in the form of large solid particles. It is considered to be a slowly digestible starchy 591 

food with a low or medium Glycaemic Index (GI) (Gallo, Romano, & Masi, 2020; Granfeldt & 592 

Björck, 1991). Generally, a compact and dense microstructure is attributed to the pasta, which: 593 

i) limits water absorption and thus starch swelling and gelatinization, during cooking; ii) entraps594 
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the starch granules reducing the accessibility of α-amylase (Jenkins, et al., 1983) and (iii) 595 

releases α-amylase inhibitors during cooking that can immobilize the enzyme into the gluten 596 

network (Zou, et al., 2019; Zou, Sissons, Gidley, Gilbert, & Warren, 2015). The major 597 

challenges for pasta industry are now to increase food healthiness and customized nutrition 598 

content and compositions but keeping high sensory attributes and technological performances. 599 

Multiphysics simulations approaches could improve the efficiency of certain food 600 

manufacturing processes and facilitate the sustainable packaging of food, for instance, by 601 

creating morphing pasta that can be flat-packed, to reduce the air space in the packaging. It is 602 

possible to induce temporary asynchronous swelling or deswelling that can transform flat 603 

objects into designed, three-dimensional shapes (Tao, et al., 2021). How does it work with a 604 

different microstructure associated to a functional pasta? Does the pasta morphing affect the 605 

water-matrix interaction upon cooking?  606 

 607 

8.2 Cooking and water-matrix interaction 608 

To date, the structure of cooked pasta has been analysed at various microscopic and mesoscopic 609 

levels by means of different methods, such as MRI. In fact it can be used to evaluate water 610 

distribution and mobility in dry pasta, and in pasta at various cooking time (Bernin, et al., 2014). 611 

Even these studies revealed that water penetration, distribution, and mobility during cooking 612 

were highly dependent on the degree of protein reticulation, which in turns is greatly affected 613 

by process conditions and food formulation (Tao, et al., 2021) MRI represents a non-invasive 614 

method that spatially resolves the amount and dynamics of water and macromolecules-protons. 615 

For this reason, Bernin, et al. (2014) used MRI to make a real time assessment of the effect of 616 

starch-gluten ratio on water distribution in dry spaghetti during cooking. Therefore, 617 

investigating such properties can help to understand how pasta components (water, gluten, 618 

starch, fibre, etc.) interact with each other defining its structure, quality, acceptability, and 619 

stability. In this respect, Gallo, et al. (2020) investigated the impact of pasta composition 620 

(semolina and durum whole-wheat semolina) on water mobility in spaghetti before and after 621 

cooking by low-resolution 1H NMR experiments. In detail  T1 and  T2 proton relaxation times 622 

as indicators of the molecular water mobility, have been determined (Gonçalves & Cardarelli, 623 

2019). The uncooked spaghetti had T1 and T2 values much lower than the cooked ones 624 

suggesting a very low water mobility in the dry pasta. With increasing cooking time, it was 625 

observed a significant increase of both T1 and T2 relaxation times, either for semolina or whole 626 

wheat spaghetti, suggesting that molecular water mobility within the pasta structure increases 627 

as protein coagulation and starch gelatinization proceed (Gallo, et al., 2020). According to 628 
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Bosmans, Lagrain, Ooms, Fierens, and Delcour (2013), this behaviour could be explained in 629 

term of three phenomena: i) water uptake in pasta structure; ii) starch gelatinization with the 630 

subsequent destruction of the original structure; iii) gluten polymerization accompanied by 631 

water expulsion from the gluten network. By comparing the behaviour of the two samples, one 632 

observes that the presence of fibre led to a reduction in water mobility, since they can keep a 633 

substantial excess of water during the cooking process (Serial, et al., 2016). The intermediate 634 

zone was characterized by swollen starch granules embedded in a coagulated but dense protein 635 

network; the presence of fibre resulted in an irregular structure in which there were a small 636 

number of still intact and therefore non-gelatinized starch granules. As reported by Manthey 637 

and Schorno (2002), in whole-wheat pasta bran particles cause a dilution of the gluten proteins, 638 

interfering with proper gluten development. This results in a highly porous structure in which 639 

starch granules are more accessible to water molecules. Starch granules in the surface region 640 

were fully gelatinized and thus completely disintegrated in amylose and amylopectin. In the 641 

intermediate zone, starch granules were highly hydrated increasing in size 642 

Concerning the analysis of surface roughness, laser microscopy stressed an irregular surface 643 

structure for dry pasta (due to the presence of intact starch granules) which became more 644 

homogeneous after 1 min of cooking, due to the starch gelatinization. 645 

 646 

8.3 Toward the automatization of water-matrix interactions and structure characterization 647 

Joining measurement of NMR T1 and T2 proton relaxation time with SEM images, seems a 648 

promising way of intertwining water mobility related phenomena with morphological 649 

variations, thus including structure into food characterization. Parameters extracted with these 650 

techniques, can furthermore be modelled using machine and deep learning architectures. 651 

However, both methodologies require a fair amount of expertise in acquisition and processing 652 

of the data, making standardization and automation of modelling pipelines challenging. 653 

Extracting parameters and quantities from SEM images, is especially challenging as it requires 654 

the use of dedicated software (e.g., when measuring particle size) to extract the distributions of 655 

nanostructures and microstructures in an image. Accurate particle size distributions can be 656 

difficult to obtain, as they require images with highly detectable particles and morphologies to 657 

build a suitable statistic. Furthermore, the observable size of particles and structures depends 658 

drastically on the viewing angle, while measures such as porosity and surface roughness are 659 

affected by lighting and zooming. A complete list of issues and standardization of measures for 660 
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SEM image analysis is provided by the ISO (International Organization for Standardization)1. 661 

On the other hand, NMR relaxometry, while being a high-throughput technique with relatively 662 

low acquisition times and high reproducibility, requires expertise in sample preparation and 663 

acquisition sequence engineering. Furthermore, studying T1 and T2 distributions with inversion 664 

software such as the UPEN algorithm2 requires a deep understanding of the physical and 665 

mathematical nature of the inversion problem, making this kind of analyses extremely variable 666 

and elaboration parameters dependent. 667 

668 

8.4 Is learning from raw data and general descriptors promising?  669 

A possible way to bypass some of these issues and make automatization and learning easier, 670 

moving toward a more general framework, is to analyse raw TD-NMR decays and study SEM 671 

images by extracting general texture analysis features and learning latent components in the 672 

data, instead of specific measurements and physical quantities. In this qualitative example, a 673 

way to correlate water mobility phenomena and morphology related features using machine 674 

learning is proposed. SEM images of different zones of semola spaghetti, acquired at different 675 

cooking time points, are processed and segmented using various filtering techniques and 676 

morphological operators. A set of minimum image acquisition parameter can be chosen (i.e., 677 

zoom, lighting, well defined morphological regions of the pasta to acquire), to minimize 678 

variability in the final dataset related to possible acquisition biases.  679 

The 13 Haralick descriptors (Haralick, Shanmugam, & Dinstein, 1973) are computed from the 680 

images of the complete cooking profile of the pasta. These general descriptors, widely used in 681 

texture analysis and computer vision, are moments computed from the segmented image 682 

cooccurrence matrix. These moments are intended to describe the characteristics of the patterns 683 

of the textures of the image, in term of the probability of occurrence of grey levels. As such, 684 

they serve as general morphological descriptors, whose relationships with descriptors extracted 685 

from TD-NMR can be estimated. These descriptors can be studied as a function of time-686 

dependent latent components extracted from TD-NMR raw decays, with a process summarized 687 

in Figure 2, to find links with water mobility related phenomena. 688 

As an example, typical raw decays of pasta at different cooking time points, are shown as 689 

projection into a latent variable space using a probabilistic KPCA (Kernel Principal Component 690 

Analysis). Using an RBF kernel in a self-optimizing learning pipeline, each decay curve is 691 

1 https://www.iso.org/obp/ui/fr/#iso:std:iso:19749:ed-1:v1:en 
2 https://iopscience.iop.org/article/10.1088/1361-6420/33/1/015003 
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projected into a lower dimensional space with the aim of detecting differences tied to 692 

phenomena occurring during cooking (Figure 3a). Some of the Haralick descriptors appear to 693 

have strong linear and non- linear correlations with the time dependent latent variables extracted 694 

from TD-NMR raw decays (Figure 3b). Moreover, correlations seem to be different from zone 695 

to zone, highlighting the expected behaviour of TD-NMR to discriminate information about 696 

different characteristics of water populations at different cooking times in different pasta zones. 697 

Some texture analysis descriptors, such as texture Sum Average (HF6, y axis of Figure 3b) 698 

which is tied to “homogeneity” of the texture, describing the central zone images, show an 699 

exclusively monotonous relationship with cooking time and PC scores (both PC0 and PC1) 700 

after a certain cooking time (Morphologic Phase, Figure 3b). Looking at the KPC space, this 701 

phenomenon corresponds to a steep variation in PC1 score and a low variation in PC0 scores. 702 

On the contrary, below this time (orange to yellow points, Figure 3a), steep variations along 703 

PC0 and slow variations of PC1 scores are encountered, until PC1 score variation minimum is 704 

reached (red points, Figure 3a). After this, variation on PC1 scores starts to rise again 705 

(Activation, Figure 3b) while PC0 scores variation starts to reach its minimum. Above this 706 

threshold of cooking time, both PC1 and many HF descriptors, such as HF6 in Figure 3b, start 707 

a trend with a strict monotonous dependence with time. This time point may represent the 708 

threshold for which changes in the texture of the matrix start to be exclusively dependent on 709 

cooking time, maybe due to the irreversible rupture of structures in the food matrix and the 710 

consequent variation of the timescale of water exchanges. Looking at Figure 3, one can argue 711 

that the description of the morphological changes emerging from these preliminary results, is 712 

in agreement with findings from Manthey and Schorno (2002). If in the early moments of 713 

cooking starch gelatinization prevails, the resulting SEM images tend to show more 714 

homogeneous surfaces, with little differences from a morphological point of view. However, 715 

with raising cooking time the observed increase in the inhomogeneity of pasta surface and the 716 

changes in water mobility become a monotonous function of cooking time, as the partial 717 

detachment of solid materials such as starch and starch-attached proteins probably becomes the 718 

prevalent phenomena. Haralick descriptors for SEM images, together with self-learned latent 719 

components extracted from TD-NMR raw decays, are capable of picking up this sort of 720 

threshold behaviour and successfully merging description of the morphology and water-matrix 721 

interaction. Learning latent features and parameters from raw NMR data and images processed 722 

to a bare minimum, studying and understanding the correlation amongst the extracted 723 

descriptors can help building digital twins of food with an included structural characterization 724 

of the matrix. In the example, water mobility and morphology are investigated with a general 725 
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data-driven framework, using machine learning and canonical texture analysis to find suitable 726 

features and descriptors. The main advantages of this approach are the generality and the lack 727 

of assumptions needed for the description of structural elements from images. Using raw data 728 

(such as T2 decays in the example) and letting AI methods learn the best way to represent them 729 

is optimal when dealing with many heterogeneous datasets, in terms of automation and feature 730 

discovery. Moreover, bypassing the necessity of assumptions when describing structure from 731 

images, becomes an advantage when parametrizing real-life foods in which matrix structures 732 

can be extremely heterogenous along the different length scales.   Consequently, different types 733 

of images and raw data from experiments regarding digestibility, stability and bioaccessibility 734 

can be explored to shed light on their relationship with structural properties, even with complex 735 

real-life food. 736 

737 

9. Conclusions738 

Understanding how formulations of ingredients and unitary operations of food processes make 739 

up the structure of food and how this structure changes during its shelf - life or eating will play 740 

an important role in the development and management of food science and industry. Much of 741 

the information that defines the structure of a food is currently neglected when entering the 742 

domain of nutrition, as the structural dimension is too complicated to be quantitatively 743 

measured and related to sensorial properties, stability, digestibility and bioaccessibility of 744 

nutrients. Not even the momentum given by the considerable progress achieved in the design 745 

of functional foods has so far been sufficient to assign the correct importance to the structural 746 

nature of food. Certainly, the complexity of the information is such as to hinder the creation of 747 

predictive-based models based on analysis of a limited amount of available data. For this reason, 748 

it is certainly conceivable a considerable impulse determined using artificial intelligence 749 

capable of handling certain quantities of heterogeneous data. It would be useful to be able to 750 

predict the sensory quality and stability of food designed to become carriers of healthy nutrients 751 

through images that shoot their supramolecular structure. It would be also desirable for these 752 

same foods designed in silico, to predict the duration as a function of the dynamic state of the 753 

water capable of modulating the chemical transformations underlying physiological or 754 

anomalous phenomena, also to include the aspect of sustainability in the conception phase. A 755 

model food such as pasta, widely consumed all over the world, object of studies for possible 756 

functionalization as a vehicle for bioactive substances useful for health, can serve as a case 757 

study to build a pipeline of an automated approach. The endpoint of such a pipeline is a direct 758 

extraction of information on rheological and sensory properties starting from images of the 759 
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structure and from raw data of the dynamic state of the water. The main advantages of such a 760 

framework are: i) an efficient automatization of parameter extraction useful for building 761 

suitable inputs for AI architectures, which require high-throughput data for proper training ii) 762 

a more efficient and general way of extracting parameters especially from imaging; using 763 

general parameters for image analysis instead of measured technique-dependent parameters or 764 

measured quantities that requires ad-hoc assumptions on structures (i.e. presence/absence of 765 

pores, fibres etc.), can prove more useful given the high heterogeneity of structural elements at 766 

different length scales iii) a more efficient way of linking different levels of complexity of 767 

structure description and properties to be predicted, through the use of general parameters and 768 

features learned directly from data with machine learning; this step is crucial to avoid 769 

oversimplification generated by canonical interpretative models. However, extending this 770 

framework to all the aspects of food modelling for properties prediction, poses quite a few 771 

challenges. The first one is a required shift of paradigm of imaging data production. Certain 772 

techniques (such as SEM) suffer from a lack of a consensus of acquisition standards, hindering 773 

data harmonization which is essential for high-throughput input production. Another major 774 

challenge is the complexity of modelling and parametrizing properties such as bioaccessibility 775 

and bioavailability. These properties not only require a comprehensive parametrization of the 776 

structure to be predicted but are also linked to the interaction with digestive functions. The 777 

interaction with the human organism, especially with GIT functions, adds a whole new level of 778 

complexity that must be addressed. The compartments of the GIT and their functions are 779 

interlinked and impacted by food structure, while also being subjected to interindividual 780 

variability. Hybrid approaches linking structure at molecular level and physiological outcomes, 781 

based on deep learning architectures, are however gaining popularity (section 7) due to their 782 

computational performances.  783 

The ultimate goal of AI oriented frameworks is to be able to make more limited use of expensive 784 

and time-consuming experiments on physically prepared foods, by using digital twins of foods 785 

designed in the laboratory. This, in turn, could lead to a more efficient data production for 786 

studies of physiological outcomes of functional foods. 787 

Further advances for future applications of AI in food science and technology may arise, as in 788 

medical sciences, from the enormous expanse of data resulting from the exploitation of different 789 

types of heterogeneous information (images, chemical analysis results, physical measurements, 790 

etc.) in the same system, for example a single neural network, integrating food data from 791 

different scales and sources. The challenge, in this case, is to give the right importance to one 792 

type of information over the others. 793 
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Caption to Figures 

Figure 1. Food matrix is defined by structures at different length scales consisting of elements 

spanning nanometres to millimetres and above. Many of the important properties of foods are 

determined by structural elements at microscale. Molecules such as carbohydrates, proteins, 

and lipids, indeed form supramolecular clusters that behave as pseudo-molecules of higher 

molecular weight. Linking organised structural elements to food properties through imaging 

may be feasible by means of artificial intelligence applications. 

Figure 2. The process behind the decomposition of T2 decays raw data into a lower 

dimensional space. Each time point of each decay is interpreted as variable and fed to a 

probabilistic PCA with an RBF kernel. Data are transformed according to coefficients which 

are dependent on the kernel parameters, optimized through machine learning. An example of 

resulting latent space is showed in the following Figure 3a, where each T2 decay, measured 

for each different cooking time, is represented as a point in a two-dimensional space.  

Figure 3. a) Resulting lower dimensional latent space, computed according to Figure 2. In this 

space, each T2 decay measured at different cooking times (indicated by the colour gradient) is 

represented as a point. The points are the projection in the 2-d latent features space, learned 

by the kernel, of each T2 decay. In this space, differences tied to effects of cooking on water 

mobility are the most detectable. b) Scatter plot of PC0 vs HF6 (Sum Average, computed from 

SEM images of the central zones). A qualitative interpretation of the relationship between these 

two variables can be given as follows: in the functionality phase, water mobility is mainly 

related with starch gelatinization phenomena, resulting in little morphological changes. After 

an activation phase, where the rupture of structures in the food matrix begin to arise, the 

morphological changes detected in images start a strictly monotonous trend related to cooking 

time (morphology phase). 



Table 1. Principal methods for structural analyses at characteristic length scales in foods, 

appearance of food matrix and structural elements 

SCALE 

LENGTH 
METHODS 

PHYSICAL STATE / 

STRUCTURAL 

ELEMENTS 

INFORMATION ON: 

> 1 cm • Texture analysis 

• Image analysis 

• Sensory panel 

liquid, gel, solid, porous solid -properties of network at large 

deformation 

- size and shape macrostructural 

elements  

-sensorial attributes (e.g., 

appearance, colour, firmness, 

overall acceptability) 

1 mm – 1 cm • Texture analysis 

• Microscopy 

liquid -aqueous matrix 

(aqueous phase in fruit juices), 

liquid -emulsion matrix 

(mayonnaise), gels (desserts, 

processed meats), porous 

matrix (bread, extruded 

snacks), viscoelastic matrix 

(dough), etc. 

-properties of network at large 

deformation related to eating 

properties 

-microstructure 

1 - 500µm • Confocal 

microscopy 

• Light microscopy 

• Rheology 

micelles (casein micelles), 

droplets, air cells (bread 

bubbles), crystals (salt), fibres, 

granules (starch granules), etc. 

-size and shape of structures 

-properties of network at small 

deformation 

-ingredient interaction 

10 -500 nm • Light scattering 

• Electron 

microscopy  

micelles (casein micelles), 

droplets, air cells (bread 

bubbles), crystals (salt), fibres, 

granules (starch granules), etc. 

-aggregation, density, 

arrangement 

-size of structures 

< 10nm • Raman 

• Chromatography 

• Thermal analysis 

• SDS Page 

• NIR 

carbohydrates (starch), proteins 

(gluten, caseins), lipids, water, 

etc. 

-molecular structure  

-proportion of elementary parts 

-unfolding vs. native 

-denaturation /transition 

temperature 

 



Table 2. Main descriptors and (dis)advantages for electronic microscopy and magnetic 

resonance imaging 

 SEM MRI 

Descriptors 

• Particle size and morphology 

• Pore size and morphology 

• Size distribution and morphology 

• Shape orientation (e.g., fibres) and 

diameter distribution (e.g., beads) 

• First order grey level statistics 

(e.g., Histogram of grey levels 

statistics, symmetry of grey 

levels centred about the mean, 

entropy of the image) 

• Roughness of textures 

• Degree of linearity 

• Co-occurrence matrix statistics 

(e.g., Haralick moments) 

• Structural or morphological 

features of ROIs (e.g., Bounding 

ellipsoid volume ratios) 

• Transform features (features 

extracted in frequency domains) 

Pros & 

Cons 

• Not immediately suitable for high-

throughput production (parameter 

dependent acquisitions: lighting, 

magnification etc.) 

• No data harmonization standard 

due to heterogeneous necessities 

of application fields and 

experiments 

•  Widely applied in many fields 

• Canonical descriptors immediately 

linkable with physical quantities 

• Very high resolution  

• Requires specific assumptions for 

image analysis (i.e., 

presence/absence of certain 

geometrical structures, pores, 

shapes etc.) 

• Inherently suitable for high-

throughput data production 

• Data harmonization standards 

are widely supported in many 

biomedical fields (neuro 

imaging, imaging for oncology) 

• Descriptors comes from low-

level, general texture analysis 

and morphological studies alike 

• Low resolution 

• Does not require specific 

assumptions for image analysis, 

due to canonical analysis based 

upon general first order statistics 

of grey levels and moments of 

cooccurrence matrix. 

 









• Supramolecular structure is important for in-silico design of functional foods 

• Models based on artificial intelligence may predict optimal food structures 

• Water-matrix interactions and structure must be included in digital twin of food 

 




