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Abstract

Statistical evaluation of diagnostic tests, and, more generally, of biomarkers, is a constantly

developing field, in which complexity of the assessment increases with complexity of the design

under which data are collected. One particularly prevalent type of data is clustered data, where

individual units are naturally nested into clusters. In these cases, bias can arise from omission, in

the evaluation process, of cluster-level effects and/or individual covariates. Focussing on the three-

class case and for continuous-valued diagnostic tests, we investigate how to exploit the clustered

structure of data within a linear-mixed model approach, both when the assumption of normality

holds and when it does not. We provide a method for estimation of covariate-specific ROC surfaces

and discuss methods for the choice of optimal thresholds, proposing three possible estimators. A

proof of consistency and asymptotic normality of the proposed threshold estimators is given. All

considered methods are evaluated by extensive simulation experiments. As an application, we study

the use of the Lysosomal Associated Membrane Protein Family Member 5 (Lamp5) gene expression

as biomarker to distinguish among three types of glutamatergic neurons.
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1 Introduction

Statistical evaluation of the accuracy of a diagnostic test (or biomarker) is an important step before its
eventual wide-scale use. In the simplest setting of a biomedical study, the disease status typically has two
classes, healthy and diseased, say, and for a such two-class setting, the receiver operating characteristic
(ROC) curve, and indexes derived from it, have been widely used to evaluate the accuracy of a diagnostic
test. See1 and2 for comprehensive reviews.

However, in many studies, the disease status, or, more generally, the condition to be classified, can
have three classes, or even more. A prominent example is given by cancer studies, where the disease
is usually staged in classes that identify the extent to which a cancer has developed. Contemporary
practice foresees four cancer stages, with the fourth stage representing the most severe condition, but
these can be grouped into fewer less-detailed stages in some circumstances (see3 who analyse epithelial
ovarian cancer data with a disease status classified as “benign”, “early stage” or “late stage”). Recent
advances in molecular biology have opened new research avenues in the field of classification of multiple
statuses or biological varieties. In immunology, for example, the expression of cell surface proteins is
routinely used to distinguish different white blood cell populations (see4). Neuroscientists are often
requested to distinguish among the different cell types present in the mammalian brain5 on the basis of
gene biomarkers, typically measured using gene expression assays, such as single-cell RNA sequencing.
In fact, some of the most urgent problems arising in the biosciences can be regarded as classification
or decision problems using complex and often very extensive data. This makes rigorous evaluation of
classification accuracy a crucial issue.

In a three-class setting, the ROC surface represents a natural generalization of the ROC curve and
is commonly used to evaluate the ability of a diagnostic test to distinguish among three classes (or
levels) of a disease. Let Y denote a diagnostic test result, often measured on a continuous scale, and
let Y1, Y2, Y3 be the test result for subjects in class 1, 2 and 3, respectively. Without loss of generality,
we assume that higher values of test result are associated to higher severity of the disease, and the
severity of the disease grows with the class (i.e., class 3 is the worst). Given a pair of thresholds (t1, t2),
with t1 < t2 in the range of diagnostic test results, three true class fractions (TCFs) can be defined as
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TCF1(t1) = Pr(Y1 ≤ t1), TCF2(t1, t2) = Pr(t1 < Y2 ≤ t2) and TCF3(t2) = Pr(Y3 > t2). Then, the
ROC surface for the diagnostic test Y is obtained by plotting (TCF1(t1), TCF2(t1, t2) and TCF3(t2)) in
a unit cube over all possible values of t1 and t2

6. The volume under the ROC surface (VUS) is usually
considered as a summary measure of the diagnostic accuracy of the test.

Clearly, from an operational perspective, the choice of optimal thresholds is crucial, and various
proposals have been formulated in this respect. Recently,8 proposed an approach based on a
generalization of the Youden index, GYI hereafter, in which the optimal pair of thresholds is chosen
to maximize the sum of three TCFs (or total of correct classification rates). Alternatively,10 proposed
two selection criteria, named closest to perfection (CtP) criterion and max volume (MV) criterion. In
the CtP approach, the optimal pair of thresholds is obtained by minimizing the distance, in the unit cube,
between the point (TCF1(t1),TCF2(t1, t2),TCF3(t2)) and the corner (1, 1, 1), which corresponds to
perfect discrimination. The MV approach searches for thresholds t1 and t2 that maximize the volume of
a box under the ROC surface, and the volume is defined as the product of the three TCFs. Other proposed
approaches (e.g., adjusted Youden index, maximum determinant) can be found in11.

Most of the known statistical methods for ROC analysis (estimation of the ROC surface, VUS
and optimal pair of thresholds), consider a setting in which measurements on statistical units can be
considered as realizations of independent random variables, and the diagnostic test is not influenced
by any covariate. In several studies, however, statistical units are enrolled in clusters (e.g., families),
and the diagnostic test can be affected by some covariates that characterize the units themselves. In
such contexts,12 used a linear mixed-effect model13 (with normal assumption) to account for clusters
and covariates effects, and proposed an approach to estimate the VUS. However, to the best of our
knowledge, no methods are available to estimate ROC surface, nor selecting an optimal pair of thresholds
or constructing confidence regions in a clustered-data setting.

In this paper, we discuss covariate-specific estimation of a ROC surface of a continuous diagnostic
test with clustered data, and adapt to the clustered-data case the criteria based on GYI, CtP
and MV approaches, in order to properly address the problem of selecting an optimal pair of
thresholds. Our approach also allows to properly build confidence regions for the true class fractions
(TCF1(t1),TCF2(t1, t2),TCF3(t2)) and for the optimal pair of thresholds. We employ the model in12

under normality assumptions for the cluster effects and the error terms; then, we estimate the covariate-
specific TCFs, the ROC surface, and the optimal pair of thresholds based on the modified GYI, CtP and
MV methods. We discuss the asymptotic behavior of the proposed estimators and use asymptotic results
to construct confidence regions. In order to relax the normality assumption about the distributions of the
test results Y1, Y2 and Y3, we resort to the class of Box-Cox transformations for the linear-mixed effect
model14. For this situation, we also consider a bootstrap procedure to estimate the covariance matrix of
the estimator of the optimal thresholds.
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The performances of our proposed estimators are verified through several simulation experiments.
An application to real data is also presented. Specifically, we reanalyze a subset of the data used by15

, as processed by the authors*. In the aforementioned study, the authors focussed on the visual and
motor cortex of the mouse brain. Here, we restrict our attention to the classification of three types
of glutamatergic neurons, namely Layer 2/3 Intratelencephalic (L2/3 IT), Layer 4 (L4) and Layer 5
Pyramidal Tract (L5 PT) neurons, using the Lysosomal Associated Membrane Protein Family Member 5

(Lamp5) gene expression as biomarker.

The paper is organized as follows. In Section 2, we present the model settings and discuss model
estimation. Methods proposed for estimating the TCFs, the ROC surface and for selecting the optimal
pair of thresholds are presented in Section 3. The simulation study is described in Section 4 and the
application is described in Section 5. Concluding remarks are left to Section 6.

2 Linear mixed-effect model

Suppose we are interested in evaluating the accuracy of a diagnostic test which is potentially useful to
classify the cases into three categories, of a disease status, say. Let Y be the diagnostic test result, on a
continuous scale, and let Y1, Y2, Y3 be the test result for subjects in class 1, 2 and 3, respectively. Suppose
to have p covariates, X1, . . . , Xp, say, possibly associated with the test Y .

Let c be the total number of clusters (for instance, families), randomly selected from the population.
For the k-th cluster, k = 1, . . . , c, let nki be the total number of subjects belonging to class i, i = 1, 2, 3

and let nk = nk1 + nk2 + nk3 be the total sample size within the cluster. Note that nki might be equal
to 0 for some clusters. Clearly, we expect that measures in the same cluster may be dependent. In order
to account for the clustering effect on the test result Y , as well as for covariates’ effects, we consider the
following linear mixed-effect model (see also12):

Y1 = αk1
+ z⊤1 β1 + ε1,

Y2 = αk2
+ z⊤2 β2 + ε2, (2.1)

Y3 = αk3
+ z⊤3 β3 + ε3,

where (Y1, Y2, Y3) is a triplet of test scores from three randomly sampled subjects from the three
disease classes, (k1, k2, k3), ki ∈ {1, . . . , c}, are cluster memberships indicating the clusters from which
Y1, Y2, Y3 are observed, zi = (1, x1i, . . . , xpi)

⊤ are fixed (i.e., not random) covariates values, and

∗the data are publicly available at https://portal.brain-map.org/atlases-and-data/rnaseq/
mouse-v1-and-alm-smart-seq
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βi = (β0i, β1i, . . . , βpi)
⊤, i = 1, 2, 3, are vectors of parameters representing covariates effects. In model

(2.1), αk are random effects accounting for the presence of clusters, and εi are subject-level random
errors. We assume that: (i) the random effects αk and the subject-level random errors εi follow a normal
distribution, i.e., αk ∼ N (0, σ2

c ) and εi ∼ N (0, σ2
i ) with i = 1, 2, 3; (ii) α1, α2, . . . , αc and ε1, ε2, ε3 are

all independent. These assumptions are standard in the linear mixed-effect modelling framework13.

Let β = (β⊤
1 ,β

⊤
2 ,β

⊤
3 )

⊤ with βi = (β0i, β1i, . . . , βpi)
⊤, and θ = (σc, σ1, σ2, σ3)

⊤ be the unknown

parameters in model (2.1). In order to obtain an estimator γ̂ = (β̂
⊤
, θ̂

⊤
)⊤ of γ = (β⊤,θ⊤)⊤, a restricted

(or residual) maximum likelihood (REML) is frequently adopted13. In particular, we can write the
restricted log-likelihood for the model (2.1) as

ℓR(γ) = ℓR(β̂(θ),θ) = −1

2

c∑
k=1

(
Yk − Zkβ̂(θ)

)⊤
Σ−1

k

(
Yk − Zkβ̂(θ)

)
− 1

2

c∑
k=1

log |Σk|

− 1

2
log

∣∣∣∣∣
c∑

k=1

Z⊤
k Σ

−1
k Zk

∣∣∣∣∣ , (2.2)

where Yk is the nk-vector of test results within the k-th cluster, Zk is nk × 3(p+ 1) design matrix for
the fixed effects within the k-th cluster, Σk = σ2

cVkV
⊤
k + diag{σ2

1 , . . . , σ
2
1 ;σ

2
2 , . . . , σ

2
2 ;σ

2
3 , . . . , σ

2
3}nk

with Vk as 1nk
, and

β̂(θ) =

(
c∑

k=1

Z⊤
k Σ

−1
k Zk

)−1 c∑
k=1

Z⊤
k Σ

−1
k Yk.

Maximizing the restricted log-likelihood function ℓR(γ) (2.2), gives the REML estimator θ̂ of the
variance components vector θ. Then β̂ = β̂(θ̂). Theoretical results on consistency and asymptotic
normality of the resulting estimator γ̂ = (β̂

⊤
, θ̂

⊤
)⊤ are given in13: under some regularity conditions,

the REML estimator γ̂ asymptotically follows a normal distribution with mean γ and covariance matrix
Λ, i.e., γ̂ .∼ N (γ,Λ). The asymptotic covariance matrix Λ can be consistently estimated by using the
sandwich formula16–18, i.e.,

Λ̂ = c−1J−1(γ)I(γ)J−1(γ)

∣∣∣∣
γ=γ̂

, (2.3)

where

J(γ) = c−1E
{
∂2ℓR,k(γ)

∂γ∂γ⊤

}
, I(γ) = c−1E

[
∂ℓR,k(γ)

∂γ

{
∂ℓR,k(γ)

∂γ

}⊤
]
,

and ℓR,k(γ) is the k-th contribution to the restricted log-likelihood function ℓR(γ).
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3 The proposal

3.1 Covariate-specific ROC surface estimation for clustered data

According to the model (2.1), at a given vector z of covariates values, the distribution of Yi, i = 1, 2, 3, is
normal with mean z⊤βi and variance σ2

c + σ2
i , i.e., Yi ∼ N (z⊤βi, σ

2
c + σ2

i ) with z = (1, x1, . . . , xp)
⊤

and i = 1, 2, 3. We further assume that z⊤β1 < z⊤β2 < z⊤β3, i.e., that the stochastic dominance for
the three classes holds at z. This is equivalent to the assumption that the covariate-specific VUS is greater
than 1/6.6,7 It is worth noting that such assumption does not affect the theoretical developments that
follow, thanks to consistency of the unconstrained estimator γ̂, on which, for convenience, we will rely
throughout the paper.

For given thresholds t1 and t2 (t1 < t2) and a vector z of covariates values, the covariate-specific TCFs
are:

TCF1(t1; z) = Φ

(
t1 − z⊤β1√

σ2
c + σ2

1

)
,

TCF2(t1, t2; z) = Φ

(
t2 − z⊤β2√

σ2
c + σ2

2

)
− Φ

(
t1 − z⊤β2√

σ2
c + σ2

2

)
, (3.1)

TCF3(t2; z) = 1− Φ

(
t2 − z⊤β3√

σ2
c + σ2

3

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. The plot of
(TCF1(t1; z),TCF2(t1, t2; z),TCF3(t2; z)), by varying the pair of thresholds (t1, t2), produces a
covariate-specific ROC surface of Y at given vector z. Alternatively, by writing TCF1(t1; z) = p1 and
TCF3(t2; z) = p3, the covariate-specific ROC surface can be defined as a function of (p1, p3), i.e.,

ROCs(p1, p3; z) = Φ

(
Φ−1(1− p3)

√
σ2
c + σ2

3 + z⊤β3 − z⊤β2√
σ2
c + σ2

2

)

− Φ

(
Φ−1(p1)

√
σ2
c + σ2

1 + z⊤β1 − z⊤β2√
σ2
c + σ2

2

)
, (3.2)

if Φ−1(p1) <
Φ−1(1−p3)

√
σ2
c+σ2

3+z⊤β3−z⊤β1√
σ2
c+σ2

1

; otherwise, ROCs(p1, p3; z) = 0. Given a pair of

thresholds (t1, t2) and a pair (p1, p3), consistent estimators T̂CF1(t1; z), T̂CF2(t1, t2; z), T̂CF3(t2; z)

and R̂OCs(p1, p3; z) are straightforwardly obtained by the plug-in principle, i.e., substituting the REML
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estimators γ̂ into expressions (3.1) and (3.2). The estimated covariate-specific ROC surface is visualized
by plotting the points (p1, p3, R̂OCs(p1, p3; z)) in the three-dimensional space.

It is straightforward to prove that the estimator
(
T̂CF1(t1; z), T̂CF2(t1, t2; z), T̂CF3(t2; z)

)⊤
has an

asymptotic normal distribution, by applying the delta method. Its asymptotic covariance matrix Ω is

Ω =
∂y

∂γ⊤Λ

(
∂y

∂γ⊤

)⊤

, (3.3)

where y = (TCF1(t1; z),TCF2(t1, t2; z),TCF3(t2; z)). Therefore, an approximate 95% confidence
region for y has contour

(y − ŷ)
⊤
Ω̂

−1
(y − ŷ) = χ2

0.95,3, (3.4)

where ŷ =
(
T̂CF1(t1; z), T̂CF2(t1, t2; z), T̂CF3(t2; z)

)
, Ω̂ is the estimate of Ω and χ2

0.95,3 is the 95-th
percentile of the χ2 distribution with 3 degrees of freedom.

3.2 Selection of optimal thresholds

Under the considered model, a covariate-specific optimal pair of thresholds (t+1 , t
+
2 ) for clustered data

can be obtained by:

(i) maximizing the covariate-specific generalized Youden index J3(z) (GYI), with

J3(z) = TCF1(t1; z) + TCF2(t1, t2; z) + TCF3(t2; z); (3.5)

(ii) minimizing the covariate-specific Euclidean distance D3(z) between the ideal point (1, 1, 1) and
the point (TCF1(t1; z),TCF2(t1, t2; z),TCF3(t2; z)) (CtP), with

D3(z) =

√
[1− TCF1(t1; z)]

2
+ [1− TCF2(t1, t2; z)]

2
+ [1− TCF3(t2; z)]

2
; (3.6)

(iii) maximizing the covariate-specific volume V3(z) of the cuboid under the covariate-specific ROC
surface (MV), with

V3(z) = TCF1(t1; z)× TCF2(t1, t2; z)× TCF3(t2; z). (3.7)

Observe that the covariate-specific objective functions J3(z), D3(z), V3(z) (and associated optimal
pair of thresholds, say (t+1 , t

+
2 )) depend on γ. Plugging the REML estimator γ̂ into (3.5), (3.6) and

(3.7), leads to the estimated versions Ĵ3(z), D̂3(z) and V̂3(z). Then, the estimators (t̂+1,GYI, t̂
+
2,GYI),

(t̂+1,MV, t̂
+
2,MV) and (t̂+1,CtP, t̂

+
2,CtP) are obtained by maximizing Ĵ3(z) and V̂3(z), or minimizing D̂3(z),
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8 Statistical Methods in Medical Research XX(X)

under the constraint t1 < t2. The optimization leads also to the estimated covariate-specific optimal
statistics Ĵ+

3 (z), D̂+
3 (z) and V̂ +

3 (z) (e.g., Ĵ+
3 (z) is the maximum of Ĵ3(z)).

The estimators (t̂+1,GYI, t̂
+
2,GYI), (t̂+1,CtP, t̂

+
2,CtP) and (t̂+1,MV, t̂

+
2,MV) are functions of the REML

estimator γ̂, but the function can be obtained in an explicit form for the GYI approach only:

t̂+1,GYI =

(
z⊤β̂2σ̂

2
1c − z⊤β̂1σ̂

2
2c

)
− σ̂1cσ̂2c

√(
z⊤β̂1 − z⊤β̂2

)2
+ (σ̂2

1c − σ̂2
2c) log

(
σ̂2
1c

σ̂2
2c

)
σ̂2
1c − σ̂2

2c

,

t̂+2,GYI =

(
z⊤β̂3σ̂

2
2c − z⊤β̂2σ̂

2
3c

)
− σ̂2cσ̂3c

√(
z⊤β̂2 − z⊤β̂3

)2
+ (σ̂2

2c − σ̂2
3c) log

(
σ̂2
2c

σ̂2
3c

)
σ̂2
2c − σ̂2

3c

,

where σ̂2
ic = σ̂2

c + σ̂2
i , for i = 1, 2, 3 (see also19). However, in the Appendix we show that they are all

consistent and asymptotically normal, with asymptotic covariance matrix

Σt̂+1,∗,t̂
+
2,∗

=

(
∂t+1,∗
∂γ⊤ ,

∂t+2,∗
∂γ⊤

)
Λ

(
∂t+1,∗
∂γ⊤ ,

∂t+2,∗
∂γ⊤

)⊤

, (3.8)

where the symbol ∗ stands for the name of the selection method (i.e., GYI, CtP and MV) and

∂t+m,∗

∂γ⊤ =

(
∂2H

∂t+m,∗∂t
+
m,∗

)−1(
− ∂2H

∂t+m,∗∂γ⊤

)
,

m = 1, 2. The plug-in method gives consistent estimates of quantities in (3.8). Confidence regions can
be easily constructed by using the normal approximation result.

3.3 Extension with Box–Cox transformation

In model (2.1), we assumed that αk and εi follow a normal distribution. However, such assumption could
be quite restrictive, and is violated in practical situations where data distribution may be skewed. In such
situations, one solution is to resort to the Box-Cox transformation for linear mixed-effect models14,20.

In particular, here we consider the model

Y
(λ)
1 = αk1 + z⊤1 β1 + ε1,

Y
(λ)
2 = αk2

+ z⊤2 β2 + ε2, (3.9)

Y
(λ)
3 = αk3

+ z⊤3 β3 + ε3,

Prepared using sagej.cls
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where Y
(λ)
i is the transformed response

Y
(λ)
i =


Y λ
i − 1

λ
, λ ̸= 0

log (Yi) , λ = 0

with i = 1, 2, 3 (Yi > 0), and λ is the transformation parameter21. Assumptions about the random effects
αk and the subject-level random errors εi are the same as in model (2.1). Therefore, the restricted log-
likelihood function ℓR(γ;λ) becomes

ℓR(β̂(θ),θ;λ) = −1

2

c∑
k=1

(
Y

(λ)
k − Zkβ̂λ(θ)

)⊤
Σ−1

k

(
Y

(λ)
k − Zkβ̂λ(θ)

)
− 1

2

c∑
k=1

log |Σk|

− 1

2
log

∣∣∣∣∣
c∑

k=1

Z⊤
k Σ

−1
k Zk

∣∣∣∣∣+ (λ− 1)

c∑
k=1

3∑
i=1

nki∑
j=1

log(Ykij), (3.10)

where Y
(λ)
k is the nk-vector of the transformed responses within the cluster k, and

β̂λ(θ) ≡ β̂(θ, λ) =

(
c∑

k=1

Z⊤
k Σ

−1
k Zk

)−1 c∑
k=1

Z⊤
k Σ

−1
k Y

(λ)
k .

Since direct maximization of (3.10) can produce unstable estimates of λ, we suggest to obtain λ̂ resorting
to the method proposed by22 and reviewed in Appendix. Once the estimate of λ has been obtained,
ℓR(γ; λ̂) can be maximized to obtain γ̂.

By using the estimates γ̂ and λ̂, it is straightforward to obtain covariate-specific estimates of points

on the ROC surface, R̂OCs
(λ̂)

(p1, p3; z), and to get estimated versions Ĵ
(λ̂)
3 (z), D̂(λ̂)

3 (z) and V̂
(λ̂)
3 (z)

of the covariate-specific objective functions J
(λ)
3 (z), D

(λ)
3 (z) and V

(λ)
3 (z), respectively. Then, the

covariate-specific optimal pairs of thresholds for clustered data
(
t̂
+,(λ̂)
1,GYI, t̂

+,(λ̂)
2,GYI

)
,
(
t̂
+,(λ̂)
1,CtP, t̂

+,(λ̂)
2,CtP

)
and(

t̂
+,(λ̂)
1,MV, t̂

+,(λ̂)
2,MV

)
are derived by maximizing the corresponding objective functions in the transformation

scale. Therefore, by the inversion

t =


(
λt(λ) + 1

)1/λ
, λ ̸= 0

exp
(
t(λ)
)
, λ = 0,

(3.11)

the covariate-specific optimal pair of thresholds in the original scale can be obtained (t(λ) denotes a value
in the transformed scale).
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All the above estimators are consistent and asymptotically normally distributed. The asymptotic
covariance matrix can be obtained and estimated by employing the delta method and the plug-in principle.
However, in our experience, such an approach can lead to unstable estimates. For this reason, we advise
to use in such context a nonparametric bootstrap procedure for clustered data, which is described in the
following steps (taking as an example of parameter of interest the pair of optimal thresholds):

• Step 1. Obtain the estimates γ̂ and λ̂ in the transformed data scale. Then, estimate the covariate-
specific optimal pair of thresholds

(
t̂
+,(λ̂)
1,∗ , t̂

+,(λ̂)
2,∗

)
, and use (3.11) to go back to

(
t̂+1,∗, t̂

+
2,∗
)
.

• Step 2. Draw c clusters, with replacement, from the set of clusters; then pick up all observations
within the sampled clusters.

• Step 3. Based on the sample generated in Step 2, obtain the estimated parameters γ̂(b) and λ̂(b).

Then, estimate the covariate-specific optimal pair of thresholds
(
t̂
+,(λ̂)
1,∗(b), t̂

+,(λ̂)
2,∗(b)

)
and transform

back to the original scale to get
(
t̂+1,∗(b), t̂

+
2,∗(b)

)
.

• Step 4: Repeat steps 2 and 3 B times, and compute the bootstrap-based estimate of covariance
matrix of

(
t̂+1,∗, t̂

+
2,∗
)

as

1

B − 1

B∑
b=1

{(
t̂+1,∗(b)
t̂+2,∗(b)

)
−

(
¯̂t+1,∗
¯̂t+2,∗

)}{(
t̂+1,∗(b)
t̂+2,∗(b)

)
−

(
¯̂t+1,∗
¯̂t+2,∗

)}⊤

,

where ¯̂t+1,∗ = 1
B

∑B
b=1 t̂

+
1,∗(b) and ¯̂t+2,∗ = 1

B

∑B
b=1 t̂

+
2,∗(b).

Recall that symbol ∗ stands for the name of the selection criterion (i.e., GYI, CtP and MV).
It is important to emphasize that the approach discussed in this subsection can only solve problems

arising from particular forms of violation of the assumption of normality. Indeed, the motivating idea is
that the same transformation is suitable for all classes of disease. In case of more complex deviations
from normality, it is necessary to resort to some completely non-parametric method. This topic is outside
the scope of this paper and deserves future work.

4 Simulation study

4.1 Simulation set-up

We perform several simulation experiments to evaluate the performance of the proposed estimators of
the covariate-specific ROC surface and the optimal pair of thresholds. In all simulations, the number of
clusters c is taken to belong to the set {15, 30, 60}, and in k-th cluster, the disease status for subjects
is generated from a multinomial distribution, Mult(nk, (0.6, 0.3, 0.1)). We consider three different
settings, two in the Gaussian setting and one that requires the Box-Cox transformation.
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• Setting 1. We consider one covariate X ∼ U(−2, 2). The parameters of model (2.1) are set to be
β01 = 0.5, β11 = 0.5, β02 = 2, β12 = 0.8, β03 = 3.5 and β13 = 1.1. Variances of errors εi are set
to be σ2

1 = 0.3, σ2
2 = 0.8, σ2

3 = 1.3; σ2
c is set to be 0.2 or 1. Some true covariate-specific VUS

values are roughly 0.505 at x = −2, 0.733 at x = 0.11 and 0.867 at x = 2, when σ2
c = 0.2; 0.415

at x = −2, 0.605 at x = 0.11 and 0.746 at x = 2, when σ2
c = 1. Just as an example, Figure S16

in Supplementary Material shows the corresponding true covariate-specific ROC surfaces, when
σ2
c = 0.2.

• Setting 2. We consider two covariates, X1 ∼ N (0, 1) and X2 ∼ Bernoulli(0.5). The parameters
of model (2.1) are set to be β01 = −0.5, β11 = 0.5, β21 = −0.5, β02 = 2, β12 = 1, β22 = −0.2,
β03 = 3, β13 = 1.5 and β23 = 0.6. Variances of errors εi are set to be σ2

1 = 0.5, σ2
2 = 1, σ2

3 = 1.5;
σ2
c is set to be 0.3 or 1.4. Some true covariate-specific VUS values are roughly 0.379 at (x1, x2) =

(−2, 0), 0.689 at (x1, x2) = (0, 11, 0), 0.866 at (x1, x2) = (2, 0), 0.578 at (x1, x2) = (−2, 1),
0.831 at (x1, x2) = (0, 11, 1), 0.941 at (x1, x2) = (2, 1), when σ2

c = 0.3; 0.325 at (x1, x2) =

(−2, 0), 0.584 at (x1, x2) = (0, 11, 0), 0.771 at (x1, x2) = (2, 0), 0.476 at (x1, x2) = (−2, 1),
0.717 at (x1, x2) = (0, 11, 1), 0.861 at (x1, x2) = (2, 1), when σ2

c = 1.4.
• Setting 3. We consider one covariate X ∼ U(0.5, 2). The parameters of model (3.9) are set to be
β01 = 2, β11 = 2, β02 = 3, β12 = 3.5, β03 = 3.5 and β13 = 3. Variances of errors εi are set to be
σ2
1 = 0.3, σ2

2 = 0.48, σ2
3 = 0.84; σ2

c is set to be 0.16. We fix the transformation parameter λ as
0.5. Some true covariate-specific VUS values are roughly 0.636 at x = 0.5, 0.758 at x = 1.16 and
0.864 at x = 2.

The choice of variance components allow us to fix different values of the intra-class correlation coefficient
(ICC), defined as ICC =

σ2
c

σ2
c+σ2

ε
, with σε =

1
3 (σ1 + σ2 + σ3). In particular, the ICC equals 0.213 or

0.574 in our Setting 1, 0.239 or 0.594 in Setting 2, and 0.236 in Setting 3. The diagnostic test results are
generated according to model (2.1) in Settings 1 and 2, and model (3.9) in Setting 3. We consider two
cases for the sample size within cluster: (i) balanced design, i.e., all clusters have the same size, with
nk ∈ {4, 10}; (ii) unbalanced design, i.e., each cluster has different size nk, (randomly) varying from 3
to 14 (the latter case is the only one considered in Setting 3). For each simulation experiment, the number
of Monte Carlo replications is 1000.

Clearly, for each considered scenario, at each Monte Carlo replication, the covariate-specific ROC
surface and the covariate-specific optimal pair of thresholds are estimated according to the methods
proposed in Section 3. The estimated variances of the covariate-specific estimators for the optimal
thresholds are obtained by applying the plug-in method to (3.8) in Settings 1 and 2, and by using the
cluster bootstrap procedure, with 200 bootstrap replication, in Setting 3. According to our monotone
ordering assumption, only consistent generated samples (or bootstrap samples), i.e. such that z⊤β̂1 <
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z⊤β̂2 < z⊤β̂3, are processed. This selection is required by the statistical tools considered in the paper,
that are valid, from a methodological point of view, under the monotone ordering assumption.7,9

4.2 Results for the covariate-specific ROC surface

The covariate-specific ROC surface estimator is evaluated, in every setting, by means of the Monte
Carlo integrated mean bias (Bias) and the Monte Carlo square root of the integrated mean squared error
(RMSE), i.e.,

Bias
(
R̂OCs(p1, p3; z)

)
=

1

M

M∑
m=1

1

np1np3

np1∑
i=1

np3∑
j=1

(
R̂OCs(p1i, p3j ; z)− ROCs(p1i, p3j ; z)

)
and

RMSE
(
R̂OCs(p1, p3; z)

)
=

 1

M

M∑
m=1

1

np1np3

np1∑
i=1

np3∑
j=1

(
R̂OCs(p1i, p3j ; z)− ROCs(p1i, p3j ; z)

)2
1/2

,

where M = 1000 is the total number of Monte Carlo replications, np1
and np3

are the number of grid
points we used for p1(= TCF1) and p3(= TCF3), respectively. More precisely, we set np1

= np3
= 21.

Results for Setting 1 are shown in Figure 1 (Figures S1, and S9 in Supplementary Material give
simulation results for Settings 2 and 3, respectively). We can see that larger values of Bias and RMSE
are present in cases of small number of clusters or sample size within clusters. As expected, increasing
sample sizes improves the accuracy of the covariate-specific ROC surface’s estimator.

We also consider the problem of constructing (joint) confidence regions for the covariate-specific true
class fractions at a fixed pair of thresholds, for instance t1 = 0.5 and t2 = 3.5, in Setting 1. In this case,
Figure 2 (and S8, S13 in Supplementary Material) shows an evident liberal behavior, with low coverage
in case of smallest within-cluster sample size (nk = 4) and/or smallest number of clusters (c = 15).
However, the empirical coverages increase when either the number of clusters or the within-cluster sizes
increase. For comparison purposes, we also performed the Naı̈ve estimators for the covariate-specific true
class fractions, which assume independence of all subjects and ignore the cluster-level effect. Results in
Figure 2 (and S8, S13 in Supplementary Material) show the effect of this misconception when building
confidence regions using pivots based on those estimators: the actual coverage level stays away from the
nominal one, even when the sample size becomes large.
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Figure 1. Monte Carlo Bias and RMSE of the estimator for the covariate-specific ROC surface in Setting 1.

4.3 Results for the optimal pair of thresholds

The covariate-specific proposed estimators are evaluated in terms of Bias (difference between Monte
Carlo mean and the truth), root mean square error (RMSE: the square root of the sum of squared bias and
Monte Carlo variance), and coverage probability (CP) of 95% confidence intervals (obtained by using
the normal approximation approach).

Figures 3 and 4 present Bias and RMSE, respectively, of the covariate-specific optimal pair of
thresholds estimators, as a function of covariate values across all simulated scenarios for Setting 1. Figure
5 shows empirical coverages of corresponding 95% confidence regions for the true parameters. For space
reasons, we report the results for Settings 2 and 3 in Supplementary Material.

As shown in Figure 3 (also in Figures S2, S3 and S10 in Supplementary Material), Bias depends on
the total number of clusters c and on the within-cluster sample size nk. When increasing either nk or c,
the bias decreases, and at the largest value of total number of clusters c = 60, the bias is close to zero
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Figure 2. Empirical coverage of the (joint) confidence regions for the true class fractions, at t1 = 0.5 and
t2 = 3.5, build by using the proposed three selection methods and the Naı̈ve approach (with normal
approximation), in Setting 1. Nominal level 0.95.

regardless of the within-cluster sample size nk, although a slightly large bias can be observed in cases
of small cluster sizes, when estimating Threshold 2. The ICC also seems to affect the bias; in particular,
larger values of ICC lead to larger values of Bias.

In terms of RMSE, we can see similar trends: RMSE decrease when total number of clusters and/or
within-cluster size increases. Figure 4 (and S4, S5, S11 in Supplementary Material) also clearly shows the
impact of ICC on the RMSE, especially in cases of small cluster size. It implies that larger cluster variance
σ2
c is associated with larger variances of the covariate-specific optimal pair of thresholds estimators.

In general, we notice that the three discussed selection methods behave similarly, and that large values
of Bias and RMSE of the threshold estimators appear at some ranges of covariate values (typically in the
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Figure 3. Monte Carlo Bias of covariate-specific optimal pair of thresholds estimators, obtained by the three
proposed selection methods in Setting 1.
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border area), in case of small sample sizes. This may be due to a large degree of overlap of the covariate-
specific test distributions (in two contiguous classes) around the true optimal thresholds, in combination
with a small number of observations, that not allow accurate estimation.

We also consider the problem of constructing (joint) confidence regions for the covariate-specific
optimal thresholds. In this case, Figure 5 (and S6, S7, S12 in Supplementary Material) again shows a
certain liberality of the regions, having these low coverage in case of smallest within-cluster sample size
(nk = 4) and smallest number of clusters (c = 15). However, the empirical coverages increase when the
sample size (globally) increases. For comparison purposes, we also employed the Naı̈ve estimators for
the covariate-specific optimal pair of thresholds. Results in Figure 5 (and S6, S7, S12 in Supplementary
Material) show the dramatic effect of the misconception when building confidence regions using pivots
based on those estimators.

5 Application

Here, we show how to apply the proposed method to the problem of celltype classification, introduced in
Section 1. Although RNA sequencing provides a comprehensive view of the cells, measuring thousands
of genes at the time, the goal is often to identify a handful of biomarkers to use in low-throughput
experiments (such as in situ hybridization) that allow to visualize the presence of the gene through
fluorescence microscopes. In this context, it is useful to test in RNA sequencing data the predictive role of
genes to discriminate cell types. Here, we focus on the Lysosomal Associated Membrane Protein Family

Member 5 (Lamp5) gene and on its ability to discriminate three types of glutamatergic neurons, namely
Layer 2/3 Intratelencephalic (L2/3 IT), Layer 4 (L4) and Layer 5 Pyramidal Tract (L5 PT) neurons.

Overall, our dataset consists of 860 observations (cells): 265 in the L2/3 IT group, 152 in the L4 group,
and 443 in the L5 PT group. For each observation, the following variables were measured: the expression
of the Lamp5 gene (biomarker), the mouse genotype (which yields 23 clusters), the class labels (L2/3 IT,
L4, and L5 PT), and the sex and age (in days) of the mouse. The sample size within cluster varies from 1
to 330, with 20 clusters ranging from 1 to 50 cells, and 3 clusters consisting more than 100 cells. As, in
this case, the rank-ordered nature of the biomarker with respect to the classes is not given, the monotone
ordering was specified by ordering the classes according to the rank of the biomarker’s sample means in
the three groups.

The expression of the biomarker is measured through RNA sequencing, which yields count data,
rescaled to count per million (CPM) to account for the differences in sequencing depth between
samples15. In order to make the normality assumption likely, we thus consider the linear mixed-effect
model under the Box-Cox transformation (3.9) for the CPM of Lamp5 using as the covariate the age (in
days) of the mice. The estimated Box-Cox parameter is 0.446. The estimated regression coefficients are
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Figure 4. Monte Carlo RMSE of covariate-specific optimal pair of thresholds estimators obtained by the three
proposed selection methods in Setting 1.
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Figure 5. Empirical coverage of the (joint) confidence regions for the true optimal thresholds, build by using
the proposed three selection methods and the Naı̈ve approach (with normal approximation), in Setting 1.
Nominal level 0.95.

Prepared using sagej.cls



To et al. 19

reported in Table 1. Significant positive relationship between the transformed response (CPM of Lamp5)
and the age was found for class L4 and class L5 PT. The estimated ICC is about 0.229, which indicates
a weak correlation between observations in a same cluster (Genotype ID). The verification of the model
assumptions is given by Figures S14 and S15, Supplementary Material.

Table 1. Estimated parameters in the linear mixed model for CPM of Lamp5 under the Box-Cox
transformation.

Covariates Estimate Standard error p-value

Class L4
Intercept 0.788 5.953 0.895
Age 0.450 0.182 0.013

Class L5 PT
Intercept 34.305 12.280 0.005
Age 0.210 0.107 0.049

Class L2/3 IT
Intercept 49.346 20.882 0.018
Age 0.090 0.083 0.279

Standard deviations

σc 6.786 – –
σ1 15.025 – –
σ2 11.241 – –
σ3 11.143 – –

Using the VUS estimator12, we then proceeded to compute VUS values for specific age values based
on the fitted model. Figure 6 displays the estimated VUS and corresponding 95% point-wise confidence
band with the age (in day) of mouse varying from 51 to 84 days. The estimated VUS ranging between
0.40 to 0.56 indicates a quite good diagnostic ability of Lamp5. However, the accuracy decreases when
the mouse gets older.

After estimating the age-specific VUS, we then apply our proposed methods to obtain the age-specific
ROC surface at 54 days (Figure 7) and to obtain the optimal pair of thresholds based on the fitted
model. Figure 8 presents the age-specific optimal pair of thresholds (t+1 , t

+
2 ) and the corresponding 95%

confidence regions, obtained by using three selection methods, GYI, CtP and MV. In order to obtain the
confidence regions, we applied the cluster bootstrap procedure as mentioned in Section 3.2, with 200
bootstrap replications.

As shown in Figure 8, the age-specific optimal pair of thresholds increase with age linearly. Two
selection methods, CtP and MV, yielded very similar values of age-specific optimal pair of thresholds
estimates and confidence regions. In contrast, the GYI method produced smaller values for the estimates,
and larger confidence regions.

We also tried to fit the linear mixed-effect model under the Box-Cox transformation (3.9) for the CPM
of Lamp5 where the covariates include the age (in days) and the sex of the mice. However, we could not
find any significant relationship between the transformed response and sex.
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Figure 6. Age-specific estimates of VUS and corresponding 95% point-wise confidence intervals.

Figure 7. Age-specific estimated ROC surface at 54 days.
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Figure 8. 95% confidence regions for the age-specific optimal thresholds for three values of age.

6 Discussion

In a three-class setting, the ROC surface represents a natural generalization of the ROC curve and is
commonly used to evaluate the ability of a diagnostic test to distinguish among three classes (or levels)
of a disease or, more generally, among three conditions to be classified.

In this paper, we have studied the problem of estimating covariate-specific ROC surfaces with clustered
data, and derived three alternative estimators for the optimal threshold values for the test. For these
new estimators, which find their rationale in three different approaches (GYI, CtP and MV), we have
shown consistency and asymptotic normality, both under the assumption of normality, and in a more
general context in which this assumption is (not heavily) violated. Asymptotic results can be used to
build adequate covariate-specific confidence regions.

Our simulation results agree with the theoretical ones, and show a substantial behavioural equivalence
for the three covariate-specific optimal thresholds estimators. In particular, confidence regions built using
pivots based on the proposed estimators show a coverage level close to the nominal one, at least in
medium to high sample sizes. From a practical point of view, the GYI approach has the advantage
of providing estimates (t+1,GYI, t

+
2,GYI) in explicit form. However, it requires some attention as it may

suffer from greater variability, particularly in certain regions (boundary regions) of the covariate space.
From a computational point of view, the estimates (t+1,GYI, t

+
2,GYI) can be used as starting points for

the procedures of numerical optimization that produce estimates according to the other two approaches
(CtP, MV). Generally speaking, the large bias or poor coverage that we observed in small samples
are essentially determined, in our opinion, by a lack of information contained in the samples. Just as
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an example, figures S20-S22, in Supplementary Material, show the improvement in terms of bias (for
covariate-specific ROC surface) and empirical coverage probability (of the joint confidence regions for
the true class fractions) in Setting 1 of our simulations, when we consider balanced classes, i.e. the disease
status is generated from a multinomial distribution, Mult(nk, (1/3, 1/3, 1/3)).

When approaching statistical evaluation of a diagnostic test or biomarker, one typically has an idea
about the possible association between the test and the disease status, so that elicitation of a monotone
ordering for the classes may not represent a major criticality. In case this knowledge is too vague, as
suggested by9, pairwise AUCs for adjacent classes might also be used to reveal the correct order, which
in turn can be used for the three-class analysis. However, in our paper, as well as in other papers dealing
with covariate-specific ROC analysis, methods are designed under the assumption that the monotone
ordering hypothesis holds for every value of the covariates. This assumption may not be satisfied in
practice and its check might add, from a practical point of view, some complexity to the analysis. A
rather pragmatic solution is based on the selection of the values for the covariates that are considered most
interesting in terms of the diagnostic task, followed by a check on the corresponding covariate-specific
VUS12 estimated value, which is expected to be greater than 1/6. This exploratory analysis should be
seen as a starting point for further investigation into the reasons for unusual results or apparent reversal
of ordering.

Our proposal found a favourable response in the application. We have shown that a single gene, Lamp5,
is able to well discriminate L2/3 IT, L4, and L5 PT glutamatergic neurons. However, more than one
gene may be needed for more complex problems. For instance, Lamp5 is also expressed in a subset of
GABAergic neurons; the joint distribution of Lamp5 and a glutamatergic biomarker (such as the Slc17a7
gene) may allow us to discriminate between Lamp5 GABAergic neurons and L2/3 IT, L4, and L5 PT
neurons. Considering that RNA sequencing yields expression data for thousands of genes at a time, a
multivariate, and possibly high-dimensional, version of the proposed model is of interest for molecular
biology classification and will be considered in future research.

To conclude, we respond to the solicitation of a Reviewer who mentions a well-known intrinsic
problem of linear mixed models and REML estimators, related to estimation of the variance of the
random components. Indeed, estimation may suffer from poor accuracy, with estimates that can also
result to be very close to zero. In our experience, also corroborated by simulation experiments not shown
in the paper, very small values of the estimate of σ2

c (or other components of variance) seem to have a
very limited impact on the inferential procedures proposed in our work. This evidence is illustrated in
some graphs (figures S17-S19) presented in Supplementary Material.

Prepared using sagej.cls



To et al. 23

Acknowledgements

The authors acknowledge the Associated Editor and two anonymous Reviewers whose valuable suggestions

contributed to improve presentation of the contents.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of

this article: This research was supported by the Ministero dell’Istruzione, dell’Università e della Ricerca-Italy (grant
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Appendix

Consistency and asymptotic normality of (t̂+1,∗, t̂
+
2,∗)

For a given vector of covariate values z, let H(t1, t2,γ; z) be the objective functions, i.e., J3(z),
D3(z) or V3(z). Let f(t1, t2,γ; z) =

∂H
∂(t1,t2)⊤

. The true and unknown optimal pair of thresholds,
(t+1,0, t

+
2,0) say, maximizes or minimizes the function H(t1, t2,γ0; z), or equivalently solves the equation
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f(t1, t2,γ0; z) = 0, when γ = γ0 is the true parameter value. Then, we have f(t+1,0, t
+
2,0,γ0; z) = 0 and

∂f(t1, t2,γ0; z)

∂(t1, t2)⊤

∣∣∣∣∣
(t1,t2)=(t+1,0,t

+
2,0)

has non-zero determinant, or equivalently, is invertible. Note that, the function f is continuously
differentiable. By the implicit function theorem, there exists a neighborhood of γ0 where a
unique continuously differentiable function m(γ) is defined, such that m(γ0) = (t+1,0, t

+
2,0) and

f(m(γ),γ; z) = 0 for all γ in the neighborhood of γ0. Since the REML estimator γ̂ is consistent,
i.e., γ̂

p→ γ0, we have that (t̂+1 , t̂
+
2 ) = m(γ̂)

p→ (t+1,0, t
+
2,0), by using the continuous mapping theorem.

Applying the Delta method, asymptotic normality of (t̂+1 , t̂
+
2 ) follows, with asymptotic covariance matrix

given in (3.8).

Observe that also the covariate-specific estimator of the optimal value for the criterion function,
Ĥ+(z) = H(t̂+1 , t̂

+
2 , γ̂; z), is consistent and asymptotically normal, with covariance matrix

Var
(
Ĥ+
)

=

(
∂H

∂γ⊤

)
Λ

(
∂H

∂γ⊤

)⊤

,

where

∂H

∂γ⊤ =
∂H

∂I

∂I

∂γ⊤ +
∂H

∂t+1

∂t+1
∂γ⊤ +

∂H

∂t+2

∂t+2
∂γ⊤ ,

and I denotes the identity function.

How to get λ̂ in the Box-Cox transformation approach

Consider the scaled Box-Cox transformation14 with W
(λ)
i = Y

(λ)
i /Ỹ λ−1, where Ỹ is the geometric

mean of all diagnostic test results, and Y
(λ)
i is the Box-Cox transformed response. The linear mixed-

effect model with new transformed responses becomes

W
(λ)
1 = α⋆k1

+ z⊤1 β⋆1 + ε⋆1,

W
(λ)
2 = α⋆k2

+ z⊤1 β⋆2 + ε⋆2, (6.1)

W
(λ)
3 = α⋆k3

+ z⊤1 β⋆3 + ε⋆3,
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with restricted log-likelihood

ℓ⋆R(γ⋆;λ) = −1

2

c∑
k=1

(
W

(λ)
k − Zkβ̂⋆λ(θ⋆)

)⊤
Σ−1

⋆k

(
W

(λ)
k − Zkβ̂⋆λ(θ⋆)

)
− 1

2

c∑
k=1

log |Σ⋆k|

− 1

2
log

∣∣∣∣∣
c∑

k=1

Z⊤
k Σ

−1
⋆k Zk

∣∣∣∣∣ ,
where W

(λ)
k is the nk-vector of the scaled Box-Cox transformed responses within the cluster k-th,

Σ⋆k = σ2
⋆cVkV

⊤
k + diag{σ2

⋆1, . . . , σ
2
⋆1;σ

2
⋆2, . . . , σ

2
⋆2;σ

2
⋆3, . . . , σ

2
⋆3}nk

with Vk as 1nk
, and

β̂⋆λ(θ⋆) ≡ β̂⋆(θ⋆, λ) =

(
c∑

k=1

Z⊤
k Σ

−1
⋆k Zk

)−1 c∑
k=1

Z⊤
k Σ

−1
⋆k W

(λ)
k .

Then, we find λ̂ based on a grid search, i.e., as

λ̂ = argmax
λ∈[−2,2]

ℓ⋆R(γ̂⋆λ;λ),

where γ̂⋆λ maximizes ℓ⋆R(γ⋆;λ), for a fixed value of λ. The value λ̂ obtained from the scaled model (6.1)
is the same value that one would get from the original transformation model (3.9) (see14 and22).
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