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Content-Based Textual File Type Detection at Scale

FRANCESCA DEL BONIFRO, University of Bologna, Italy
MAURIZIO GABBRIELLI, University of Bologna, Italy
STEFANO ZACCHIROLI, Université de Paris and Inria, France

Programming language detection is a common need in the analysis of large source code bases. It is supported by a number of
existing tools that rely on several features, and most notably file extensions, to determine file types. We consider the problem
of accurately detecting the type of files commonly found in software code bases, based solely on textual file content. Doing so
is helpful to classify source code that lack file extensions (e.g., code snippets posted on the Web or executable scripts), to avoid
misclassifying source code that has been recorded with wrong or uncommon file extensions, and also shed some light on the
intrinsic recognizability of source code files. We propose a simple model that (a) use a language-agnostic word tokenizer
for textual files, (b) group tokens in 1-/2-grams, (c) build feature vectors based on N-gram frequencies, and (d) use a simple
fully connected neural network as classifier. As training set we use textual files extracted from GitHub repositories with at
least 1000 stars, using existing file extensions as ground truth. Despite its simplicity the proposed model reaches ≈ 85% in our
experiments for a relatively high number of recognized classes (more than 130 file types).

ACM Reference Format:
Francesca Del Bonifro, Maurizio Gabbrielli, and Stefano Zacchiroli. 2020. Content-Based Textual File Type Detection at Scale.
In Proceedings of International Conference on Machine Learning and Computing 2021 (ICMLC 2021). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
“Which programming language is it written in?” is among the first questions a developer would ask about any
piece of software. In software engineering research, “programming language” is a common variable to correlate
against—researchers have measured language productivity [22, 23, 29], trends [26, 35], usability [24], and code
quality [3, 19, 27], to name just a few. Developers would know by heart the language their code is written in,
and will also easily identify the main programming language used in any given code base. But when it comes to
large code bases, which often mix and match multiple programming languages; or when it comes to large-scale
analyses [8, 20], encompassing entire collaborative development forges if not the full body of publicly available
source code [1], manual detection is not an option. In those cases researchers tend to rely on either off-the-shelf
language detection tools (e.g., GitHub’s Linguist [14]), or on metadata exposed by code hosting platforms [16],
which were in turn extracted using the same tools.

File extensions are highly predictive of programming languages and, more generally, file types. As such detection
tools tend to heavily rely on them to determine file types [12]. While very effective in the general case, doing so
is problematic when file extensions are either not available (e.g., code snippets posted on the Web or embedded
in document, executable scripts, etc.) or wrong (either on purpose or by mistake).

In this paper we study the problem of detecting the file type of textual files commonly found in software source
code. Specifically, we will answer the following research question:
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RQ: is it possible to accurately detect the extension of textual files commonly found in software
version control systems repositories, based solely on file contents?
We will interpret “solely” in a strict sense, depriving ourselves of the use of any a priori heuristic on the

content of the files that will be encountered—i.e., our detection approach will not know a priori the keywords
in the grammar of any given programming language, nor how shebang (#!/usr/bin/perl) or editor mode
lines (%% mode: latex) are usually written in files. This is important for several reasons. First, programming
languages (which are the most significant part of textual file types encountered in code bases) evolve and diverge
syntactically significantly over time [4, 11, 30, 31, 38]. As it interesting [32] and is now becoming increasingly
more possible [7] to analyze historically relevant software source code dating back several decades, heuristics
built today will fail on old code and heuristics spanning several generations of file formats will be fragile and
hard to maintain in the long run. Second, extensionless file type detection shed some light on the intrinsic
recognizability of textual file types, and programming languages in particular, which is an interesting topic.
As a consequence of the above we refuse to use as ground truth about file types the notion of programming

language—which, as we have seen, is actually not well-defined in datasets spanning several decades, or that
might contain syntactically invalid files, files that mixes multiple programming languages, etc; also, we did not
want to rely on any pre-existing language detection tool to not negatively compound accuracy. Instead, we use
file extensions encountered in real code bases as file type classes and attempt to detect them based on file content
only. To stress this important point: file extensions will only be used as labels in training sets and to measure
accuracy, but not as file features in the detection phase (as that would replicate the weakness of current tools that
we want to address).

We propose a simple model for the task at hand: (a) use a language-agnostic tokenizer for textual files, (b)
group tokens in n-grams of length 1 to 2, (c) build feature vectors based on n-gram frequencies, and (d) use
a simple fully connected neural network as the actual classifier. As initial training set we use ≈ 16M textual
files extracted from popular GitHub repositories (as determined by “stars” [6]), using associated file extensions
as labels; we further cleanup the dataset by filtering out binary files and downsampling classes so that the
number of samples per class are analogous. In spite of its simplicity, the proposed classification approach reach an
aggregate precision of 91% on a total of 133 file type classes, outperforming state-of-the-art tools and approaches
in precision, amount of considered classes, or both. Thanks to its simplicity, the model is also fast to (re)train
and deploy, making the proposed approach more maintainable in the long run. The remaining of the paper is
organized as follows. In Section 2 we present the experimental dataset. The proposed classification model is
introduced in Section 3 and experimentally validated in Section 4. Threats to validity are discussed in Section 5.
Comparisons with related work, both qualitative and quantitative, are given in Section 6. We discuss future work
and wrap up the paper in Section 7. A complete replication package for this paper is available from Zenodo at
https://zenodo.org/record/3813163 (DOI: 10.5281/zenodo.3813163).

2 DATASET
As experimental dataset we want files coming from public version control system. We retrieved a snapshot
of GitHub dated 2017-01-27 and made available by the Software Heritage [1, 7] project,1 which contains all
source code files extracted from all commits of GitHub projects ranked with 1000 or more “stars” [6]. It is a
significant dataset, weighting 141GB after compression and file-level deduplication, containing ≈15M unique
files. Each included file is identified by a SHA1 cryptographic checksum; a mapping between (unique) files and
the corresponding file names as encountered on GitHub is provided. Due to deduplication it might happen that
the same SHA1 is associated to different filenames, associating it to different extensions. The number of different
extensions in the mapping is ≈546 K. However looking at extension frequencies in the dataset it is immediately
1https://annex.softwareheritage.org/public/dataset/content-samples/2017-01-27-github-1000+stars/
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Fig. 1. Extension distribution in our corpus.

Fig. 2. Word cloud for token fre-
quency distribution.

clear that many of them are either typos or uncommon extension assignments. We set a threshold of 10−4 for
extension frequencies in order to filter out non statistically significant extensions, thus obtaining 220 extensions,
still remaining in the ≈15M ballpark for number of files, confirming the validity of the selection criteria.
A second filtering step consisted in excluding binary files, as our main purpose for this paper is classifying

textual files. As criterion for this we have considered files as a sequence of raw bytes (as no explicit encoding
information is stored by Git), put a threshold of 20% printable characters, and excluded all files (and associated
extensions) with more non printable characters than that. After this filtering step we obtained 133 different
extensions and ≈13M files. A very small percentage of this set (less than 0.4%) consists of files associated to more
than one extension. Rather than dealing with multi-label classification, and given its low occurrence, we have
excluded multi-extension files from the dataset. We have obtained this way a multi-class, single-label classification
problem with a dataset of 12 903 304 files and 133 classes.

Most of the extensions in the polished dataset are commonly used as extensions for programming or markup
languages (the extensions with the highest frequencies were py, rb, html, po, php, h, java, js, c), but the dataset
also contains extensions typically associated to textual files of other nature. Moreover, even though we ignored
rare and weird extensions, the frequency range remains wide, with some classes containing many examples while
others just a few, as shown in Figure 1). This represents a serious training issue for most the supervised learning
approaches, since models obtained with unbalanced datasets tend to overfit and do not generalize well [5]. In the
following we describe how we solved address this problem and built a more balanced and fair train set.

2.1 Balancing the dataset
The dataset as obtained thus far is not balanced, since the most frequent extension (c) has a frequency of 10−1
while the least frequent one (tcl) has a frequency of 10−4. Several techniques can be used for dataset balancing,

3
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Fig. 3. File type classification model.

and they are usually divided in two major classes: oversampling and undersampling [21]. In the first case, new
instances for the minority classes are generated until they reach a population similar to those of majority classes.
The new instances are either copies of the existing examples or synthesized by using statistical properties
computed on the minority classes. In our case, since the unbalancing is very significant, we could be forced to
use the same examples (or the same information extracted from few examples) too many times, increasing the
risk of overfitting. We did not consider the option of synthesizing artificial samples to avoid introducing biases,
given understanding how intrinsically recognizable are real textual files found in VCS is part of our goal. Rather,
we have applied an undersampling technique consisting in (sub)sampling the various classes randomly to obtain
the same number of elements for each class. Of course, with this approach we are limited by the number of
instances of the less populated class. As a result we ended up with a train set containing 127 300 total examples
and in which each class has the same number of instances (≈950). In addition to the training set we also kept, as
it customary, a test set and a validation set, these sets preserve the original dataset classes distribution in order to
represent a real situation.

In order to check model resistance to VCS evolution after a few years we have also used a second, more recent,
test set, consisting of new files which do not appear in the first dataset, corresponding to the top 1000 GitHub
repositories as archived by Software Heritage on 2019-10-082. The second dataset set was prepared with the same
methodology used for the first one, and contained 121 of the previously treated 133 extensions.

3 THE MODEL
The proposed classification model is developed in several steps. first the content of the input file is divided
into tokens which are then used to define a reference vocabulary V. Then, as common practice in many NLP
applications, we also construct of a vocabulary 𝑉2 containing 2-grams: These are sub-sequences of 2 tokens
extracted from the files, once these are “tokenized”, that is represented as sequences of tokens according to the
vocabulary V. At this stage we can extract the actual feature vectors from the files by considering the frequency
of words and of 2-grams in the file text3. Finally the classifier which makes predictions on the basis of the feature
vectors is defined, by using a simple neural network whose structure is depicted in Figure 3); these steps are
detailed in the remainder of this section.

3.1 Tokenization
Since our files are available as sequences of bytes, to treat them as texts we first need to decode them using a
suitable character encoding. We used the ASCII encoding and considered only the characters which are the most
common in source code. All non-ASCII characters are mapped to an unique, special value. After this conversion
we can consider our files as simple text files, i.e., sequences of characters, on top of which we can define a notion
of token. Differently from what is usually done in Natural Language Processing (NLP), case sensitivity is relevant

2https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-08-github-top1k/
3Not all possible words and 2-grams are considered, of course, but only those appearing in the vocabularies V and𝑉2, respectively.
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in our setting, hence preserve character case-ness. Also, while in NLP punctuation symbols are discarded, they
are crucial in source code, so we consider them as tokens.4 Hence the following:

Definition 3.1. Given a sequence of characters 𝑆 , a token (or equivalently a word) in 𝑆 is defined as follows:
• Any character representing a punctuation symbol is a token
• Any sub-sequence of 𝑆 which is delimited by (characters representing) punctuation symbols and/or white
spaces, and which does not contain punctuation symbols and/or white spaces is a token.

Thus, for example, the string ‘a=b’ is interpreted as a sequence of the three tokens ‘a’, ‘=’ and ‘b’. For model
manageability we cannot consider all the possible words that occur in any file. A common technique for addressing
this is looking at the frequencies of the tokens that occur in the trainset, and assemble a vocabulary consisting of
all the tokens whose frequency is higher than a given threshold. However, due to heterogeneity of our dataset,
this approach could cause the exclusion of tokens that are quite common only for specific classes, thus causing
poor performance.5 Hence we computed the frequencies for each class and included in the vocabulary the tokens
with frequency higher than 10−2 for each class. To mitigate overfitting risks we have defined the vocabulary V
only by using a part of the trainset (still a balanced set), which was then excluded from the set used to train the
network [33]. Many files in code bases include at their beginning and/or end explicit information about the file
content, in the form of shebang lines (e.g., #!/usr/bin/perl) or editor mode lines ((%% mode: latex)). This
information can be really helpful for the classification task, but it can also compromise the performance the
model, since this information could gain too much relevance with respect to other features, inducing poor results
on files which lack it. For this reason, when collecting tokens to build the vocabulary and during training we
excluded a portion of tokens from both the beginning and end of files.
The resulting vocabulary V contains 465 tokens, which are represented with their own identity. The special

token “UNK” represents any unknown, out-of-vocabulary (OOV) token. Figure 2 contains a word cloud (where
word size is proportional to the frequency of the token in the dataset) representation of the tokens in the final
vocabulary except for punctuation symbols.

3.2 n-grams
Information about the relative position of tokens in a text can be richer than information about isolated tokens.
There exist various algorithms and techniques that can capture different kind (e.g., short or long) of relation among
tokens. Some of them like, CNN and LSTM [37, 39], can capture meaningful relations, automatically but they are
also computational quite expensive. Simpler approaches are based on n-grams, i.e., sub-sequences of 𝑛 tokens
extracted from a sequence of tokens defined according to a given vocabulary V. Taking into account n-grams,
instead of individual tokens, it is possible to identify co-occurrences of tokens, extracting more information about
the actual text structure. By increasing the n-grams length (the value 𝑛) it becomes possible to capture longer
and more complex relations among tokens, at the cost of increased computational costs and increased overfitting
risk—since longer n-grams tend to become tightly bound to the text they are derived from. For this work we have
used bigrams, i.e., 𝑛 = 2, which turned out to be a good choice in the performance/overfitting spectrum. We have
also experimented models with trigrams which have worse performance.

To define the bigram vocabulary we relied on the same approach used for building the token vocabulary V. We
define 𝑉2 as the set of all bigrams whose frequency is higher than 10−3) in each class, by considering the same
dataset subset used to define V. Bigrams that do not belong to 𝑉2 are mapped to the unknown bigram ‘𝑈𝑁𝐾2’.
For each input file 𝐹 one can now build the feature vector 𝑣𝐹 , which will be the representation of 𝐹 in our model.
To build this vector we first decode 𝐹 from bytes to characters with the ASCII encoding and then tokenize the
4With the exception if _ which is considered an alphanumeric character, as it is often part of identifiers in source code.
5This was experimentally verified on our corpus
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result using vocabulary V. We then compute, for each token in V, the frequency of that token among 𝐹 ’s tokens.
We do the same for bigrams: for each bigram in 𝑉2, its frequency among 𝐹 ’s tokens is determined. Finally, we
enumerate the elements of the set 𝐷 = 𝑉 ∪𝑉2 ∪ {‘𝑈𝑁𝐾 ′} ∪ {‘𝑈𝑁𝐾 ′

2} determined a fixed order for them. The
feature vector 𝑣𝐹 is built by assigning the computed frequency for of 𝑖-th element of the ordered version of 𝐷 to
the 𝑖-th component of the vector itself. 𝑣𝐹 will represent the file 𝐹 in the following. Its cardinality is |𝐷 | = 5063.
This process is applied to each file in the dataset; the resulting vectors will be used as inputs for the classification
algorithm. The same has been performed taking into account trigrams too but the best results have been achieved
without them.

3.3 Classifier
As classifier we use a Deep Fully Connected Layers Neural Network which has 5063 input units, 133 output units
(which correspond to the possible extensions that we consider) and 3 hidden layers with 1000, 800, and 700 units,
respectively, with a dropout rate of 0.5 for each layer. The model structure is shown in Figure 3.

The classification problem is multi-class, single label. Hence we use in the output layer the softmax activation
function 𝜎 ( ®𝑥) 𝑗 = 𝑒

𝑥𝑗∑132
𝑘=0 𝑒

𝑥𝑘
which normalizes the values obtained from the previous layers with respect to the

available classes. Output values represent the probabilities that a given file belongs to each class. As we have
multiple classes, we use the categorical cross entropy loss function. For each instance passed to the model, i.e. the
𝑖-th one, the loss function takes the form 𝐿 (𝑦𝑖 , 𝑦𝑖 ) = −∑132

𝑘=0 𝑦𝑖;𝑘𝑙𝑛
(
𝑦𝑖;𝑘

)
where 𝑦𝑖 represents the actual ground

truth label (in the form of a one-hot vector) and 𝑦𝑖 represents the predicted probability output vector. In the
training phase we use the Adam optimizer [17] with learning rate 𝑙𝑟 = 0.0001, which converge to good results
(see Section 4) after 8 epochs of training. During training the model parameters were progressively modified in
order to improve the similarity of the predicted 𝑦𝑖 vectors to the correspondent 𝑦𝑖 ground truth vectors.
Given the relatively high number of classes in our problem, erroneous classification is likely to happen. To

investigate it we keep track of classification errors (on the validation set) in two different ways. We will use the
following assumptions and notations: 𝐶 is the set of classes, 𝑉𝑠𝑒𝑡 denotes our validation set, while for 𝑥 ∈ 𝑉𝑠𝑒𝑡 ,
𝐺𝑟𝑜𝑢𝑛𝑑𝑇 (𝑥) = 𝑖 iff 𝑖 is the ground truth label of 𝑥 and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) = 𝑖 iff 𝑖 is the label assigned by the classifier to
𝑥 . Moreover, when we perform a prediction for an input 𝑥 ∈ 𝑉𝑠𝑒𝑡 we obtain a probability value 𝑝𝑥 (𝑖) for each
possible class 𝑖 ∈ 𝐶 . The predicted class is the one which has the highest probability value, that is, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) =𝑚
iff 𝑝𝑥 (𝑚) ≥ 𝑝𝑥 ( 𝑗) for each 𝑗 ≠ 𝑚, 𝑗 ∈ 𝐶 . First, we measure how many of the examples of a given class are
classified in a wrong way. This is done by introducing, for each pair of classes 𝑖 and 𝑗 , a quantity 𝑇𝑖 𝑗 indicating
how many times a file whose label (i.e., ground truth) is 𝑖 is classified in the class 𝑗 . More precisely we define
𝑇𝑖 𝑗 =

∑
𝑥∈𝑉𝑠𝑒𝑡 1 |𝐺𝑟𝑜𝑢𝑛𝑑𝑇 (𝑥)=𝑖 and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥)=𝑗∑

𝑥∈𝑉𝑠𝑒𝑡 1 |𝐺𝑟𝑜𝑢𝑛𝑑𝑇 (𝑥)=𝑖 .
A second way to register classification errors consists in considering also the second, third, fourth, and fifth

best choices for classifying an example and see whether some of them significantly co-occur with the predicted
class. More precisely, given 𝑥 ∈ 𝑉𝑠𝑒𝑡 , assume that 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) =𝑚 and that 𝑝𝑟𝑥 (𝑚) ≥ 𝑝𝑥 (ℎ) ≥ 𝑝𝑥 (𝑘) ≥ 𝑝𝑥 (𝑙) ≥
𝑝𝑥 (𝑟 ) ≥ 𝑝𝑥 (𝑖), for ℎ, 𝑘, 𝑙, 𝑟 ∈ 𝐶 and for each other 𝑖 ∈ 𝐶 . In this case we say that 𝑚,ℎ, 𝑘, 𝑙, 𝑟 are the top five
classifications for 𝑥 , written 𝑇𝑜𝑝 (𝑥) = {𝑚,ℎ, 𝑘, 𝑙, 𝑟 }, for short. Then we normalise these five values by defining
𝑝𝑛𝑥 (𝑚) = 𝑝𝑟𝑥 (𝑚)

𝑝𝑥 (𝑚)+𝑝𝑥 (ℎ)+𝑝𝑥 (𝑘)+𝑝𝑥 (𝑙)+𝑝𝑥 (𝑟 ) and analogously for the other four values.
Then, for each pair of classes 𝑖 and 𝑗 , we define 𝑆 ′𝑖 𝑗 =

∑
𝑥 ∈𝑉𝑠𝑒𝑡 𝑝𝑛𝑥 ( 𝑗) | 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) = 𝑖 and 𝑗 ∈ 𝑇𝑜𝑝 (𝑥) and we

normalize this value by considering by the total number of times in which the i-th class has been predicted, as
follows: 𝑆𝑖 𝑗 =

𝑆′𝑖 𝑗∑
𝑥∈𝑉𝑠𝑒𝑡 1 |𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥)=𝑖 .

Given these quantities 𝑇𝑖 𝑗 and 𝑆𝑖 𝑗 we set two thresholds for their values, 𝜏𝑇 and 𝜏𝑆 respectively. Given a pair of
classes 𝑖 and 𝑗 , if 𝑇𝑖 𝑗 > 𝜏𝑇 or 𝑆𝑖 𝑗 > 𝜏𝑆 we consider the classes 𝑖 and 𝑗 somehow related in the predictions and we
say that they belong to the same “confusion group”. By setting the thresholds 𝜏𝑇 = 0.05 and 𝜏𝑆 = 0.02 we obtain
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Table 1. Relevant extension confusion groups. Note how some groups contain labels that commonly refer to the same or
similar file types, justifying the origin of the ambiguity.

Group ID Extensions Group ID Extensions
0 .bash, .sh, .ps1, .after, .jet, .kt, .template 1 .markdown, .md
2 .cmake, .cmd, .yaml , .yml , .rst, .txt, .baseline, .bat 3 .dts, .dtsi
4 .ctp, .php 5 .ml, .mli
6 .csproj, .ilproj 7 .jl, .j
8 .rb, .cr, .exs 9 .h, .ino, .hpp
10 .m4, .ac 11 .cpp, .cc
12 .clj, .cljs 13 .swift, .sil, .gyb
14 .tsx, .jsx, .js, .ts, .htm, .html 15 .cjsx, .coffee
16 .css, .scss 17 .after , .kt

the confusion groups shown in Table 1. The labels which do not appear in the table are those that do not pass the
thresholds, meaning that the classifier do not incur into relevant ambiguity for them.

4 RESULTS
The architecture underlying the proposed model is quite simple in comparison to other machine learning
approaches used to treat text. Contrarily to complete automatic feature learning algorithms, such as those used in
Convolutional, Recursive, or Attention Neural Networks, computations in our model are faster, both for training
and prediction. In particular, the learning task can be completed in a relatively short time: it took around 10 hours
of training for 8 epochs to train the parameters of the model and to reach ≈ 85% of accuracy on the validation
and test sets. Predictions are made transforming the input feature vectors by means of simple operations such
as vector multiplications, sums, and activation functions applications based on the parameters learned during
the training phase. The test set consists of ≈ 2𝑀 elements that we extracted from the original dataset after the
pre-processing described in Section 2 except for the balancing step as this could bring to unfair evaluations and
the resulting set would not represent the real world statistical distribution of classes, excluding of course the
elements that were used in the train and validation sets. Various performance measures are used here and they
are all based on the confusion matrix which is computed on the test set and whose generic element 𝐶𝑖 𝑗 contains
the number of files of class (extension) 𝑖 which are classified as 𝑗 . The average accuracy value obtained on all the
classes by the model is 85%. We report in Table 2 the values for precision 𝑃𝑖 = 𝐶𝑖𝑖∑120

𝑗=0 𝐶 𝑗𝑖
, recall 𝑅𝑖 = 𝐶𝑖𝑖∑120

𝑗=0 𝐶𝑖 𝑗
and

𝐹1-score 𝐹𝑖 = 2𝑅𝑖𝑃𝑖
𝑅𝑖+𝑃𝑖 for each of the considered classes. The extensions are shown in descending order of frequency

within the original test set.

Table 2. Performance measures for the encoder architecture on the testset (2019)

Ext P R F Ext P R F Ext P R F
.js 0.93 0.69 0.79 .vb 0.95 0.99 0.97 .gyp 0.32 1.0 0.48
.c 0.96 0.94 0.95 .asciidoc 0.64 0.95 0.76 .bat 0.42 0.72 0.53
.html 0.98 0.87 0.92 .gradle 0.75 0.95 0.84 .erl 0.6 1.0 0.75
.java 0.99 0.97 0.98 .cr 0.34 0.92 0.5 .gemspec 0.78 1.0 0.88
.h 0.93 0.71 0.81 .lua 0.7 0.95 0.81 .fish 0.58 0.95 0.72
.py 0.99 0.93 0.96 .ex 0.83 0.96 0.89 .i 0.09 0.89 0.16
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Table 2. Performance measures for the encoder architecture on the testset (2019)

Ext P R F Ext P R F Ext P R F
.go 0.99 0.96 0.97 .ilproj 0.79 0.95 0.86 .texi 0.93 1.0 0.96
.md 0.97 0.72 0.83 .dtsi 0.64 0.88 0.74 .template 0.09 0.48 0.15
.rb 0.98 0.85 0.91 .props 0.79 0.97 0.87 .pl 0.62 0.95 0.75
.json 0.95 0.95 0.95 .vcxproj 0.97 0.99 0.98 .ac 0.68 0.99 0.81
.cpp 0.74 0.59 0.66 .clj 0.96 0.99 0.97 .groovy 0.23 0.91 0.37
.ts 0.65 0.82 0.73 .markdown 0.13 0.73 0.22 .mak 0.86 0.96 0.91
.php 0.96 0.89 0.92 .symbols 0.88 0.99 0.93 .vbproj 0.54 0.98 0.7
.cs 0.98 0.96 0.97 .hs 0.78 0.99 0.87 .pkgproj 0.85 0.98 0.91
.rs 0.97 0.97 0.97 .dts 0.75 0.69 0.72 .sql 0.16 0.93 0.27
.cc 0.58 0.77 0.66 .el 0.95 0.99 0.97 .j 0.22 0.98 0.36
.xml 0.96 0.93 0.94 .proto 0.53 0.99 0.69 .tpl 0.12 0.77 0.21
.glif 1.0 1.0 1.0 .toml 0.6 0.98 0.74 .rake 0.1 0.95 0.18
.txt 0.82 0.52 0.64 .pbxproj 0.98 1.0 0.99 .textile 0.2 0.99 0.33
.kt 0.96 0.72 0.82 .exs 0.56 0.95 0.7 .webidl 0.59 0.99 0.74
.scala 0.96 0.95 0.95 .mk 0.79 0.91 0.85 .bash 0.22 0.77 0.34
.swift 0.92 0.85 0.88 .sil 0.71 0.97 0.82 .cjsx 0.35 0.97 0.51
.yml 0.77 0.81 0.79 .after 0.19 0.74 0.3 .pb 0.39 1.0 0.56
.css 0.88 0.9 0.89 .erb 0.19 0.77 0.3 .builds 0.93 1.0 0.96
.rst 0.59 0.89 0.71 .jade 0.27 0.9 0.42 .vcproj 0.92 1.0 0.96
.sh 0.84 0.83 0.83 .gyb 0.33 0.97 0.49 .xcscheme 1.0 1.0 1.0
.csproj 0.96 0.9 0.93 .log 0.57 0.91 0.7 .ngdoc 0.1 0.96 0.18
.coffee 0.82 0.92 0.87 .ipynb 0.43 0.98 0.6 .perl 0.66 0.98 0.79
.scss 0.85 0.93 0.89 .cmake 0.29 0.95 0.44 .eslintrc 0.13 0.98 0.23
.phpt 0.68 0.94 0.79 .ps1 0.78 0.96 0.86 .sbt 0.61 0.97 0.75
.jsx 0.26 0.79 0.39 .pyx 0.43 0.95 0.59 .handlebars 0.1 0.97 0.18
.hpp 0.2 0.83 0.32 .tmpl 0.24 0.67 0.35 .iml 0.62 1.0 0.77
.xht 0.79 0.97 0.87 .m4 0.74 0.95 0.83 .rml 0.79 1.0 0.88
.tsx 0.34 0.81 0.48 .check 0.24 0.81 0.37 .cmd 0.28 0.81 0.42
.jl 0.9 0.79 0.84 .il 0.77 1.0 0.87 .zsh 0.2 0.94 0.33
.htm 0.41 0.93 0.57 .am 0.54 0.96 0.69 .tcl 0.65 0.98 0.78
.dart 0.74 0.98 0.84 .adoc 0.58 0.95 0.72 .xib 0.55 1.0 0.71
.ml 0.98 0.95 0.96 .mli 0.68 1.0 0.81 .jet 0.05 0.91 0.09
.m 0.72 0.95 0.82 .sln 0.99 1.0 0.99 .dsp 0.94 1.0 0.97
.haml 0.92 0.98 0.95 .sass 0.69 0.96 0.8 micro avg. 0.85 0.85 0.85
.yaml 0.46 0.65 0.54 .w32 0.31 0.99 0.47 macro avg. 0.64 0.91 0.71

We obtained good overall results and we report at the end of the table also micro- and macro-average. The
former is useful in order to take into account the number of instances per class: classes with the higher number of
examples will have a heavier influence in the average value than the less popular ones the. In fact, micro-average
is defined as 𝑃𝑚 =

∑
𝑖 𝑇𝑃𝑖∑

𝑖 (𝑇𝑃𝑖+𝐹𝑃𝑖 ) where 𝑇𝑃𝑖 are the true positives and 𝐹𝑃𝑖 are the false positives . Macro-average is
defined without taking into account the number of instances per class, i.e., every class will equally influence
the average. It appears that the main problem faced by the model is the presence of very similar classes that
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could actually be treated as the same class, for example both .yaml and .yml are used for files written in YAML,
which can introduce errors in the predictions. Also, there are classes whose text contents can be very general and
therefore could not be easily recognized, such as files with the .txt extension.

5 THREATS TO VALIDITY
External validity. Even if the proposed classifier has been designed and tested on a fairly large set of files, the used
dataset falls short of the entire corpus of source code distributed via publicly accessible version control systems.
Datasets that approximate that corpus [1, 7, 20] do exist and could potentially be more challenging to tackle
because: (1) they will include more extension/classes that did not occur within this paper datasets, (2) they can
include noisier data as repository popularity is likely a proxy of project quality in terms of coding practices, and
(3) they can include files from more varied chronological epochs—also programming languages always evolve
and new ones emerge increasing the variety of classes to be considered. Nevertheless our design choices were
oriented to address this kind of problems, as we discussed before, and we aim to use the proposed approach on
these larger datasets as future work.
Internal validity. Various (non domain-specific) heuristics have been applied. First, filtering of non-textual

files has been performed based on the percentage of non-printable characters within a random sample of the
datasets; different samples or thresholds might affect stated results. On the same front, the choice of using the
ASCII encoding to detect printable characters due to the lack of encoding information. An alternative approach
would have been guessing the used encoding (using libraries such as chardet); it is not clear which biases either
approach would introduce, if any.

The vocabularies V and𝑉2 are based on tokens/bigrams frequency distributions defined separately on different
classes. This can introduce model biases and could be mitigated by using separate datasets to define the vocabular-
ies and to train the neural network. Hyper parameters tuning has been performed as an iterative process, certainly
not exhaustive. In spite of the achieved good results it is possible that different choices for hyper parameters
and/or neural network topology would score even better. At the end of previous section we mentioned some
possible threats due to extensions classification, in particular some of the extension classes that we treated as
different might actually refer to the same abstract file type, which can cause confusion for the model and it makes
the training task harder as a class share its instances with other classes. We maintain it is difficult to mitigate
this last threat without relying on domain-specific knowledge that we wanted to avoid using, at least as a first
approximation in the present study.

6 RELATED WORK
Big code. Information retrieval [10] have been applied extensively to all sorts of software development artifacts,

including source code. The most active and recent trend in the field goes under the label of “big code” and consists
in the application of machine learning techniques to software development artifacts. In the remainder of this
section we focus on related work in the area of file type and programming language detection. For big code work
outsite that field of application we refer to the work of Allamanis et al. [2] that surveys an impressive number of
applications and approaches in the field.
Language detection. Several approaches have explored for for programming language detection. van Dam

and Zaytsev [36] tested various programming language classifiers on source files extracted from GitHub for
19 language classes and libelling them using Linguist as a source of truth. They obtained a value of 0.97 for
𝐹1-score, precision, and recall. Klein et al. [18] performed language recognition among 25 language classes using
source code from GitHub and labeling files using both file extensions and the GitHub language detection tool
(Linguist discussed below). Only files for which file extension and Linguist-detected language match have been
included in their trainset. Then, a feature vector is extracted from source code using features such has parentheses
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used, comments, keywords, etc., and used for training. The obtained accuracy is 50%. Ugurel et al. [34] proposed
various mechanisms for the classification of source code, programming language, and topics, based on support
vector machines (SVM). On the language front they were able to discriminate among 10 different programming
languages with 89% accuracy. Their data were retrieved from various source code archives available at the time
(it was 2002, pre-GitHub). With respect to the aforementioned studies the approach presented in this paper is
simpler, performs better in terms of accuracy, and handles significantly more (5–10x) file type classes. Reyes et
al. [28] used a long short-term memory (LSTM) algorithm to train and test a programming language classifier on
3 different datasets, one from Rosetta Code [25] (391 classes), GitHub archive (338), and a custom dataset (10). The
obtained accuracies were, respectively, 80%, 29%, and 100%. They also compared their results to Linguist, finding
Linguist scored worse except for the second dataset in which it reached 66% accuracy. The comparison between
Rayes et al. and the approach presented in the present paper is interesting. The custom dataset confirms what was
already apparent from previous comparisons: one can do much better in terms of accuracy reducing the number
of language classes (and as little as 10 classes is not enough for our stated purpose). The other two datasets
exhibit larger diversity than ours (≈ 300 classes v.≈ 100), but perform very differently. We score better than the
(more controlled) Rosetta Code dataset and much better than the GitHub dataset. Our approach is simpler in
terms of architecture than theirs and we expect it to perform better in terms of training and recognition time
(as LSTM tends to be slow to train)—but we have not benchmarked the two approaches in comparable settings
so this remains a qualitative assessment at this stage. Linguist [14] is an open source language detection tool
developed by GitHub. Its own accuracy is reported by GitHub [12] as being around 85%. The accuracy of studies
that have used Linguist as ground truth should then be diminished accordingly. Additionally, Linguist relies on
file extensions as a feature and its accuracy drops significantly when they are missing [12], as it is the case in our
problem statement. The work by Gilda [13] is very similar to ours. File extensions are used as ground truth for
source code extracted from GitHub and a word-level convolutional neural network (CNN) is used as classifier.
The model reached 97% accuracy and is able to classify 60 different languages. We perform significantly better in
terms of diversity (2x classes), but slightly worse in terms of accuracy (-8%).

File-type detection. Previous work has also been done on the more general problem of classifying file types that
might also be binary formats. In the field of digital forensic Fitzgerald et al. [9] performed classification for 24
file classes using byte-level 1-grams and bigrams to build feature vectors fed to a SVM algorithm, reaching 47%
accuracy on average. Gopal et al. [15] used and compared similar approaches for the same task, but for 316 classes
including 213 binary formats and 103 textual ones. They reached 90% micro-average and 60% macro-average
𝐹1-score. This relatively big gap between the two average measures hints at significant differences in the classes
(e.g., frequencies in the test set). Binary file type detection is a significantly different problem than ours. There
one can rely on file signatures (also known as “magic numbers”), as popular Unix libraries like libmagic and the
accompanying file utility do. Such approaches are viable and could be very effective for binary files, but they
are less maintainable in the long run (as the database of heuristics should be maintained lest it becomes stale)
and less effective on textual file formats, where magic numbers are either missing or easily altered.

7 CONCLUSION
In this work we considered the problem of predicting textual file types for files commonly found in version
control systems (VCS), relying solely on file content without any a priori domain knowledge or predetermined
heuristic. The problem is relatively novel (as most existing language/file type detectors rely heavily on extensions)
and relevant in contexts where extensions are missing or cannot be trusted, and shed light into the intrinsic
recognizability of textual files used in software development repositories. We propose a simple model to solve
the problem based on an universal word tokenizer, word-level n-grams of length 1 to 2, feature vectors based on
n-gram frequency, and a fully connected neural network as classifier. We applied the model to a large dataset
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extracted from GitHub spanning 133 well represented file type classes. In spite of its simplicity the model
performed very well, nearing 85% average accuracy, and outperforming previous work in either accuracy, number
of supported classes, or both. We expect that model simplicity will make it more maintainable in the future and
less computationally expensive to train and run than alternatives based on learning algorithms such as CNN,
LSTM, or Attention.
Concerning future work, a straightforward next step is scaling up experimentation of the proposed model,

moving from the high-starred GitHub dataset we used for this work to larger and more diverse datasets such
as Software Heritage [1]. In that context we will have significantly more starting classes and hopefully enough
samples in each of them for enlarging the set of labels actually used in training. As we observed, extensions
alone are ambiguous in many cases and this poses challenges in training and evaluation. To mitigate this issue
it is worth exploring the possibility of inserting narrow domain knowledge about file extensions that often go
together. It is not clear whether doing so, partly backtracking the “no domain knowledge” assumption of this
work, would be worth the effort in terms of increased accuracy; hence, it is worth exploring. An alternative
approach for improving over the current handling of model confusion is adding a second tier of classifiers, one
for each class of ambiguous extensions, a popular technique in NLP. There are various methods to combine the
predictions from the first and second level classifiers which should be explored. We have briefly explored the
topic of accuracy degradation in the lack of retraining at a 2-year distance. A more general characterization
would be interesting to have and is feasible to obtain it by exploiting historical software archives and/or VCS
timestamp information. Such a characterization will allow to devise data-driven approaches for when and how to
retrain file type and language detection tools in a world in which programming languages constantly evolve.
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