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Simple Summary: Concern about the use of hydroxyethyl starch (HES) and the development of
kidney injury has emerged in human medicine. In veterinary medicine, some retrospective and
prospective studies were conducted to investigate the presence of renal damage in dogs using
different types and dosages of hydroxyethyl starch. The present study aimed to evaluate the effects
of the constant rate infusion of HES 130/0.4 at a dose of 2 mL/kg/h for 24 h on the renal biomarkers
of tubular damage and dysfunction. Ten adult dogs with hypoalbuminemia were enrolled, and
serum creatinine, fractional excretion of electrolytes, urinary protein to creatinine ratio, urinary
albumin to creatinine ratio, qualitative proteinuria, and urinary neutrophil gelatinase-associated
lipocalin were measured at the baseline before HES infusion and after 24 and 48 h from the baseline.
No significant change in the selected renal biomarkers was observed across time, ruling out the
possibility of significant tubular damage after HES 130/0.4 infusion at the dose and rate applied.
Further prospective studies are needed to assess the renal safety profile of low-molecular-weight
HES administration in more severely affected dogs.

Abstract: In veterinary medicine, investigations relating the effects of hydroxyethyl starch (HES)
on renal function report contrasting results. This study aimed to assess the changes in the selected
biomarkers of kidney injury in dogs after the administration of HES 130/0.4 as a constant rate infusion
(CRI) for 24 h. Ten adult client-owned dogs with hypoalbuminemia (albumin < 2 g/dL) and ongoing
fluid losses were included. Enrolled dogs received intravenous fluid therapy with crystalloids and a
CRI of HES 130/0.4 at a dose of 2 mL/kg/h for 24 h. Serum creatinine (sCr), fractional excretion (FE)
of electrolytes, urinary protein to creatinine ratio (UPC), urinary albumin to creatinine ratio (UAC),
SDS-page, and urinary neutrophil gelatinase-associated lipocalin (uNGAL) were measured at the
baseline before HES infusion, and after 24 h (T24) and 48 h (T48) from the baseline. No statistically
significant difference was found between the baseline value vs. T24 and the baseline vs. T48 for
sCr, UAC, UPC, FE of sodium, chloride and calcium, and uNGAL. A significant increase in FEK
(p = 0.04) was noticed between the baseline and T48. In this study sample of hypoalbuminemic dogs,
HES 130/0.4 at the dose and rate of infusion applied did not cause any significant changes in the
investigated biomarkers of kidney injury.

Keywords: hydroxyethyl starch; renal biomarkers; tubular damage; urinary neutrophil gelatinase-
associated lipocalin
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1. Introduction

Synthetic colloids are a kind of fluid characterized by a large molecular size and are
administered for intravascular volume expansion. Hydroxyethyl starches (HESs) are the
most used synthetic colloids, and their pharmacological properties (oncotic effect, excretion,
and half-life) depend on their mean molecular weight, molar substitution, and C2/C6
ratio. [1] The theoretical benefits of HESs include prolonged intravascular effects, smaller
volume requirements, and the reduced risk of tissue edema development compared with
crystalloids [1]. However, there is no evidence that the use of any HES solution confers
an outcome benefit in critically ill human patients. Moreover, several large-scale human
trials have linked HES use with dose-dependent side effects including coagulopathy,
nephrotoxicity up to the development of acute kidney injury (AKI), and tissue storage [2–8].
Despite the claims that the latest HES solution, HES 130/0.4, has a safe profile regarding
coagulation and adverse renal effects, the supporting literature is limited [2,3]. There are
several suggestions for the mechanisms of HES-induced AKI: a decrease in tubular flow,
secondary to the activation of tubuloglomerular feedback, as well as colloid accumulation in
the lysosomes of tubular cells that creates an oncotic gradient, leading to the accumulation
of intracellular water, cytoplasmic swelling, lysosomal vacuolization, and disruption of
cellular integrity [1,4]. The highest HES concentrations have been identified in the proximal
renal tubular cells; hence, biomarkers of proximal tubular damage and dysfunction would
be ideal to assess the occurrence of HES-induced AKI [4].

In veterinary medicine, three retrospective studies investigated the effects of different
HES solutions on renal function and survival in critically ill dogs [9–11]. Moreover, three
prospective studies assessed renal injury biomarkers during the resuscitation of hypoten-
sive dogs, before and after the bolus of HES 130.04, and other solutions [12–14]. Only in
the retrospective study from Hayes et al. was HES 250/0.5 administration associated with
an increased risk of mortality and AKI occurrence in a dose-dependent manner [9]. In the
study of Sigrist et al., the number of days of HES 130/0.4 administration was significantly
associated with an increase in AKI grade [11]. On the contrary, in the other studies, ther-
apy with HES 130/0.4 neither resulted in higher serum creatinine (sCr) concentrations,
nor in increased urinary biomarkers of AKI, including neutrophil gelatinase-associated
lipocalin [10–14]. Few studies with a lack of standardization, small population size, and the
use of low sensitivity biomarkers of AKI limit any conclusion concerning the HES safety
profile for the kidney in dogs.

The aim of this prospective study was to assess the changes in selected urinary
biomarkers of kidney injury in dogs receiving HES 130/0.4 as a constant rate infusion (CRI)
for 24 h. We hypothesized that HES 130/0.4 administration in this setting would not be
associated with the increase in any assessed biomarker of kidney injury.

2. Materials and Methods
2.1. Study Design

This study was a prospective investigation performed on client-owned dogs. The
protocol was approved by the Bioethics Committee of the University of Turin (Prot. No
26840). The owners of all dogs recruited for participation in the study were informed about
the study protocol and signed a consent form.

2.2. Animals

Adult dogs referred to the Veterinary Teaching Hospital (Department of Veteri-
nary Science, University of Turin) were enrolled if they had hypoalbuminemia (serum
albumin < 2 g/dL) and if they required intravenous fluid therapy for ongoing fluid losses
due to their underlying disease. Animals were excluded in the presence of a history of
cardiac, pulmonary, renal, and liver failure; positivity to infectious diseases (Snap Leishma-
nia Test and Snap 4 Dx (Dirofilaria immitis antigen; antibody to Anaplasma phagocytophilum;
antibody to Anaplasma platys; antibody to Borrelia burgdorferi; antibody to Ehrlichia canis;
and antibody to Ehrlichia ewingi), IDEXX Laboratories, Westbrook, ME, USA); proteinuria,
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defined as urine protein to creatinine ratio (UPC) > 0.5 [15]; pyuria, defined as >5 white
blood cells per high power field; and the administration of nephrotoxic drugs within
30 days, or drugs known to affect renal solute excretion (e.g., diuretics, hypertonic saline,
and isotonic crystalloid) within 48 h before hospitalization.

After the application of a venous catheter in a peripheral vein, fluid therapy with a
crystalloid solution (Ringer’s Lactate, Baxter, Roma, Italy) was started while considering
maintenance, dehydration, and ongoing losses. To support the colloid osmotic pressure,
HES 130/0.4 (Voluven, Fresenius Kabi Italia, Isola della Scala, Italy) was added as a CRI of
2 mL/kg/h (48 mL/kg/day) [16,17]. Dogs were included in the study if the colloid CRI
was continued for 24 h, and neither change in the treatment plan nor the administration of
nephrotoxic agents occurred during the study period.

2.3. Sample Collection, Clinicopathological Data, and Laboratory Methods

Before the administration of HES CRI (T0), the following analyses were performed:
a complete blood count (ADVIA 120 Hematology, Siemens Healthcare Diagnostics) with
blood smear evaluation (CBC); serum chemistry profile (including the measurement of sCr,
urea, albumin, glucose, alkaline phosphatase, aspartate aminotransferase, alanine amino-
transferase, and γ-glutamyl transpeptidase) (ILAB 300 plus, Clinical Chemistry System,
Instrumentation Laboratories S.p.A., Milano, Italy); venous blood gas analysis (including
lactate and electrolyte concentration) (ABL 800 Flex; A. DE MORI S.p.A., Milano, Italy);
packed cell volume (PCV) and total proteins (TP); urinalysis including urine specific gravity
(USG) (Reichert VET 360, Reichert technologies analytical instrument, Buffalo, NY, USA);
dipstick examination (Multistix 10 SG Reagent Strips, Siemens Healthcare Diagnostics,
Milano, Italy); microscopic evaluation of the urine sediment and urine chemistry including
urine creatinine (uCr), the urine protein to uCr ratio (UPC), urinary electrolytes, urea and
glucose, urinary neutrophil gelatinase-associated lipocalin (uNGAL) (Dog NGAL ELISA
Kit, BIOPORTO Diagnostics, Needham, MA, USA); and urine sodium-dodecyl-sulfate poly-
acrylamide gel electrophoresis (SDS-page) evaluation (NuPage, Thermo Fisher Scientific,
Waltham, MA, USA).

Analyses for PCV, TP, venous blood gas, albumin, sCr, and complete urinalysis were
repeated after 24 h (T24). In 8 dogs, the HES CRI was discontinued at T24, and the previous
evaluations were also conducted after 48 h from T0 (T48).

Urine samples were collected by spontaneous voiding or cystocentesis, and an aliquot
of fresh urine sample was submitted to the laboratory for urinalysis, including urine specific
gravity and dipstick evaluation. Urine sediment obtained by centrifugation (1000× g
10 min) was examined within 1 h after collection or within 4 h, keeping the sample at 4 ◦C.
Glucosuria was assessed as the urine glucose to uCr ratio. The fractional excretion (FE)
of urine analytes, including sodium (FENa), potassium (FEK), chloride (FECl), calcium
(FECa), and urea, was calculated according to the following equation: FEX = (uX sCr/uCr
sX) × 100 (based on spot urine sample), where uX and sX are the concentrations of a
specific analyte in urine and serum, respectively [18,19].

An SDS-page analysis was performed as previously reported [18], and the concentra-
tion of urine albumin (uAlb) and the uAlb to uCr ratio (UAC) were evaluated.

Urine NGAL concentrations were determined on aliquots of the urine supernatant
stored at −80 ◦C for up to 6 months until assayed, as previously reported [19]. The storage
time was established according to previous studies [20]. NGAL was measured using a
commercial ELISA sandwich assay according to the manufacturer’s instructions (Dog
NGAL ELISA Kit, BIOPORTO Diagnostics, Needham, MA, USA). The results are expressed
as an absolute uNGAL concentration (pg/mL) and as an uNGAL to uCr ratio (uNGALC,
pg/mg).

2.4. Statistical Analysis

The sample size for repeated measures was determined according to the power at 80%,
confidence level at 95%, the expected difference between control group (T0) and treated
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group (T24) equal to a 150% increase of uNGALC, and the difference between standard
deviations equal to 1.

The sample size calculation was based on evidence that an 800-fold increase in uN-
GALC is associated with the development of AKI in dogs [19]. Thus, the inclusion of at
least 8 dogs was considered necessary to identify an increase of 1,5-fold of uNGALC from
T0 to T1.

Prior to the test selection, data were assessed for normality graphically and with the
Shapiro-Wilk test. Descriptive statistics were evaluated as appropriate, and data were
presented as the median and range (min-max). Paired data (T0 vs. T24; T24 vs. T48; an T0
vs. T48) were compared using a Wilcoxon matched-pairs signed-rank test if not normally
distributed, otherwise a t-test was used. Results were considered significant if p < 0.05.

Statistical analyses were performed using a Stata 15.1 (StataCorp 16.1, 4905 Lakeway
Drive Special Edition College Station, Texas, TX, USA).

3. Results
Study Population

A total of 10 dogs were included and completed the study protocol. The study popu-
lation was composed of two intact males, six intact females and two spayed females, with
a median age of 7 years (min 1–max 12). The median body weight was 26.7 kg (min 5–max
39) and the breeds included mixed breeds (n = 3), Jack Russel Terriers (n = 2), and one each
of Rottweiler, Labrador Retriever, Dachshund, Hound, and English Bulldog. The under-
lying pathologies affecting the dogs were protein losing enteropathy (7/10 dogs), septic
peritonitis (1/10 dogs), chylothorax (1/10 dogs), and hypoadrenocorticism (1/10 dogs).

No statistically significant difference was found between the baseline value vs. T24,
T24 vs. T48, and T0 vs. T48 for sCr, UAC, UPC, uCr/sCr, FENa, FECl, FECa, uNGAL, and
uNGALC (Table 1).

Table 1. Descriptive statistics reported as the median and range (minimum–maximum value) and comparison for clinico-
pathological variables among samples collected at T0 (pre-HES infusion), at T24 (after 24 h of HES continuous rate infusion),
and at T48 (after 48 h from baseline and after HES CRI interruption).

Variable T0 (N = 10) T24 (N = 10) T48 (N = 8)
Institutional

Reference
Values

p *-Value p #-Value p §-Value

Glucose
(mmol/L) 5.6 (4–7.9) 5.2 (4.4–7.2) 5.7 (4.8–7.2) 4.1–7.4 1 1 0.008

Creatinine
(µmol/L) 59.2 (46–73.4) 45.1

(33.6–75.1)
50.4

(34.5–81.3) 44.2–132.6 0.18 0.29 0.73

Chloride
(mmol/L) 119 (107–124) 120 (107–124) 122 (113–124) 109–120 0.45 1 1

Sodium
(mmol/L) 143 (123–148) 143 (130–150) 141 (133–150) 140–150 0.29 0.63 0.69

Potassium
(mmol/L) 4 (3.4–5.7) 3.85 (3.5–5.5) 4.05 (3.5–5) 3.9–4.9 1 1 1

Ionized
Calcium

(mmol/L)
1.2 (1.1–1.3) 1.3 (1.1–1.4) 1.3 (1.1–1.3) 1.25–1.5 0.11 0.63 0.13

UPC 0.1
(0.02–0.29)

0.07
(0.04–1.36)

0.13
(0.02–0.2) ≤0.5 1 1 0.7

UAC 0.01
(0.0004–0.07)

0.013
(0.001–0.06)

0.01
(0.001–0.07) 0.00-0.03 0.34 0.73 0.73
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Table 1. Cont.

Variable T0 (N = 10) T24 (N = 10) T48 (N = 8)
Institutional

Reference
Values

p *-Value p #-Value p §-Value

uCr
(µmol/L)

12,959
(3960–49,707)

11,386
(2997–64,665)

136.9
(31.4–625.6) 3894–49,769 0.75 0.3 0.73

uCr/sCr 146.4
(44.8–562.3)

128.8
(33.86–731.5)

136.86
(31.4–625.56) 37–547 0.75 0.14 0.73

uNGAL
(pg/mL)

972.8
(154.5–

38,991.8)

1271.35
(62.1–

62,540.9)

1656.45
(201.2–

140,572.8)
0–2600 1 1 0.73

uNGALC
(pg/mg)

0.08
(0.026–3.96)

0.27
(0.02–12.76)

0.16
(0.05–4.49) 0–1200 1 0.73 0.73

uGLUCr 0.10
(0.06–0.26)

0.14
(0.084–0.37)

0.11
(0.05–0.3) 0–0.6 0.01 0.29 1

FENa (%) 0.21
(0.018–2.98)

0.79
(0.016–3.67)

0.61
(0.04–2.84) 0–0.69 1 1 0.7

FECl (%) 0.26
(0.05–3.55)

1,08
(0.03–4.23)

0.59
(0.06–3.14) 0–1.09 1 0.45 0.13

FEK (%) 6.86
(2.96–21.4)

6.6
(0.97–12.23)

10.53
(3.09–16.33) 2.3–23.8 0.75 0.28 0.04

FECa (%) 1 (0.32–8.47) 1.14
(0.16–6.9)

0.59
(0.19–2.16) 0–0.33 0.75 1 1

FECa, fractional excretion of calcium; FECl, fractional excretion of chloride; FEK, fractional excretion of potassium; FENa, fractional
excretion of sodium; PCV, packed cell volume; UAC, urine albumin to creatinine ratio; uCr, urine creatinine; uCr/sCr, urine creatinine to
serum creatinine ratio; uGLUCr, urine glucose to creatinine ratio; uNGAL, urinary neutrophil gelatinase-associated lipocalin; uNGALC,
uNGAL to uCr ratio; UPC, urine protein to creatinine ratio; USG, urinary specific gravity; * difference between T0 and T24; # difference
between T24 and T48; § difference between T0 andT48.; p < 0.05 indicate statistically significant difference.

A significant increase in TP (p = 0.04) and the urine glucose to uCr ratio was observed
between T0 vs. T24. The serum albumin concentration increased significantly between
T24 vs. T48 (p = 0.03) and between T0 vs. T48 (p = 0.01). Finally, a significant increase in
serum glucose (p = 0.01) and FEK (p = 0.04) was observed between T0 vs. T48. All results
are reported in Table 1.

4. Discussion

The present study did not show any significant change in the selected biomarkers of
kidney injury in dogs receiving a CRI of 2 mL/kg/h of HES 130/0.4 for 24 h. Hence, in our
study population of hypoalbuminemic dogs, the administration of low-molecular-weight
HES 130/0.4 at the dose and rate of infusion applied was not associated with signs of
tubular damage or dysfunction, at least recognizable with the investigated biomarkers in
the time frame chosen for monitoring.

In critically ill humans, HES exposure has been linked to an increased incidence of AKI
and the need for renal replacement therapy, particularly in patients affected by sepsis or
burns, whereas studies conducted in patients undergoing surgery have reported contrasting
results [7,21–26]. Datzmann et al. assessed some functional renal parameters and structural
biomarkers (including NGAL) in people undergoing coronary bypass grafting without
showing differences in mortality, acute kidney injury, the need for renal replacement
therapy, or evidence of a mechanism for tubular injury [25]. Momeni et al. and Kashy et al.
detected a correlation between the dose of colloids used and the incidence of AKI after
surgery. Unfortunately, such results are not comparable due to heterogeneous populations,
the type of colloid used (old vs. new generation), the dose administered, and the definition
of AKI applied [23,26].
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The suggested pathogenesis of HES-induced AKI is multifactorial and not fully un-
derstood. HES uptake and accumulation in the renal tissue cause renal storage lesions,
deemed osmotic nephrosis lesions. They are characterized by interstitial macrophage
infiltration, intracellular water accumulation, cellular swelling, disruption, and death, and
mainly involve proximal tubular cells at histological examination [26]. It was reported that
the number of colloid molecules and cumulative doses are major factors responsible for
proximal tubular cell injury, especially where older HESs with a high molecular are used
(10% HES 200/0.5) [26].

In veterinary medicine, most of the information about HES doses, the modality of
administration, and the side effects has been derived from the human literature, except for
their use as a CRI. The latter has been reported in animals only and originated from the rec-
ommended daily maximum doses of 20–30 mL/kg/day suggested for older generations of
HESs [16,17]. However, extrapolating guidelines from human studies to regulate the use of
HESs in dogs may be inappropriate due to inherent metabolic differences between the two
species; indeed, dogs have a greater α amylase activity, potentially allowing for a greater
capacity to degrade HESs. The consequence could be a decrease in colloid accumulation
in the renal tissue and a reduction in the associated injury [2]. Nonetheless, the studies
investigating HES-induced AKI in dogs are often retrospective in nature and difficult to
compare due to the few numbers of cases included and the different biomarkers used to
assess AKI [9–14]. In the retrospective study by Hayes et al., the administration of older
HES with a high molecular weight (HES 250/0.5) was associated with adverse effects like
death or AKI, with higher HES doses being associated with an increased risk [9]. Yozova
et al. and Sigrist et al. observed no significant short-term increase in sCr concentrations fol-
lowing HES 130/0.4 administration in a population of canine intensive care patients [10,11].
Nonetheless, in the latter study, the duration of HES administration was significantly
associated with an increase in AKI grade within 10 days [11]. Three recent prospective
canine studies evaluated several biomarkers of AKI, including plasma and urine NGAL,
during the infusion of different solutions for volume replacement [12–14]. Hypotensive
dogs resuscitated with bolus injections of HES 130.04 did not show a significant increase in
NGAL concentrations [12–14]. In particular, Boyd et al. documented only nonsignificant
marginal increases in numerous biomarkers of renal tubular damage other than NGAL. In
addition, no greater histological tubular injury was documented in dogs receiving HES
compared to other resuscitation fluids, including natural and synthetic colloids [13]. An-
other recent prospective randomized controlled trial did not show differences in the urine
NGAL, cystatin C, or kidney injury molecule-1 in dogs with shock before and after a fluid
bolus of Hartmann’s solution or HES 130.04 [14]. Thus, an increased likelihood of AKI was
reported in particular when older hyperoncotic HES solutions (HES 250/0.5) were used
in dogs with sepsis, trauma, or surgery [9]. However, conclusions regarding HES safety
in dogs cannot be made since most of the cited studies were underpowered to document
small variations in sCr or kidney injury biomarkers in study populations where the overall
likelihoods of AKI and sepsis were low.

Although the current study does not overcome such limitations, the prospective
design, the unstudied method of HES infusion (CRI), and the panel of biomarkers used to
assess tubular damage and dysfunction represent potential strengths.

The NGAL is a protein expressed by neutrophils and many epithelial cells, including
the renal tubular ones [27]. The expression of uNGAL is rapidly induced in nephrons in
response to renal epithelial injury and inflammation, and concentration seems to be corre-
lated with glomerular filtration rate [28,29]. Its increase in urine is reported to anticipate
the rise in sCr concentration, and after the validation of a canine-specific NGAL ELISA kit,
several studies investigating uNGAL sensitivity, specificity, and kinetics to diagnose and
prognosticate AKI in dogs have been published [19,28]. According to the results of a recent
study evaluating uNGALC between healthy dogs and dogs with AKI, this variable can be
considered a sensitive marker of AKI, showing up to an 800-fold increase in the case of
intrinsic AKI [19].
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The lack of increase in uNGALC values after HES infusion in the enrolled dogs could
rule out the development of significant glomerular and tubular injury in our setting, both
at T24 and T48, in line with previous studies investigating low-molecular-weight HES in
different scenarios [10–14].

Similarly, the FE of electrolytes recently has shown the potential to characterize and
prognosticate AKI [18,19]. It should be pointed out that the FE of electrolytes acts both
as a marker of tubular damage and function, but its sensitivity and specificity to detect
renal injury is currently unknown. Although fluid therapy has historically been reported to
affect urinary electrolytes measurements and confound their interpretation, no significant
increases in FENa, FEK, FECl, and FECa were documented in our patients at T24, after
HES and Ringer’s Lactate infusion. Only a slight but significant increase in FEK was
documented between T0 and T48. The reported value for normal FEK in dogs is <20%,
and a marked increase was observed in a recent study evaluating dogs affected by AKI
(>100%) [30]. In our opinion, it is difficult to relate the increase in FEK noticed in our study
to the development of tubular injury. The median values of FEK measured in our study
population ranged from 6% to 10% and could still be considered normal. In addition, the
distal tubule is primarily implicated in K excretion and less susceptible to damage during
AKI compared with the proximal tubule, and none of the other biomarkers evaluated
indicated tubular damage. Similarly, the slight but significant increase in the urine glucose
to uCr ratio observed between T0 vs. T24 was not considered clinically relevant because it
was within the reference range.

SDS-PAGE represents a reliable and specific technique to investigate tubular protein-
uria eventually related to tubular damage. The lack of any relevant increase in quantitative
and qualitative proteinuria in the pre- and post-HES infusion measurements further cor-
roborates that HES 130.04 infusion does not cause an increase in tubular proteinuria in our
study conditions.

There are some limitations to consider when interpreting our results. The study
population was mainly composed of noncritical dogs, as ICU hospitalization was not a
criterion required for enrollment. Similarly, the number of septic patients was extremely
low (1/10). Hence, the inclusion of a subgroup of more severely affected patients could
have led to different results in terms of an increase in renal biomarkers. Moreover, this
was designed as a single-arm trial, as each enrolled case served as its own control and no
different control group was available. Therefore, despite the collection of additional safety
data for HES 130/0.4 in our setting, these should be confirmed in large-scale randomized
controlled trials. It might also be possible that HES infusion in our study did not cause
detectable kidney injury due to the limited time of infusion chosen. Long-term monitoring
may be as important as short-term monitoring, since long-term effects caused by HES
accumulation in renal tubular cells are expected after 20 days from HES exposure in people,
and renal function monitoring up to 90 days after HES administration is advocated [4].
The effects of larger HES doses or longer infusion times was not addressed, as that was
beyond the scope of the study. Finally, no histopathological data were available to assess
the presence and severity of tubular damage.

5. Conclusions

In conclusion, in this study sample of hypoalbuminemic dogs, no significant changes
in selected biomarkers of tubular damage and dysfunction were observed after HES130/0.4
infusion at the dose and rate applied. Further prospective studies are needed to assess the
renal safety profile of low molecular weight HES administration considering different dose
regimens, long-term monitoring, and including a subgroup of more critically ill dogs.
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