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A B S T R A C T   

Cholangiocarcinomas (CCAs) are a heterogenous group of hepatobiliary tumors with poor prognosis and limited 
therapeutic options. In the last decade, the advent of genomic profiling has led to the identification of several 
putative actionable aberrations in CCAs, and genomic characterization is playing an increasing role in the 
management of these malignancies. Thus, a wide number of targetable mutations are currently under investi-
gation, and early studies on this approach in CCAs have been recently presented or published. Among these, 
isocitrate dehydrogenase (IDH) mutations have been reported in approximately 15–20% of intrahepatic chol-
angiocarcinoma (iCCA) patients, while these aberrations are considered to be less frequent in perihilar CCA 
(pCCA), distal CCA (dCCA), and gallbladder cancer. Of note, the recent findings of the ClarIDHy phase III trial 
add to mounting evidence showing the potential advantages of molecularly targeted therapies in CCA, on the 
basis of a benefit in previously treated IDH1-mutant patients receiving ivosidenib versus placebo. However, 
although the results of this trial showed a statistically significant improvement in progression-free survival and 
overall survival for IDH-mutant CCAs treated with ivosidenib, several questions regarding the real impact of IDH 
inhibitors in this setting remain open. 

In this review, we will provide an overview on the biological rationale behind the use of IDH inhibitors in CCA 
patients and current clinical implications of these molecularly targeted agents. The recently published results of 
the ClarIDHy – as well as ongoing clinical trials in this setting – are highlighted and critically discussed.   

Introduction 

Cholangiocarcinomas (CCAs) include a group of aggressive epithelial 
malignancies of the biliary tree, encompassing intrahepatic chol-
angiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma (eCCA) - 
which is further subdivided into perihilar cholangiocarcinoma (pCCA) 
and distal cholangiocarcinoma (dCCA) [1-17]. Ten years after the pub-
lication of the landmark ABC-02 trial, the combination of cisplatin plus 
gemcitabine (CisGem) remains the current standard of care for patients 
with metastatic disease [18-22]. In 2010, this study showed the supe-
riority of CisGem over gemcitabine monotherapy, with median overall 
survival (mOS) of 11.7 months and 8.1 months, respectively (Hazard 
Ratio [HR] 0.64; 95% Confidence Interval [CI] 0.52–0.80; P<0.001) 
[21]. However, the reference doublet has provided an overall modest 
survival benefit, with most patients presenting a median survival of less 
than a year from the moment of diagnosis of advanced disease [23, 24]. 
Thus, impressive efforts have been conducted in the last decade to “raise 

the bar”, including the use of novel agents as well as by adding a third 
drug to the standard of care regimen, with an attempt to improve clinical 
outcomes in CCA patients [25-27]. 

In fact, recent years have seen important advances in understanding 
the tumor biology and the molecular landscape of CCA, where the 
advent of genomic sequencing has led to the identification of several key 
oncogenic drivers in specific CCA subgroups [28-37]. Among these al-
terations, isocitrate dehydrogenase (IDH) mutations have attracted 
growing attention, with several IDH inhibitors which have been assessed 
or are currently under investigation in phase I and II clinical trials on 
IDH-mutant CCAs [38-40]. 

In this review, we provide an overview of the current literature 
regarding the role of IDH mutations in CCA, especially focusing on the 
biological rationale behind this therapeutic strategy as well as on 
recently published and ongoing clinical trials. 

We performed a research on Cochrane library, PubMed/Medline, 
and Scopus using the following keywords “biliary tract cancer” OR 
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“cholangiocarcinoma” OR “intrahepatic cholangiocarcinoma” OR 
“extrahepatic cholangiocarcinoma” AND “IDH” OR “ivosidenib” OR 
“IDH1 mutations” OR “IDH2 mutations” OR “isocitrate dehydrogenase”. 
We selected the most relevant and pertinent studies considering how the 
studies were conducted, their applicability, statistical analysis, number 
of patients enrolled, outcomes. For ongoing clinical trials, we searched 
in the Clinicaltrials.gov database for recruiting and active, not recruiting 
trials, using the following keywords: “biliary tract cancer” OR “chol-
angiocarcinoma” OR “intrahepatic cholangiocarcinoma” OR “extrahe-
patic cholangiocarcinoma” AND “IDH” OR “ivosidenib” OR “IDH1 
mutations” OR “IDH2 mutations”. 

Targeted therapies in cholangiocarcinoma: an evolving 
landscape 

In the last decade, several studies have explored the molecular 
landscape of CCA, leading to the development of molecularly targeted 
treatments in this setting [41, 42]. However, novel treatment targets 
have been mainly assessed in iCCA patients, where the most promising 
genetic aberrations are represented by Fibroblast Growth Factor Re-
ceptor 2 (FGFR2) gene fusions and IDH mutations [43-45]. Other po-
tential targets include BRAF mutations, NTRK gene fusions, HER2 
amplification or overexpression, and DNA damage repair aberrations 
[46-50]. In particular, according to genomic sequencing, distinct genetic 
aberrations have been suggested to “clustered” in specific anatomical 
subtypes, and thus, molecular profiles vary widely between pCCA, 
dCCA, and iCCA [51]. In fact, IDH and FGFR2 aberrations have been 
mainly observed in iCCA patients, while HER2 amplifications or muta-
tions are more common in eCCA and gallbladder cancer [52]. Of note, a 
large cohort of CCA patients – approximately the 50%, regardless of the 
anatomic subtype – is expected to harbor potentially druggable alter-
ations, something which has led to the incorporation of genomic 
profiling in routine clinical practice of CCA [53, 54]. 

Among molecularly targeted therapies, FGFR inhibitors have been 
extensively studied in CCA, as also witnessed by the recent Food and 
Drug Administration (FDA) approval of pemigatinib for previously 
treated, unresectable locally advanced or metastatic CCA with FGFR2 
gene fusions or rearrangements [55]. In fact, the FIGHT-202 study 
assessed the role of pemigatinib in 107 CCAs harboring FGFR2 fusions, 
reporting an overall response rate (ORR) of 35.5%, with a median PFS of 
6.9 months, and a median duration of response of 7.5 months [56]. 
Several other FGFR inhibitors have reported promising early results, 
including infigratinib, derazantinib, and futibatinib, and are currently 
under investigation in phase III clinical studies [57-59]. However, the 
emergence of secondary resistance represents a notable issue limiting 
the duration of response of FGFR inhibitors, and representing a key 
challenge in this setting, where circulating tumor DNA and liquid bi-
opsies could play an important role [60]. In fact, in the near future 
longitudinal liquid biopsy has the potential to enter into clinical prac-
tice, in order to track the evolution of secondary resistance mutations 
determining treatment failure; moreover, this tool could also guide se-
lection of adequate treatment, guiding clinicians in this setting. As 
previously stated, although IDH and FGFR inhibitors represent the most 
extensively developed study in this setting, multiple potentially 
actionable genetic aberrations have been observed in CCA [61-63]. 
However, in the current paper we will not discuss recent trials regarding 
other molecularly targeted treatments in CCA, a topic which is beyond 
the specific scope of this review. 

IDH mutations and the role of 2-hydroxyglutarate 

Recent studies on the human genome have led to the identification of 
five IDH genes, which code for three different IDH enzymes [64]. IDH 
plays an important role in the Krebs cycles. In fact, IDH enzymes base 
their activity on the interaction with NADP (IDH1 and IDH2) and NAD 
(IDH3); IDH1 and IDH2 share several characteristics, since these two 

enzymes have a sequence similarity of 70% [65, 66]. In terms of func-
tion, in physiological conditions normal IDH1 and IDH2 enzymes are 
involved in a two-step reaction [67]; firstly, isocitrate is converted 
through oxidation to an intermediate compound – oxalosuccinate – 
resulting in the reduction of NADP+ to NADPH. Subsequently, the 
beta-carbonyl group is released as CO2 from oxalosuccinate, leading to 
the formation of α-ketoglutarate (α-KG) [68]. During the process of 
conversion of isocitrate to oxalosuccinate, the two H+ atoms are “used” 
for the reduction of NADP+ to NADPH and the conversion of the inter-
mediate compound to α-KG [69] (Fig. 1). 

On the basis of these premises, given the involvement of IDH1 and 
IDH2 in cell metabolism, gain-of-function mutations of these genes 
hesitate in the accumulation on 2-hydroxyglutarate (2-HG), with the 
neomorphic ability to convert α-KG into 2-HG [70]. Of note, this onco-
metabolite has been suggested to block the physiological cell differen-
tiation, thus promoting tumorigenesis [71]. 

As regards CCA, IDH1 and IDH2 gene mutations have been reported 
in a range between 15 and 20% of iCCA patients, with the most 
commonly observed point mutations involving the R132 and the R172 
codons [72]. In particular, IDH1 mutations are more frequent than IDH2 
mutations, with the common involvement of the arginine 132 residue; 
more specifically, IDH1-R132C and IDH1-R132G represent the most 
commonly detected IDH mutations [72]. Notably enough, higher fre-
quency of IDH1 mutations has been detected so far, appearing to be 
more common in iCCAs without hepatitis virus infection and 
non-Opistorchis Viverrini related [73]. Additionally, IDH1 mutations 
have been suggested to clustered with lower ARID1A expression while in 
rare, and even anectodal cases, with FGFR2 gene fusions [74]. Another 
interesting element is that IDH mutations have been associated with 
hypermethylated phenotypes, as noticed in several hematological and 
solid malignancies – such as glioma, iCCA, and acute myeloid leukemia 
[75-77]. Lastly, in terms of the prognostic value of IDH mutations in 
CCA, conflicting results have been reported so far [78]. 

The ClarIDHy trial: open questions and perspectives 

In recent years, a wide number of IDH inhibitors has been assessed in 
IDH mutant malignancies. Among these, ivosidenib (AG-120) certainly 
represents the most “developed” IDH inhibitor in CCA. This molecule, 
which has been previously approved for the treatment of patients with 
IDH1 mutant acute myeloid leukemia, was firstly evaluated in a phase I 
clinical trial including 73 IDH1 mutant CCAs [79]. According to the 
results of this study, maximum tolerated dose (MTD) was not reached, 
with no dose-limiting toxicities; as regards the expansion cohort, the 
study has led to the selection of 500 mg as recommended dose. In terms 
of drug-related adverse events, treatment with ivosidenib was associated 
with grade 3 or more toxicities in the 5% of included patients; the most 
frequently observed adverse events included all grade fatigue, nausea, 
diarrhea, abdominal pain, decreased appetite, and vomiting, which were 
highlighted in the 42%, the 34%, the 32%, the 27%, the 27%, and the 
23% of included patients, respectively. As regards clinical outcomes - 
and taking into account the inclusion of a highly pretreated patient 
population, median PFS was 3.8 months (95% CI 3.6–7.3), with 5% of 
participants achieving partial response (PR). 

Abou-Alfa and colleagues recently published the results of the Clar-
IDHy trial [80]. In this randomized phase 3 study, previously treated 
IDH1-mutant CCA patients whose disease progressed following one to 
two systemic treatments were randomized to receive single-agent ivo-
sidenib (500 mg once daily) or placebo [80]. Notably enough, the study 
design of the ClarIDHy allowed crossover to ivosidenib in patients 
receiving placebo at the time of documented radiographic progression. 
At the time of the data cut-off, 185 IDH1-mutant CCAs were randomized, 
with 124 and 61 patients in the experimental and the control arm, 
respectively [80]. PFS - primary endpoint of the study - observed a 
statistically significant improvement among ivosidenib patients 
compared with CCAs randomized to placebo (HR 0.37; 95% CI 
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0.25–0.54, P<0.0001), on the basis of a median PFS of 2.7 months in the 
experimental arm versus 1.4 months in the placebo group. Notably 
enough, the estimated PFS rate at 6 months and 12 months in patients 
treated with the IDH1 inhibitor were 32% and 22%, respectively; 
conversely, all IDH-mutant CCAs experienced disease progression before 
6 months in the placebo arm. Stable disease (SD) was detected in the 
51% and the 28% of the experimental and the control arm, respective-
lyIn terms of toxicities, serious adverse events were reported in the 30% 
(36/121) and the 22% (13/59) of patients receiving ivosidenib and 
placebo, respectively. In particular, ascites was the most commonly 
detected grade 3 or worse adverse event in both treatment groups (7%); 
no grade 5 adverse events were reported in the trial. 

Despite these promising results, some questions remain open and the 
ClarIDHy trial would deserve further discussion [81]. In fact, the use of 
placebo in a patient population with Eastern Cooperative Oncology 
Group Performance Status (ECOG-PS) of 0 or 1 with pretreated CCA 
could have produced an important bias, especially considering that – 
following the recently presented results of the ABC-06 phase III trial, 
cytotoxic chemotherapy with modified FOLFOX (mFOLFOX) should be 
considered as standard of care second-line treatment in advanced CCA. 
Thus, the inclusion of a control group with no active treatment could 
have affected the results of the ClarIDHy. In addition, although the 
statistically significant benefit of ivosidenib is undeniable, further ef-
forts are needed to detect if this improvement could be translated into a 
clinically significant benefit. Notably enough, an advantage of 1.3 
months in terms of PFS seems of limited value; for example, it would be 
interesting to assess if the IDH inhibitor could be superior to cytotoxic 
chemotherapy, and not simply placebo. Zhu and colleagues recently 
presented the final results from ClarIDHy, showing that ivosidenib 
improved OS by almost 3 months compared with placebo in pretreated 
patients. According to the results of the final analysis, mOS was 10.3 
months for patients in the ivosidenib arm and 7.5 months for those in the 
placebo group (HR, 0.79), showing a numerical but not statistically 
significant benefit (P = 0.93) [82]. However, due to crossover, the au-
thors used the prespecified rank-preserving structural failure time 
(RPFST) model to adjust OS; in this specific analysis, adjusted mOS was 
5.1 months for CCA patients receiving placebo. Thus, this element made 
the OS benefit of ivosidenib significant, with a HR of 0.49 and 
P<0.0001. In addition, the 1-year OS rate was 43% with ivosidenib 
treatment and 36% with placebo. 

Lastly, another important topic which could be borne in mind is cost- 
effectiveness. In fact, cost-effectiveness analyses should be a primary 
need in this setting, especially considering the balance between the 
magnitude of clinical benefit and the cost of ivosidenib – something 
which could limit the access to this treatment in several countries. 

Other IDH inhibitors and ongoing clinical trials in 
cholangiocarcinoma 

Apart from ivosidenib, the role of other IDH1 and IDH2 inhibitors is 
currently under evaluation in several phase I and II clinical trials 
(Table 1). Among these agents, preclinical studies have previously 
highlighted the activity of the IDH inhibitor dasatinib against iCCA cells 
harboring IDH mutations [83]; moreover, since this tyrosine kinase in-
hibitor targets SRC - and given the close association between SRC ac-
tivity and iCCA cells proliferation and survival, these findings supported 
the exploration of this agent in this setting. In fact, a phase II trial has 
tried to translate this evidence into a clinical study on iCCA patients 
(NCT02428855). Although the recruitment for this trial has been 
completed, results are still awaited. 

Another agent, olutasidenib (FT-2102), is being assessed a phase I/II 
trial on advanced solid tumors with IDH1 mutations – including iCCAs 
(NCT03684811). According to the study design of this trial, dose 
determination will be firstly assessed in IDH-mutant iCCA patients; 
subsequently, enrolled patients will receive the experimental treatment 
(olutasidenib) or the reference doublet CisGem. The study has a planned 
enrollment of 200 participants, with an estimated study completion date 
in April 2022. 

An interesting area of current and future research involves the 
combination of PARP inhibitors (PARPi) with IDH targeting agents [84, 
85]. In fact, preclinical models have suggested the sensitivity of 
IDH-mutant CCA cells to PARPi could be enhanced by high levels of 
2-HG [86, 87]; in particular, several reports have observed concomitant 
alterations in the homologous recombination pathway and an increased 
PARPi sensitivity in IDH1-mutant tumors. Based on these premises, an 
ongoing phase II clinical trial is investigating the antitumor activity of 
the PARPi olaparib combined with ceralasertib (NCT03878095) in 
IDH-mutant solid tumors, including iCCA. The primary outcome of this 
study is ORR, with PFS, OS, duration of response, and incidence of 
adverse events which are also assessed as secondary endpoints. The trial 
has a planned enrollment of 50 participants, with an estimated study 
completion date in March 2023. 

Lastly, the option of combining systemic chemotherapy or immu-
notherapy with IDH inhibitors represents another therapeutic option 
under evaluation (Table 1). In fact, a dose de-escalation phase I trial is 
exploring the combination of ivosidenib plus CisGem as first-line treat-
ment in patients with metastatic disease (NCT04088188). The estimated 
enrollment of this trial involves 40 patients, and the study has an esti-
mated completion date in September 2025. Conversely, a phase I trial is 
evaluating the combination of nivolumab plus ivosidenib in advanced 
solid tumors harboring IDH1 mutations, including CCA 
(NCT04056910). The study has a planned enrollment of 35 subjects. 

Fig. 1. Schematic figure reporting the impact of IDH1 and IDH2 mutations on the pathological accumulation of 2-hydroxygluatrate (2-HG). Isocitrate 
dehydrogenase (IDH)1 and IDH2 are located in the cytoplasm and mitochondria, respectively. Due to their role in cell metabolism and the process of decarboxylation 
of isocitrate to α-ketoglutarate, IDH1 or IDH2 mutations result in the pathogenic accumulation of 2-HG, an oncometabolite which promotes carcinogenesis. More 
details are reported in the text. Abbreviations: IDH: isocitrate dehydrogenase; CO2: Carbon dioxide; NADP+: nicotinamide adenine dinucleotide phosphate; NADPH: reduced 
form of NADP. 
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Conclusions 

The recently published results of the ClarIDHy trial have provided 
evidence in favor of the IDH inhibitor ivosidenib as novel therapeutic 
option in IDH-mutant CCA [80]. However, although we are witnessing a 
new era in medical management of CCA, as witnessed by the emergence 
of a wide number of molecularly targeted agents, further efforts are 
needed in order to modify the natural history of CCA. 
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