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(a) (b) (c) .
Figure 1. Guided optical flow in action. Column (a): reference images, columns (b,c): optical flow (top) and corresponding error maps

(bottom). When facing challenging conditions at test time (a), an optical flow network alone (b) may struggle, while an external guide can

make it more robust (c). Both networks in (b,c) have been trained on synthetic data only.

Abstract

This paper proposes a framework to guide an optical

flow network with external cues to achieve superior accu-

racy either on known or unseen domains. Given the avail-

ability of sparse yet accurate optical flow hints from an ex-

ternal source, these are injected to modulate the correlation

scores computed by a state-of-the-art optical flow network

and guide it towards more accurate predictions. Although

no real sensor can provide sparse flow hints, we show how

these can be obtained by combining depth measurements

from active sensors with geometry and hand-crafted optical

flow algorithms, leading to accurate enough hints for our

purpose. Experimental results with a state-of-the-art flow

network on standard benchmarks support the effectiveness

of our framework, both in simulated and real conditions.

1. Introduction

The task of optical flow computation [21] aims at esti-

mating the motion of pixels in a video sequence (e.g., in

the most common settings, from two consecutive frames in

time). As a result, several higher-level tasks can be faced

from it, such as action recognition, tracking and more. Al-

though its long history, optical flow remains far from being

solved due to many challenges; the lack of texture, occlu-

sions or the blurring effect introduced by high-speed mov-

ing objects make the problem particularly hard.

Indeed, the adoption of deep learning for dense optical

flow estimation has represented a turning point during the

years. The possibility of learning more robust pixels simi-

larities [2, 73] allowed, at first, to soften the issues above.

Then the research trend in the field rapidly converged to-

wards direct inference of the optical flow field in an end-to-

end manner [15, 29, 62, 63, 26, 27, 25, 64], achieving both

unrivaled accuracy and run time in comparison to previous

approaches. The availability of a large amount of training

data annotated with ground-truth flow labels, in most cases

obtained for free on synthetic images [10, 15, 29], ignited

this spread. Common to most end-to-end networks is the

use of a correlation layer [15], explicitly computing simi-

larity scores between pixels in the two images in order to

find matches, and thus flow.

This trend, however, introduced new challenges inher-

ently connected to the learning process. Specifically, the use

of synthetic images is rarely sufficient to achieve top perfor-

mance on real data. As witnessed by many works in the field

[15, 29, 62, 63, 26, 27, 25, 64], a network trained on syn-

thetic images already excels on benchmarks such as Sintel

[10], yet struggles at generalizing to real benchmarks such

as KITTI [17, 47]. This phenomenon is known as domain-

shift and is usually addressed by fine-tuning on few real im-

ages with available ground-truth. Nevertheless, achieving

generalization without fine-tuning still represents a desir-

able property when designing a neural network. The main

cause triggering the domain-shift issue is the very different

appearance of synthetic versus real images, with the for-

mer unable to faithfully model noise, lightning conditions
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and other effects usually found in the latter, as extensively

supported by the literature [20, 50, 53, 65, 66, 78, 52, 11].

However, it has been shown that a deep neural network can

be guided through external hints to reduce the domain-shift

effect significantly. In particular, in the case of guided stereo

matching [52], a neural network can be conditioned during

cost-volume computation with sparse depth measurements,

obtained, for instance, employing a LIDAR sensor. This

strategy dramatically increases generalization across do-

mains, as well as specialization obtained after fine-tuning.

Inspired by these findings, in this paper we formulate the

guided optical flow framework. Supposing the availability

of a sparse yet accurate set of optical flow values, we use

them to modulate the correlation scores usually computed

by state-of-the-art networks to guide them towards more

accurate results. To this aim, we first extend the guided

stereo formulation to take into account 2D cost surfaces.

Then, we empirically study how the effect of the sparse

points is affected by the resolution at which the correlation

scores are computed and, consequently, revise the state-of-

the-art flow network, RAFT [64], to make it better lever-

age such a guide. The effectiveness of this approach is

evaluated, at first, from a theoretical point of view by sam-

pling a low amount of ground-truth flow points (about 3%)

– perturbed with increasing intensity of noise – to guide

the network, and then using flow hints obtained by a real

setup. However, in contrast to stereo/depth estimation [52],

sensors capable of measuring optical flow do not exist at

all. Consequently, we show how to obtain such a sparse

guide out of an active depth sensor combined with a hand-

crafted flow method and an instance-segmentation network

[19]. It is worth noting that the setup needed by our pro-

posal is already regularly deployed in many practical appli-

cations, such as autonomous driving, and nowadays even

available in most consumer devices like smartphones and

tablets equipped with cameras and active depth sensors.

Figure 1 shows the potential of our method in a challeng-

ing environment (a) where the same, state-of-the-art flow

network [64] has been run after being trained on synthetic

images only. In its original implementation (b), the net-

work miserably fails. Instead, the same network re-trained

and guided by our framework (c) with a few hints (e.g.,

about 3% of the total pixels, sampled from ground-truth and

perturbed with random noise for this example) is dramati-

cally improved. Experiments carried out on synthetic (Fly-

ingChairs, FlyingThings3D, Sintel) and real (Middlebury,

KITTI 2012 and 2015) datasets support our main claims:

• We show, for the first time, that an optical flow network

can be conditioned, or guided, by using external cues.

To this aim, we pick RAFT [64], currently the state-of-

the-art in dense optical flow estimation, and revise it to

benefit from the guide at its best.

• Supposing to have the availability of less than 3%

sparse flow hints, guided optical flow allows to largely

reduce the domain-shift effect between synthetic and

real images, as well as to further improve accuracy on

the same domain.

• Although virtually no sensor is capable of providing

such accurate flow hints [49], we prove that a LIDAR

sensor, combined with a hand-crafted flow algorithm,

can provide a meaningful guide.

2. Related Work

We briefly review the literature relevant to our work.

Hand-crafted optical flow algorithms. Since the sem-

inal work by Horn and Schunck [21], for years optical

flow has been cast into an energy minimization problem

[8, 7, 9, 60, 59], for instance by means of variational frame-

works [6, 77]. These approaches involve a data term cou-

pled with regularization terms, and improvements to the for-

mer [7, 71] or the latter [54] have represented the primary

strategy to increase optical flow accuracy for years [59].

While these approaches perform well in presence of small

displacements, they often struggle with larger flows because

of the failure of the initialization process performed by the

energy minimization framework. Some approaches over-

come this problem by interpolating a sparse set of matches

[36, 58, 38, 23, 22], but they are however affected by

well-known problems occurring when dealing with pixels

matching, such as motion blur, violation of the brightness-

consistency and so on. More recent strategies consider op-

tical flow as a discrete optimization problem, despite man-

aging the sizeable 2D search space required to determine

corresponding pixels between images [48, 12, 73] is chal-

lenging. First attempts to improve optical flow with deep

networks mainly consisted of learning more robust data

terms by training CNNs to match patches across images

[71, 2, 73], before converging to end-to-end models [15].

End-to-end Optical Flow. The switch towards fully

learnable models for estimating optical flow represented a

major turning point in the field. FlowNet [15] is the first

end-to-end deep network proposed for this purpose. In

parallel, to satisfy the massive amount of training data re-

quired in this new setting, synthetic datasets with dense op-

tical flow ground-truth labels were made available [15, 45].

Starting with FlowNet, a number of architectures further

improved accuracy on popular synthetic [10, 45] and real

[47, 17] benchmarks, designing 2D architectures [29, 30,

79, 72, 64], refinement schemes [28, 70] or, more recently,

4D networks as well [74, 68]. Among them, RAFT [64]

currently represents the state-of-the-art. Concurrently, the

use of deep networks also allowed to investigate on effi-

ciency, leading to many compact models [55, 62, 63, 26,

27, 25, 75, 4] capable of running in real-time at the cost of
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(a) (b) (c)
Figure 2. Modulation of 2D correlation scores. Given a pixel for which a flow hint of values (2,2) is available, we show (a) raw correlation

scores computed in a search window of radius 4, (b) the modulating function centered at hinted coordinates and (c) modulated scores.

slightly lower accuracy, as well as self-supervised settings

[31, 57, 46, 40, 42, 39, 32], sometimes combined with self-

supervised monocular [76, 56, 43, 13, 67] or stereo [69, 41]

depth estimation. Finally, some novel pipelines to automat-

ically generate training data [1, 61] have been designed.

Guided/conditioned deep learning. Finally, a few

works leverage the idea of conditioning deep features, ei-

ther using learned [24, 14, 51] or geometry cues [52]. The

former strategies consist of adaptive instance normaliza-

tion [24], conditioned batch normalization [14] or spatially

adaptive normalization [51], each one learning during train-

ing the modulating terms to be applied. In the latter case,

external hints such as depth measurements by an active

sensor are used to modulate geometric features, e.g. deep

matching costs in the case of stereo matching [52].

Inspired by [52], in this paper, we extend such formula-

tion to take into account 2D matching functions, as in the

case of optical flow, whereas the guided stereo case is lim-

ited to a 1D modulation. Moreover, while for depth estima-

tion tasks, the sparse hints can be easily sourced from active

sensors, e.g. LIDARs, virtually no sensor providing optical

flow measurements exists [49]. Thus, we also show how

to obtain accurate enough cues suited for flow guidance out

of an active depth sensor, this latter sometimes used to esti-

mate 3D scene flow [5, 18] as well.

3. Proposed framework

In this section, we describe our framework for guided

optical flow estimation. First, we recall the guided stereo

matching formulation [52] as the background of our pro-

posal, then we extend it to the case of optical flow.

3.1. Background: Guided Stereo Matching

Given the availability of sparse yet accurate depth mea-

surements coming, for instance, from a LIDAR sensor, a

deep stereo network can be guided to predict more accurate

disparity maps by leveraging such measurements. This out-

come is achieved by acting on a data structure, abstracted

as a cost-volume, where state-of-the-art networks store the

probability of a pixel on the left image to match with the

one on the right shifted by an offset −d.

Specifically, the depth hint associated with a generic

pixel p is converted into a disparity d∗p according to known

camera parameters. Then, the cost-volume entry (i.e., cost-

curve Cp) for pixel p is modulated using a Gaussian func-

tion centered on d∗p, so that the single score of the cost-curve

corresponding to the disparity d = d∗p is multiplied by the

peak of the modulating function. Concerning the remaining

scores, the farther they are from d∗p the more are dampened.

This strategy yields a new cost-curve, C′p. The modulation

takes place only for pixels with a valid depth hint, while

for the others, the original cost-curve Cp is kept. Thus, by

defining a per-pixel binary mask v in which vp = 1 if a depth

measurement is available for pixel p, vp = 0 otherwise, the

modulation can be expressed as:

C′p(d) =

(

1 − vp + vp · k · e
−

(d−d∗p )2

2c2

)

· Cp(d) (1)

with k and c being respectively the height and width of the

Gaussian. For stereo, Cp is often defined by means of a

correlation layer [45] or features concatenation / difference

[33, 34]. A similar practise is followed for optical flow,

although the search domain is 2D rather than 1D.

3.2. Guided Optical Flow

Similar to what is done by stereo networks, a common

practise followed when designing an optical flow network is

the explicit computation of correlation scores between fea-

tures to encode the likelihood of matches. In most cases by

means of 2D correlation layers [15] and, more recently, by

concatenating features [74, 68]. This leads to a 4D cost-

volume structure, often reorganized to be processed by 2D

convolutions for the sake of efficiency [15, 29, 64]. In it,

each entry for a generic pixel p represents a 2D distribution

of matching scores, corresponding to the 2D search range

over which pixels are compared, as shown in Fig. 2 (a).

Accordingly, by assuming a sparse set of flow hints, con-

sisting of 2D vectors (x∗p, y
∗
p) for any pixel p, the correla-

tion volume entry Cp (i.e., a correlation-surface) is modu-

lated by means of a bivariate Gaussian function centered on

(x∗p, y
∗
p), for which an example is shown in Fig. 2 (b) having

(x∗p, y
∗
p) = (2, 2). As a consequence, the single score of the

correlation-surface corresponding to flow (x, y) = (x∗p, y
∗
p)
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results peaked, while the remaining scores are dampened

according to their distance from (x∗p, y
∗
p). Again, consider-

ing a binary mask v encoding pixels with a valid hint, the

guided optical flow modulation can be expressed as:

C′p(x, y) =

(

1 − vp + vp · k · e
−

(x−x∗p )2+(y−y∗p)2

2c2

)

· Cp(x, y) (2)

The resulting correlation-surface is shown in Fig. 2 (c).

Although any differentiable function would be amenable

for modulation, the choice of a Gaussian allows for peak-

ing correlation scores corresponding to the hinted values

together with neighboring scores, thus taking into account

slight deviations of the hint from the actual flow value.

4. Implementing Sensor-Guided Optical Flow

As shown before, in theory, we can seamlessly extend

the original stereo formulation to the optical flow problem.

However, some major issues arise during the implementa-

tion. In particular, 1) existing optical flow architectures are

not suited for guided optical flow and 2) obtaining flow hints

from a sensor is not as natural as in the case of depth estima-

tion, since do not exist equivalent devices capable of mea-

suring the optical flow. In the reminder, we will describe

how to address both problems.

4.1. Network choice and modifications

To effectively guide the neural network to predict more

accurate flow vectors, consistently with stereo formulation

[52] we act on the similarity scores computed by specific

layers of the flow networks. The literature is rich of archi-

tectures leveraging 2D correlation layers [15, 29, 62, 26, 64]

or, more recently, features concatenation in 4D volumes

[74, 68]. Currently, RAFT [64] represents the state-of-the-

art in the field and thus the preferred choice to be enhanced

by our guided flow formulation, in particular, because of 1)

its capacity of computing matching scores between all pairs

of pixels in the two images, 2) its much faster convergence

and 3) its superior generalization capability and accuracy.

However, RAFT and all the networks mentioned before

usually compute correlations / concatenate features at low

resolution, i.e. 1
8

or lower. On the one hand, this does not

allow for a fine modulation since a single flow hint would

modulate a distribution of coarse 2D correlation scores,

making guided flow poorly effective or even harmful for the

network, as we will see in our experiments. On the other

hand, the guided stereo framework [52] proved to be effec-

tive when correlation / concatenation is performed on fea-

tures at 1
4

resolution. Accordingly, we revise RAFT to make

it suited for guided flow as follows: 1) the encoder is modi-

fied to extract features at quarter resolution, by changing the

stride factor from 2 to 1 in the sixth convolutional layer and
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Figure 3. Optical flow hints from a LIDAR – static scene. Top

row: reference images. The remaining rows show flow guides

(left) and error maps (right), densified for better visualization. The

actual density is reported over each error map, with EPE and Fl

computed on pixels with both hints and ground-truth available.

reducing the amount of extracted features from 128 to 96 to

reduce complexity and memory requirements; 2) to perform

convex upsampling of the predicted flow, a H
4
×W

4
×(4×4×9)

mask is predicted instead of H
8
× W

8
× (8×8×9). We dub this

Quarter resolution RAFT variant QRAFT. Experimentally,

we will show that it is much better suited to leverage guided

flow, significantly improving accuracy when fed with hints.

Although similar modifications are theoretically applica-

ble to most state-of-the-art optical flow networks, they re-

sult practically unfeasible on 4D networks [74, 68] because

of 1) the much higher complexity/memory requirements of

4D convolutions and 2) the resolution at which the volumes

are built, usually 1
16

or lower, that would require a much

higher overhead to reach the desired quarter resolution.

4.2. Accurate flow hints from active depth sensors

In this section, we describe a possible implementation

of a real system capable of providing sparse flow guidance.

Although a sensor measuring the optical flow does not exist,

we can implement a virtual one by combining existing sen-

sors and known geometry properties. First, we point out that

pixel flow between two images I0,I1 is the consequence of

two main components: 1) camera ego-motion and 2) inde-

pendently moving objects in the scene.

Ego-motion flow. Concerning the former, it is straight-

forward to compute it by leveraging geometry if camera in-

trinsics K, depth D0 for pixels p0 in I0 and relative pose

T0→1 are known. Accordingly, corresponding coordinates

p1 in I1 can be obtained by projecting p0 in 3D space us-

ing K−1 and D0, applying roto-translation T0→1 and back-

projecting to I1 image plane using K

p1 ∼ KT0→1D0(p0)K−1 p0 (3)

While K is known, depth D0 can be obtained by means of

sensors, since a variety of devices for depth sensing exist, a
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LIDAR for instance. Finally, the relative pose T0→1 can be

obtained by solving the Perspective-n-Point (PnP) problem

[37] between frames I0 and I1, by knowing corresponding

LIDAR depthsD0 andD1 and using matched feature corre-

spondences extracted from I0 and I1, filtered by means of

RANSAC [16] as in [44]. Finally, flow f e
0→1

– or EgoFlow

– can be obtained by subtracting p0 coordinates from p1.

Although noisy, LIDAR measurements are accurate

enough to allow for computing meaningful flow guide when

dealing with static scenes, as shown in Fig. 3 (b). Moreover,

we can further remove noisy flow estimates by deploying a

forward-backward consistency mask ce
0↔1

. This is obtained

by computing the ego-motion backward flow f e
1→0

, by back-

ward warping f e
1→0

according to f e
0→1

and then by compar-

ing warped flow f̃ e
1→0

with f e
0→1

itself, resulting consistent

if the two flows for a same pixel p0 are opposite. Thus,

we consider valid pixels those having an Euclidean distance

between f e
0→1

and − f̃ e
1→0

lower than a threshold (e.g., 3):

ce
0↔1(p0) =















1 if || f e
0→1

(p0) + f̃ e
1→0

(p0)||2 ≤ 3

0 otherwise
(4)

However, since LIDAR points are sparse, they would rarely

match after warping. Thus, we apply a simple completion

filter based on classical image processing techniques [35]

and compute ce
0↔1

by replacing depth maps in Eq. 3 with

their densified counterparts. This allows to discard noisy

measurements and increase the quality of the flow guide at

the expense of density, as shown in Fig. 3 (c). Nonetheless,

this strategy alone cannot deal with dynamic objects.

Independently moving objects flow. The methodology

introduced so far is effective when framing a static scene,

but it results insufficient when moving objects appear. In-

deed, Fig. 4 shows an example in which a car is moving in

the scene (a), whose flow estimated from LIDAR alone is

largely incorrect, as shown in (b). Forward-backward con-

sistency allows to filter out the moving car, but only par-

tially as shown in (c). Moreover, this would not allow for

recovering flow hints for dynamic objects, thus providing

no cues to the neural network we wish to guide. To re-

cover these missing cues, we leverage hand-crafted optical

flow algorithms that indiscriminately process static and dy-

namic parts of the scene without the need for training (thus

not suffering from domain gap issues). Purposely, we se-

lect RICFlow [22] as hand-crafted algorithm because of its

good trade-off between accuracy and fast inference time (a

few seconds on modern CPUs), compatible with state-of-

the-art networks runtime. By running RICFlow, we obtain

f RIC
0→1

and eventually perform the forward-backward consis-

tency check detailed in Eq. 4. The resulting flow, shown

in Fig. 4 (d), is aware of both static and dynamic elements

in the scene, although it suffers of the well-known limita-

tions of hand-crafted algorithms, as visible for instance un-
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Figure 4. Optical flow hints from a LIDAR – dynamic scene.

Top row: reference images. The remaining rows show flow guides

(left) and error maps (right), densified for better visualization. The

actual density is reported over each error map, with EPE and Fl

computed on pixels with both hints and ground-truth available.

der the car. However, as shown by error maps in Fig. 4 (b)

and (d), the two strategies complement each other, with LI-

DAR flow performing better on static regions and RICFlow

on dynamic objects. Thus, we combine the two sources to

obtain a complete and accurate flow guide on both cases,

by distinguishing background regions from moving objects

and picking EgoFlow or RICFlow accordingly.

A strategy to achieve this task consists of explicitly seg-

menting the scene into background regions and foreground

objects (capable of independent motion), e.g. cars or pedes-

trians, for instance, employing an off-the-shelf instance seg-

mentation network such as MaskRCNN [19]. By consider-

ing the segmentation mask s produced by this latter, encod-

ing objects with different IDs, we define f0→1(p0) as:

f0→1(p0) =















f e
0→1

(p0) if s(p0) = 0

f RIC
0→1

(p0) otherwise
(5)

in which s is 0 for pixels not belonging to foreground ob-

jects. This results in a guide that is meaningful on both

static regions and dynamic objects, as shown in Fig. 4 (e).

5. Experimental results

In this section, we collect the outcome of our experi-

ments. We first define the datasets involved and the imple-

mentation/training details. Then, we show: 1) a compari-

son between RAFT and QRAFT, 2) experiments guiding the

two with sparse hints (∼ 3%) sampled from ground-truth or

3) with the flow guide introduced in Sec. 4.2.
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5.1. Datasets.

FlyingChairs (C) and FlyingThings3D (T). Fly-

ingChairs [15] is a popular synthetic dataset used to train

optical flow models. It contains 22232 images of chairs

moving according to 2D displacement vectors over random

backgrounds sampled from Flickr. The FlyingThings3D

dataset [29] is a collection of 3D synthetic scenes belonging

to the SceneFlow dataset [45] and contains a training split

made of 19635 images. Differently from C, objects move in

the scene with complex 3D motions. Traditionally, both are

used to pre-train flow networks: we will consider networks

trained on the former only (C) or both in sequence (C+T).

Sintel (S). Sintel [10] is a synthetic dataset with ground-

truth optical flow maps. We use its training split, count-

ing 1041 images for both Clean and Final passes. In par-

ticular, we divide it into a fine-tuning split (containing se-

quences alley 1, alley 2, ambush 2, ambush 4, ambush 5,

ambush 6, ambush 7, bamboo 1, bamboo 2, bandage 1,

bandage 2, cave 2, cave 4) and an evaluation split (contain-

ing the remaining ones). We also evaluate networks fine-

tuned on the aforementioned fine-tuning split (C+T+S).

Middlebury Flow. The Middlebury Flow benchmark [3]

is a collection of 4 synthetic and 4 real images with ground-

truth optical flow maps. We use it for testing only.

KITTI 2012 and 142 split. The KITTI dataset is a popu-

lar dataset for autonomous driving with sparse ground-truth

values for both depth and optical flow tasks. Two versions

exist, KITTI 2012 [17] counting 194 images framing static

scenes and KITTI 2015 [47] made of 200 images framing

moving objects, in both cases gathered by a car in motion.

We use the former for evaluation only, while a split of 142

images from the latter overlaps with the KITTI raw dataset

[17] for which raw Velodyne scans are provided, thus al-

lowing us to validate guided flow in a real setting, namely

sensor-guided optical flow. The remaining 58 frames (K)

are used in our experiments to fine-tune flow networks pre-

viously trained on synthetic data (C+T+K).

5.2. Implementation details and training protocols.

Our framework has been implemented starting from

RAFT official source code. We follow the training sched-

ules (optimizer, learning rate, iterations and weight decay)

suggested in [64] to train both RAFT and QRAFT in a fair

setting, training in order on C and T for 100K steps each,

then fine-tuning on S or K for 50K steps. Given the higher

memory requirements of QRAFT, we slightly change the

crop sizes to 320×496, 320×640, 400×720 and 288×960

respectively for C, T, S and K, using image batches of 2, 1,

1 and 1, in order to fit into a single Titan Xp GPU. When

turning on guided flow, we set k = 10 and c = 1 follow-

ing [52]. The modulation acts on the correlation map com-

puted between all pixels by downsampling the flow hints

to the proper resolution with nearest neighbor interpolation.

Training Sintel Midd. KITTI 2012 KITTI 142

Dataset Network Clean Final EPE EPE F1 EPE F1

(a) C RAFT 2.30 3.70 0.69 5.26 29.88 10.17 38.00

(b) C QRAFT 2.03 3.64 0.49 5.54 25.96 9.61 32.50

(c) C+T RAFT 1.73 2.55 0.42 3.54 16.51 6.34 23.96

(d) C+T QRAFT 1.60 2.45 0.29 3.42 14.90 6.21 21.47

(e) C+T+S RAFT 1.64 2.21 0.38 2.83 12.78 5.19 19.84

(f) C+T+S QRAFT 1.38 2.02 0.27 2.74 11.27 5.02 17.53

(g) C+T+K RAFT 7.07 10.77 0.77 1.59 6.11 3.09 8.05

(h) C+T+K QRAFT 5.03 6.26 0.68 1.60 5.32 2.58 6.61

(a)† C RAFT 2.09 3.35 0.72 5.14 34.68 8.77 38.78

(c)† C+T RAFT 1.28 2.01 0.35 2.40 10.49 4.14 15.89

(e)† C+T+S RAFT 1.32 1.86 0.33 2.06 8.69 3.80 14.97

(g)† C+T+K RAFT 4.99 6.15 0.66 1.47 5.15 2.83 6.98

(a)†† C RAFT [64] 1.99 3.39 0.68 4.66 30.54 7.93 35.01

(c)†† C+T RAFT [64] 1.41 1.90 0.32 2.15 9.30 3.69 14.96

Table 1. Comparison between RAFT and QRAFT. Evaluation

on Sintel selection for validation (Clean and Final), Middlebury,

KITTI 2012 and KITTI 142 split. † stands for ×3 larger batch. ††

stands for ×2 GPUs (×6 larger batch). Bold: best results on the

same training setup. Red: best overall result with single GPU.

During training, flow guide is obtained by randomly sam-

pling 1% pixels from the ground-truth and applying random

uniform noise ε ∈ [−1, 1], in order to make the network

robust to inaccurate flow hints at test time. An ablation

study on these hyper-parameters is reported in the supple-

mentary material. Our demo code is available at https:

//github.com/mattpoggi/sensor-guided-flow.

5.3. Comparison between RAFT and QRAFT

We first validate the performance of QRAFT with re-

spect to the original RAFT architecture [64], i.e. without

using the guide. Tab. 1 collects the outcome of this compar-

ison, carried out on Sintel, Middlebury and KITTI datasets

with various training configurations. On top, we show the

results achieved by training both RAFT and QRAFT with

the same batch size (i.e., 2 on C, 1 on T, S and K). We can

notice how QRAFT outperforms RAFT when trained in the

same setting thanks to the higher resolution at which it op-

erates, with very few exceptions – (a) vs (b) and (g) vs (h)

on KITTI 2012 EPE. However, QRAFT adds a high com-

putational overhead compared to RAFT. Indeed, this latter

can be trained with ×3 larger batch size on the same hard-

ware (marked with †). In this setting, RAFT results often

better than QRAFT, except on Middlebury on most cases –

(a)† vs (b), (c)† vs (d) and (e)† vs (f) – and on KITTI 142

after fine-tuning – (g)† vs (h). We report, for completeness,

the accuracy of models provided by the authors [64], al-

though trained with ×2 GPUs and thus not directly compa-

rable (marked with ††). Concerning efficiency, RAFT and

QRAFT run respectively at 3.10 and 1.10 FPS on KITTI

images (0.32 vs 0.91 sec per inference) on a Titan Xp GPU.

5.4. Guided Optical Flow – simulated guide

To evaluate the guided flow framework on standard

datasets, we simulate the availability of sparse flow hints
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Training Sintel Middlebury Flow KITTI 2012 KITTI 142

Dataset Network Clean Final EPE EPE Fl (%) EPE Fl (%)

✗ guided ✗ guided ✗ guided ✗ guided ✗ guided ✗ guided ✗ guided

(a)† C RAFT 2.09 1.70 3.35 2.54 0.72 0.63 5.14 3.51 34.68 19.26 8.77 5.39 38.78 25.73

(b) C QRAFT 2.03 1.13 3.64 1.64 0.49 0.44 5.54 2.96 25.96 15.89 9.61 4.06 32.50 19.99

(c)† C+T RAFT 1.28 1.32 2.01 1.73 0.35 0.48 2.40 2.99 10.49 15.69 4.14 4.53 15.89 21.46

(d) C+T QRAFT 1.60 0.86 2.45 1.22 0.29 0.28 3.42 2.08 14.90 8.86 6.21 3.15 21.47 13.31

(e)† C+T+S RAFT 1.32 1.28 1.86 1.54 0.33 0.45 2.06 2.57 8.69 12.46 3.80 4.04 14.97 18.18

(f) C+T+S QRAFT 1.38 0.73 2.02 1.01 0.27 0.25 2.74 1.83 11.27 7.58 5.02 2.82 17.53 11.85

(g)† C+T+K RAFT 4.99 3.35 6.15 3.95 0.66 0.70 1.47 1.84 5.15 7.13 2.83 2.83 6.98 8.74

(h) C+T+K QRAFT 5.03 1.63 6.26 2.08 0.68 0.54 1.60 1.08 5.32 3.19 2.58 1.22 6.61 3.78

Sintel Middlebury Flow KITTI 2012 KITTI 142

Clean Final Density (%) EPE Density (%) EPE Fl (%) Density (%) EPE Fl (%) Density (%)

(i) Sampled Guide 2.30 2.30 3.00 0.77 2.95 2.29 18.65 2.83 2.30 18.12 2.89

Table 2. Evaluation – Guided Optical Flow. Evaluation on Sintel sequences selected for validation (Clean and Final), Middlebury, KITTI

2012 and KITTI 142 split. Results without (✗) or with (guided) flow guide. On the bottom, (i) statistics concerning the sampled guide.

(∼ 3%) at test time by randomly sampling from the ground-

truth flow labels. Since the availability of a perfect guide as

the one obtained by sampling from ground-truth is unreal-

istic, we perturb both (x,y) in the sampled guide with addi-

tive random noise ∈ [−3, 3] for Sintel and KITTI, [−1, 1] for

Middlebury (because of the much lower magnitude of flow

vectors in it). Tab. 2 collects the outcome of this evaluation,

carried out with both RAFT and QRAFT trained on C, C+T,

C+T+S and C+T+K. For RAFT, we select the models from

Tab. 1 that have been trained with ×3 batch size († entries),

thus comparing the two at their best given the single Titan

GPU available in our experiments. For both networks, we

report results when computing optical flow without a guide

(✗ entries) or when trained and evaluated in the guided flow

setting (guided entries). Row (i) shows the error and den-

sity of the sampled guide. In the supplementary material we

report experiments at varying density and noise intensity.

Synthetic datasets. Results on the Sintel dataset show

how both RAFT and QRAFT benefit from the guide. How-

ever, QRAFT yields much larger improvements thanks to

the modulation performed on correlation scores at quarter

resolution rather than at eighth resolution. The accuracy of

both RAFT and QRAFT gets better and better when training

on more synthetic data, respectively C, C+T and C+T+S.

When fine-tuning on real data (C+T+K), the error on Sin-

tel increases because of the domain-shift. However, guiding

both RAFT and QRAFT softens this effect significantly.

Real datasets. When considering Middlebury and

KITTI datasets, we can notice how RAFT benefits from the

guide when trained on C only (a), while after being trained

on T (c) and S/K (e), (g) the guide results ineffective and,

in most cases, leads to lower accuracy. On the contrary,

QRAFT is always improved by the guided flow framework,

consistently achieving the best results on each evaluation

dataset and training configuration. In particular, we can no-

tice how guided QRAFT achieves superior generalization

compared to RAFT and QRAFT (i.e., when trained on C,

C+T or C+T+S and evaluated on KITTI 2012 and KITTI

KITTI 142

Guide Source EPE Fl (%) Density (%)

EgoFlow – no filtering 3.25 9.72 3.99

EgoFlow – filtering 2.39 6.41 3.24

RICFlow 2.32 8.68 85.48

EgoFlow +RICFlow +Motion Mask [56] 1.32 5.04 3.14

EgoFlow +RICFlow +Motion Prob. [67] 1.22 4.35 3.09

EgoFlow +RICFlow +MaskRCNN [19] 0.80 2.35 3.16

Table 3. Flow guide accuracy. Evaluation on KITTI 142 split for

flow hints generated by using different cues.

142), as well as it improves the results even after fine-tuning

on similar domains (C+T+K).

In summary, these experiments confirm the effective-

ness of the guided flow framework in a pseudo-ideal case.

Nonetheless, the flow hints are 1) sampled uniformly in the

image and 2) perturbed with simulated noise. Although the

latter introduces the non-negligible EPE and Fl shown in

Tab. 2 (i), it cannot appropriately model what occurs in a

real case like the one we are going to investigate next.

5.5. SensorGuided Optical Flow

In this section, we evaluate the guided optical flow

framework in a real setting, in which the flow hints are ob-

tained by an actual sensors suite, as the one sketched in Sec.

4.2. For this purpose, the KITTI 142 split is the only dataset

providing both LIDAR data and ground-truth flow labels

that we use for this evaluation. We point out that, since the

LIDAR is not available for the training data, we train by

sampling the guide from ground-truth as before. For this

evaluation, we consider only QRAFT, since RAFT poorly

performed when guided with sampled ground-truth.

Flow guide accuracy. First, we quantitatively evaluate

the accuracy of the flow hints produced by the techniques

introduced before. Tab. 3 reports the results achieved by

the different approaches shown qualitatively in Fig. 4. Not

surprisingly, the LIDAR alone (EgoFlow) produces a high

number of outliers and, in general, a large EPE. As de-

scribed before, properly handling dynamic objects allows
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Training KITTI 142

Dataset Network EPE Fl (%)

sensor- sensor-

✗ guided ✗ guided

(a) C QRAFT 9.61 5.88 32.50 25.40

(b) C+T QRAFT 6.21 4.55 21.47 17.09

(c) C+T+S QRAFT 5.02 4.32 17.53 15.59

(d) C+T+K QRAFT 2.58 2.08 6.61 5.97

Table 4. Evaluation of Sensor-Guided Optical Flow. Evaluation

on KITTI 142 split, without (✗) or with (sensor-guided) hints.

us to obtain a much more reliable flow guide, as shown in

the last entry of the table, used for the following evaluation.

We also show that using motion masks [56] or probabilities

[67] in place of semantics [19] results less effective.

Compared to guide from Tab. 2 (i), the LIDAR hints

have lower EPE/Fl and might expect to be even more effec-

tive. However, this is not the case because of their less reg-

ular occurrence in the image, compared to the uniform dis-

tribution obtained by sampling from ground-truth and used

during training (since the LIDAR guide is not available for

the training data), as shown in the supplementary material.

Moreover, it can also be ascribed to the different perturba-

tions found in actual flow hints.

Sensor-guided QRAFT. Once computed reliable hints,

we evaluate the performance of QRAFT when guided ac-

cordingly. Tab. 4 collects the accuracy achieved by train-

ing QRAFT in the different configurations studied so far,

without (✗) or with guide sampled from ground-truth during

training (sensor-guided) and with the best guide selected

from Tab. 3 for testing. Although, for the reasons outlined

before, the gain is lower compared to the use of pseudo-

ideal hints (see Tab. 2 for comparison), guided QRAFT

consistently beats QRAFT in any configuration. Fig. 5

shows results by QRAFT (b) and its sensor-guided counter-

part (c) both trained on C+T+S, highlighting how the guide

obtained by a real system – the one in Fig. 4 (e) – softens

the effect due to domain-shift.

Qualitative results – handheld ToF camera. The Velo-

dyne used in KITTI is one among many sensors suited for

sensor-guided optical flow. We show qualitatively addi-

tional results obtained with the low-res ToF sensor found in

the Apple iPhone Xs, in Fig. 6. Although on these images,

QRAFT suffers more from light and shadows than RAFT,

sensor-guided QRAFT vastly outperforms both. We report

additional examples in the supplementary material.

Limitations. Our sensor-guided flow hints strategy is ef-

fective yet affected by some limitations. Specifically, it re-

lies on accurate pose estimation and objects segmentation,

the former performed starting from matches on images –

and thus possibly failing in the absence of distinctive fea-

tures (e.g., large untextured regions) – and the latter by an

instance segmentation network – failing in the presence of
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Figure 5. Qualitative results, KITTI 142 split. From top: refer-

ence images (a) followed by flow (left) and error (right) maps by

QRAFT, trained on C+T+S without (b) or with (c) sensor-guide.

RAFT † RAFT †† [64] QRAFT QRAFT

✗ ✗ ✗ sensor-guided

C
C
+

T

Figure 6. Qualitative results – iPhone Xs. On left: first (top) and

second frame (bottom). On remaining columns, results by RAFT

(×3 batch), RAFT with authors’ weights [64] (2× GPUs), QRAFT

and sensor-guided QRAFT, trained on C (top) or C+T (bottom).

unknown objects. The failure of at least one step produces

unreliable flow hints as reported in the supplementary ma-

terial. Despite these limitations, the outcome reported in

Tab. 4 highlights clearly that sensor-guided optical flow is

advantageous when a depth sensor is available, as always

more often occurs in practical applications nowadays.

6. Conclusion

This paper has proposed a new framework, sensor-

guided optical flow, that leverages flow hints to achieve

better accuracy from a deep flow network. Purposely, we

have revised the state-of-the-art architecture RAFT [64] to

achieve superior accuracy taking advantage of our frame-

work. We have also shown how, although a sensor measur-

ing flow virtually does not exist [49], reliable enough flow

hints can be obtained using an active depth sensor and a

hand-crafted flow algorithm. Experimental results in sim-

ulated and real settings highlight the effectiveness of our

proposal. With future advances in sensing technologies, the

proposed sensor-guided optical flow can push forward fur-

ther the state-of-the-art in dense flow estimation.
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