
01 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

ScaFi-Web: A Web-Based Application for Field-Based Coordination Programming / Aguzzi G.; Casadei R.;
Maltoni N.; Pianini D.; Viroli M.. - STAMPA. - 12717:(2021), pp. 18.285-18.299. (Intervento presentato al
convegno 23rd IFIP WG 6.1 International Conference on Coordination Models and Languages,
COORDINATION 2021 held as part of 16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021 tenutosi a Valletta, Malta (Online) nel June 14 – 18, 2021) [10.1007/978-3-
030-78142-2_18].

Published Version:

ScaFi-Web: A Web-Based Application for Field-Based Coordination Programming

Published:
DOI: http://doi.org/10.1007/978-3-030-78142-2_18

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:

This version is available at: https://hdl.handle.net/11585/874976 since: 2022-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-78142-2_18
https://hdl.handle.net/11585/874976

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Aguzzi, G., Casadei, R., Maltoni, N., Pianini, D., Viroli, M. (2021). SCAFI-WEB: A Web-

Based Application for Field-Based Coordination Programming. In: Damiani, F.,

Dardha, O. (eds) Coordination Models and Languages. COORDINATION 2021.

Lecture Notes in Computer Science, vol 12717. Springer, Cham, pp. 285–299

The final published version is available online at

https://doi.org/10.1007/978-3-030-78142-2_18

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-78142-2_18

ScaFi-Web: a Web-based Application for

Field-based Coordination Programming

Gianluca Aguzzi, Roberto Casadei[0000−0001−9149−949X], Niccolò Maltoni,
Danilo Pianini[0000−0002−8392−5409], and Mirko Viroli[0000−0003−2702−5702]

Alma Mater Studiorum–Università di Bologna, Italy
{gianluca.aguzzi, roby.casadei, niccolo.maltoni, danilo.pianini,

mirko.viroli}@unibo.it

Abstract. Field-based coordination is a model for expressing the co-
ordination logic of large-scale adaptive systems, composing functional
blocks from a global perspective. As for any coordination model, a proper
toolchain must be developed to support its adoption across all develop-
ment phases. Under this point of view, the ScaFi toolkit provides a
coordination language (field calculus) as a DSL internal in the Scala

language, a library of reusable building blocks, and an infrastructure
for simulation of distributed deployments. In this work, we enrich such
a toolchain by introducing ScaFi-Web, a web-based application allow-
ing in-browser editing, execution, and visualisation of ScaFi programs.
ScaFi-Web facilitates access to the ScaFi coordination technology by
flattening the learning curve and simplifying configuration and require-
ments, thus promoting agile prototyping of field-based coordination spec-
ifications. In turn, this opens the door to easier demonstrations and ex-
perimentation, and also constitutes a stepping stone towards monitoring
and control of simulated/deployed systems.

Keywords: Field-based coordination · Aggregate Programming · On-
line Playground.

1 Introduction

Emerging trends such as the Internet of Things (IoT) and Cyber-Physical Sys-
tems (CPS) foster a vision of large-scale coordinated systems of situated devices
that operate in a dynamic environment and seamlessly collaborate to reach global
goals. When designing such systems, one key engineering challenge is mapping
the intended global and adaptive behaviour that the system should exhibit to
the local behaviour and interaction of its components. To tackle this issue, re-
search often looked at nature for inspiration: (bio)chemistry [35], ecosystems [37],
ethology [31], and fields in physics [25,26]. Accordingly, several approaches in
the literature proposed the idea of programming coordination and adaptation
through reusable abstractions [13,21] and interaction structures [24,1,23]. Re-
cently, aggregate computing [8] has emerged as a paradigm, stemming from field-
based coordination [34], fostering a top-down and global-to-local approach to

2 G. Aguzzi et al.

the specification of the collective adaptive behaviour of a system. The idea is
to exploit the (computational) field abstraction – a “collective” data structure
mapping any device of the system to a corresponding value – to program the
system as a whole; namely, the program expressing the behaviour of the collec-
tive takes the form of a composition of functions from input fields (e.g., sensor
fields) to output fields (e.g., value and actuation fields) [5]. Aggregate program-
ming is supported by several various domain-specific languages (DSL), including
Proto [7], a Scheme-based DSL; Protelis [29], a Java-interoperable stand-alone
DSL; FCPP [2], a lightweight native implementation; and ScaFi [19], a modern
Scala-based DSL.

Language-based approaches often enjoy solid formal foundations and demon-
strable properties [34], but in turn require the user a potentially steep learning
curve which includes learning a paradigm, a language, and a development toolset.
In the case of languages for distributed systems, a further element of complexity
exists: programs should be executed on a network of devices. Due to the costs
and impracticality of real deployments, a typical approach for studying, testing,
and developing applications with distributed programming languages consists in
using simulators. However, this introduces further practical issues to the setup
of a development environment; such accidental complexity could hinder accessi-
bility.

Along the line of pioneering platforms such as Web Proto [32], this paper
presents ScaFi-Web, an online playground for the ScaFi aggregate program-
ming DSL, featuring an intuitive web-based graphical user interface (GUI), an
integrated simulation environment with zero-configuration overhead from the
user, and a guided tour of the key language features. The paper continues as
follows: Section 2 discusses motivation and related work; Section 3 provides
background on ScaFi and field calculus; Section 4 covers the ScaFi-Web plat-
form (the tool at the core of this contribution) and its use cases; finally, Section 5
presents the conclusions and points out directions for future work.

2 Motivation and Related Work

Learning a new language may not be trivial, especially when it involves learning
new paradigms and/or new development tools. The literature on learning com-
putational concepts suggests that two key elements for effectively introducing
novel programming concepts are simplicity and visibility [12], intended, respec-
tively, as the number of interacting parts that should be understood to realise
how the system works, and as the possibility to isolate and inspect such parts.
Also, in [11] four critical dimensions are identified:

1. orientation, namely finding out what a programming language is for and
which class of problems it applies well to;

2. understanding of the notional machine, namely understanding how changes
in the program affect results;

3. notation, namely getting acquainted with the syntax and the underlying
semantics; and finally

ScaFi-Web 3

4. pragmatics, including all skills related to assemble and use an environment
supporting development, testing, and debugging.

To tackle the problem, it is common practice to provide graphical tools that
enable the user to kickstart a project. Typically, however, these tools have pre-
requisites (runtimes, editors, integrated development environments, plugins, cus-
tom software modules) that require an investment of time and effort to begin the
learning process. This initial investment, usually easily tolerated by the experi-
enced practitioner or the committed learner, could be costly enough to discour-
age occasional users from experimenting with a novel tool or language. For this
reason, all major modern general-purpose languages have adopted the strategy
of providing web-based programming playgrounds with the sole prerequisite of
a modern web browser, using no third-party tool at all. A purely browser-based
tool has several advantages over a classic application:

– portability – experimentation can happen from any device equipped with
a modern browser, thus including devices usually not supported by classic
development stacks (gaming consoles, smart TVs, set-top boxes, and the
like), as well as niche operating systems;

– future-proofness – any future software environment with a standard-
compliant web browser will be able to run the application;

– zero-permission – the absence of any part to be locally installed implies that
the experimentation can happen entirely in userspace, while very often a
correct local installation of a runtime environment should be performed by
a system administrator;

– zero-time experimentation – executing a simple experiment is as easy as
opening a browser tab and typing the program, as opposed to manually
using compilers or starting a stand-alone application.

Well-designed web playgrounds hide many of the issues related to the prag-
matics of learning a language, postponing them and hence allowing developers to
focus on other dimensions first. Also, by presenting a carefully designed learning
path of increasingly complex exercises and examples, these platforms increase
simplicity and favour the understanding of the notional machine, ultimately
promoting self-orientation as well. Examples of web playgrounds for modern
programming languages include Kotlin Koans1, ScalaFiddle2, and Rust Play-
ground3.

Web Proto [32] pioneered the approach for languages dedicated to distributed
systems by providing:

– an online editor,
– an interpreter for the Proto [7] language for spatial computing based on

emscripten4,

1 https://play.kotlinlang.org/koans
2 https://scalafiddle.io/
3 https://play.rust-lang.org/
4 https://emscripten.org/

https://play.kotlinlang.org/koans
https://scalafiddle.io/
https://play.rust-lang.org/
https://emscripten.org/

4 G. Aguzzi et al.

– an in-browser simulated environment, and
– the possibility to share code between different users.

Unfortunately though, Proto is no longer maintained (as it has been replaced
by Protelis [29]5, which has no web environment at the time of writing); and
Web Proto, to the best of our knowledge, is no longer reachable, and there is
no plan to deploy it again. The approach proposed in Web Proto inspired the
tool at the centre of this paper: ScaFi-Web, which directly supports modern
aggregate programming tools like ScaFi (see Section 3), provides a cleaner and
clever web-based technical solution (see Section 4), and has well-defined peda-
gogical use cases (see Section 4.2). Unlike Web Proto, which is a JavaScript

re-implementation of Proto, this project fully reuses the mainline ScaFi code
through transpilation into a browser-compatible target, considerably reducing
maintenance and enabling feature parity with the classic version. Indeed, the
DSL and the simulator provided by ScaFi have been successfully brought into
the JavaScript world leveraging Scala.js, with no special changes or disrup-
tive adaptations of the original code. Furthermore, while Web Proto was designed
to support only one language, several ScaFi-Web components (primarily, the
visualisation section) are agnostic to the aggregate language of choice, in the
spirit of supporting different languages and platforms (distributed or simulated)
in the future.

3 The ScaFi Aggregate Programming Toolchain

ScaFi6 (Scala Field) is a modular Scala-based toolchain for aggregate com-
puting. It provides (i) a DSL implementation of the field calculus [34,19] de-
signed to simplify embedding in common general-purpose languages; (ii) a li-
brary of reusable aggregate behaviour functions; (iii) simulation support for log-
ical networked systems driven by ScaFi programs (aggregate systems), through
an internal engine or a plug-in for the Alchemist simulator [28,36]; and (iv) an
actor-based platform [18] to deploy aggregate systems in real-world clusters.
ScaFi has been used as a framework for experimenting with new field calcu-
lus constructs [20] and for building decentralised algorithms and applications
in large-scale computing scenarios ranging from trust-based collaborative sys-
tems [16] to resource coordination in IoT and edge computing [17]. In a typical
aggregate application development workflow, a developer iteratively constructs
a ScaFi program, performs a set of simulations and tests to evaluate how the
system performs in a range of target environments, iterates until sufficient con-
fidence on correctness is achieved, and finally deploys the program to a set of
nodes running an aggregate computing middleware (such as the ScaFi actor-
based platform), when further maintenance, monitoring, and control is generally
required. ScaFi, with respect to other aggregate programming languages, bene-
fits from being an internal DSL, enabling reuse of the toolchain available for its
host language (Scala).

5 https://bit.ly/3uRZYgp
6 https://scafi.github.io

https://bit.ly/3uRZYgp
https://scafi.github.io

ScaFi-Web 5

3.1 Field calculus and the ScaFi DSL

Field calculus The field calculus [5] is a core language that captures the essen-
tial aspects for programming self-organising systems. In this language, programs
– also called field programs or aggregate programs – consist of expressions that
conceptually manipulate distributed state. The distributed state is modelled by
the computational field abstraction, which is essentially a map from any device
of a system domain to computational values. For instance, globally querying a
“temperature sensor” in a sensor network would yield a field of temperatures,
which maps each device with the corresponding temperature that it read. The
field calculus is based on a minimal set of operators such as the following.

– Stateful field evolution: expression rep(e1){(x) =>e2} describes a field
evolving in time. e1 imposes the initial field value, and function (x) => e2
declares how the field changes at each execution.

– Neighbour interaction: expression nbr{e} builds a neighbouring field, a view
of the field values in the surroundings of each device where neighbours are
mapped to their evaluations of e.

– Domain partitioning : expression if(e0){e1}{e2} splits the computational
field into two non-communicating zones hosting isolated subcomputations:
e1 where e0 is true, and e2 where e0 is false.

System model and execution model The logical structure of an aggregate
system merely consists of a network of nodes connected through a neighbouring
relationship. The network semantics of the field calculus [5] defines what local
execution protocol any device belonging to the aggregate system should follow
so that an aggregate program leads to the designed collective behaviour. The
basic idea is that any device should “continuously” sense, coordinate, and act
over its local context. Therefore, every device performs asynchronous rounds of
execution, where each round consists of the following steps:

1. context gathering—the device retrieves sensor data, messages from neigh-
bours, and its previous state;

2. computation—the device evaluates the aggregate program, which yields an
output as well as a coordination message – called an export – meant to be
shared with neighbours;

3. context action—the device runs actuations and broadcasts the export to its
neighbours.

Following this protocol, a collective execution of a field program can lead to
self-organising behaviour, in a powerful, emergent way—cf. the channel example
in Section 3.2.

The ScaFi aggregate programming language The ScaFi DSL implements
a field calculus variant, called FScaFi [19], in which nbr does not directly yield
a computational field but rather must be evaluated while folding over neigh-
bourhoods (through a function foldhood, described next). The core language
constructs are captured in Scala through the following trait:

6 G. Aguzzi et al.

trait Constructs {

def nbr[A](expr: => A): A

def rep[A](init: =>A)(fun: (A) => A): A

def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A

// Contextual, but foundational

def mid(): ID

def sense[A](name: LSNS): A

def nbrvar[A](name: NSNS): A

}

In particular, mid is a built-in sensor that provides the identifier (ID) of the
running node, whereas sense and nbrvar are two operators included for inter-
acting with the environment. The former abstracts a local sensor queries (e.g.,
the value of a temperature sensor), and the latter instead produces a field of local
sensor readings that are relative to neighbours. A typical example of nbrvar is
nbrRange, an “environmental sensor” that creates a field of distances mapping
every neighbour with its relative distance from the running node. Moreover, the
field calculus if expression became branch in Scala, because if is a reserved
keyword. Now, we provide a brief tutorial on ScaFi. As a very trivial example,
a local value such as

true

can be used to represent a uniform and constant field in the system (indeed, any
node evaluates such expression to true). Using rep, we can evolve state, e.g., to
implement a local round counter:

rep(0){ _ + 1 } // _ + 1 is a Scala shorthand for function x => x + 1

This code snippet describes a field that starts from 0 and then evolves by increas-
ing by one. To pass from purely local to global computations, we need devices
to interact. This is possible by combining the nbr and foldhood operators:

foldhood(mid()) { Math.min } { nbr(mid()) }

The foldhood operator accepts three arguments: (i) an initial value (ii) an
accumulator, i.e. a strategy used to combine a neighbour’s value to the partial
accumulation, and (iii) an expression to be evaluated against any neighbour.
In this example, we gather the neighbours’ IDs, folding over them to take the
minimum ID in the neighbourhood. We can combine rep and foldhood to build
fields progressively constructed and refined by coordination of all the nodes. For
instance, expression

rep(mid()){ minId => foldhood(minId) { Math.min } { nbr(mid()) } }

represents a gossip process that will produce a field eventually tending to the
minimum ID of the whole system.

The key idea of aggregate computing is to find recurrent patterns and then
use the functional abstraction to create reusable building blocks [33]. One of

ScaFi-Web 7

these is G, which generalises gradient computations [4] to allow propagation of
information form a node outwards:

G[F](source: Boolean, field: F, accumulator: F => F, metric: Metric)

G diffuses information by accumulating field data while ascending a potential
field centred where source is true. Graphically, Figure 1 shows the operator
behaviour. On top of G, we can build other significant functions as distanceTo
(i.e., a self-healing version of the Bellman-Ford algorithm [27]),

def distanceTo(source: Boolean, metric: Metric = nbrRange): Double = {

val field = if(source){ 0.0 } { Double.PositiveInfinity }

G(source, field, _ + metric(), metric)

}

and distanceBeetwen (i.e. the network-propagated self-healing minimum dis-
tance between source and target nodes):

def distanceBetween(source: Boolean,target: Boolean,

metric: Metric = nbrRange

): Double =

G(source, distanceTo(target, metric), v => v, metric = metric)

Finally, using only this subset of operators, it is possible to build non-trivial
examples, such as the self-healing channel explained below.

G(source, f, acc, metric)

acc(acc(f))

f f f?

? ?
acc(f) acc(f)

Fig. 1. Evolution in time of G. Red color marks the source node. The links express a
neighbour relation between nodes. The time flows from the left to the right. Initially, the
source node computes its value as f (initial value). The potential field will be created
following the metric passed. Step by step, f will be shared through the accumulator
function.

3.2 The Channel Example

A paradigmatic example of aggregate computing is the channel, an algorithm
yielding a self-healing Boolean field that is (eventually) true along the minimal

8 G. Aguzzi et al.

Fig. 2. ScaFi-Web (https://scafi.github.io/web) running the channel example.

hop-by-hop path from a source to a target device (as identified also by Boolean
fields). Self-healing field means that the channel structure recovers itself after
failures, without human interaction. This can be used e.g. for navigating people
or streaming information towards target locations. An implementation leverages
distance estimations (based on gradients [4]) and the triangular inequality:

distanceTo(source) + distanceTo(target) <= distanceBetween(source,target)

Changes to the inputs (source and target fields, topology, neighbours’ messages
with distance estimates) affect local outputs, which then affect neighbours’, and
ultimately the global response of the system—effectively steering the emergent,
self-organising (i.e. global patterns emerge from local node’s interactions) be-
haviour of the aggregate. More details on this example can be found in [6].
Figure 2 shows a snapshot of a channel simulation in ScaFi-Web.

3.3 ScaFi Programming in Practice

Programming in ScaFi requires building a model of the system, writing a field-
based program assuming that model, and finally deploying and running the
corresponding application. However, setting up a (simulated) system requires
familiarity with a set of tools and notions, including: build automation and de-
pendency management tools (such as SBT or Gradle) to import ScaFi modules
as dependencies, integrated-development environments (such as IntelliJ Idea) for
editing programs, library and framework APIs for configuring and integrating
several components. In particular, some boilerplate code or configuration files
may be needed: the program expressing the system behaviour, the structure of

https://scafi.github.io/web

ScaFi-Web 9

the simulated system, the dynamics of the simulated system (cf. scheduling, fail-
ure injection, interaction) and the environment, simulation parameters (e.g., for
reproducibility and control of scenarios), as well as inspection and visualisation
aspects (e.g., of the graphical evolution of the system and the data produced by
its components).

Therefore, any support reducing the gap from the aggregate specification
to a graphical representation of a running system can be useful to promote
accessibility, learning, and experimentation—hence motivating ScaFi-Web.

4 ScaFi-Web

ScaFi-Web7 is an online playground for learning the ScaFi toolkit, experi-
menting with it, and monitoring executions in a browser. It features:

– an interactive editor for writing ScaFi programs;
– a guided tour of the most prominent features, kickstarting development;
– a set of increasingly complex examples;
– an in-browser simulated network of devices hosting the execution;
– visualisation, inspection, and interaction tools integrated with the simulated

environment.

Besides flattening the learning curve of a novel paradigm and allowing first-
hand experimentation with zero configuration, ScaFi-Web also provides a step-
ping stone towards a monitoring and control system for aggregate computing
deployments. In the following sections, we explain the architecture in detail,
motivating design choices and exposing some relevant use cases and opportuni-
ties.

4.1 Architecture details

javascript interpreter

scala.js

aggregate programhtml rendering

scafi core scafi simulator scafi web

in-browser executor
transcompilation service /compile

/getCodescala.js compiler + linker

Fig. 3. Architecture of ScaFi-Web, with the involved technologies.

7 https://scafi.github.io/web

https://scafi.github.io/web

10 G. Aguzzi et al.

ScaFi-Web finds its novelty in the capability of running the whole aggre-
gate program inside the runtime of the browser. Most modern browsers can ex-
ecute a limited number of code targets, mostly JavaScript and WebAssembly
(WASM) [30]. Scala, the language hosting the ScaFi DSL, primarily targets
the Java Virtual Machine (JVM), whose execution on browser platform was
deprecated8 years ago and is no longer supported.

To be able to execute ScaFi code (and thus Scala code) client-locally, a
transcompilation from Scala to one of the aforementioned languages is required;
JavaScript has been selected as the only web target currently supported by
the Scala native compiler9. User-written Scala code can be transcompiled into
JavaScript on-the-fly and injected into the simulator, leveraging the scalac

compiler with Scala.js [22]. The Scala compiler, however, currently requires
to be executed in a JVM, and hence off-browser (despite being written mostly
in Scala, there is no JavaScript version of scalac at the time of writing).
Consequently, the ScaFi-Web architecture has been designed with two com-
ponents: a frontend hosting the interpreter, simulator, and user interface; and
a transcompilation service, in charge of producing JavaScript code for the
aggregate specifications written in Scala.

Transcompilation service The remote service instance, depicted on the left
of Figure 3, exposes the transcompilation service via RESTful HTTP APIs.
The route /compile accepts POST requests containing the ScaFi code to be
transcompiled. Leveraging the Scala compiler, it creates a REST resource iden-
tified by a UUID with the transpiled JavaScript code. The identifier returned
to the client can be used on the /getCode/{UUID} API via GET requests to
download the transpiled code.

The service is platform-agnostic and can be executed on all operating systems
and runtimes that can host a JVM. To simplify the deployment of ScaFi-Web

instances, the service has been made publicly available10 in a containerised [14]
fashion as a Docker image, deployable on any compatible container runtime.

Client interface Client-side, a Single-Page Application (SPA) was imple-
mented to manage (i) programs execution, (ii) simulation management, and
(iii) page rendering. The interface, as visible in Figure 2, is structured in three
parts, each exposing a different logical control.

On the left, a configuration panel enables control of the network shape and
device sensors, enabling users to design their own deployment configurations.
Moving on the central part, an editor is available to fiddle with the provided
examples or write fresh new code. Editing can be performed in two flavours:
simplified (selected by default), or advanced.

8 http://openjdk.java.net/jeps/289
9 https://archive.is/SaV6B

10 https://hub.docker.com/r/gianlucaaguzzi/scafi-web

http://openjdk.java.net/jeps/289
https://archive.is/SaV6B
https://hub.docker.com/r/gianlucaaguzzi/scafi-web

ScaFi-Web 11

In simplified mode, inspired by the interaction typical of REPL inter-
preters [10], the editor hides all the boilerplate code, allowing for a very straight-
forward hands-on with the core language mechanisms. In advanced mode, in-
stead, these details are exposed, bridging the gap towards full-fledged develop-
ment environments.

Finally, the program can be executed with the controls available on the right-
most section of the page. Pressing the play button causes the application to
transpile under-the-hood the code in the editor (by leveraging the aforemen-
tioned remote service), injecting the resulting JavaScript in the browser-hosted
ScaFi simulator.

4.2 Usage scenarios

Learning and education Web-based playgrounds are a trending way to ex-
periment with languages, they are well accepted as they lower the adoption and
learning curves. ScaFi-Web guides the user to an understanding of field-based
coordination by (i) exposing an environment with minimal requirements (a mod-
ern browser); (ii) including a tour of its functions; (iii) presenting a sequence
of guided examples of increasing complexity that can be simulated immediately;
(iv) providing simplified access to the simulated sensors and actuators (e.g. for
controlling movement and colour of devices).

Fast Prototyping Programming complex coordination logic is challenging,
even with paradigms that promote collective behaviour abstractions to first-
class: robust specifications usually result from an iterative, incremental process
where ScaFi programs are progressively refined. Simulation has a key role in this
development workflow, as it allows for observing and controlling the software in a
variety of scenarios (different network structures, dynamics, and perturbations)
without the issues related to actual deployment. ScaFi-Web supports this kind
of workflow, by providing an out-of-the-box web-based simulation environment
with zero installation overhead.

4.3 Roadmap to monitoring and control of deployed systems

The monitoring and control of distributed systems is a prominent practical is-
sue. In the context of field-based coordination, automated runtime verification
approaches have been recently investigated, whereby spatial or temporal logics
are mapped to field calculus programs to directly encode the behaviour of de-
centralised monitors [3]. However, these techniques are complementary to mon-
itoring and control activities carried out by humans, which may need remote
frontends to inspect and act over a running system. The ScaFi-Web’s fron-
tend has been designed to be adaptable to different backends; indeed, the UI
is completely separated from the underlying aggregate execution system (called
Support in ScaFi-Web). We plan to evolve ScaFi-Web into a platform for
remote monitoring and control of aggregate systems. In particular, we aim to:

12 G. Aguzzi et al.

MiddlewareUI Distributed
support

node data

command
scripts Hybrid System

Simulator

node data

command
scripts

Local
support

Fig. 4. This figure shows the logical components currently available (yellow) and those
that have to be developed to support a full-fledged monitoring and control solution.
Notice the separation between UI and support. (Notation: nodes with dotted border
are purely simulated.)

1. define a middleware in charge of both retrieving values from the different
nodes in the system, injecting aggregate code and sending well-defined com-
mands;

2. create a new Support able to communicate with the aforementioned mid-
dleware (e.g. via WebSocket);

3. create a Support-to-UI component that understands and manages the ag-
gregate computing languages of the new Support;

4. establish a simulation-to-middleware component that can inspect the overall
system status;

5. realise tests upon real systems;
6. introduce the opportunity to orchestrate hybrid real-virtual systems, in

which real devices can interact with virtual devices managed by a simulation
platform.

Figure 4 summarises the general idea of the final product. With the proposed
architecture, it will be possible to inject new behaviours by either specific com-
mands (e.g. move the alpha node to X,y) or by injecting new aggregate programs
(e.g. to verify a property at runtime, as in [3]). Finally, given the hybrid nature of
the system, it can be interesting to spawn new simulated nodes at runtime. This
can be useful, for instance, to improve the performance of programs performing
density-sensitive operations [9] when executing in low-device-density conditions.

5 Conclusion and Future Work

In this paper, we have presented ScaFi-Web, a web-based playground and
frontend for simulated aggregate computing systems, enabling seamless and uni-

ScaFi-Web 13

versal access to the ScaFi aggregate programming toolchain. It provides an en-
vironment with zero-installation overhead and pedagogical support for learning,
exploratory testing, and easy application deployment.

As a future work, we would like to extend ScaFi-Web with out-of-the-box
support for monitoring and control of deployed systems. Additionally, it would
be nice to provide a graphical DSL allowing the creation of aggregate specifi-
cations by the composition of algorithmic blocks, hence simplifying application
development.

References

1. Arbab, F.: A behavioral model for composition of software com-
ponents. Obj. Logiciel Base données Réseaux 12(1), 33–76 (2006).
https://doi.org/10.3166/objet.12.1.33-76

2. Audrito, G.: FCPP: an efficient and extensible field calculus framework. In: IEEE
International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2020, Washington, DC, USA, August 17-21, 2020. pp. 153–159. IEEE
(2020). https://doi.org/10.1109/ACSOS49614.2020.00037

3. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed
monitors of spatial properties for cyber–physical systems. Journal of Systems and
Software 175, 110908 (May 2021). https://doi.org/10.1016/j.jss.2021.110908

4. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: 11th IEEE SASO 2017. pp. 91–100. IEEE Computer
Society (2017). https://doi.org/10.1109/SASO.2017.18

5. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order cal-
culus of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019).
https://doi.org/10.1145/3285956

6. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space pro-
grams for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010).
https://doi.org/10.1007/s00521-010-0382-8, https://doi.org/10.1007/

s00521-010-0382-8

7. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on
sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006).
https://doi.org/10.1109/MIS.2006.29

8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
Computer 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

9. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the Internet of Things. ACM Transaction on Autonomous and Adaptive Systems
12(3), 12:1–12:29 (Sep 2017). https://doi.org/10.1145/3105758

10. van Binsbergen, L.T., Merino, M.V., Jeanjean, P., van der Storm, T., Combe-
male, B., Barais, O.: A principled approach to REPL interpreters. In: Proceed-
ings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. ACM (Nov 2020).
https://doi.org/10.1145/3426428.3426917

11. du Boulay, B.: Some difficulties of learning to program. J. Educ. Comput. Res.
2(1), 57–73 (Feb 1986). https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9

12. du Boulay, B., O’Shea, T., Monk, J.: The black box inside the glass box: presenting
computing concepts to novices. Int. J. Hum. Comput. Stud. 51(2), 265–277 (1999).
https://doi.org/10.1006/ijhc.1981.0309

https://doi.org/10.3166/objet.12.1.33-76
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1145/3285956
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1006/ijhc.1981.0309

14 G. Aguzzi et al.

13. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: an ensemble-based component system. In: CBSE’13. pp. 81–90. ACM
(2013). https://doi.org/10.1145/2465449.2465462

14. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for
the internet of things. In: 21st IEEE ETFA 2016. pp. 1–6. IEEE (2016).
https://doi.org/10.1109/ETFA.2016.7733707

15. Casadei, R., Aguzzi, G., Peruzzi, M., Maltoni, N., Viroli, M.: scafi/scafi-web:
Scafi web 0.1.0 alpha (2021). https://doi.org/10.5281/ZENODO.4688017, https:
//zenodo.org/record/4688017

16. Casadei, R., Aldini, A., Viroli, M.: Towards attack-resistant aggregate com-
puting using trust mechanisms. Science of Computer Programming (2018).
https://doi.org/10.1016/j.scico.2018.07.006

17. Casadei, R., Tsigkanos, C., Viroli, M., Dustdar, S.: Engineering resilient collabo-
rative edge-enabled iot. In: 2019 IEEE International Conference on Services Com-
puting (SCC). pp. 36–45 (July 2019). https://doi.org/10.1109/SCC.2019.00019

18. Casadei, R., Viroli, M.: Programming actor-based collective adaptive sys-
tems. In: Programming with Actors: State-of-the-Art and Research Perspec-
tives, LNCS, vol. 10789, pp. 94–122. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-030-00302-9 4

19. Casadei, R., Viroli, M., Audrito, G., Damiani, F.: Fscafi : A core calculus for
collective adaptive systems programming. In: ISoLA (2). LNCS, vol. 12477, pp.
344–360. Springer (2020)

20. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021). https://doi.org/10.1016/j.engappai.2020.104081

21. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Coor-
dination Languages and Models, Second International Conference, COORDINA-
TION ’97, Berlin, Germany, September 1-3, 1997, Proceedings. LNCS, vol. 1282,
pp. 274–288. Springer (1997). https://doi.org/10.1007/3-540-63383-9 86

22. Doeraene, S.: Cross-platform language design in scala.js (keynote). In: Erdweg, S.,
d. S. Oliveira, B.C. (eds.) Proceedings of the 9th ACM SIGPLAN International
Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA, September 28,
2018. p. 1. ACM (2018). https://doi.org/10.1145/3241653.3266230, https://doi.
org/10.1145/3241653.3266230

23. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12, 43–67 (2013). https://doi.org/10.1007/s11047-012-
9324-y

24. Frey, S., Diaconescu, A., Menga, D., Demeure, I.: A holonic control architecture
for a heterogeneous multi-objective smart micro-grid. In: 2013 IEEE 7th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems. IEEE (Sep 2013).
https://doi.org/10.1109/saso.2013.11

25. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: PerCom 2004. pp. 263–276. IEEE Computer
Society (2004). https://doi.org/10.1109/PERCOM.2004.1276864

26. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a unifying approach
to the engineering of swarm intelligent systems. In: ESAW 2002. LNCS, vol. 2577,
pp. 68–81. Springer (2002). https://doi.org/10.1007/3-540-39173-8 6

27. Mo, Y., Dasgupta, S., Beal, J.: Robustness of the adaptive bellman -ford algo-
rithm: Global stability and ultimate bounds. IEEE Trans. Autom. Control. 64(10),

https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.5281/ZENODO.4688017
https://zenodo.org/record/4688017
https://zenodo.org/record/4688017
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1007/3-540-63383-9_86
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1109/saso.2013.11
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1007/3-540-39173-8_6

ScaFi-Web 15

4121–4136 (2019). https://doi.org/10.1109/TAC.2019.2904239, https://doi.org/
10.1109/TAC.2019.2904239

28. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of
computational systems with Alchemist. Journal of Simulation (2013).
https://doi.org/10.1057/jos.2012.27

29. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming.
In: Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, Salamanca, Spain, April 13-17, 2015. pp. 1846–1853. ACM (2015).
https://doi.org/10.1145/2695664.2695913

30. Rossberg, A., Titzer, B.L., Haas, A., Schuff, D.L., Gohman, D., Wagner, L., Zakai,
A., Bastien, J.F., Holman, M.: Bringing the web up to speed with webassembly.
Commun. ACM 61(12), 107–115 (2018). https://doi.org/10.1145/3282510, https:
//doi.org/10.1145/3282510

31. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics.
In: Natural Computing Series, pp. 163–191. Springer Berlin Heidelberg (2008).
https://doi.org/10.1007/978-3-540-74089-6 5

32. Usbeck, K., Beal, J.: Web proto: Aggregate programming for everyone.
In: 7th IEEE SASOW, 2013. pp. 17–18. IEEE Computer Society (2013).
https://doi.org/10.1109/SASOW.2013.12

33. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (Mar 2018)

34. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Algebraic
Methods Program. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.100486

35. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising co-
ordination. In: LNCS, pp. 143–162. Springer Berlin Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02053-7 8

36. Viroli, M., Casadei, R., Pianini, D.: Simulating large-scale aggregate mass
with alchemist and scala. In: Proceedings of FedCSIS 2016. Annals of Com-
puter Science and Information Systems, vol. 8, pp. 1495–1504. IEEE (2016).
https://doi.org/10.15439/2016F407

37. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., Angelis, F.L.D., Seru-
gendo, G.D.M., Dobson, S.A., Fernandez-Marquez, J.L., Ferscha, A., Mamei, M.,
Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi, M., Rosi,
A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-agent systems
with nature-inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015).
https://doi.org/10.1016/j.pmcj.2014.12.002

https://doi.org/10.1109/TAC.2019.2904239
https://doi.org/10.1109/TAC.2019.2904239
https://doi.org/10.1109/TAC.2019.2904239
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/3282510
https://doi.org/10.1145/3282510
https://doi.org/10.1145/3282510
https://doi.org/10.1007/978-3-540-74089-6_5
https://doi.org/10.1109/SASOW.2013.12
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.15439/2016F407
https://doi.org/10.1016/j.pmcj.2014.12.002

