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Abstract

This paper deals with the scarcity of data for training op-

tical flow networks, highlighting the limitations of existing

sources such as labeled synthetic datasets or unlabeled real

videos. Specifically, we introduce a framework to generate

accurate ground-truth optical flow annotations quickly and

in large amounts from any readily available single real pic-

ture. Given an image, we use an off-the-shelf monocular

depth estimation network to build a plausible point cloud

for the observed scene. Then, we virtually move the camera

in the reconstructed environment with known motion vec-

tors and rotation angles, allowing us to synthesize both a

novel view and the corresponding optical flow field con-

necting each pixel in the input image to the one in the new

frame. When trained with our data, state-of-the-art opti-

cal flow networks achieve superior generalization to unseen

real data compared to the same models trained either on an-

notated synthetic datasets or unlabeled videos, and better

specialization if combined with synthetic images.

1. Introduction

The problem of estimating per-pixel motion between

video frames, also known as optical flow [50], has a long

history in computer vision and remains far from being

solved. On top of it, several higher-level tasks such as track-

ing, action recognition and more are typically performed.

Among the main challenges for optical flow systems, there

are occlusions, motion blur and lack of texture.

Deep learning has played a crucial role in the latest years

of research on this topic, at first to learn a data term [1, 65]

and then to directly infer the dense optical flow field in

end-to-end manner [7, 20, 51, 52, 18, 19, 17, 53], currently

representing the state-of-the-art in this field. This achieve-

ment has been made possible by the availability of exten-

sive training data labeled with ground-truth optical flow

fields, most of them obtained through computer graphics

∗Joint first authorship.

a) b) c) d)
Figure 1. Depthstillation from still images. From left to right: a)

single input image, b) estimated depth map, c) optical flow field

consequence of virtual camera motion, d) virtual view. We show

b) as inverse depth to improve visualization.

[5, 7, 20]. Unfortunately, these large datasets alone are not

enough to train a neural network for its deployment in real

environments, because of the well-known domain shift oc-

curring when moving from synthetic images to real ones.

A notable example is represented by the KITTI optical

flow benchmarks [10, 35], over which deep networks that

have been trained only on synthetic data perform poorly,

as witnessed by recent works [20, 51, 53]. This problem

is known in literature and has been faced for other tasks

such as semantic segmentation [15, 39, 43, 55] or stereo

depth estimation [56, 57, 68, 61]. To fully restore a level

of accuracy comparable to the one achieved on synthetic

data, fine-tuning on imagery similar to the testing domain

is usually required. Anyway, obtaining ground-truth optical

flow labels for real images is particularly challenging be-

cause there exists virtually no sensor capable of acquiring

ground-truth correspondences between points in challeng-

ing real-world scenes [37]. A viable strategy consists into

passing through depth sensors (e.g., LiDARs), indeed opti-

cal flow fields can be obtained by projecting the 3D points

from a given frame into the next frame [10], although it

cannot take into account independently moving objects, for

which manual post-processing or annotation remains neces-

sary [35, 37]. The literature is rich of self-supervised strate-
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gies [34, 30, 28, 23] from unlabeled videos to soften this

constraint, but they mostly excel when deployed on data

similar to those observed for training, a scenario unlikely

to occur in most real applications.

Given both the aforementioned domain shift issue and

the lack of real imagery annotated for optical flow, we pro-

pose an alternative scheme to distill proxy labels from real

images for effective training of optical flow estimation net-

works. Following the observation that depth is required to

obtain dense matching across views through reprojection

[10, 35, 37], we use a monocular depth estimation network

to revert the annotation process: given a single image and

its estimated depth, we suppose a virtual motion of the cam-

era to compute a dense optical flow field and, consequently,

synthesize a new virtual image accordingly. For instance,

in Figure 1 from a) pictures of a person and a cat, we esti-

mate b) monocular depth and generate c) a flow field used to

synthesize d) a novel view. We dub this process Depthstilla-

tion, and any single image is eligible for producing optical

flow annotations through it.

Experiments carried out on synthetic (Sintel) and real

(KITTI 2012 and 2015) datasets support our main claims:

• We show that it is possible to train an optical flow net-

work on a collection of unrelated images, e.g. single

pictures readily available online

• Using real images through our technique allows us to

train networks that better transfer to real data than their

counterparts trained on synthetic images, while fine-

tuning these latter on dephtstilled frames and then on

real data improves specialization

• Networks trained on our dephtstilled frames and flow

labels better transfer to new real datasets than state-of-

the-art self-supervised strategies using real videos [23]

2. Related Work

In this section, we review the literature relevant to the

research topics touched by our work.

Optical Flow - Energy Minimization models. For

a long time, optical flow has been cast as a continu-

ous optimization problem through variational frameworks

[16, 3, 67]. These approaches involve a data term cou-

pled with regularization terms, and improvements to the for-

mer [4, 63] or the latter [44] represented the primary strat-

egy to increase optical flow accuracy for years [50]. More

recent strategies consider optical flow as a discrete opti-

mization problem, despite managing the sizeable 2D search

space required to determine corresponding pixels between

images [36, 6, 65] is challenging. Until a few years ago [7],

early attempts to improve optical flow with deep networks

mainly focused on learning more robust data terms by train-

ing CNNs to match patches across images [63, 1, 65].

End-to-end Optical Flow. FlowNet [7] is the first end-

to-end deep architecture proposed for optical flow. Con-

currently, to satisfy the massive amount of training data re-

quired, synthetic datasets with dense optical flow ground-

truth labels were made available [7, 33]. Eventually, other

architectures [20, 51, 52, 18, 19, 17, 53] further improved

accuracy on popular synthetic [5, 33] and real [35, 10]

benchmarks, with RAFT [53] representing state-of-the-art.

For most existing networks, generalization remains a

cause of concerns, in particular when moving from syn-

thetic [7, 33] to real images [10, 35]. With our work, we

show how to generate plausible training samples from real,

unrelated images allowing for superior generalization.

Self-supervised Optical Flow. Being ground-truths

hard to obtain for real data, self-supervised strategies al-

low to relax this requirement [21, 46, 34]. More recent ad-

vances introduced teaching-student frameworks [29], occlu-

sion generation [30] and transformed data from augmenta-

tion [28]. Jonschkowski et al. [23] highlighted the key com-

ponents to achieve state-of-the-art results in this setting.

Most of these approaches train on unlabeled videos (e.g.,

from the KITTI 2015 multiview dataset [35]) from the same

domain where the evaluation is carried out (e.g., the KITTI

2015 optical flow benchmark). In contrast, in our work, we

relax both constraints of having i) organized video collec-

tions and ii) taken in similar domains, achieving superior

generalization compared to self-supervised networks.

Single Image Depth Estimation. In parallel to super-

vised approaches [64, 25, 9], many works focused on self-

supervised strategies, aimed at replacing ground-truth la-

bels with collections of images, either relying on stereo

pairs [11, 58, 62] or monocular videos [69, 12, 13, 59].

To improve generalization, recent works [26, 45] exploited

supervision from a large variety of images and auxiliary

strategies such as Multi-View Stereo methods [48].

Shared by all these methods is the assumption of static

scenes, required for reprojection across multiple views. In

this paper, we show how a network trained according to

such a strategy allows for generating, from still images,

training data that well model motions, to train optical flow

networks that are effective in presence of moving objects.

Novel View Synthesis. View synthesis aims at creat-

ing new images observed from arbitrary viewpoints starting

from a given scene. It is gaining an ever increasing inter-

est in computer vision [66, 38, 8, 60, 47], and it is a fun-

damental step to address many other tasks, such as video

interpolation [22, 2, 40] or 3D effects [49, 70, 41].

Conversely, we focus on creating image pairs and cor-

responding ground-truth pixel displacements rather than vi-

sually pleasant videos. While some of the techniques men-

tioned above rely on pre-trained flow networks [40], our

goal is to generate data to train these latter.

Data distillation through depth estimation. Strictly re-
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Flow colorsDepth colors

Figure 2. Overview of the proposed depthstillation pipeline.

Given a single image I0 and its estimated depth map D0, we place

the camera in c0 and virtually move it (red arrow) towards a new

viewpoint c1. From the depth and virtual ego-motion, we obtain

optical flow labels F0→1 and a novel I1 through forward warping.

lated to our work is [61], estimating depth from single im-

ages to synthesize virtual right views and thus obtain stereo

pairs, used to train deep stereo networks.

Despite the analogy of using single image depth estima-

tion, we point out that our goal differs from [61] since we

aim at modeling arbitrary motions in the scene (i.e., optical

flow) rather than a horizontal pixel displacement between

synchronized images (i.e., disparity). Purposely, we will

describe the additional strategies required to attain, from

single still images, the best training data for optical flow

networks.

3. Depthstillation pipeline

In this section we illustrate our proposed framework to

generate new virtual views I1 from single images I0, with

corresponding dense optical flow ground-truth maps F0→1.

An overview of our pipeline is shown in Figure 2.

Virtual camera motion engine. Given I0, an off-the-

shelf monocular depth network Φ is used to estimate its

depth map D0

D0 = Φ(I0) (1)

used to project pixels in I0 to 3D space according to some

plausible inverse intrinsics matrix K−1. In case the network

estimates inverse depth, we bring it to the depth domain

first. D0 usually shows blurred edges [61, 49], causing fly-

ing pixels in the 3D space that can be easily sharpened via

edge-preserving filters [32].

We now assume the camera used to frame image I0 to

be at 3D location c0 and apply an arbitrary virtual mo-

tion, moving it towards a new position c1. To this aim,

we generate a plausible rotation R1 by sampling a random

a) b) c) d) e)
Figure 3. Hole filling strategies. From left to right: a) forward-

warped image affected by stretching artefacts, b) holes mask H
c) inpainted image, d) collision-augmented holes mask H′ and e)

improved inpainted image. Black pixels in H and H′ are those to

be inpainted.

triplet of Euler angles and a plausible translation t1 by sam-

pling a random 3D vector. Then, we obtain the transfor-

mation matrix T0→1 = (R1|t1) corresponding to such roto-

translation. Thus, we can project our 3D points to the image

space through K in order to obtain a new image I1. This

allows to obtain, for each pixel p0 in I0, the coordinates p1
of its corresponding pixel in I1 acquired from viewpoint c1

p1 ∼ KT0→1D0(p0)K
−1p0 (2)

and flow F0→1 is obtained as the difference between p1 and

p0. We point out that F0→1 only models the virtual cam-

era ego-motion, i.e. no object has moved independently. Fi-

nally, we obtain the new image I1 through forward warping.

Forward warping suffers from two well-known problems

[61], that are collisions (i.e., multiple pixels from I0 being

warped to the same location in I1) and holes (i.e., pixels

in I1 over which no pixel from I0 is projected). To handle

collisions, we keep track of pixels p1 having multiple pro-

jections p0 in a binary collision mask M (i.e., collisions are

labeled as 1, other pixels as 0) and select, for each, the one

having minimum depth according to camera in position c1,

i.e. the closest, to be displayed in I1.

Hole filling. Artefacts introduced by holes are more sub-

tle to be solved. Moreover, applying a 6DoF transformation

to the camera plane vastly increases the chance of occur-

rence of holes compared to the case of 1D camera transla-

tions applied to distill stereo pairs [61]. In particular, in case

of larger camera motion/rotations some stretching artefacts

occur on the foreground objects (and, occasionally, in the

background as well) as shown in Figure 3 a). To remove

these holes, we build a binary hole mask H, as in Figure 3

b), where we label pixels in I1 for which no pixel in I0 is

reprojecting on to with 0. Then, a simple inpainting strategy

[54] is usually sufficient to fill them, as reported in Figure

3 c) on the girl’s face. Unfortunately, this is not enough

in the case of stretching artefacts occurring in a foreground

object overlapping a background one. Indeed, in this case,

it is very likely that the holes induced by the stretching of

the foreground object are filled by pixels in the background.

These pixels are not detected by H, causing the bleeding

effect shown in Figure 3 c), where the hair merges with the

background umbrella. Since most of these artefacts occur
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in non-colliding pixels surrounded by colliding ones, i.e. in

M they are labeled as 0 and surrounded by pixels labeled

as 1, we can detect them by dilating M into M′. Then, we

define the binary mask P assigning 1 to pixels having the

same label in (M′,M) and 0 to the remaining (i.e. those

that become 1 in M′). We finally obtain H′ by multiplying

H and P

P = (M′ == M), H′ = H · P (3)

We can apply the inpainting algorithm to pixels labeled

with 0 in H′, shown in Figure 3 d), to obtain Figure 3 e),

where the foreground-background bleeding does not occur.

We report more qualitative examples regarding the different

masks in the supplementary material.

We point out how, in large dis-occluded area (i.e., in the

proximity of depth boundaries, as shown in Figure 3 on the

left of the person), the inpainting method produces blurred

content, as shown in Figure 3 c) and e). Despite these arte-

facts, our experiments will prove that hole filling improves

the accuracy of trained networks significantly. We report

in the supplementary material additional qualitative results

concerning the design choices discussed so far.

Independent motions. The pipeline sketched so far

models the optical flow field occurring between images ac-

quired in a static environment, i.e. consequence of the cam-

era motion, not taking into account possible independently

moving objects, very likely to occur in real contexts [35]. In

order to model more realistic simulations, we introduce the

possibility of applying different virtual motions to objects

extracted from the scene by leveraging an instance segmen-

tation network Ω for extracting N objects Πi, i ∈ [1,N]

Π = {Πi, i ∈ [1,N]} = Ω(I0) (4)

Then, to simulate a motion of the object in the scene,

we randomly move the camera from c0 towards a point

cπi
6= c1 and its corresponding transformation T0→πi

to

be applied to object Πi. Then, we reproject pixels from I0
on the image planes of the different cameras. Pixel coordi-

nates in I1 will be selected according to their belonging to

segmented objects or the background as

p1 ∼

{

KT0→1D0(p0)K
−1p0 if p0 /∈ Π

KT0→πi
D0(p0)K

−1p0 if p0 ∈ Πi

(5)

We handle collisions as outlined before, keeping pixels

whose depth results lower after motion. Finally, we obtain

optical flow F0→1 and image I1 as aforementioned.

To be robust to noisy/false detections, e.g. in case of tiny

blobs accidentally labeled as objects, we rank the objects

according to their size, i.e. number of pixels, and keep in Π
only the n <N largest objects. Figure 4 shows two qual-

itative comparisons between images and flow distilled by

a) b) c) d)
Figure 4. Independent motions modeling. From left to right: a)

image generated by only modeling camera motion and b) corre-

sponding optical flow field, c) image generated after segmenting

the foreground, which is now subject to a different motion yield-

ing d) a more complex optical flow field.

merely applying a virtual camera motion, a) and b), and

those obtained by segmenting the cat or the person in the

foreground and simulating an independent motion, c) and

d). Although our formulation simulates moving objects by

moving virtual cameras instead, we can notice how the final

effect on I1 and F0→1 is equivalent for our purposes.

We point out that, by increasing the number of moving

objects, collisions and holes increase. In particular, a higher

number of dis-occlusions might appear after applying in-

dependent motions, leading to blurry inpainted content, as

shown in Figure 4 c) on the top row, on the right of the cat.

Besides, shape boundaries may be inconsistent across depth

and segmentation predictions, afflicting the truthfulness of

the generated image and introducing artefacts (e.g., back-

ground pixels moved as part of the foreground). We will see

how, although helpful, this approach yields minor improve-

ments compared to the previous two steps performed in

our framework, that result crucial for dephtstilling reliable

training data. Moreover, segmenting object instances re-

quires an additional network Ω trained in a supervised man-

ner conversely to single-image depth estimation networks,

whereby an extensive literature of self/weakly-supervised

approaches exists [11, 12, 58, 62].

4. Experimental results

In this section, we describe the experimental setup used

to validate our depthstillation pipeline. The source code

is available at https://github.com/mattpoggi/

depthstillation.

4.1. Training datasets

At first, we describe the datasets used to train the net-

works considered in our experiments.

Chairs (Ch). FlyingChairs [7] is a popular synthetic

dataset used to train optical flow models. It contains 22232
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images of chairs moving according to 2D displacement vec-

tors over random backgrounds sampled from Flickr.

Things (Th). The FlyingThings3D dataset [20] is a col-

lection of 3D synthetic scenes belonging to the SceneFlow

dataset [33] and contains a training split made of 19635 im-

ages. Differently from Chairs, objects move in the scene

with more complex 3D motions. State-of-the-art networks

usually train in sequence over Chairs and Things (Ch→Th).

COCO dataset. The COCO dataset [27] is a collection

of single still images (it provides I0 only) and ground-truth

with labels for tasks such as object detection or panoptic

segmentation, but lacks any depth or optical flow annota-

tion. We sample images from the train2017 split, which

contains 118288 pictures, to generate virtual images and op-

tical flow maps. We dub dephtstilled COCO (dCOCO) the

training set obtained in such a manner.

DAVIS. The DAVIS dataset [42] provides high-

resolution videos and it is widely used for video object seg-

mentation. Since it does not provide optical flow ground-

truth labels, we use all the 10581 images of the unsuper-

vised 2019 challenge to generate dDAVIS and compare

with the state-of-the-art in self-supervised optical flow [23].

4.2. Testing datasets

We describe here the testing imagery used to evaluate

the networks trained on the datasets mentioned above. As

metrics, we report the average End-Point Error (EPE) and

two error rates, respectively the percentage of pixels with

absolute error greater than 3 (> 3) or both absolute and

relative errors greater than 3 and 5% respectively (Fl), as

defined in [35], on All pixels. In every experiment, we will

highlight the best results in bold and underline the second-

best among methods trained in fair conditions.

Sintel. Sintel [5] is a synthetic dataset with ground-truth

optical flow maps. We use its training split, counting 1041
images for both Clean and Final passes, for evaluation.

KITTI. The KITTI dataset is a popular dataset for au-

tonomous driving with sparse ground-truth values for both

depth and optical flow tasks. Two versions exist, KITTI

2012 [10] counting 194 images framing static scenes and

KITTI 2015 [35] made of 200 images framing moving ob-

jects, in both cases gathered by a car in motion.

4.3. Implementation Details

We describe next our pipeline and the networks used for

depth estimation and learning optical flow.

Depth estimation models. To obtain dense depth maps

from single RGB images, we select two models, respec-

tively MiDaS [45] and MegaDepth [26], the former because

represents the state-of-the-art for depth estimation in-the-

wild and the latter because trained with weaker supervision

than MiDaS1. Next, we will show how the accuracy of net-

1The reader might argue that MiDaS has been trained on labels pro-

works trained on our data is affected by the depth estimator.

Depthstillation pipeline. To generate virtual images, we

convert predicted depths into [1, 100]. Given a single im-

age of resolution W×H, we assume a virtual camera having

fixed K, with focals (fx, fy) = 0.58(W,H) and optical cen-

ter (cx, cy) = 0.5(W,H). To generate T0→1, we build t1 by

sampling three scalars tx, ty, tz in [−0.2, 0.2] and R1 by

sampling three Euler angles in [− π
18
, π
18
]. To simulate mov-

ing objects, we run pre-trained Mask-RCNN [14] to select

n = 2 instance masks and generate ti and Ri sampling re-

spectively in [−0.1, 0.1] and [− π
36
, π
36
] and add them to R1

and t1. Depth maps are sharpened by means of 2 iterations

of a 5×5 bilateral filter, while we dilate M with a 3×3 ker-

nel. We can generate multiple camera motions for any given

single image and thus a variety of pairs and ground-truth la-

bels. We will see how playing with the number of images

and motions impacts optical flow network accuracy.

Optical Flow networks. To evaluate how effective our

distilled images are at training optical flow models, we se-

lect two main architectures: RAFT [53] and PWC-Net [51].

The first because it represents state-of-the-art architecture

for supervised optical flow, already enabling excellent gen-

eralization capability. The second because it achieves the

best results among self-supervised methods (e.g., UFlow

[23]). By deploying both architectures, we aim to prove

that our method is general and significantly improves gen-

eralization in supervised and self-supervised optical flow.

When not otherwise specified, we train RAFT on depth-

stilled data for 100K steps with a learning rate of 4×10−4

and weight decay of 10−4, batch size of 6 and 496×368
image crops. This configuration is the largest one fitting

into a single NVIDIA Titan X GPU. Following [53], we

adopted AdamW as optimizer [31] and applied the same

data augmentations and loss functions, while we set 12 as

the number of iterative updates. To train PWCNet, we used

as optimizer Adam [24], with an initial learning rate of 1e−4

and halved after 400K, 600K and 800K steps. We trained

our model for 1M steps with a batch size of 8, adopting the

multi-scale loss used in [51] for the synthetic pre-training,

with the same augmentations and crop size used for RAFT.

4.4. Ablation Study

In this section, we assess the impact of the different com-

ponents of our pipeline.

Depth, hole filling and moving objects. We start by ab-

lating our pipeline to measure the impact of i) estimating

depth, ii) applying hole filling to generated images and iii)

simulating objects moving independently. This study is car-

ried out by generating virtual views from 20K COCO im-

duced by pre-trained optical flow networks, introducing biases into images

generated with our pipeline. However, we point out that optical flow net-

works are used only to handle negative disparities in stereo images and

would not be necessary if, given the minimum negative disparity dmin,

the right image is shifted left by |dmin|, thus making dmin = 0.
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Depth Hole Moving Sintel C. Sintel F. KITTI 12 KITTI 15

est. fill. obj. EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) ✗ ✗ ✗ 5.50 18.22 6.08 20.83 3.31 18.95 10.51 35.52

(B) ✓ ✗ ✗ 2.52 7.17 3.72 11.04 2.02 7.53 4.84 16.26

(C) ✓ ✓ ✗ 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

(D) ✓ ✓ ✓ 2.35 6.11 3.62 10.10 1.83 6.53 3.65 11.98

Table 1. Method ablation. We train RAFT on dCOCO with differ-

ent configurations of depthstillation: (A) constant depth for each

image, (B) adding depth estimated by MiDaS [45], (C) adding

hole-filling and (D) simulating object motions.

Depth Model Sintel C. Sintel F. KITTI12 KITTI15

EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) No depth 5.50 18.22 6.08 20.83 3.31 18.95 10.51 35.52

(B) Megadepth [26] 2.91 7.51 3.99 11.55 1.81 7.11 4.10 13.70

(C) MiDaS [45] 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

Table 2. Impact of depth estimator. We train RAFT on dCOCO

without depth estimation (A), using depth maps provided by

MegaDepth (B) or MiDaS (C).

# Training samples Sintel C. Sintel F. KITTI12 KITTI15

Images Motions Total EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) 4K ×1 4K 2.73 6.96 3.97 11.09 1.86 6.81 3.93 12.56

(B) 4K ×5 20K 2.56 6.78 3.88 10.99 1.77 6.62 3.93 12.57

(C) 20K ×1 20K 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

(D) 20K ×5 100K 2.37 6.69 3.64 10.73 1.79 6.79 3.82 12.39

Table 3. Impact of images and virtual motions. We train several

RAFT models by changing the number of input images taken from

COCO and the number of motions depthstilled for each one.

ages, applying a single virtual camera motion for each, by

training RAFT [53] on them and evaluating the final model

on Sintel, KITTI 2012 and KITTI 2015. Table 1 collects the

outcome of this evaluation. On row (A), we show the per-

formance achieved by generating images without estimat-

ing their depth, thus assuming a constant depth value for all

pixels in any image. By moving to row (B), for which we

use MiDaS [45] to estimate depth during the depthstillation

process, we can notice considerable improvements in all

metrics and datasets, with Fl score often more than halved.

Nonetheless, generated images are affected by large holes

and this does not allow for optimal performance. By en-

abling hole filling (C), the trained RAFT further improves

its accuracy on real datasets. Finally, in (D), we show re-

sults by simulating objects moving independently, that fur-

ther improves the results on Sintel. The benefit of this lat-

ter strategy is consistent on most metrics, although minor

on real datasets such as KITTI 2012 and 2015 compared to

the improvements obtained by (B) and (C), proving that the

simple camera motion combined with depth is enough to

obtain a robust optical flow network capable of generaliz-

ing to real environments. Moreover, as already pointed out,

(D) also requires a trained instance segmentation network,

which is hard to obtain for any possible dataset and would

consequently constrain our pipeline. Thus, since our pri-

mary focus is on real environments, we choose (C) as the

configuration for the following experiments.

Depth estimation network. We measure the impact of

the depth estimator on our overall data generation pipeline.

To this aim, we follow the same protocol of the previous

experiments, replacing MiDaS with MegaDepth [26] dur-

ing the depth estimation step. Table 2 shows the results

of this experiment. We can notice how images generated

through MegaDepth (B) allow for training a RAFT model

that places in between the one trained on images generated

without depth (A) and using MiDaS (C), being much closer

to the latter than to the former. This proves that depth is

a crucial cue in our pipeline and the accuracy of the optical

flow network, as we might expect, increases with the quality

of the estimated depth maps, although with minor gains.

Amount of generated images. We can increase the

amount of data we generate acting on two orthogonal di-

mensions: the number of images I0 and the number of vir-

tual motions we simulate for each. Table 3 collects the re-

sults achieved by several RAFT models trained on a differ-

ent number of images, obtained by varying the parameters

mentioned above. By assuming 4K input images, we can

notice how applying 5 virtual motions to each (B) allows

a consistent boost on Sintel and KITTI 2012 compared to

simulating a single motion each (A), while not improving

on KITTI 2015. Interestingly, 4K images already allow for

strong generalization to real domains, outperforming the re-

sults achieved using synthetic datasets shown in detail in

the next section. On the other hand, increasing the input

images by the same factor ×5, yet simulating a single mo-

tion (C) leads worse results on Sintel while achieving some

improvement on KITTI compared to (A) and (B). This fact

highlights that a more variegate image content in the train-

ing dataset may be beneficial only for generalization to real

environments. By depthstilling 5 motions, for a total of

100K training samples (D), yields further improvements on

Sintel, again with minor impact on KITTI. To carry out a

fair comparison with synthetic datasets, counting about 20K

images each, we will use 20K images and a single virtual

motion to depthstill our training data from now on.

4.5. Comparison with synthetic datasets

In this section, we evaluate the effectiveness of our

depthstilled data versus synthetic datasets [7, 33].

Generalization to real environments. We start by eval-

uating the robustness of a network trained on our data when

deployed on real datasets. Table 4 shows the performance

achieved by RAFT when trained on Chairs (A) and fine-

tuned on Things (B) with crop size and settings described

in [53] to fit in a single GPU, compared to a variant trained

on dCOCO, a split of 20K image pairs depthstilled from

COCO (C). For completeness, we also report the perfor-

mance of RAFT models provided by the authors (A†) and

(B†), trained on 2× GPUs and thus not directly comparable

with our setting. We can notice how training on dCOCO (C)

allows for much higher generalization on real datasets such
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EPE: 6.43 Fl: 40.22% EPE: 3.91 Fl: 17.45% EPE: 3.04 Fl: 8.81% EPE: 3.02 Fl: 10.23%

EPE: 7.21 Fl: 39.26% EPE: 0.95 Fl: 4.56% EPE: 1.32 Fl: 3.88% EPE: 1.28 Fl: 3.91%

a) b) c) d) e)
Figure 5. Qualitative results on the KITTI 2015 training set. On two rows: a) reference frame (top) and ground-truth flow (bottom),

optical flow maps (top) by RAFT trained on b) Ch, c) Ch→Th, d) dCOCO and e) Ch→Th→dCOCO and error maps (bottom).

Dataset Sintel C. Sintel F. KITTI 12 KITTI 15

EPE > 3 EPE > 3 EPE Fl EPE Fl

(A†) Ch 2.26 7.35 4.51 12.36 4.66 30.54 9.84 37.56

(B†) Ch→Th 1.46 4.40 2.79 8.10 2.15 9.30 5.00 17.44

(A) Ch 2.36 7.70 4.39 12.04 5.14 34.64 10.77 41.08

(B) Ch→Th 1.64 4.71 2.83 8.67 2.40 10.49 5.62 18.71

(C) dCOCO 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

(D) Ch→Th→dCOCO 1.88 5.31 3.23 9.26 1.78 7.00 3.42 13.08

Table 4. Comparison with synthetic datasets – generalization.

Generalization achieved by RAFT when trained on synthetic data

(A),(B), on our dCOCO dataset (C) and a combination of both (D).

† are obtained with publicly available weights by [53] (2× GPUs).

as KITTI 2012 and 2015, at the cost of worse performance

on the Sintel synthetic dataset. This latter result is not sur-

prising because the images in Things are generated through

computer graphics as those in Sintel, while generating vir-

tual images from a real dataset (COCO) leads to superior

generalization on real datasets (KITTI 2012 and 2015), also

outperforming (A†) and (B†) despite the single GPU.

We also train RAFT sequentially on Chairs, Things and

dCOCO (D). This setting improves the EPE achieved by (C)

on KITTI 2012 and 2015 and turns out much more effective

on Sintel with both metrics. This fact suggests that a com-

bination of synthetic images with perfect ground-truth and

virtual images with depthstilled labels might be beneficial

for generalization purposes. Figure 5 shows some qualita-

tive optical flow predictions and corresponding error maps

obtained from the RAFT variants considered in Table 4. We

report additional examples in the supplementary material.

Fine-tuning on real data. We evaluate the effect of pre-

training on synthetic images or our generated frames when

fine-tuning on a few real data with accurate ground-truth.

To this aim, we fine-tune RAFT variants on the first 160

images of the KITTI 2015 training set and evaluate on the

remaining 40 and KITTI 2012. We train with a learning

rate of 10−4 and weight decay of 10−5, batch size of 3
and 960×288 image crops, converging after 20K iterations.

Table 5 collects the outcome of this experiment. We can

Pre-training Fine-tuning KITTI12 KITTI15

EPE Fl EPE Fl

(A) Ch ✗ 5.14 34.64 15.56 47.29

Ch ✓ 1.42 4.86 2.40 8.49

(B) Ch→Th ✗ 2.40 10.49 9.04 25.53

Ch→Th ✓ 1.36 4.67 2.22 8.09

(C) dCOCO ✗ 1.82 6.62 5.09 16.72

dCOCO ✓ 1.37 4.70 2.76 9.15

(D) Ch→Th→dCOCO ✗ 1.78 7.00 4.82 18.03

Ch→Th→dCOCO ✓ 1.32 4.54 2.21 7.93

Table 5. Comparison with synthetic datasets – fine-tuning. Per-

formance of RAFT variants pre-trained on synthetic datasets (A)

and (B), on dCOCO (C) or both (D) when fine-tuned on a subset

of 160 images from KITTI 2015, tested on KITTI 2012 and the

remaining 40 images from KITTI 2015.

Model Dataset Sintel C. Sintel F. KITTI12 KITTI15

EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) PWCNet Ch 3.33 - 4.59 - 5.14 28.67 13.20 41.79

(B) PWCNet Ch→Th 2.55 - 3.93 - 4.14 21.38 10.35 33.67

(C) PWCNet dCOCO 4.14 11.54 5.57 15.58 3.16 13.30 8.49 26.06

(D) RAFT dCOCO 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

Table 6. Impact of depthstillation on different architectures.

Evaluation on PWCNet and RAFT. Entries with ”-” are not pro-

vided in the original paper.

notice how variants (A) and (B) trained on synthetic data

are greatly improved by the fine-tuning, while (C) achieves

slightly lower accuracy after fine-tuning. Despite allowing

for much higher generalization to real images, the supervi-

sion allowed by our method is weaker than the one obtained

through real image pairs and perfect ground-truth. Thus,

it is not surprising that networks trained from scratch to

the end on perfect ground-truth might yield better accuracy.

Nonetheless, combining synthetic data with our depthstilled

images (D) allows for the best performance, confirming the

findings from our previous experiments that a combination

of the two worlds – synthetic data with perfect labels and

realistic yet imperfect images and labels – is beneficial.

Impact on different optical flow networks. To prove

that the superior generalization we achieve is enabled by our
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data rather than a specific architecture such as RAFT, we

also train PWCNet [51] on the 20K images generated from

COCO. Table 6 shows how PWCNet trained on dCOCO

(C) dramatically outperforms the original variants trained

on Chairs (A) and fine-tuned on Things (B) when testing on

real data, at the cost of lower performance on Sintel syn-

thetic images, substantially confirming our findings from

previous experiments with RAFT, reported in the table for

comparison (D). This fact proves that our data, generated

from single yet realistic still images, significantly improves

generalization to real data independently from the optical

flow model trained.

4.6. Comparison with selfsupervision from videos

Given the rich literature about self-supervised optical

flow [34, 29, 30, 23], we compare our strategy with state-

of-the-art practises for self-supervised optical flow [23].

Generalization. In contrast to most works in this field

that train and test in the same domain [34, 29, 30, 23], we in-

quire about how well networks trained in a self-supervised

manner or leveraging our proposal transfer across different

real datasets. To this aim, we adopt DAVIS [42] for train-

ing and evaluate on KITTI 2012 and 2015 as in the previous

experiments. To train UFlow [23], we use the official code

provided by the authors. In particular, we trained the model

on the entire DAVIS dataset for 1M steps, using a batch

size of 1 as suggested in [23], 512×384 resized images and

letting unchanged other configuration parameters in order

to replicate the authors’ settings. Being UFlow based on

PWCNet, we train from scratch another instance of PWC-

Net on dDAVIS for the same number of steps with a batch

of 8 over depthstilled images and labels. The learning rate

scheduling is the same highlighted in section 4.3, while the

crop is 512×384. This way, we evaluate how well a PWC-

Net trained on depthstilled data transfers to other datasets

compared to a model trained on real videos framing the

same image content of the depthstilled images. Table 7 col-

lects the outcome of this experiment. We can notice how the

PWCNet model trained on dDAVIS (B) transfers much bet-

ter to the KITTI 2012 and 2015 datasets compared to UFlow

trained on the real DAVIS (A), thanks to the stronger super-

vision from the distilled optical flow labels. For the sake of

completeness, we also report the results achieved by RAFT

(C) trained on the same data, confirming to be superior.

Limitations. Our pipeline has some obvious limitations.

Indeed, the training samples we generate are far from being

utterly realistic because cannot model some behaviors, such

as the large 3D rotation of objects in the scene, frequently

found in real videos. Thus, despite the strong generalization

we achieve compared to self-supervision, real videos allow

for much better specialization when training and testing in

the same domain. As shown in Table 8, UFlow trained

on the 4K images of the KITTI multiview dataset (A) per-

Model Dataset KITTI12 KITTI15

EPE Fl EPE Fl

(A) UFlow DAVIS 3.49 14.54 9.52 25.52

(B) PWCNet dDAVIS 2.81 11.29 6.88 21.87

(C) RAFT dDAVIS 1.78 6.85 3.80 13.22

Table 7. Comparison between self-supervision and depthstilla-

tion – generalization. Effectiveness of the two strategies when

evaluated on unseen data (KITTI 2012 and 2015).

Model Dataset KITTI12 KITTI15

EPE Fl EPE Fl

(A) UFlow KITTI - - 3.08 10.00

(B) PWCNet dKITTI 2.64 9.43 7.92 22.17

(C) RAFT dKITTI 1.76 5.91 4.01 13.35

Table 8. Comparison between self-supervision and depthstilla-

tion – specialization. Effectiveness of the two strategies when

training and testing on similar data (KITTI 2015). Entries with ”-”

are not provided in the original paper.

forms much better than PWCNet trained on 960×288 crops

from dKITTI (B), a set of about 4K images depthstilled

from KITTI 2015 multiview testing set. On the other hand,

RAFT trained on dKITTI with the same crop size (C) gets

closer to UFlow, thanks to the more effective architecture.

This lower specialization is also due to the completely

random motions we depthstill. In contrast, KITTI motions

consist of a much smaller subset (i.e. mostly forward trans-

lations or steerings) dominant in the real KITTI multiview

split, yet rarely occurring in dKITTI.

As take-home message, our depthstillation strategy ef-

fectively addresses the scarcity of training data, e.g. when

annotated images or not-annotated videos of the target envi-

ronment are not available, yielding superior generalization

compared to existing practices. Moreover, it is complemen-

tary to domain-specific real training data with labels, sel-

dom ever available in practice.

5. Conclusion

We proposed a new strategy named, Depthstillation, to

distill dense optical flow ground-truth maps from single

still images and create novel virtual views, by leveraging

the depth provided by a pre-trained monocular network.

Through extensive experiments, we showed how it allows

for training state-of-the-art optical flow networks [51, 53],

leading to models that better generalize to real data com-

pared to the use of synthetic images or self-supervision

from videos framing different content, while suffering at

specialization. Depthstillation is a powerful solution when

domain-specific training data is not available, as occurs in

most practical applications in-the-wild.
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[65] Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical

flow via direct cost volume processing. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1289–1297, 2017. 1, 2

[66] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,

and Jan Kautz. Novel view synthesis of dynamic scenes with

globally coherent depths from a monocular camera. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5336–5345, 2020. 2

[67] Christopher Zach, Thomas Pock, and Horst Bischof. A du-

ality based approach for realtime tv-l 1 optical flow. In Joint

pattern recognition symposium, pages 214–223. Springer,

2007. 2

[68] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,

Benjamin Wah, and Philip Torr. Domain-invariant stereo

matching networks. arXiv preprint arXiv:1911.13287, 2019.

1

[69] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1851–1858, 2017. 2

[70] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view syn-

thesis using multiplane images. In SIGGRAPH, 2018. 2

15211


