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Interstitial pneumonia was the first manifestation to be recognized as caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, in just a few weeks,

it became clear that the coronavirus disease-2019 (COVID-19) overrun tissues and more

body organs than just the lungs, so much so that it could be considered a systemic

pathology. Several studies reported the involvement of the conjunctiva, the gut, the

heart and its pace, and vascular injuries such as thromboembolic complications and

Kawasaki disease in children and toddlers were also described. More recently, it was

reported that in a sample of 214 SARS-CoV-2 positive patients, 36.4% complained of

neurological symptoms ranging from non-specific manifestations (dizziness, headache,

and seizures), to more specific symptoms such hyposmia or hypogeusia, and stroke.

Older individuals, especially males with comorbidities, appear to be at the highest risk

of developing such severe complications related to the Central Nervous System (CNS)

involvement. Neuropsychiatric manifestations in COVID-19 appear to develop in patients

with and without pre-existing neurological disorders. Growing evidence suggests that

SARS-CoV-2 binds to the human Angiotensin-Converting Enzyme 2 (ACE2) for the

attachment and entrance inside host cells. By describing ACE2 and the whole Renin

Angiotensin Aldosterone System (RAAS) we may better understand whether specific cell

types may be affected by SARS-CoV-2 and whether their functioning can be disrupted

in case of an infection. Since clear evidences of neurological interest have already been

shown, by clarifying the topographical distribution and density of ACE2, we will be

able to speculate how SARS-CoV-2 may affect the CNS and what is the pathogenetic

mechanism by which it contributes to the specific clinical manifestations of the disease.

Based on such evidences, we finally hypothesize the process of SARS-CoV-2 invasion

of the CNS and provide a possible explanation for the onset or the exacerbation of some

common neuropsychiatric disorders in the elderly including cognitive impairment and

Alzheimer disease.
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BACKGROUND

A novel respiratory illness was identified in Wuhan, the capital
and the most populous city in the province of Hubei, in Central
China in December 2019 (1–3). After an initial outbreak of
infection at Huanan seafood market, possibly due to close
animal-human contact, a new disease, now called coronavirus
disease-19 (COVID-19) very quickly disseminated within China
(4, 5). The novel coronavirus, called severe acute respiratory
syndrome coronavirus 2 (and abbreviated SARS-CoV-2), is a
positive-sense single-stranded RNA coronavirus coming from
a bat coronavirus which spilled over to infecting humans
after contaminating an intermediate host, maybe a pangolin
(6, 7), which shares the genetic characteristics of the severe
acute respiratory syndrome coronavirus (SARS-CoV) family with
the 79% of RNA overlapping (as both SARS-CoV, the virus
from which the 2002-2003 outbreak originated, and SARS-CoV-
2 are classified among the beta-coronavirus phylogeny). This
virus was firstly identified in patients and was hypothesized to
be the etiopathological agent of the respiratory illness (1, 5).
However, compared to SARS-CoV, SARS-CoV-2 appears to have
significantly higher transmission capabilities whichmay be due to
gain-of-function in binding to host cells. In the following months
the infection was rapidly also detected in many countries outside
China and just a month after the first identification of the virus,
the World Health Organization (WHO) announced SARS-CoV-
2 to be a “public health emergency of international concern,”
and secondly a pandemic. By June 23rd, 2020, the pandemic had
affected more than 200 countries, with 8,993,659 cases having
been confirmed as COVID-19, including 469,587 deaths (8).

Growing evidence suggests that both SARS-CoV and SARS-
CoV-2 appear to use the human angiotensin-convertase enzyme
2 (ACE21) in order to infect host cells. With the aim to infect a
host, the virus binds a molecule expressed by the cells of the latter
(receptor) through its own protein that has the ability to bind
it (ligand). The presence of the receptor allows the tissues that
express it to become potential targets of the infection. Protein
S is the main ligand that the SARS-CoV-2 virus uses to hook
the ACE2 receptors expressed by the host cells and to infect
their tissues. Protein S is divided into 2 subunits separated by a
cleavage site (“furinic site”): the S1 subunit and the S2 subunit.
The receptor expressed by host cells for SARS-CoV-2 S protein
and SARS-CoV family viruses is the ACE2 protein. During the
process of infection of the host cell, the S1 subunit binds to ACE2
and triggers a series of events that determine the process by which
the S2 subunit determines the fusion between the viral capsid
and the plasma membrane of the host cell. For this purpose,
the action of the host protease transmembrane protease, serine

1ACE2 was first identified in 2000, as a homologous of a previously known
protein, angiotensin-converting enzyme (ACE) (9, 10). Morphologically, it is a
type I transmembrane protein which is comprised of 805 amino acids, a carboxy-
terminal catalytic domain and alpha amino-terminal domain. In the catalytic
domain an active site, called the zinc metalloprotein domain, matches 41.8% of
the previously known ACE protein (10–12). Its corresponding gene is found in the
short arm of the X chromosome (Xp22.2) (10). The ACE2 protein is found inmany
organs, specifically in the lungs, the kidneys, the testes, the intestine, the heart and,
of particular interest for the aim of this paper, the brain (13).

2 (TMPRSS2) that cuts the protein S in the 2 subunits at the level
of the furinic site is necessary. This splitting process is essential
to increase pathogenicity and improve the effectiveness of the
merger process (13–15).

Since the beginning of the COVID-19 spread the most
common clinical presentation of SARS-CoV-2 infection was
characterized by mild to medium fever, dry cough, respiratory
distress or dyspnea, with ground-glass pneumonia features
on computed tomography (CT) scan (2, 16). Most recently,
clinical reports were published demonstrating that SARS-
CoV-2 affects the conjunctiva, the gastrointestinal tract, the
heart and its pace, and may cause vascular injuries such
as thromboembolic complications and Kawasaki disease in
children and toddlers (17–19). A rapidly increasing number
of evidences have also described neurological and psychiatric
symptoms and complications, such as acute stroke (20, 21),
hyposmia (22), Guillain–Barrè syndrome (23), and encephalitis
(24). Emerging evidence suggests that the 36.4% of COVID-
19 patients exhibit neurological symptoms including both
central and peripheral signs (25). The first ones include
consciousness-impairment, vomiting, headache, dizziness, and
nausea, whilst the second ones are comprised of three types of
hypoesthesia (hypoplasia, hypogeusia, and hyposmia), suggesting
CNS-invading capabilities of the virus where it may affect the
functioning of specific nuclei or neural circuits (25).

Among the neurological manifestations just described, those
presenting early and those presenting later in the course of
the COVID-19 pathology can be identified. Indeed agitation,
confusion, and corticospinal tract signs affect above all patients
hospitalized in intensive care units, COVID-19 can cause
cerebrovascular ischemia and stroke also in young patients,
Guillain-Barré syndrome (23), Miller-Fisher syndrome (26), and
Kawasaki-like multi-system inflammatory syndromes now being
recognized in children and teenagers by changing of coagulation
and, in particular, to inflammation-induced disseminated
intravascular coagulation (DIC) (20, 21). According to Heneka
et al., it is possible to argue that four possible physiopathogenetic
mechanisms through which SARS-CoV-2 affects the CNS can
now be identified during the acute phase of COVID-19: (1) direct
viral encephalitis, (2) systemic inflammation, (3) peripheral
organ dysfunction (liver, kidney, lung), and (4) cerebrovascular
changes. In the long term perspective, one or more of these
mechanisms together may contribute to raise the risk for
developing long-term neurological complications in COVID-19
survivor patients, either by worsening a pre-existing neurological
disorder, or by onset of a new neurological pathology (19). This
assumption is confirmed by the observation that about one third
of COVID-19 patients discharged have cognitive and/or motor
impairment (27). Connections between SARS-CoV-2 related
infections and CNS pathologies are not to be unexpected, as
the previously mentioned observations on COVID-19 appear
to be in agreement with previous reports from Saudi Arabia
in which significant neurological manifestations were found
to be associated with Middle East Respiratory Syndrome
(MERS-CoV) infection (28). Recent guidelines, however, do
not include neuropsychiatric symptoms as typical COVID-19
symptomatology; for example, the WHO guidelines only report
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headache and altered mental status as neurological criteria for
probable COVID-19 cases (29).

Older aged patients, especially males, and patients with
medical comorbidities and frailty, appear to be at the
highest risk of developing more severe clinical pictures,
including neurological symptoms and a higher rate of systemic
complications. Data from the National Survey of Residential
Care Facilities in the United States showed that seven out of 10
individuals in assisted living had some cognitive impairment,
ranging from mild (29%) to severe cognitive impairment (19%)
(30). Not surprisingly, recent findings from Azarpazhooh et al.
suggest a significant correlation between dementia, disability-
adjusted life years (DALYs), and COVID-19 cases (31) with
a rate of dementia in hospitalized cases ranging from 6.8%
(32) to 13.1% (33). Moreover, dementia is a strong predictor
of COVID-19 mortality (31) and raises the issue of how to
safeguard and how to implement self-quarantine measures in
these patients.

Given these evidences, the aims of the present
speculative article are manifold: firstly, we will describe the
pathophysiological mechanism through which SARS-CoV-2
infection causes COVID-19 in humans, and secondly, we will
focus on literature data suggesting the mechanism through
which SARS-CoV-2 hijacks the CNS. Lastly, our final main
purpose, and the real innovative hypothesized theory, will be to
describe the neuropathogenicity of SARS-CoV-2 with the aim
to explain neurocognitive and psychiatric symptoms, which are
based on pathophysiological data and scientific evidences adding
our speculative pathogenetic theory to the four mechanisms
proposed by Heneka et al. as described above. In more detail, we
aimed to examine the role of consequences of ACE2 binding by
SARS-CoV-2 in the CNS through the collection of evidence in
preclinical and clinical studies outlining the subsequent increase
and/or reduction of the main components of Renin Angiotensin
Aldosterone System (RAAS) at the CNS level. Based on this
evidence, we hypothesize a possible pathogenetic mechanism
through which the brain and its functions can be clinically
altered during SARS-CoV-2 infection.

FROM SARS-COV-2 TO COVID-19:
PATHOPHYSIOLOGICAL MECHANISM

The virus appears to be able to use two anatomical routes in order
to reach, colonize and infect the CNS: (a) a body fluid pathway
(such as liquor, lymph, or blood) and (b) a neural pathway. The
main person-to-person routes of transmission for COVID-19 are
close contact transmission and inhalation of respiratory droplets.
Additionally, contact with the eye conjunctiva of SARS-CoV-2
containing droplets may allow, once the trigeminal nerve (V) is
infected, for the virus to infect the brain by retrograde traveling.
This route may result in impaired vision like hypoplasia.
Additionally, SARS-CoV-2 can affect the sensory neurons which
reach the taste buds of the tongue, from there it can infect the
CNS through retrograde transport by reaching the nucleus of the
solitary tract (VII, IX, and X) or the trigeminal nerve (V). This
route may give a reason for hypogeusia. As the virus-containing

respiratory droplets reach the mucous membrane that covers the
nose, SARS-CoV-2 is also capable of entering the brain from the
olfactory nerve (I), this may explain the clinical identification
of hyposmia/anosmia in COVID-19 patients (34). In addition,
in terms of body fluid invasion, the nasal mucosa provides a
favorable environment for virus attack due to significant presence
of blood and lymphatics capillary, which facilitate the entrance
in the bloodstream after interaction with expressed ACE2 on
endothelial cells. Finally, another modality of infection is the
expression of ACE2 on epithelial cells that line the respiratory
system, which enables respiratory viruses to cross into the
bloodstream. The virus does not only use vascular pathways to
spread into the CNS, neural pathways such as the vagus nerve
branch (X) which innervates the respiratory system are used
by the virus, causing clinical symptomatology such as dyspnea,
dry cough, and worsening of acute respiratory distress syndrome
(ARDS). Likewise, inadequate hand hygiene allows the virus to
hijack the gastrointestinal tract and then to gain entry to the CNS
through the blood vessels, lymphoid pathways, and the vagus
nerve. Additionally, once the virus has entered the circulation it
is also capable of invading the brain via the compromised blood-
brain barrier (BBB), spreading to the liquor through leakage into
the intracerebral lymphatic circulation of the CNS. Similarly, a
damaged blood liquor barrier allows viruses in circulation to
invade the fourth ventricle (34).

As upon described, recent studies confirmed that SARS-CoV-
2 tethers to the ACE2 through their spike (S) protein (35, 36).
Through the binding of the surface unit of the S protein (S1) to
ACE2, viral attachment to target cells is facilitated. Additionally,
once the receptor is bound, the virus has to access the cell cytosol
in order to start its own replication, which is fulfilled by cellular
serine protease TMPRSS2 through acid-dependent proteolytic
cleavage of the S protein, a process similar to the priming of the S
protein in SARS-CoV-2. After the binding between the S protein
and ACE2, the S protein is then cut at both S1 and S2 sites level.
This allows the exposure of the S2 site which allows the fusion of
the viral and cell membranes. The step of cutting of the S protein
through dibasic arginine sites by the protease TMPRSS2 that is
expressed by the host cell to cleave the S protein in the S1 and
S2 units is critical in order to allow both S2-induced membrane
fusion and viral endocytosis with ACE2 in the host tissue (35,
36). A clathrin-dependent mechanism allows SARS-CoV-2 to be
internalized, it then penetrates early endosomes. Once the spike
protein of the virus comes in contact with ACE2 and binds it, the
whole molecule or the transmembrane region of ACE2 enters the
cell along with the virus by endocytosis. Subsequently, membrane
fusion ensues and RNAs of the virus are released. The disintegrin
and metalloprotease 17 (ADAM17) cuts the extracellular juxta-
membrane region of ACE2. This phase is called “shedding.” In
conclusion, the internalization and subsequent shedding of ACE2
diminishes the concentration of ACE2 itself on the surface of host
cell (13).

As suggested by Wrapp et al. (37), the higher virulence of
SARS-CoV-2 might be due to the higher affinity of the S1
protein for the ACE2 protein compared with that of SARS-
CoV. The result of SARS-CoV-2-induced ACE2 internalization
is the loss of expression of ACE2 at cell surface level, which
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would compromise the capability of the cell to metabolize Ang
II, a key step for the cell to produce Ang-(1-7), which is
one of the most important cardio-vascular mediators of the
peripheral action of Renin Angiotensin Aldosterone System
(RAAS). Therefore, the rise in the ratio of Ang II:Ang-(1-7)
which follows ACE2 endocytosis may drive the damage to the
tissue which is at first induced by SARS-CoV-2 infection. Thus,
a diminished ACE2 expression at the cell surface level may
contribute to chronic loss of affected tissues functions and, in
our hypothesis, to generate brain-functioning impairment due to
the neurotrophic properties of SARS-CoV-2 (13). Based on the
collected evidence and these assumptions, we hypothesize that
the reduced concentration of ACE2 and the consequent rise in
the ratio of Ang II:Ang-(1-7) may be a causal factor in the genesis
of the pathological involvement of the CNS and may participate
in the genesis of neuropsychiatric symptoms and neurological
clinical manifestations from COVID-19. Based on this evidence,
we hypothesize a possible pathogenetic mechanism through
which the brain and its functions can be clinically altered during
SARS-CoV-2 infection, with a specific focus on impairment of
cognitive function during and after COVID-19 and especially on
the potential SARS-CoV-2-induced neurodegeneration.

THE RENIN ANGIOTENSIN ALDOSTERONE
SYSTEM (RAAS)

Overview
Renin was the first component of the RAAS once it was
discovered that extracts from rabbit kidney affected blood
pressure (36, 38). Then it was found that the constriction of
the renal artery led to high blood pressure, which drove to the
discovery of angiotensin (Ang) (39, 40). Once Ang was purified,
two forms were isolated and described: Ang I and Ang II. Thus,
the existence of an enzyme capable of converting Ang into Ang
I and Ang II was hypothesized. This enzyme, named ACE, was
subsequently isolated and characterized by Skeggs et al. (41). An
arm of the RAAS system which counterbalances the continuous
production of Ang II was then described and characterized. Two
independent research groups (42, 43) have thus isolated ACE2,
which works to generate proteins with cardioprotective action.
The human ACE2 (hACE2) is a zinc metallopeptidase comprised
of 805 amino acids which shares 42% of the sequence of ACE in
the metalloprotease catalytic regions, and it is able to cleave the
decapeptide Ang I to Ang-(1-9) and to cleave the octapeptide Ang
II to Angiotensin-(1-7) [Ang-(1-7)] (17). Ang-(1-7) seems to be
the most relevant cardioprotective protein from ACE2 action. As
Ang-(1-7) interacts with the Mas receptor (MasR), the Ang-(1-
7)/MasR axis comprises the second arm of the RAAS axis (13),
and it appears to have cardioprotective properties (44). Recently,
some studies discovered the ACE2 protease domain to be the
main receptor entailed in the onset of severe acute respiratory
syndrome-coronavirus (45) and, more recently, as a receptor
involved in the infection from SARS-CoV-2 (15, 46).

Cascade
The synthesis of renin by the juxtaglomerular cells (JG), which
are located near the afferent (and sometimes also the efferent)

arteriole of the glomerulus of the kidney, is the first step in the
RAAS cascade. A precursor of renin in the form of a pre-pro-
hormone is synthetized and it is then cleaved at its N-terminal
of 43 amino acids, forming renin as an active compound. Renin
is then stored in granules which are released into the renal
and systemic circulation by an exocytic step involving coupling
of stimulus-secretion (Figure 1). There are four interdependent
factors which cause the secretion of the active form of renin:
(1) alterations in the delivery of sodium chloride (NaCl) to
the cells of the macula densa, which are located in the distal
tubule and to the JG cells, together they constitute the “JG
apparatus”; (2) changes of pressure in the perfusion of the
kidney which are recognized by the baroreceptor mechanism
in the afferent arteriole; (3) direct effect of Ang II on JG cells
(negative feedback); (4) orthosympathetic stimulation through
beta-1 adrenergic receptors (43). Renin, through the proteolytic
removal of the N-terminus portion of angiotensinogen, is capable
of regulating the first, rate-limiting step of the process in order to
form Ang I, a biologically inert decapeptide.

The liver is the primary organ in which circulating
angiotensinogen is synthetized, however mRNA expression of
angiotensinogen has been identified in many other organs such
as brain, kidney, vascular, placenta, adipose tissue, ovary, and
adrenal gland. ACE then cleaves the C-terminal dipeptide of
Ang I producing Ang II, a protein which, unlike Ang I, is
biologically active and is capable of producing vasoconstrictor
effects. ACE works also to metabolize many different peptides to
their inactive forms, such as kallidin and bradykinin. Therefore,
ACE effects may potentially decrease vasodilation and increase
vasoconstriction (47, 48). Even though Ang II is the most
known active product of the RAAS, studies suggest that different
metabolites of both Ang I and Ang II may be capable of
biological effects, especially in tissues. The sequential cleavage
by aminopeptidases of amino acids from the N-terminal of
Ang I and Ang II produces Ang III, a heptapeptide which is
discovered in the CNS where it maintains tonic blood pressure
and which play a role in hypertension and Ang IV, which derives
from the subsequent enzymatic cleavage of Ang III (49). Ang
II is converted by the action of carboxy- peptidases ACE2, that
has a significant structural homology to ACE, to Ang-(1-7), an
heptapeptide with biological activity. ACE2 has a role in the
production of Ang-(1-9), another biologically active peptide from
the cleavage of the C-terminal of Ang I.

Angiotensin Receptors
Five subtypes of receptors mediating the effects of the RAAS
biologically active peptides have been described as follows (49,
50):

• The type 1 receptor (AT1R), found typically in the form of
a G protein-coupled receptor, which mediates the most well-
known actions of Ang II, and among other functions it is
involved in oxidative stress, inflammatory responses, and in
the process of cell proliferation.

• The type 2 receptor (AT2R) is abundant during fetal life in the
brain, kidney, and other sites, and its levels decrease markedly
in the postnatal period.
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FIGURE 1 | The RAAS cascade. Simplified picture of the Central RAAS pathway depicting the main steps leading to the synthesis of Angiotensin (1-7) which, in turn,

binds and activates with the highest affinity the MasR.

• The type 3 receptor (AT3R) has unknown biological functions.
• The type 4 receptor (AT4R) plays a role in the mediation of

Ang II, Ang III, and Ang IV in the release of plasminogen
activator inhibitor 1.

• MasR is involved in vasodilatation, natriuresis,
antiproliferation, heart protection, and brain function
modulation. Such effects are due to the C terminal truncated
peptide Ang (1-7) and not to the binding of Ang II.

RAAS and CNS
Two different RAAS pathways have been described in the brain:
the peripheral pathway, and the central pathway. The peripheral
pathway allows for the peripheral access of RAAS components
and involves both the forebrain and the circumventricular
organs which surround the third and fourth ventricles, and
it is constituted of fenestrated capillaries (51). Because of
the BBB, which prevents peripheral RAAS constituents from
entering most regions of the CNS, it is essential that there
is synthesis of cerebral RAAS components in the brain. The
central RAAS pathway is themain producer of locally synthesized
angiotensin and links the medulla and the hypothalamus (51, 52).
Additionally, other brain regions synthetize RAAS components
as well. Both central and peripheral RAAS pathways contribute
to the central control of cardiovascular homeostasis. In the
CNS also, AT1R plays a role in vasoconstriction and is present
on endothelial cells; on the contrary the AT2R plays a role in
vasodilation (35, 51).

Ang II, Ang IV, Ang-(1-7), and Alamandine, that is produced
from Ang-(1-7) via decarboxylase and from Angiotensin A via
ACE2, are the main neuroactive forms of RAAS components.
Ang-(1-7) binds to MasR with the strongest affinity, however
it is also capable of binding AT2Rs and Mas-related-G protein
coupled receptors (MrgDs). Alamandine attaches to MrgDs with
the highest affinity. Ang II binds both AT1Rs and AT2Rs. Ang
IV binds AT1Rs and AT4Rs. Receptors can be located on the
plasma membrane of neuron, microglial cells and astrocytes, or
intracellularly. The locations of intracellular receptors include
neurosecretory vesicles, mitochondria and the nucleus. As
previously described, ACE metabolizes Ang I into Ang II,
and even though Ang II is capable of binding to both AT1R
and AT2R, the upregulation of ACE increases AT1R activation
specifically. AT1Rs are G-protein coupled receptors (GPCRs)
which are located on basal ganglia, astrocytes, neurons, the
hippocampus, microglia of the cortex and oligodendrocytes (53).
The upregulation of ACE expression and the increase in the
activation of AT1R signaling is a well-known process which
regulates cell death, vasoconstriction (46, 47) and inflammation
(15, 44). Conversely, AT2R, MasR, MrgD, and ACE2 possess
vasodilation properties and are known for their positive effect on
cognitive performance (50), promote the survival of cells (51),
possess antioxidant effect (54), and promote anti-inflammatory
processes (55). The MrgD, AT2R, and MasR pathways are
interlinked, and reciprocally affect each other. MasRs andMrgDs
ligands production is facilitated by ACE2. The activation of
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AT2R enhances ACE2 expression (36). A decrease in MasRs
and ACE2 mRNA, protein and activity was found in knocked-
out animal models (56). All these processes taken together
appear to suggest a reciprocal interplay between enzymes and
receptors in order to keep a balance in the maintenance of
a well-functioning and healthy brain in terms of plasticity
and resilience.

ACE2, ANG-(1-7), AND CENTRAL
NERVOUS SYSTEM: EVIDENCES FROM
ANIMAL MODELS

The allocation of ACE2 in the CNS was under discussion
since 2002 when suggestions of ACE2 mRNA were pointed
out in the post-mortem human brain using quantitative real
time polymerase chain reaction (RT-PCR) (57). Subsequently,
with the aid of immunohistochemistry, ACE2 protein availability
was found primarily at the level of endothelial and arterial
smooth muscle of the vessel cells (16). Other evidence has
outlined that ACE2 was found to be prevailing at the level
of the glial cells (58). Additionally, Doobay et al. have
outlined the presence of the mRNA and the ACE2 protein
in the mouse brain, preponderantly in neurons (58). The
evidence that SARS-CoV was found in infected patients brains,
nearly always in neurons, substantiates the localization of
ACE2 to the CNS (58, 59). Thanks to molecular biology
techniques it has been found that ACE2 is ubiquitously spread
throughout the brain, both in the nuclei that preside over
the central modulation of cardiovascular functions (cardio-
respiratory nuclei of the brainstem) and in brain areas
responsible for other functions such as the motor cortex and the
raphe (58).

While the role of ACE2 in the physiology and pathophysiology
of the CNS is becoming better known, there is also an important
body of knowledge supporting the fact that Ang-(1-7) plays
a role in the brain. This peptide is mainly present in central
brain areas linked to the control of blood pressure, such as the
brainstem and the hypothalamus, and could play a synergic or
opposite role on Ang II effects (60–63), as well as playing a
role in neuromodulator action of cardiac baroreflex mechanisms
and driving to a heightened responsiveness of this system (64),
Ang-(1-7) has been outlined to roll out an relevant role in
the negative modulation of norepinephrine release and to lead
depressor responses in animal models, to enhance bradykinin
levels, to boost the hypotensive upshots of bradykinin and to
increase vasopressin and nitric oxide release (65–70). These
effects are mediated by MasRs (65, 71), electively expressed in
the CNS.

In spite of the fact that several data address that central
ACE2 plays a predominant role in the conversion of Ang II
into Ang-(1-7) in the brain, Elased et al. suggested that ACE2
activity in the CNS is more relevant than ACE activity under
normal conditions compared to pathological conditions. This is
completely inconsistent with previous findings proving that the
physiological prominence of central Ang-(1-7) is uncovered in
pathological circumstances and that its role is constrained in

physiological conditions (72). On the other hand, it has been
shown that the role in the CNS of ACE/Ang-(1-7)/MasR axis
is not only limited to the control on cardiovascular function,
but, in particular, thanks to the study of its inhibition, it has
been highlighted that the ACE/Ang II/AT1R axis is involved in
numerous other processes such as the regulation of the synthesis
and release of neurotransmitters such as norepinephrine (NE),
dopamine (DA), and y-aminobutyric acid (GABA) (72). For
the sake of argument, in animal models Ang-(1-7) has proven
to be capable to reduce the release of K+-induced NE in
the hypothalamus, which in turn through a downregulation
of the activity of tyrosine hydroxylase (TH) leads to a net
reduction of the synthesis of NE. The fact that this inhibitory
activity on NE release is experimentally blocked both by using
a MasR antagonist such as A-779 and an AT2R antagonist
such as PD123319, demonstrates the sharing of AT2R signaling
in mediating this effect. Likewise, studies on aortic coarcted
hypertensive rat models, show the ability of Ang-(1-7) to act
inversely to Ang II on the release of hypothalamic NE, blocking
its enhancing effects, and further showing the involvement of
both receptor systems (MasR and AT2R). The administration of
Ang-(1-7) to the rats in the striatum induces an increase in the
release of both DA and GABA. The A-779, the MasR antagonist,
is capable of inhibiting the increased release of GABA, but not
of the DA; in order to obtain that result the co-administration of
another antagonist is mandatory, EC33, which is an inhibitor of
the enzyme that converts Ang-(1-7) in its metabolite Ang-(3-7).
This evidence suggests that Ang-(1-7), through MasR, mediates
the release of GABA, while the transformation in one of its active
metabolites is fundamental to induce the release of DA (73).

Central Cardiovascular Regulation
Evidence from animal models of hyper- or hypo-expression of
ACE2 lead to the following findings.

The hyper-expression of ACE2 in the CNS is linked to a
protective phenotype for the most common cardiovascular
diseases (hypertension, chronic heart failure, cardiac
hypertrophy). In fact, it entails a depletion of Ang II in the brain
and consequently an enhancement in the amount of nitric oxide
(NO), which would counterbalance and negatively modulate
the peripheral cardiovascular effects of the Ang II mediated,
instead, by the cutback of nitric oxide synthase (NOS) and
sympathetic activity (74). Moreover, ACE2 hyper-expression in
the brain mitigates the occurrence of deoxycorticosterone acetate
(DOCA)-salt hypertension. Consistently, the low expression of
ACE2 through experiments in transgenic animal model (mice)
demonstrated a risen oxidative stress and autonomic response
disruptions as opposed to controls. Starting from this evidence,
Xia et al. hypothesized that the mechanism underlying the
antihypertensive and autonomic disruption effect mixed up a
switch in the balance between the central Ang II-AT1R and the
Ang-(1-7)/MasR signaling in favor of the latter (75).

Stroke and Brain Injury
Overexpression of ACE2 has been shown to mediate the
circumscription of post-ischemic brain tissue damage in animal
models (76–80) and, in particular, was combined with a
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lessening in the volume of the area of infarcted brain tissue
under the same conditions (81, 82). The administration of the
MasR antagonist, A779, was able to reverse these beneficial
effects, suggesting once again how the pathophysiological
mechanism underlying the extension of cerebrovascular damage
following ischemia is recognized in the altered equilibrium
between Ang II and Ang-(1-7) one of the main causal
factors (76–80).

Cognition and Memory
Recent evidence showed that Ang-(1-7) and its receptor
MasR may be pivotal for memory handling in the
hippocampus brain area (83). Congruently, in vivo studies
with animal models of ACE2 hypo-expression demonstrated
a worsening in memory and cognitive functions (84), and
an intensified synthesis of reactive oxygen species and a
simultaneous reduction in the production of the brain
neurotrophic factor (BDNF). These changes reversed after
the administration of AT1R and Ang-(1-7) antagonists,
suggesting the important role played by the biochemical signal
mediated by MasR in the positive modulation of these brain
functions (83).

Stress Response and Anxiety
Compared to controls, transgenic mice upregulating ACE2
exhibit behavior compatible with reduced anxiety levels (85).
On the other hand, the MasR antagonist A779 reverts this
behavior, suggesting that the Ang-(1-7)/MasR axis is involved
in the modulation of anxiety levels and related behaviors.
In a more recent study, using the same experimental model,
Wang et al. reported a reduction in plasma corticosterone
and proopiomelanocortin levels, assuming that ACE2 at the
hypothalamic level by suppressing the synthesis of corticotropin
releasing hormone (CRH) mediates the response to stress
at the level of the hypothalamic-pituitary-adrenal (HPA)
axis (86–89).

Serotonin and Neurogenesis
A reduced synthesis of serotonin has been observed in
genetically modified animal models for hypo-expressing ACE2
(90). Intriguingly, this reduction was correlated with the reduced
intestinal absorption and consequently reduced plasma levels of
its tryptophan amino acid precursor (91, 92). In fact, ACE2 has
a non-catalytic role in the transport of amino acids (AA) in the
intestine, and this notion has led to the hypothesis that the effects
of ACE2 can be mediated, at least in part, by its actions on the
gastrointestinal tract and/or on the intestinal microbiota. Among
the multiple functions performed by serotonin in the literature,
emphasis has recently been placed on neurogenesis. Indeed,
Klempin et al. demonstrated that cell proliferation prompted
by exercise in the dentate gyrus is abolished in ACE2-deficient
mice. However, further studies will be needed to characterize
the effective mediation of Ang II and Ang-(1-7), to confirm
those pieces of evidence which are currently still contradictory
(90, 93).

ACE2, NEUROLOGICAL FUNCTIONING
AND DISEASE: CLINICAL EVIDENCES
FROM PRECLINICAL STUDIES AND
FOCUS ON BRAIN AGING AND
ALZHEIMER’S DISEASE

The RAAS hyper-activation has been identified in several
neuropsychiatric disorders, including Alzheimer’s Disease
(AD) and Mood Disorders (56). Since the lowest common
denominators in all these pathologies are neurodegeneration,
insulin resistance and the inflammation cascade, great attention
has been paid in the literature to the possible relationships
between the dysregulation between the two functional axes of
the RAAS and the underlying neuropathological processes, since
Ang II, as previously mentioned, is a pleiotropic factor locally
metabolized in the brain (94).

Two critical studies show that Ang-(1-7)/MasR axis is
chiefly involved in normal learning and memory processes.
Among others, Hellner et al. outlined that Ang-(1-7)/MasR
signaling augments long term potentiation in the CA1 region
of the hippocampus, a key region for learning processes and
implicit configuration memory (95). Correspondingly, Lazaroni
et al. likewise demonstrated in an experimental animal model
hindering MasR in the CA1 region of the hippocampus, object
recognition memory was hampered (83).

Evidences accumulated over the years show the contribution
of the RAAS components in the modulation of cognitive
functions and an imbalance between the two functional axes of
RAAS in both AD and mild cognitive impairment (96, 97). It’s
well-known that plasma renin and aldosterone levels decrease
with advancing age (98, 99) although the underlying mechanisms
are not fully understood and might include the age-related
reduction in the number and in the functioning of nephrons
and a reduced response capacity of RAAS to stimuli. First, the
decrease in the number of nephrons induces a compensatory
hyperfiltration by the remaining nephrons which determines an
increase in the quantity of sodium chloride at the level of the
macula densa with a reduction in the shaping and outflow of the
renin and consequently in the synthesis of Ang II and aldosterone
and therefore in plasmatic levels (99). Several studies on animal
models of the aging process have shown that the decrease in
plasma rates of Ang II is not parallel to that of renin. Few studies
have been performed to evaluate Ang II levels in the elderly.
For example, Duggan et al. showed a non-significant reduction
in plasma levels of Ang II in a small sample of the elderly
that did not include the so-called “older old” subjects (100).
Second, in aged animals the release of renin in response to acute
volume depletion or to sodium restriction is reduced compared
to that of an adult animal. The tubular response to aldosterone
administration is also impaired, as well as the response of plasma
aldosterone to potassium infusion.

RAAS elements such as Ang II, Ang IV, and Ang-(1-7),
and their receptors AT2R, AT4R, and MasR which positively
affect cognition are abundant under physiological condition in
many cell types such as neurons, astrocytes and microglial cells.
Conversely, under pathological conditions such as post-stroke
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cognitive impairment (PSCI), vascular cognitive impairment
(VCI), Parkinson’s disease (PD), AD, or in the physiological aging
process, the Ang II/AT1R axis prevails and cognitive functioning
worsens (101).

In vitro studies show that the administration of Ang II
blocks the K-dependent release of Acetylcholine in the temporal
cortex (102), alters synaptic transmission in neurons of the
lateral geniculate nucleus (103), and has shown, in in vivo
studies, to suppress the induction of long term potentiation
(LTP) in the lateral nucleus of the rodent amygdala (104). The
cholinergic system at the central level is notoriously directly
involved in cognitive, arousal and attention processes (105), LTP
is considered to be a neuronal model of learning. The induction
effect on it is probably mediated by the action of AT1R as it is
reversible upon administration of the specific AT1R antagonist
Losartan, while this does not occur after administration of the
specific AT2R antagonist (PD123319) (104). In vitro studies show
that Ang II influences as well-long term depression (LTD) in
the lateral amygdala by means of a mechanism involving L-type
calcium channels and AT1R, suggesting a role for the plasticity
changes in the lateral nucleus and a possible cellular mechanism
essential for the beneficial effects of ACE inhibiting drugs on the
cognitive improvement in AD (96, 106).

In vivo studies on animalmodels have only partially confirmed
the above suggested in vitro (107). Through behavioral analysis
in different tasks after administration of losartan, PD123319, or
both, it has been found that both receptors, AT1R and AT2R,
are involved in memory enhancement processes, albeit with
different power and intensity, showing a preferential involvement
of AT2R in the enhancement of acquisition and recall of
avoidance behavior (108). Other studies, on the other hand,
using learning tasks have diminished the role of endogenous
Ang II by suggesting that in CA1 it does not modulate memory
consolidation through AT1R and AT2R (109, 110). Using a
different experimental paradigm, Akhavan et al. shows that
Ang II display an important role in brokerage of the effect of
exercise on learning andmemory, although the basic biochemical
mechanisms remain largely unknown (111).

In summary, a growing body of scientific evidence pointed
out that the upregulation of ACE2 and an increased proportion
of Ang-(1-7)/Ang II, parallel to the positive tailoring of Ang
II signaling through AT2R and Ang-(1-7) through MasR,
determine an improvement in cognitive function and is involved
in the treatment of dementia, above all AD (Figure 2). More
specifically, the cognitive outcomes of Ang II deficiency and/or
abundance (Figure 3) have been studied above all in preclinical
model studies. Even though the BBB is impervious to all RAAS
components, it was hypothesized that the local brain RAAS
may possess pharmacological and physiological properties in
the CNS (112). Inconsistent findings about the contribution of
Ang II in memory and learning process in vivo studies were
reviewed by Gard (113). Learning and memory in rodents were
found to be enhanced by Ang II (114), however other studies
found evidence of Ang II harming cognitive function (115).
Experimental evidence reports that one possible reason is that
the short-term effect of Ang II would consist in improving
cognitive functions; on the other hand, Ang II in the long

term could contribute to the functional exhaustion of neurons
and consequent cognitive deterioration. That may be because
of the induction of cerebrovascular remodeling by Ang II,
which, by driving oxidative stress and vascular inflammation,
produces an impairment in cerebral blood flow regulation (CBF)
(116, 117). Additionally, endothelial capacity in brain vessels
was affected by central expression of Ang II in genetically
modified animal model of Ang II-dependent hypertension (118,
119). Moreover, Ang II was capable of inducing astrocyte
senescence, a process involved, via superoxide production, in age-
related neurodegenerative disease (120). Conversely, perindopril,
which acts as a centrally active ACE inhibitor, was found to
counter cognitive dysfunction in a mice model of AD and in
chronic central hypoperfusion rats (121). These results suggest
that permanent Ang II stimulation negatively affects cognitive
function through the stimulation of the AT1R via degradation
of neurons such as an increase in cellular senescence, CNS
inflammation and oxidative stress, and through a decrease in the
liquor in the brain. Cognitive impairment then follows neuronal
degeneration, as induced by the many stimuli of Ang II. In terms
of the clinical relevance of the RAAS cascade modulation and
neurodegenerative disease, we will focus on the epidemiologically
most impacting dementia: AD.

Two main pathophysiological mechanisms have been
proposed to explain neurodegeneration as a pathogenetic
mechanism involved in AD: (i) the hypothesis based on
amyloid cascade s and (ii) the hypothesis based on cholinergic
neurotransmission. According to the former hypothesis,
neurodegenerative aberrations that bring to clinically relevant
AD are induced by Aβ (1–42) (122). More specifically, the
cleavage of the amyloid precursor protein (APP) produces a
peptide, Amyloid β (Aβ), which is a 39–42 amino acid peptide
(123) ACE appears to affect Aβ metabolism, thus suggesting
a link between RAAS and AD (124). ACE contributes to
degradation of β-amyloid in the brain, that is responsible for
AD and ACE2 mediated release of Ang-(1-7) peptide in nerve
tissue has potential neuroprotective actions. Taking together
these findings outline that the smaller ratio of ACE/ACE2
score may contribute to the onset or the speeding process of
pathophysiology of AD.

With regard to the cholinergic hypothesis, a depletion of
neurons characterizes AD, in particular of those neurons which
express nicotinic acetylcholine receptors (nAChR) (125, 126).
Moreover, even though few studies investigated the link between
Ang II and α7nAChR, Marrero et al. found that Ang II appears to
activate the tyrosine phosphatase Src homology region 2 domain-
containing phosphatase-1 (SHP-1), resulting in the block of
neuroprotection against Aβ(1–42) mediated by nicotine (127,
128). Additionally, they found Ang II to be capable of inhibiting
in PC12 cells, via SHP-1 activation induced by AT2R, the
α7nAChR-induced activation of the JAK2-PI-3 K cascade (128,
129).

In vivo model evidences of the involvement of RAAS in the
neurodegenerative disorders mainly come from genetic studies
and cerebrospinal fluid (CSF) levels of the metabolites of the
RAAS cascade. Significant single nucleotide polymorphisms
(SNPs) in ACE gene also showed association with AD risk. The
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FIGURE 2 | Ace/AngII/AT1R axis–Ace/Ang (1-7)/MasR axis imbalance. In condition such as AD, vascular cognitive impairment and post-stroke cognitive impairment,

the Ace/AngII/AT1R axis predominates magnifying and accelerating the development of cognitive impairment.

ACE gene insertion/deletion (I/D or indel) polymorphism has
long been linked to AD. Fekih-Mrissa et al. have outlined that
there was a significantly increased risk of AD in carriers of
the D/D genotype (51.67% in patients vs. 31.67% in controls;
p = 0.008, OR = 2.32). The D allele was also more frequently
found in patients compared with controls (71.67 vs. 56.25%; p
= 0.003, OR = 2.0). Moreover, as assessed by Mini-Mental State
Examination, patients suffering from severe dementia were found
predominantly in the D/D carriers group and, conversely, the
D/D genotype and D allele were more frequently found in AD
patients with severe dementia (130).

From a biochemical point of view, in 1986 Zubenko et al.
showed that mean levels of the hydrolase ACE in CSF samples
from a group of patients with dementia of the Alzheimer’s type,
were decreased (131).More recently, Kauwe et al. have conducted
a genome-wide association study of CSF levels of 59 AD-related
analytes. All analytes were measured using the Rules Based

Medicine Human Discovery MAP Panel, which includes analytes
relevant to several disease-related processes. They identified
genetic associations with CSF levels of five proteins involved
in amyloid processing and pro-inflammatory signaling. Among
these proteins there was ACE, and SNPs associated with ACE
protein levels are located within the coding regions of the
corresponding structural gene. The genetic associations reported
were new and suggested mechanisms for genetic control of CSF
and plasma levels of these disease-related proteins. Significant
SNPs in ACE showed association with AD risk in this study as
well (132).

Taking together all these findings, it is possible
to argue that the RAAS cascade is involved in
neurodegenerative process. More specifically the constant
activation by Ang II is capable of damaging neurons
through AT1R stimulation via multiple cascades.
Conversely, AT2R stimulation appears to protect
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FIGURE 3 | Ang II and the Brain. Possible effects of Ang II on Non-neural cells: In green is outlined the cascade responsible for the reduction of blood flow and

enhanced permeability of the BBB at the microvessels level; we depict in blu the reported effects of Ang II acting as a paracrine mediator in CNS: mainly in astrocytes

where, via TGF-β upregulation and local aldosterone production, it exerts pro-inflammatory effects resulting in indirect neural damage. Moreover, via superoxide

production, Ang II accelerates senescence and dysfunction of astrocytes itself. Both these processes are supposed to be cofactor in leading to cognitive dysfunction

resulting in higher susceptibility to dementia.

against cognitive impairment, neural damage and the
senescence process.

RAAS AND PSYCHIATRIC DISTURBANCES

Stress Related Disturbances
RAAS has been considered a stress response system similar
to the HPA axis in which Ang II is considered an important
stress hormone (133) that binds AT1R and AT2R located on
stress-sensitive brain areas, including the HPA axis, amygdala,
hippocampus and prefrontal cortex (134).

Similarly to the HPA system and its effects on cortisol,
the RAAS cascade in humans has been considered a stress
response system and higher levels of functioning are observed
both following acute stress-related tasks and following stress
chronically induced (133). Ang II is nowadays considered one
of the most important stress hormones of the RAAS cascade,
through the link with its AT1R and AT2R receptors in specific
CNS regions such as the amygdala, the hippocampus, the
prefrontal cortex and modulates the HPA axis, in particular
through the link with paraventricular AT1R (133, 134). In fact,
ACE inhibitors proved effective in regulating and desensitizing
the HPA’s response to stress (135). It is mandatory to mention
that the effects mediated by AT2R in general counterbalance
the action of Ang II on AT1R receptors, whose inhibition
represents the main biological pathway of stress resistance and
resilience (135).

Despite several clinical studies, there is still little evidence
aimed at investigating the role of RAAS as an intervention

target for the modulation of anxiety and stress response. In this
regard, a 2012 observational study in patients suffering from
post-traumatic stress disorder (PTSD), in which both the use of
the AT1R antagonists and ACE inhibitors were associated with
a protective profile regarding anxiety and fewer symptoms of
the anxious spectrum in the patients examined (136). Unlike
the RAAS cascade, ACE2/Ang-(1-7)/MasR axis has accumulated
an increasing number of scientific evidences that qualify it
as a protective factor in various neuropsychiatric pathologies,
including psychosis, major depressive disorder (MDD), AD, PD,
and stress disorders (79, 83, 88, 137). The protective effects on
the central nervous tissue are mediated by anti-inflammatory and
antithrombotic actions, as well as by the reduction of oxidative
stress and apoptosis mediated by the latter (76, 138).

The central administration of Ang-(1-7) reduces the
autonomic response to stress, reducing the high levels of stress-
related hormones in the CNS, including Ang II itself, serotonin,
DA and NE in the critical cerebral regions for this reply. MasR-
KO mice in experiments showed increased durability of LTP and
higher anxiety-like symptoms (87). The injection of Ang-(1-7),
on the other hand, enhanced LTP through its action on NO and
cyclooxygenase-2 in the lateral amygdala (139). Another study
on the anxiolytic effects of Ang-(1-7) identified in the amygdala
a correlation between the anxiolytic effects and the reduction
of oxidative stress markers, and contextually the increase in the
activity of glutathione peroxidase (140).

Consistent results were observed in transgenic mice
overexpressing ACE2 and the GABAergic transmission: these
mice tend to present an increased GABAergic tone specifically
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in the basolateral amygdala. High degree of ACE2 amount
corresponds to high levels of Ang-(1-7) production which
would induce an increased release of GABA locally, responsible
for the anxiolytic effects observed (85). Another study found
that in transgenic animal model (mice) with down-regulated
synthesis of glial angiotensinogen, lower levels of serotonin
synthesis and release in frontal and parietal cortex as well as in
the hippocampus, which in turn could account for the depressive
behavior shown by the experimental animals. Interestingly, this
behavior is reversed both by the treatment with the serotonin
selective reuptake inhibitor (SSRI) antidepressant fluoxetine, and
by Ang-(1-7) injection (141).

Affective Disorders
There is not enough experimental evidence to evaluate the
potential contribution of the components of the RAAS cascade
as a biomarker or as a target of treatment strategy for affective
disorders. However, studies have shown that drug free and/or
naïve patients with a first episode of MDD have significantly
higher circulating plasma levels of RAAS cascade components
than healthy controls. Among the various components of the
RAAS cascade, attention was paid to circulating levels of
Aldosterone as a promising biomarker of affective disorders:
in a study, low aldosterone levels related both to a greater
clinical severity of depression and to an increase in suicidal
behaviors (142).

Psychosis
In consideration of the aforementioned RAAS action on the
modulation of the release and synthesis of DA (143), the
potential role of ACE in the pathophysiology of schizophrenia
and pathologies of the psychotic spectrum has been investigated.
The results of the clinical studies carried out so far show
contradictory results. In a recent study compared to healthy
controls, patients with schizophrenic spectrum disorder show
higher levels of circulating ACE (144–146). In contrast to
these results, Wahlbeck et al. reported lower ACE activity
than in controls examining the liquor of patients affected by
schizophrenia (both in pharmacologically treated and in drug-
free patients) (147). They also observed an inverse correlation
between the enzyme activity of ACE and the CSF levels of DA
and NE (148). In part, these conflicting results are attributable
to methodological limits in the selection of the sample, since
the population was not homogeneous regarding illness duration
and drug co-treatment. Further studies that consider a greater
stratification of the sample could shed light on the possible role
of RAAS in disorders of the schizophrenic spectrum.

OUR GENERATING HYPOTHESIS

Considering the experimental data exposed and the scientific
evidence mentioned so far, the mechanism of the cascade of the
RAAS axis is characterized by the dynamic balance of two arms
with a mutually counter-regulatory function. The first arm is
that composed of the ACE/Ang II/AT1R with proinflammatory
activity and the second arm is composed of ACE2/Ang-(1-
7)/MasRwith anti-inflammatory properties (149). In this context,

the binding and subsequent modulation of the expression of
ACE2 by SARS-CoV-2 would therefore not only be the way
through which the virus generates the infection but also one
of the main pathophysiological mechanisms of COVID-19. The
disease would develop at least in part as a consequence of the
imbalance of this dynamic balance in favor of the hyperactivity
of the ACE/Ang II/AT1R branch due to the reduction in the
expression and activity of the ACE2 enzyme. In fact, ACE2,
following the interaction with the SARS-CoV-2 protein S,
would undergo a process of endocytosis mediated by membrane
enzymes with consequent reduction of the transformation of Ang
II causing Ang-(1-7) hyperstimulation of AT1R and a higher
prevalence of proinflammatory activity with a subsequent storm
of cytokines leading to tissue damage. Data consistent with this
deduction come from in vivo studies with animal models (mice)
of lung injury. In fact, in these models a reduced expression of
ACE2 and an increase in Ang II levels has been observed after
administration of S [318–510] -Fc, an analog of the portion of
the Spike protein of the SARS-CoV virus family that binds the
ACE2 (150). Similar conclusions have been reported in hyperoxic
damage studies in animal models (mice). Hyperoxia significantly
reduced the expression of pulmonary ACE2 and enzymatic
activity, leading to an increase in Ang II and a reduction in Ang-
(1-7) levels. In these experimental models, the administration
of Diminazene Aceturate (DIZE), an ACE2 agonist, restored the
levels of Ang-(1-7). On the other hand, the administration of the
ACE2 inhibitor, MLN-4760 further worsened the reduction in
Ang-(1-7) levels in line with the even more marked increase in
Ang II (151). The tissues involved include all those that express
ACE2 and in which it has been shown to have functionally
relevant enzymatic activity such as the pulmonary epithelium,
the renal and cardiovascular system and the CNS. With regard
to CNS, we postulate that hyperactivation of the ACE/Ang
II/AT1R axis may contribute to the onset of neuropsychiatric
symptoms and on the cognitive sphere in two chronologically
distinct steps: (1) in the course of infection by SARS-CoV-2
they would be a direct consequence of the increased stimulation
of the AT1R receptor and of the hyperproduction of the Ang-
(1-7) fragment and of the consequent reduced stimulation of
the MasR; (2) in the medium-long term the effects on the
CNS would be the consequence of two events: (a) neurotoxicity
mediated by the ACE/Ang II/AT1R axis in the absence of the
full neuroprotective effect of the ACE2/Ang-(1-7)/MasR axis;
(b) from neurovascular damage mediated by cytokine storm
syndrome, associated mainly with severe forms of COVID-19,
which leads to an excessive immune response that damages blood
vessels caused by an increase in proinflammatory cytokines such
as IL-1, IL-6, and TNF-α (152).

Regarding the virus neurotropism and neurovirulence, SARS-
CoV-2 can colonize and infect the CNS through two main
pathogenetic modalities: (1) through a retrograde neurogenic
pathway and (2) through fluids (hematogenous, lymphatic, and
CSF pathway). In the first modality it colonizes the nerve
endings of the eyes, of the nasal cavity, of the oropharynx
and of the respiratory tract interacting with the ACE2 receptor
expressed on the surface of the nerve endings themselves.
Then, after the enzyme endocytosis process, it goes through
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a calmodulin-dependent retrograde calcium-transport pathway
toward the brain nuclei. In the second modality SARS-CoV-
2 penetrates the CNS due to damage of the BBB mediated by
the cytokine storm and the virus reaches the CNS mainly via
hematogenous and lymphatic route. This transition would also
generate at the CNS level a reduced expression of ACE2 and a
consequent functional imbalance between the ACE/Ang II/AT1R
axis (hyperactivated) and the ACE2/Ang-(1-7)/MasR axis (hypo-
activated). In support of the pathophysiological importance of
this functional imbalance there is also epidemiological evidence
that the mortality rate of elderly COVID-19 patients with high
blood pressure, diabetes and cardiovascular pathologies that
already have an ACE/Ang II/AT1R axis hyperactivation and a
down-regulation of the ACE2/Ang-(1-7)/MasR axis, is higher
than other patients with SARS-CoV-2 related infection (153).
Furthermore, the male sex would be at greater risk in all age
groups (154). Consistent with this epidemiological evidence,
Xudong et al. showed a significant reduction in ACE2 expression
in animal models during the aging process which was greater in
rat males than in rat females (155).

We postulate that the clinical consequences on the CNS are
also to be causally related to the decrease in the concentration
of ACE2 and the consequent increase in the Ang II/Ang-(1-
7) ratio with an imbalance between ACE/Ang II/AT1R axis
and the ACE2/Ang-(1-7)/MasR axis. Specifically, this functional
alteration of the RAAS cascade would account for both the
neuropsychiatric comorbidities described in the short term and
medium-long term cognitive impairment. Compared to the
latter, the oxidative damage and neurotoxicity associated with
hyperactivity of the Ang II on the AT1R receptors can lead to the
onset of long-term cognitive damage.

In the first few months of COVID-19 spread, a controversial
topic was the use of angiotensin receptor blocking drugs (ARB)
and ACE inhibitors (ACEI) in patients with COVID-19. Given
that previous studies reported a higher mortality rate in aged
COVID-19 patients with comorbidities such as hypertension,
and given that these patients are likely to be treated with ACEI or
ARB, the concern was whether the use of ACEI and ARB could
aggravate the related SARS-CoV-2 morbidity and mortality.
Data from in vivo studies, on animal models of cardiovascular
diseases, ACEIs, more than ARBs, have demonstrated the ability
to determine the increase in ACE2 mRNA levels, thus being able
to increase the expression of receptors used by SARS-CoV-2,
thus facilitating the entry of the virus into the host. However,
the change in protein levels is not always consistent with mRNA
levels and sometimes also goes in the opposite direction. To
date, it is still uncertain whether ACEIs and ARBs increase the
protein expression of ACE2. According to Bian et al. (156),
there is currently no clear, consistent and conclusive evidence
indicating that ACEI and/or ARB increase the risk of SARS-CoV-
2 infection, as well as injury to target organs. Consistently, so far
it is not necessary to recommend discontinuation of ACEI/ARB
for patients treated with hypertension. ARBs and ACEIs have
also been shown to play a significant role in preserving cognitive
functions. Indeed Ho et al. found that patients with hypertension
had worse basal memory and executive function performance,
as well as a faster decline in 3-year follow-up memory than

patients with normal blood pressure values unless they were
treated with ARBs (157). The study showed more preserved
memory functions than patients treated with antihypertensive
drugs belonging to other classes (157). Patients treated with ARB
showed better performance times in memory functions than
patients treated with other antihypertensive drugs (158, 159), and
better learning memory performance over time compared to all
other groups, including those with no high blood pressure and
patients treated with antihypertensive drugs (157). These data
suggest that ARB treatment is linked to higher memory retention
level than other antihypertensive drugs, especially those that go
through BBB.

Consistent with our hypothesis that COVID-19 patients are
at a greater risk of developing or worsening cognitive decline,
and considering the evidence that ARBs and ACEIs could be
protective therapeutic tools against cognitive decline, at the
time of writing there is no evidence to support the transition
to other antihypertensive drugs but rather, treatment with
antihypertensive drugs aimed at modulating the RAAS cascade
could actually be a protective factor regarding the onset or
worsening of cognitive impairment symptoms and signs.

In order to test our working hypothesis, our goal is to first
complete an observational study to monitor cognitive functions
in patients with COVID-19 who are accessible to neurocognitive
testing. Then we aim to prospectively observe patients recovered
from SARS-CoV-2 infection to follow the possible decline in
cognitive functioning by relating it to the levels of activity
of the RAAS cascade. Alongside this monitoring, our goal
is to follow the evolutionary framework of neuroimaging to
understand if there is a correlation between the decline of
cognitive functions, instrumental signs of neurodegeneration
and altered activity of the balance of the two arms of the
RAAS cascade: ACE/Ang II/AT1R with proinflammatory activity
and ACE2/Ang-(1-7)/MasR with anti-inflammatory properties.
These data will then be cross-referenced with ACEI or ARB
treatment to answer a still open question about the advisability of
treatment with these antihypertensive drugs during SARS-CoV-2
infection also from a neuropsychiatric point of view.

CONCLUSION

The SARS-CoV-2 pandemic represents an unprecedented
challenge to healthcare systems around the world. At the onset of
the pandemic, efforts by healthcare professionals and researchers
focused on the urgency of treating patients who developed
respiratory failure and needed assisted ventilation. However, it
soon emerged that COVID-19 is a systemic pathology through
the severe innate immune response and sustained rise of systemic
cytokine levels (160). In fact, the innate immune response
represents a predictor of mortality and severity of SARS-CoV-2
infection mediated through the production of cytokines and
related inflammatory mediators found to be elevated such as
interleukin-1β, interleukin-2, interleukin-2 receptor, interleukin-
4, interleukin-10, interleukin-18, interferon-γ, C-reactive
protein, granulocyte colony-stimulating factor, interferon-γ,
CXCL10, monocyte chemoattractant protein 1, macrophage
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inflammatory protein 1-α, and tumor necrosis factor-α and
parallel reduction of T cell mediated response and reduction
of lymphocyte count. Among the various organs involved in
COVID-19 pathology is the CNS (160). This assumption is
confirmed by numerous pieces of experimental evidence which
have now definitively shown that SARS-CoV-2 has significant
neurovirulence involving, as well as serious clinical pictures of
interstitial pneumonia and consequent severe acute respiratory
syndromes, neurological symptoms. The first evidence of this
was the study of Mao et al. gathered in three designated special
care centers for COVID-19 (Main District, West Branch,
and Tumor Center) of the Union Hospital of Huazhong
University of Science and Technology in Wuhan, China. Out
of 214 hospitalized COVID-19 patients, more than a third had
neurological symptoms (159). Patients with more severe forms of
SARS-CoV-2 infection were more likely to develop neurological
symptoms. In fact, according to Li, 89% of COVID-19 patients
who need respiratory assistance in the Intensive Care Unit report
neurological manifestations, the most common of which are
headache, nausea, and vomiting (45).

In addition, a case of SARS-CoV-2 viral encephalitis was
reported in Beijing’s Ditan hospital on March 4, 2020 (161).
This clinical case, together with the data that collected the
SARS-CoV-2 RNA in the cerebrospinal fluid, would confirm
the neurotropism and neuroinfectious potential of SARS-
CoV-2. More recently, in a study by Varatharaj et al.
in the United Kingdom, complications from SARS-CoV-2
were reported in a group of 125 patients with neurological
involvement: of the 62% who presented with a cerebrovascular
event, a rate of 74% had an ischemic stroke, 12% an intracerebral
hemorrhage and 1% a CNS vasculitis. Twenty-three percent
of COVID-19 patients had unspecified encephalopathy and
18% had encephalitis (127). The remaining 59% of COVID-19
patients had symptoms characterizing an altered mental state
and met the diagnostic criteria for psychiatric diagnosis after
evaluation by the consultant psychiatrist. Ninety-two percent
of these diagnoses were of new onset. Specifically, 43% of
patients had new-onset psychosis, 26% had a neurocognitive

syndrome (similar to dementia) and finally, 17% had an affective
disorder (127).

The neurological manifestations described seem to be
currently supported by the following mechanisms, as previously
described in agreement with Heneka et al. (19): (1) direct
viral encephalitis, (2) systemic inflammation, (3) peripheral
organ dysfunction (liver, kidney, lung), and (4) cerebrovascular
changes. In most cases, however, neurological manifestations of
COVID-19 may arise from a combination of the above.

We propose a fourth possible mechanism, linked to the
pathogenesis of SARS-CoV-2 infection or to the binding of the
virus to ACE2, consequent to the downregulation of this receptor
and to the alteration of the dynamic balance between the two
arms of the RAAS: (1) ACE/Ang II/AT1R with proinflammatory
activity and (2) ACE2/Ang-(1-7)/MasR with anti-inflammatory
properties. In this speculative article we have generated a
hypothesis that we reserve the right to verify in clinical practice
in the following months on patients with acute SARS-CoV-2
infection and in the follow-up in COVID-19 survivors.
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