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ABSTRACT

In most eukaryotes, oxidative phosphorylation
(OXPHOS) is the main energy production process
and it involves both mitochondrial and nuclear
genomes. The close interaction between the two
genomes is critical for the coordinated function of the
OXPHOS process. Some bivalves show doubly
uniparental inheritance (DUI) of mitochondria, where
two highly divergent mitochondrial genomes, one
inherited through eggs (F-type) and the other
through sperm (M-type), coexist in the same
individual. However, it remains a puzzle how nuclear
OXPHOS genes coordinate with two divergent
mitochondrial genomes in DUI species. In this study,
we compared transcription, polymorphism, and
synonymous codon usage in the mitochondrial and
nuclear OXPHOS genes of the DUl species
Ruditapes philippinarum using sex- and tissue-
specific transcriptomes. Mitochondrial and nuclear
OXPHOS genes showed different transcription
profiles. Strong co-transcription signal was observed
within mitochondrial (separate for F- and M-type) and
within nuclear OXPHOS genes but the signal was
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weak or absent between mitochondrial and nuclear
OXPHOS genes, suggesting that the coordination
between mitochondrial and nuclear OXPHOS
subunits is not achieved transcriptionally. McDonald-
Kreitman and frequency-spectrum based tests
indicated that M-type OXPHOS genes deviated
significantly from neutrality, and that F-type and M-
type OXPHOS genes undergo different selection
patterns. Codon usage analysis revealed that
mutation bias and translational selection were the
major factors affecting the codon usage bias in
different OXPHOS genes, nevertheless, translational
selection in mitochondrial OXPHOS genes appears
to be less efficient than nuclear OXPHOS genes.
Therefore, we speculate that the coordination
between OXPHOS genes may involve post-
transcriptional/translational regulation.
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INTRODUCTION

In most animals, mitochondria are maternally inherited and
one consequence of this kind of inheritance is a limitation of
the genetic variance in the mitochondrial population within an
individual (Lane, 2012). Until recently, it was assumed that
mitochondrial DNA (mtDNA) is present in a state of
homoplasmy, namely that identical copies of the mtDNA are
found within an individual. The presence of different genetic
variants, termed heteroplasmy, was thought to be mainly
associated with unfavorable conditions such as ageing and
disease (e.g., James White et al., 2008; Lane, 2012; Stewart
& Chinnery, 2015). More recently, high-throughput sequencing
revealed that mtDNA heteroplasmy (at least at low levels) is
much more common than previously thought (Barrett et al.,
2019; Dowling, 2014; Zhang et al., 2018). Heteroplasmy is a
central issue in mitochondrial biology because genetic
variation can lead to within-individual selection which can
negatively  affect coordination with  nuclear-encoded
mitochondrial components (Lane, 2011).

In Metazoa, the primary function of mitochondria is energy
production  through the process named oxidative
phosphorylation (OXPHOS), which involves the tight
interaction between mitochondrial (mt) and nuclear (nu)
encoded subunits. Therefore, to ensure the correct and
efficient synthesis and assembly of the OXPHOS system,
proper coordination between mt and nuOXPHOS genes is
required. In mice and humans, van Waveren & Moraes (2008)
reported a shared transcriptional control mechanism of
nuOXPHOS genes and strongly correlated transcriptional
signal within the same complex of nuOXPHOS genes.
Barshad et al. (2018) investigated the OXPHOS transcription
regulatory landscape across multiple tissues in humans and
found a strong co-regulation signal between mt and
nuOXPHOS genes across tissues. These findings make
intuitive sense as gene products that must cofunction may be
transcriptionally co-regulated. However, Couvillion et al.
(2016) showed that transcription levels in mt and nuOXPHOS
genes were not concordant during mitochondrial biogenesis in
yeast, while translational responses in both mt and
nuOXPHOS genes were rapid and synchronously regulated,
indicating the coordination between mt and nuOXPHOS genes
is at the translation, not transcriptional level. A recent study in
human cells showed that the average synthesis of mt and
nuOXPHOS subunits for each complex was also highly
correlated, although coordinated cytosolic and mitochondrial
translation may require a nu-encoded mt protein—Ileucine rich
pentatricopeptide repeat containing protein (LRPPRC) —to
maintain cellular proteostasis (Soto et al., 2021).

Transcriptional coordination between mt and nuOXPHOS
genes could be particularly complex in some bivalve species.
Some bivalve species exhibit an evolutionarily stable
exception to the strictly maternal mtDNA inheritance (SMI), a
condition referred to as doubly uniparental inheritance (DUI;
see Zouros, 2013 for a review). In DUl species, two
mitochondrial lineages (F-type and M-type) are present: the F-
type is transmitted through eggs while the M-type is
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transmitted through sperm. Because of the strict segregation
between F and M lineages, F- and M-type mtDNA can
accumulate an impressive genetic divergence (10%—43% at
the nucleotide level, up to 53% at the amino acid level).
Gametes are homoplasmic for the respective sex-linked
lineage, while the distribution of F- and M-type in adult tissues
is variable according to sex, tissue, and species. Generally,
heteroplasmic females are less common (and if heteroplasmy
is present it is usually at low levels), whereas males are
always heteroplasmic. According to previous studies, the M-
type mtDNA in the DUI species is predominant in male gonads
and present in variable number (and can also be absent) in
male somatic tissues, being generally absent (or rare) in
female samples. F-type mtDNA is present in all the somatic
tissues of both females and males (Ghiselli et al., 2019,
2021a). Moreover, the transcription of M-type mtDNA was also
detected in male somatic tissues, but the frequency and the
percentage of its presence seem to vary across different
species (e.g., Breton et al., 2017; Dalziel & Stewart, 2002;
Ghiselli et al., 2011; Milani et al., 2014; Mioduchowska et al.,
2016; Obata et al., 2011). For example, the M-type mtRNA
was detected in 60% and 89.5% of male somatic samples in
Utterbackia peninsularis and Venustaconcha ellipsiformis,
respectively (Breton et al., 2017). However, sex- and tissue-
specific transcriptomic resources are lacking for DUI species,
making many inferences on the abundance and expression of
F-type, M-type, and related nuclear genes difficult.

While mito-nuclear coregulation is likely important, it is
therefore unclear when and where selection has acted on
coordination across different eukaryotes. Sequence
coevolution between mt and nuOXPHOS genes provides
another way to coordinate OXPHOS across the genomes.
Mito-nuclear coevolution implies that sequence evolution
within one genome could exert selection on the other genome
for complementary changes (Hill, 2020; Hill et al., 2019; Rand
et al., 2004), and mito-nuclear coevolution has been observed
across a wide range of eukaryotic lineages (Barreto et al.,
2018; Barreto & Burton, 2013; Havird et al., 2017; Havird &
Sloan, 2016; Yan et al., 2019), including bivalves (Piccinini et
al., 2021, which included 4 DUI species). In DUI species, two
highly divergent mt genomes have to cofunction with the same
nuclear background, which may be challenging for mito-
nuclear coevolution. Previously studies indicated that F- and
M-type genomes might have evolved separately multiple times
(Gusman et al.,, 2016; Zouros, 2013), and two types of mt
genomes might be under different selective pressure. It has
been reported that M-type mt genomes show higher
nonsynonymous to synonymous substitution rates (dN/dS)
than F-type, and several studies proposed that the M-type mt
genome might be under relaxed selection (Hoeh et al., 1996,
1997, 2002; Liu et al., 1996; Ort & Pogson, 2007; Smietanka
et al., 2009, 2013; Soroka & Burzynski, 2010; Stewart et al.,
1995, 1996; Zbawicka et al., 2010; Zouros, 2013). However,
other studies have hypothesized that M-type may have
undergone adaptive evolution optimizing sperm/male gonad
functions (Bettinazzi et al., 2019, 2020; Burt & Trivers, 2006;
Ghiselli et al., 2013, 2021a, 2021b; lannello et al., 2019;
Skibinski et al., 1994, 2017). Therefore, studying the
selections on different OXPHOS genes would be critical to
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understanding how two divergent mt genomes evolve with the
same nuOXPHOS genes (lannello et al., 2019; Maeda et al.,
2021; Piccinini et al., 2021).

An assumption of dN/dS metrics is that variations at
synonymous sites are neutral. However, recent studies have
shown selection on synonymous sites in the form of
preferential codon usage, without changing the protein
sequence (reviewed in Gingold & Pilpel, 2011; Plotkin &
Kudla, 2011). Natural selection acting on synonymous codons
to increase protein synthesis speed and accuracy is known as
translational selection. Translational selection combined with
mutational bias can create synonymous codon usage bias
(CUB), in which codons are used in different frequencies in
the coding regions across the genome (Gingold & Pilpel,
2011; Hershberg & Petrov, 2009; Plotkin & Kudla, 2011). CUB
can influence various cellular processes, including gene
expression (Jeacock et al., 2018), protein folding and function
(Yu et al, 2015; Zhou et al., 2009), and exon splicing
(Parmley & Hurst, 2007), therefore it can play an important
role in genome evolution. In addition, it has been shown that
translational selection is pervasive and detectable in a wide
range of vertebrates (de Oliveira et al., 2021; Doherty &
Mclnerney, 2013; Machado et al., 2020). Translational
selection has also been detected in mitochondria in a wide
range of species (Jia & Higgs, 2008; Sun et al., 2008; Wang et
al,, 2011; Wei et al., 2014). Furthermore, several studies
reported that the rate of mRNA translation into protein
(translational efficiency) in mt genes is lower than nuclear
genes (Adrion et al., 2016; Havird & Sloan, 2016; Pett &
Lavrov, 2015; Sloan et al., 2013), leading to the hypothesis
that differences in translational selection for efficiency
between mt and nu genes might be associated with the
different evolution rates in mt and nuOXPHOS genes.

DUI species, with the stable and natural occurrence of two
very divergent mitochondrial genomes in the same individual,
represent an interesting evolutionary puzzle, and provide a
uniqgue model to study heteroplasmy and mito-nuclear
interactions. Taking advantage of RNA-Seq data on three
different tissues of 15 females and 15 males, we compared
transcription, polymorphism, divergence, and codon usage in
mt and nuOXPHOS genes in the DUI species Ruditapes
philippinarum (the Manila clam). We observed lack of co-
transcriptional coordination among F-type, M-type and
nuOXPHOS genes. Furthermore, three genomes were
constrained by different selection patterns, occurring at both
synonymous and nonsynonymous substitutions. In particular,
transcriptional selection shapes codon bias differently in mt
and nuOXPHOS genes. Considering our results, we predict
that mito-nuclear coordination does not occur at transcriptional
level, but it is achieved by post-trascriptional/translational
mechanisms in DUI species. To our knowledge, this is the first
study analyzing both transcriptional regulation and sequence
evolution to investigate the coordination of OXPHOS genes in
mollusks.

MATERIALS AND METHODS

Dataset and reference transcriptome
Raw reads of Ruditapes philippinarum were downloaded from

NCBI (BioProject PRINA672267). All the clams were collected
during the spawning season (end of July) from the same
population in the Northern Adriatic Sea (ltaly), in the river Po
delta region (Sacca di Goro, approximate GPS coordinates:
N44°50 '06 ", E12°17 '55 "). By visual inspection at optical
microscope, gonads contained either eggs or sperm in late
developmental stages, and clam were sexed concordantly.
Adductor muscle, mantle, and gonad from 15 males and 15
females (with the exception of a missing female mantle; 89
samples in total) were sequenced using lllumina HiSeq 2500
with insert size of 500 bp to generate 150 bp paired-end
reads. Detailed information about RNA extraction, library
preparation, sequencing and de novo transcriptome assembly
can be found in Maeda et al. (2021). The de novo reference
transcriptome assembly for R. philippinarum is available on
the Transcriptome Shotgun Assembly Sequence Database
(TSA) of NCBI (accession No. GIVW00000000).

Transcriptome analysis

We wused CD-HIT-EST (Fu et al., 2012) to reduce
transcriptome redundancy (the presence of multiple transcripts
belonging to the same gene), with a similarity threshold of 0.9.
To retrieve F- and M-type mt genes from the transcriptome,
we downloaded the complete F- and M-type mt genomes of R.
philippinarum from NCBI (Accession Nos.: AB065374,
AB065375). Considering some inaccuracies in the NCBI
original annotations, we reannotated the mt genomes, by
using BLAST (Camacho et al.,, 2009) against the non-
redundant protein database (nr) to confirm protein coding
regions, and by manually curating start and stop codons
(Supplementary File 1). Then all reads were mapped to the
transcriptome (without mt transcripts) and reference mt genes.
The filtered reads were mapped to the transcriptome using
bowtie2 (Langmead & Salzberg, 2012) with the default
settings and only reads with mapping quality >10 were
included in the following analyses. SAMtools (Li et al., 2009)
was used to retrieve reads that were properly paired and
uniquely mapped. Samples having <1 thousand reads
mapped to mt protein coding genes and <1 million total
mapped reads, were excluded from the analysis.

Transcriptome annotation

Nuclear OXPHOS transcripts were retrieved from Maeda et al.
(2021) (BioProject PRINA672267). To get coding sequences
from nuOXPHOS transcripts, we ran TransDecoder
(https://github.com/TransDecoder/TransDecoder/wiki)  using
homology searches against nr and Pfam databases with the
minimum length of the open reading frame of 150 bp and only
the longest ORF for each OXPHOS gene was kept.

We additionally performed the annotation of the whole R.
philippinarum transcriptome as follows. First, contaminations
from non-metazoans were filtered out by using a BLASTX
(Altschul et al., 1997) search (with default parameters and
adding information about taxon id) against the nr database of
NCBI. We therefore extracted the full taxonomic lineage for
each BLAST hit and we kept only transcripts having a best
BLAST hit against Metazoa. To predict open reading frames
(ORF) in the transcriptome, we used findorf (Krasileva et al.,
2013); the prediction was performed using both a BLASTX
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search against the nr database and an HMMER (Mistry et al.,
2013) search against the Pfam database (Finn et al., 2016).
Annotation of predicted proteins was performed by using both
a BLASTP search against the Swiss-Prot database and an
HMMER search against the Pfam database. We used Argot2
(Falda et al., 2012) to obtain Gene Ontology (GO) terms from
BLASTP and HMMER outputs.

Transcription and co-transcriptional analysis

We wused the gene length-corrected TMM (GeTmm)
normalization method to allow both intra- and inter-sample
comparisons (Smid et al.,, 2018). Before normalization,
transcripts with low number of counts were filtered out using
the NOlIseq R package (Tarazona et al., 2015), with the
following parameters: CPM=1, cv.cutoff=300. Genes that
failed to pass this threshold were defined as lowly transcribed
genes. It is worth mentioning that F-type and M-type genomes
both contain a lineage-specific ORF (FORF and MOREF),
which might play functional roles in DUI species (Breton et al.,
2011; Milani et al., 2013a; Minoiu et al., 2016). Therefore,
although we still do not know if they belong to any complex
subunits, we included them among the mtOXPHOS genes if
not specified in the context. The transcription for mt and
nuOXPHOS genes were plotted for each tissue, and Wilcoxon
rank-sum test was used to compare pairwise transcriptional
differences between mt and nuOXPHOS genes in each tissue.
Kruskal-Wallis rank-sum test followed by a Dunn’s test with
Bonferroni correction was used to compare transcriptional
differences across tissues.

To retrieve the general correlation trend of transcription
across tissues, we calculated Spearman’s rank-sum
correlation with FDR correction across all samples using
psych R package (http://CRAN.R-project.org/package=psych).
The same process was also performed separately for each
tissue to obtain the tissue-specific correlation trend. The
correlation was considered significant with adjusted P<0.05.
To test if the correlation strength between mt and nuOXPHOS
genes was higher than genes involved in the different
biochemical activities, we compared the differences in
Spearman’s correlation coefficients (rho) between OXPHOS
genes and a set of randomly selected same number of nuclear
genes (56 genes) using Wilcoxon rank-sum test with
Bonferroni correction. To test the hypothesis that genes within
the same complex (intracomplex) presented a stronger
correlation than the genes between different complexes
(intercomplex), we compared the intracomplex correlation to
intercomplex correlation using Wilcoxon rank-sum test with
Bonferroni correction.

To uncover genes co-transcribed with OXPHOS genes, we
retrieved the nuclear genes that were significant highly
(rho>0.6) correlated with mtOXPHOS genes, and with
nuOXPHOS genes. Functional enrichment for the nuclear
genes that were co-transcribed with the OXPHOS genes was
performed in topGO v2.34.0 (Alexa & Rahnenfiihrer, 2018),
using the classic Fisher’s test, with a nodeSize of 5 and a P-
value cutoff of 0.01.

SNP calling and McDonald-Kreitman test
The F- and M-type mt genomes were used as references for
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SNP calling on mtOXPHOS genes. For the nuOXPHOS
genes, SNPs were called based on the de novo assembled
transcriptome. We used Freebayes v1.2.0 (Garrison & Marth,
2012) to call the SNPs from all the samples simultaneously.
VCFtools (Danecek et al., 2011) was run to calculate the rate
of missing SNPs and to filter the SNPs for each sample using
the following parameters: --minGQ 20 --minQ 30 --minDP 30.
Finally, the number of SNPs in each gene was normalized by
the gene length and the total number of SNPs in the sample to
enable comparison across different genes. Considering the
uneven coverage and the different rates of missing SNPs
across sexes and tissues, allele frequency and PCA
classification were performed with a genotype likelihood
approach implemented in ANGSD (Korneliussen et al., 2014),
which is particularly suited for low and medium depth data.
The Kolmogorov-Smirnov test with Bonferroni correction was
used to assess if there is difference in the distribution of allele
frequencies between different set of genes. SnpEFF
(Cingolani et al., 2012) was used to predict the effects of
SNPs on mt and nuOXPHOS genes. Samples with the rate of
missing data > 40% were filtered out for the SNP effect
prediction. Statistical differences between the proportion of
synonymous and nonsynonymous SNPs in each component
of OXPHOS (F-type, M-type and nuOXPHOS) genes were
tested by Wilcoxon rank-sum test with Bonferroni correction.

We performed McDonald-Kreitman (MK) tests (McDonald &
Kreitman, 1991) and frequency-based tests —Tajima’'s D
(Tajima, 1989), Fu & Li's D, and Fu & Li's F (Fu & Li,
1993)—on mt and nuOXPHOS genes and randomly selected
nuclear protein-coding genes (30 genes), using DnaSP v6.12
(Rozas et al., 2017). For mtOXPHOS genes, the MK test was
performed between F-type and M-type OXPHOS, and also
separately for F-type and M-type using the closely related
species Ruditapes decussatus (SMI) as an outgroup. For
nuOXPHOS and randomly selected genes, the MK test was
performed with R. decussatus as an outgroup. The OXPHOS
orthologues in R. decussatus were extracted from lannello et
al. (2019) and Piccinini et al. (2021), while the random
orthologues were retrieved with OrthoFinder2 (Emms & Kelly,
2019). Among the nuOXPHOS genes identified above, 32
nuOXPHOS orthologues were retrieved for the MK analysis.
VCFtools (Danecek et al., 2011) and SegKit (Shen et al.,,
2016) were used to retrieve consensus nucleotide sequences
and amino acid sequences, respectively. Clustal Omega
(Sievers & Higgins, 2018) was used for multiple sequence
alignment and PAL2NAL (Suyama et al., 2006) was used to
retrieve the homologous nucleotide region.

Codon usage analysis

The codon frequencies of OXPHOS genes were calculated
using the EMBOSS cusp tool (http://emboss.bioinformatics.
nl/cgi-bin/emboss/cusp). The genetic codes 1 and 5
(https://www.ncbi.nim.nih.gov/Taxonomy/Utils/wprintgc.cgi)
were used for the nuclear genes and mitochondrial genes,
respectively. The GC composition (at first and second codons
position: GC12, at the third codon position: GC3), relative
synonymous codon usage (RSCU), the effective number of
codons (ENC), and codon adaptation index (CAl) were
calculated using CAlcal (Puigbo et al., 2008). RSCU is defined
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as the ratio of the observed frequency of codons to the
expected frequency given that all the synonymous codons for
the same amino acid are used equally (Sharp & Li, 1987). The
ENC quantifies the extent to which the codon usage in a gene
or genome departs from the equal usage and it ranges from
20 (if only one codon is used for each amino acid) to 61 (if all
codons are used equally) (Wright, 1990). CAIl is another
commonly used statistic which requires a set of highly
expressed genes as reference and it presumes translational
selection in highly expressed genes, therefore it can assess
the extent to which selection has driven the pattern of codon
usage (Sharp & Li, 1987). For the mitochondrial genes, the
reference database for CAIl estimation is available.
Considering M-type OXPHOS genes were present mainly and
predominantly in male gonads, we therefore only used the
average transcription levels in male gonads for M-type
OXPHOS genes and in female gonads for F-type OXPHOS
genes to calculate the correlation between CAl and the
transcription levels. For nuclear genes, no reference database
was available, so 30 highly transcribed (average transcription
in gonads) nu-encoded genes: top 15 transcribed nuOXPHOS
genes and top 15 transcribed nu-encoded genes (ribosomal-
related genes were excluded to avoid bias) were selected to
build the reference database (Supplementary File 2). We also
calculated ENC and CAl for the whole transcriptome, and
Kruskal-Wallis rank-sum test followed by a Dunn’s test with
Bonferroni correction was performed to assess if ENC and
CAl presented differences between OXPHOS genes and
nuclear genes. The ENC-GC3 relationship (Nc-plot, Wright,
1990) and neutrality test between GC12 and GC3 (Sueoka,
1999) were performed to assess the factors influencing the
CUB in OXPHOS genes. Spearman’s rank-sum test was used
to assess the relationship between ENC and CAl. The
comparison between ENC and CAl was also used to
demonstrate the relationship between mutation and natural
selection on codon usage bias (Behura & Severson, 2012).
The correspondence analysis (COA) based on both codon
counts and RSCU was performed in R FactoMineR package
to detect the factors affecting CUB. We also performed Chi-
square tests for context-dependent mutations (the rate of
mutation from any one base to any other is influenced by the
neighboring bases) in each set of OXPHOS genes according
to the procedures described in Jia and Higgs (2008). The
mutation equilibrium was calculated according to Lynch
(2007). Briefly, we inferred the minor allele according to the
allele frequency and treated the minor alleles as the new
mutations (Hildebrand et al., 2010). Sites with more than two
alleles or with two alleles at an equal frequency were
discarded. Then the expected mutation GC equilibrium was
calculated as the following formula:

GCeq =1/(1+m) (1)

where m=v/u, u is the mutation rate of A/T to G/C and v is the
mutation rate of G/C to A/T (Johri et al., 2019; Lynch, 2007).
Consequently, m close to 1 indicates little mutation bias, while
GCeq close to the percentage of GC3 means that codon
usage bias is majorly determined by mutation bias (Johri et al.,
2019; Lynch, 2007).

RESULTS

Different transcription patterns of mitochondrial and
nuclear OXPHOS genes in different tissues

Five samples were filtered out due to a low number of reads or
contamination (f_67_G, f 67_M, m_70_A, m_70_G, m_70_M;
Supplementary Table S1). A total number of 84 samples was
used for the following analysis. The percentage of reads
mapped to the F- and M-type mtOXPHOS genes were
reported in Supplementary Figure S1: F-type was predominant
(~100% in females; >95% in male somatic tissues) in all the
tissues except male gonads, while M-type accounted for more
than 90% of reads in male gonads. Small traces of M-type
reads were also detected in male adductor muscles (average:
0.92%) and male mantles (average: 0.58%) with five samples
presenting more than 1% of M-type reads in male somatic
tissues (Supplementary Figure S1 and Table S2). The median
depth for each gene was calculated for all the samples
(Supplementary Table S2). No read was retrieved for the
ATP8 gene, possibly due to its short length (120 bp in F-type
and 84 bp in M-type).

After filtering lowly transcribed genes, 27 mitochondrial
protein-coding genes (14 from F-type and 13 from M-type), 56
(out of 67) nuOXPHOS genes, and 20 214 nuclear encoded
genes were kept. The normalized counts for the OXPHOS
genes are reported in Supplementary Table S3. To assess
transcriptional differences of OXPHOS genes across different
components (F-type, M-type and nuOXPHOS), a PCA
analysis was performed based on the transcription level of all
OXPHOS genes (Figure 1A-C), only nuOXPHOS genes
(Supplementary Figure S2A) and only mtOXPHOS genes
(Supplementary Figure S2B-C). We found that F-type, M-
type, and nuOXPHOS formed three distinct clusters taking
account of transcription of all the OXPHOS genes across
tissues (Figure 1A). Notably, M-type OXPHOS genes were
clustered remarkably apart from the F-type and nuOXPHOS
genes, in line with our expectations because the transcription
of M-type in somatic tissues is rare or absent (Supplementary
Tables S2, S3). However, transcriptional profiles of M-type in
male gonads can also contribute to this departure. To test this,
we conducted the PCA analysis for all the OXPHOS genes
only in male gonads. M-type presented an extremely wide
distribution despite the overlap between different OXPHOS
genes in male gonads (Figure 1B), indicating that
transcriptional profiles of M-type in male gonads also
contributes partially to the departure of M-type in Figure 1A.
Moreover, the OXPHOS genes in different tissues also
showed different patterns, with male gonads departing from
the other tissues and adductors showing relatively wider
variation (Figure 1C). To further investigate transcriptional
differences across tissues (Figure 1C), we focused on the nu
and mtOXPHOS genes separately. Interestingly, we found
that the distribution of nuOXPHOS genes showed an overlap
in different tissues despite the wider variation in adductor
muscles (Supplementary Figure S2A). By contrast, if we
consider all the mtOXPHOS genes together, we found that
male gonads were clearly apart from the other tissues
(Supplementary Figure S2B). However, if we only look at F-
type OXPHOS genes, the male gonads did not deviate from
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Figure 1 The PCA plot based on the transcription of OXPHOS
genes

A: PCA plot for all OXPHOS genes in all samples, each point is a
gene. B: PCA plot for all OXPHOS genes in only male gonads, each
point is a gene. C: PCA plot for all the OXPHOS genes in each tissue,
each point is a sample. A_f: female adductor; G_f: female gonad; M_f:
female mantle; A_m: male adductor; G_m: male gonad; M_m: male
mantle. The circle indicates the 95% confidence interval.

the other tissues (Supplementary Figure S2C). Thus, it seems
that the deviation of male gonads in Figure 1C and
Supplementary Figure S2 was due to the presence of M-type
OXPHOS genes.

Figure 2 compares the transcription level of mt and
nuOXPHOS genes in different tissues. Because we do not
know whether the two lineage-specific ORFs (FORF and
MORF; see Ghiselli et al., 2013; Milani et al., 2013a) and F-
type cytochrome c oxidase subunit 2 duplication (COX2B)
have any OXPHOS function, they were not included here. The
transcription of both mt and nuOXPHOS genes showed
significant differences across tissues (in both cases, Kruskal-
Wallis test: P<0.001), with nuOXPHOS genes presenting
higher transcription in most pairwise comparisons between
adductor muscles and other tissues and mtOXPHOS genes
presenting higher transcription in most pairwise comparisons
between gonads and somatic tissues (Significance for
pairwise comparisons in Supplementary Table S4). Moreover,
mtOXPHOS genes showed an overall significantly higher
transcription than nuOXPHOS in all the tissues except female
mantles (Figure 2). M-type OXPHOS genes presented
remarkably higher transcription in male gonads than F-type
and nuOXPHOS genes, which is consistent with the deviation
of M-type OXPHOS genes in Figure 1. The transcription level
for each OXPHOS gene is shown in Supplementary Figure S3
(A and B, respectively). Intriguingly, the nuOXPHOS succinate
dehydrogenase cytochrome b560 (SDHC) had two divergent
sequences (SDHC-1 and SDHC-2) and one of them (SDHC-2)
presented a gonad-specific transcription (in both males and
females).

Strong co-transcription signal within mitochondrial and
within nuclear OXPHOS genes across tissues, but weak
or absent across genomes

To test the hypothesis that genes involved in the same
biochemical activity tend to be co-transcribed in R.
philippinarum (Shyamsundar et al., 2005; Stuart et al., 2003),
we calculated Spearman’s rho between pairwise OXPHOS
genes. According to the transcriptional correlations across
tissues, all OXPHOS genes were clustered into four major
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Figure 2 The transcription level of mitochondrial and nuclear OXPHOS genes across tissues and in each complex

The significance of Wilcoxon rank-sum test between F-type OXPHOS and nuOXPHOS was reported below the x axis. X axis represents six tissue
types; A_f: female adductor; G_f: female gonad; M_f: female mantle; A_m: male adductor; G_m: male gonad; M_m: male mantle. The transcription
of M-type OXPHOS was significantly different from the F-type and nuOXPHOS in male gonads. ": —P<0.05; ": —P<0.001; ns: not significant.
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distinct groups: F-type, M-type, nuOXPHOS1 and
nuOXPHOS2. Genes from two nuOXPHOS subclusters
showed a less pronounced, but still positive correlation
between each other (Figure 3A). To further investigate the
correlation strength within and between different gene
components, we plotted the correlation coefficients (rho) of
OXPHOS genes separately for each component, and we
randomly selected a subset of nuclear genes as a control to

evaluate our observation. We found that the correlation within
mtOXPHOS genes (F-type or M-type) is higher than the
correlation within the nuOXPHOS, which in turn is higher than
the correlation within randomly selected nuclear genes
(Figure 3B). The correlation between F-type and nuOXPHOS
genes is slightly higher than the correlation between F-type
and random nuclear genes, indicating a weak co-transcription
signal between F-type and nuOXPHOS genes, while the
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Figure 3 The co-transcription between mitochondrial and nuclear OXPHOS genes

A: The overall co-transcription across all the OXPHOS genes; nuclear OXPHOS genes are marked blue; M-type OXPHOS genes are marked red;
F-type OXPHOS genes are marked green. B: The correlation coefficient (rho) distributions within F-type (F-F), M-type (M-M), nuOXPHOS genes
(Nu-Nu), and random nuclear genes (R-R). C: The correlation coefficients distribution between mt and nuOXPHOS genes, and between
mtOXPHOS and random nuclear genes. D: The correlation coefficient distribution of nuOXHPOS genes within each complex (intracomplex: CI-CV)
and between different complexes (intercomplex: Cinter). Statistical significance in 3B-3D was performed using Wilcoxon rank-sum test with

.

Bonferroni correction. ": —P<0.05; ": —P<0.001; " —P<1e-5; ns: not significant.
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correlation between M-type and nuOXPHOS genes is
remarkably higher than the correlation between M-type and
random nuclear genes (Figure 3C). Considering that the M-
type transcription was primarily detected in male gonads, it is
unclear whether the high co-transcription signal between M-
type and nuOXPHOS results from a male-gonad specific
transcription or reflects actual co-transcription. Therefore, we
investigated the correlation between mt and nuOXPHOS
genes separately for each tissue. We found that the
correlation between M-type and nuOXPHOS genes in male
gonads was not significantly different from the correlation
between M-type and randomly selected genes (Wilcoxon rank-
sum test with Bonferroni correction, P>0.05), indicating that
the significant co-transcription signal across tissues between
M-type and nuOXPHOS genes in Figure 3C was due to the
gonad-specific transcription of M-type in male gonads
(Supplementary Figure S4). Moreover, the co-transcription
signal between F-type and nuOXPHOS genes was not
consistent in different tissues (Supplementary Figure S4).
Weak co-transcription was detected in the female mantle
between F-type and nuOXPHOS genes, but the signal
disappeared in other tissues (Supplementary Figure S4).
Taken together, our results indicated a weak or absent co-
transcription signal between mt and nuOXPHOS genes, but
the strong co-transcription signal within F-type, within M-type,
and within nuOXPHOS genes.

To test the hypothesis that genes within the same complex
(intracomplex) presented a stronger correlation than the genes
between different complexes (intercomplex) (Garbian et al.,
2010; van Waveren & Moraes, 2008), we plotted the
correlation coefficient of nuOXPHOS genes separately for
each complex and compared them with intercomplex
correlation coefficients (“Cinter” in Figure 3D). Such analysis
was not performed for mtOXPHOS because of a few genes in
each complex. The nuOXPHQOS genes belonging to the same
complex were not clustered together (Figure 3A) and the
correlation coefficients within the same complex were not
significantly different from intercomplex correlation coefficients
except for complex | and V (Wilcoxon rank-sum test with
Bonferroni correction, P<1-e5), in which intracomplex
coefficients were slightly higher than the intercomplex
coefficients (Figure 3D).

Nuclear genes co-transcribed with OXPHOS genes are
enriched for mitochondrial processes

The exceptional heteroplasmic condition in DUl bivalves
raises some questions: how is the compatibility between
nuOXPHOS and two highly divergent mtDNA populations
maintained? And which genes or pathways could be possibly
involved in coordinating the OXPHOS process? To address
these questions, we retrieved the nuclear genes that were co-
transcribed with OXPHOS genes. We plotted the distribution
of P-values from Spearman’s correlation and the
corresponding rho for all the co-transcribed nuclear genes
(Supplementary Figure S5), and a strict cutoff (rho>0.6) was
used to ensure reliability. In this way, a total number of 136,
1 077 and 3 468 nuclear genes showed a significantly positive
correlation with the F-type, M-type, and nuclear OXPHOS
genes, respectively (Supplementary Table S5). Many nuclear
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genes co-transcribed with mtOXPHOS genes involved in the
assembly of OXPHOS complexes, mitochondrial stability, and
quality control. Also, a large number of nuOXPHOS was co-
transcribed with genes encoding ribosomal proteins and
genes involved in the TCA cycle (Supplementary Table S5).
To further investigate the function of these co-transcribed
nuclear genes, we performed a GO enrichment analysis and
the results are shown in Supplementary Table S6. The
overrepresented nuclear genes co-transcribed with F-type
OXPHOS genes were associated with homeostatic process,
mitochondrial respiratory chain complex assembly, and
regulation of cellular pH (Supplementary Table S6). On the
other hand, the nuclear genes co-transcribed with M-type
OXPHOS genes presented a different situation, with
reproductive process, nucleotide phosphorylation, and cell
cycle being enriched (Supplementary Table S6). The nuclear
genes correlated with nuOXPHOS involved in the biosynthetic
process, protein metabolic  process, mitochondrion
organization, gene expression, and translational initiation
(Supplementary Table S6). To identify candidates possibly
involved in the transcriptional regulation of mt and
nuOXPHOS, we focused on the co-transcribed nuclear genes
annotated as transcription factors, or that contain DNA or RNA
binding sites. The candidate genes are listed in
Supplementary Table S7.

Polymorphism and divergence in OXPHOS genes

The average number of SNPs across all samples identified in
F-type, M-type, and nuOXPHOS were 50, 118, and 201,
respectively. Figure 4A shows the percentage of synonymous
and nonsynonymous SNPs in the different gene components,
with F-type presenting a significantly higher percentage of
nonsynonymous SNPs, M-type and nuOXPHOS genes
presenting a higher percentage of synonymous SNPs
(Figure 4A; Supplementary Table S8). However, a high
percentage of nonsynonymous SNPs were found in one
COX2 copy, named COX2B, in the F-type (Supplementary
Figure S6A). If we exclude COX2B, the percentage of
synonymous and nonsynonymous SNPs in F-type OXPHOS
genes were not significantly different from the respective
categories in the M-type (Figure 4A; Supplementary Table
S8). Ghiselli et al. (2013) observed a markedly different
transcription level between the two COX2 copies, with COX2B
showing a lower transcription. They hypothesized that COX2B
might be undergoing a pseudogenization process. The high
number of nonsynonymous variants in COX2B resulting from
this work is consistent with such a hypothesis. The relative
ratio of synonymous and nonsynonymous SNPs in mt
and nuOXPHOS genes are shown in Supplementary
Figure S6A, B.

To assess patterns of selection in OXPHOS genes, we
applied two approaches: frequency spectrum-based test, and
McDonald-Kreitman (MK) test. Allele frequency was calculated
for three different components of OXPHOS genes and a set of
randomly selected genes. Four distinct distributions were
observed: one for the F-type in gonads (note that the
distributions for the F-type in female and male gonads were
not significantly different from each other), one for the M-type,
one for random genes in gonads, and one for nuOXPHOS
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Figure 4 The SNP effects and allele frequency in OXPHOS genes
A: The percentage of synonymous and nonsynonymous SNPs in F-
type, M-type and nuOXPHOS. The F-type without COX2B was shown
as F_no. B: Allele frequency for F-type OXPHOS genes in female
gonads (F_fG), male gonads (F_mG), Mtype OXPHOS genes in male
gonads (M_mG), nuOXPHOS genes in gonads (Nu_G) and randomly
selected genes in gonads (Random_G).

genes in gonads (Kolmogorov-Smirnov test with Bonferroni
correction: P<0.001, Figure 4B). M-type OXPHOS genes
presented a remarkably high intermediate allele frequency.
Tajima’s D, Fu & Li's D and Fu & Li's F showed negative
values for most F-type, nuOXPHOS genes, and randomly
selected nuclear genes, but positive values for most M-type
OXPHOS genes (Supplementary Table S9).

For mtOXPHOS genes, we firstly compared the
polymorphism (Pn and Ps) and divergence (Dn and Ds)
between F-type and M-type OXPHOS genes. As shown in
Supplementary Table S9, except for the ATP8, COX3, NAD3
and NADA4L, all the rest of mtOXPHOS genes showed
significant neutrality index (NI). NI is derived from the MK test
and it quantifies the direction and degree of departure from the
neutrality: NI=1 indicates the neutrality; NI>1 indicates
negative selection; NI<1 indicates positive selection (Rand &
Kann, 1996). Therefore, most mtOXPHOS genes showed a
signal of positive selection between F-type and M-type. We
also used the direction of selection (DOS) to evaluate the data
in the MK test. The positive value of DOS could be consistent
with positive selection, whereas the negative value indicates
the presence of slightly deleterious mutations segregating in

the population (James et al., 2016; Stoletzki & Eyre-Walker,
2011). Similarly, the DOS test also indicated possible positive
selection in most mtOXPHOS genes. To test if the positive
selection signal is present in the F-type or M-type OXPHOS
genes or both, we also performed the MK test using R.
decussatus (SMI species) as an outgroup. Interestingly, most
F-type OXPHOS genes showed extremely low polymorphic
differences which yield the excess of non-significant NI, while
most M-type OXPHOS genes presented relatively high
polymorphic differences and significant NI<1, which could be
consistent with positive selection acting on M-type OXPHOS
genes (Figure 5A; Supplementary Table S9). The MK test was
also performed on nuOXPHOS and randomly selected nuclear
genes. A considerable number of nuOXPHOS and randomly
selected nuclear genes presented non-significant NI and a
nearly equal ratio of polymorphic and divergent differences,
consistent with neutrality (Figure 5B; Supplementary Table
S9). However, a large proportion of nuOXPHOS genes and
some randomly selected genes also presented relatively high
divergence, indicating the signature of positive selection.

To test whether nuOXPHQOS subunits that are predicted to
be in contact with mtOXPHOS subunits presented a different
percentage of synonymous and nonsynonymous SNPs, we
divided the nuOXPHOS genes into two groups (see Piccinini
et al., 2021 for details): the “contact” group which was
supposed to physically contact mtOXPHOS subunits; and the
“non-contact” group which was predicted to have no direct
interaction with mtOXPHOS subunits. Although the contact
group presented a higher percentage of both synonymous and
nonsynonymous SNPs than the non-contact group
(Supplementary Figure S6C), the MK test indicated that NI
index in contact and non-contact groups were not significantly
different from each other (Wilcoxon rank-sum test: P>0.05;
Supplementary Table S9).

Codon usage bias in OXPHOS genes
Mt and nuOXPHOS genes showed remarkably different GC
compositions (Table 1), with extremely high AT skew in
mtOXPHOS, as also found in other eukaryotes. Interestingly,
we also found significant differences in GC composition
between F- and M-type OXPHOS genes. F-type and M-type
OXPHOS genes showed a similar percentage of GC12 (F-
type: 34.42%; M-type: 34.83%), while a significantly higher
percentage of GC3 was found in M-type (F-type: 21.69%; M-
type: 26.91%) (Table 1; Supplementary Figure S7). Moreover,
M-type OXPHOS genes presented generally slightly higher
ENC and lower CAl values compared to F-type (ENC: P>0.05;
CAl: P<0.05; Table 1; Supplementary Figure S7), indicating
alleviated CUB in M-type OXPHOS genes. NUOXPHOS genes
displayed relatively high ENC and CAIl values that are
comparable to those of the other nuclear genes in the
transcriptome (Wilcoxon rank-sum test with Bonferroni
correction, P>0.05). Although under different CUB, the
heatmap based on RSCU values revealed that both mt and
nuOXPHOS presented a shared usage bias towards A/U-
ending codons (Supplementary Figure S8).

ENC and GC3 relation plot (Nc-plot) compares the actual
distribution of genes to an expected distribution which
assumes no selection, therefore the departure from the
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Figure 5 The results for McDonald-Kreitman test
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A: McDonald-Kreitman test in mitochondrial OXPHOS genes. B: McDonald-Kreitman test in nuclear OXPHOS genes and random nuclear genes.
Genes marked orange indicate significant (sig) departure from the neutrality, while genes marked grey indicate non-significant (ns) results. Gene

names were added only for genes with significant results. The grey line on the figure indicates the equal ratio between polymorphism and

divergence (under neutrality).

Table 1 Statistics for codon usage in different OXPHOS gene components

Analysis Index and correlation F-type OXPHOS  M-type OXPHOS Nu OXPHOS Transcriptome
Codon usage index CAl 0.78 0.73 0.76 0.75
ENC 40.22 41.71 50.08 50.67
GC eq 25.71% 32.19% 31.36% -
GC3 21.69% 26.91% 35.59% 36.58%
GC12 34.42% 34.83% 43.60% 43.20%
Correlation CAI ~ENC 0.05 -0.60" -0.2 -0.43"
ENC ~ GC3 0.18 0.70° 0.11 0.39”
CAIl ~ GC3 -0.59° -0.83" 0.02 0.34"
GC3 ~ GC12 -0.02 -0.04 -0.21 0.01
CAl ~ Transcription -0.26 0.14 0.51" 0.07"
Correspondence based on codon usage Axis1 ~ CAl 0.41 0.91" 0.51" 0.35"
Axis1 ~ ENC 0.006 -0.45 -0.08 -0.22"
Axis1 ~ GC3 -0.20 -0.69° 0.49” -0.31"
Axis1 ~ Transcripton ~ —0.81" 0.13 0.06 0.03"
Axis2 ~ Transcription ~ -0.48 -0.80° 0.28" 0.005
Correspondence based on RSCU Axis1 ~ CAl -0.14 0.71" -0.35" 0.62"
Axis1 ~ ENC 0.16 -0.12 0.09 -0.50"
Axis1 ~ GC3 0.64" -0.59" -0.16 -0.67"
Axis1 ~ Transcription ~ -0.06 0.22 -0.23 -0.03"
Axis2 ~ Transcription ~ 0.31 0.01 -0.14 -0.11"

The significant correlations were marked bold. ": =P<0.05, ™: —P<0.001.

expected curve indicates that these genes are under selective
pressure (Wright, 1990). Likewise, the neutrality test plots the
GC12 against GC3 to reflect the equilibrium between mutation
pressure and natural selection (Sueoka, 1999). In this study,
the Nc-plot revealed that only a small number of OXPHOS
genes laid on the expected Nc curve, with most genes
departing from the corresponding predictions (Supplementary
Figure S9). The neutrality test showed no correlation between
GC12 and GC3 in both mt and nuOXPHOS (Table 1),
indicating that mutation bias was not the only factor affecting
CUB. Negative correlation between CAl and ENC was
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observed in M-type OXPHOS genes. CAl indicates the
selection for the preferred codon, while ENC is a non-
directional parameter for either selection or mutation bias,
therefore the correlation between CAl and ENC could indicate
the role of selection, but mutation would lessen this correlation
(Behura & Severson, 2012). Significant negative correlations
between GC3 and CAIl were observed in both F-type and M-
type OXPHOS genes (Table 1), indicating that GC3 may be
associated with CUB in mtOXPHOS genes. Moreover, GCeq
in both F-type and M-type OXPHOS was slightly higher than
GC3, while GCeq in nuOXPHOS is lower than the GC3
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(Table 1). All these tests indicated that mutation alone cannot
explain the CUB in OXPHOS genes. In nuOXPHOS genes, a
significant correlation between CAIl and transcription level was
observed, indicating the possible role of translational
selection. Similarly, for the protein-coding genes in the
transcriptome, significant correlations were also detected
between GC3 and CUB, and between CAI and transcription.

The COA analysis based on the codon counts indicated that
Axis 1 was significantly correlated with the CAl and GC3 in
both M-type and nuOXPHOS genes, while no such correlation
was observed in F-type OXPHOS genes (Figure 6; Table 1).
Besides, the correlation between transcription and Axis 1, and
between transcription and Axis 2 were observed in three
different OXPHOS components. The COA analysis based on
RSCU also showed similar results (Table 1). Consistently,
these results indicated the GC3 composition and transcription
levels could be responsible for the CUB for both OXPHOS
genes and protein-coding genes in the transcriptome.
Moreover, the chi-square test for the context-dependent
mutations in F-type, M-type, and nuOXPHOs genes all
indicated that the third position bases were not independent of
the second position bases (Supplementary Table S10, F: X-
square=143.25, P<0.001; M: X-square=111.2, P<0.001;
NuOXPHOS: X-square=328.08, P<0.001).

DISCUSSION
Distinct transcriptional dynamics and regulatory

mechanism in OXPHOS genes
Although the quantification of mtDNA and mtRNA in DUI

species has been investigated before (Breton et al., 2017;
Dalziel & Stewart, 2002; Ghiselli et al., 2011; Milani et al.,
2014; Obata et al., 2011), the transcription patterns in DUI
species across tissues in both sexes are still largely unknown.
In the present study, we assessed the transcription of F-type
and M-type genes in adductors, mantles, and gonads of a DUI
species R. philippinarum. We found that the transcription
levels of F-type OXPHOS genes were significantly different
across tissues, while M-type OXPHOS genes were highly
transcribed only in male gonads (Figure 2). Traces of M-type
mtRNA (>1% reads mapped to M-type in the sample) were
also detected in 5 (out of 28) male somatic samples analyzed
(Supplementary Figure S1 and Table S2). The presence of M-
type mtRNA in somatic tissues seems to vary across DUI
species, for example 60% male somatic samples in U.
peninsularis and 89.5% male somatic samples in V.
ellipsiformis presented somatic transcription of M-type mt
genes (Breton et al., 2017). In R. philippinarum, previous work
reported variable number of M-type DNA and RNA in somatic
tissues, depending on the individual (Ghiselli et al., 2011;
lannello et al., 2021; Milani et al., 2014). In this work, we found
that M-type is barely transcribed in the somatic tissues of most
males. Such a pattern could be due to a low number of M-type
mtDNA in these samples or tissue-specific transcription of M-
type in males, which leads the M-type to be highly transcribed
in male gonads, but poorly transcribed in male somatic
tissues. Ghiselli et al. (2011) detected M-type mtDNA in most
of (~87%) male somatic tissues, and Milani et al. (2014)
reported no correlation between the transcription level of
cytochrome b (cyt b and its DNA copy number in males of R.
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Figure 6 The relationship between codon usage and GC3 (A), CAl (B) and transcription (C-D)
Only the first two highly representative axes (Axis 1 and 2) were considered here. Each point represents a gene. Green dots, red triangles, and blue
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philippinarum. These evidences were in line with a tissue-
specific regulation of transcription of M-type, which is
independent of the M-type DNA copy number. On the other
hand, the extremely low transcription levels observed in
somatic tissues of many males could reflect an absence of M-
type mtDNA in such samples. Future investigations including
sequencing of both mtDNA and mtRNA will help to clarify this
point.

Transcription levels clearly distinguished F-type, M-type,
and nuOXPHOS genes into three groups (Figure 1), indicating
distinct transcription dynamics. Tissue-specific transcription
was observed in F-type and nuOXPHOS genes, with
nuOXPHOS genes presenting higher transcription in
adductors and mtOXPHOS genes presenting higher
transcription in gonads (Figure 2; Supplementary Table S4).
Similar tissue-specific transcription of OXPHOS was widely
reported and quantified in humans and mice, and this
transcription pattern was proposed to be associated with
differences in metabolic profiles and variable energetic
demands in different tissues (Barshad et al., 2018; van
Waveren & Moraes, 2008). However, different from the results
in van Waveren & Moraes (2008), which showed stronger
correlations within than among complexes —in this study we
observed slightly higher intracomplexes correlation only in
complex | and V (Figure 3D). This discrepancy may be
explained by several reasons: (1) In DUI species, nuclear
OXPHOS genes must cooperate with two mitochondrial
genomes, which might loosen the correlations between
different complexes; (2) R. philippinarum is a sedentary living
bivalve that has lower energy needs, therefore it may be
subject to weaker selection in maintaining OXPHOS
processes compared to the other taxa (Piccinini et al., 2021;
lannello et al.,, 2019); (3) Normalization methods may also
influence co-transcription results, and recent study on large
human dataset indicated that normalization techniques based
on total read count (such as TPM or FPKM) may lead to
artefactual positive correlations (Perez & Sarkies, 2021).

Significant  positive  co-transcription was  observed
separately in F-type, in M-type, and in nuOXPHQOS genes, but
co-transcription signal between mtOXPHOS and nuOXPHOS
wasweak/absent and not consistent across tissues (Figure 3;
Supplementary Figure S4). Considering the distinct
transcriptional trends and the separate co-transcription
patterns, our data indicate that the transcriptional difference of
nuOXPHOS genes was independent of the M- or F-type
genome and that the transcription of F-type, M-type, and
nuOXPHOS genes might be under different regulatory
mechanisms, including co-translational regulation (Couvillion
et al., 2016).

Nuclear OXPHOS genes were subdivided into two positively
correlated clusters (Figure 3). While the reason behind this
split is unknown, one possibility could be the presence of
supercomplexes within nuOXPHOS genes, with a tighter co-
regulation inside each. Several different types of
supercomplexes (such as CI+ClIII+CIV, CllI+CV, CI+CIIl) have
been established in model organisms and several genes
(COX7, COX6A, NDUFB4, NDUFB9, UQCRC1, UQCRQ) are
involved in supercomplex formation (reviewed in Chaban et
al., 2014; Milenkovic et al., 2017). However, the mechanisms
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and functional roles of supercomplexes are still largely
unknown, especially in non-model organisms.

Candidate pathways and genes associated with OXPHOS
co-transcription

In the present study, the mt and nuOXPHOS genes were co-
transcribed with nu-encoded genes involved in many
biological processes, such as mitochondrial respiratory chain
complex assembly, cellular homeostasis, and translation
(Supplementary Table S6). Mitochondrial respiratory chain
complex assembly is an intricate process that requires tightly
orchestrated co-regulation from both mitochondrial and
nuclear genomes (Tang et al., 2020). Different nu-encoded
assembly factors were observed to be co-transcribed with mt
and nuOXPHOS genes (Supplementary Table S5) and these
factors have been previously shown to be essential for the
proper assembly and function of the OXPHOS system (van
Waveren & Moraes, 2008). Genes involved in cellular
homeostasis were overrepresented for genes co-transcribed
with the F-type OXPHOS genes, along with many genes
involved in mitophagy and ubiquitination processes
(Supplementary Tables S5, S6). This is in line with our
expectations, as mitochondria are also essential for cellular
homeostasis, calcium signaling, and metabolite synthesis. The
proper function of mitochondria also requires balanced
coordination between mitochondrial biogenesis and mitophagy
through complex signaling pathways (Willems et al., 2015).

Notably, the translation process was overrepresented for
genes co-transcribed with nuOXPHOS genes, indicating that
nuOXPHOS genes might also be under translational co-
regulation (Supplementary Table S6). By contrast, nu-
encoded genes co-transcribed with M-type OXPHOS genes
were overrepresented in the reproductive process and
spermatogenesis (Supplementary Table S6). One reason
could be that the M-type OXPHOS genes were found almost
only in male gonads among our samples and thus the nuclear
genes co-transcribed with M-type OXPHOS genes might also
co-express with the genes responsible for the development of
male gonads. Alternatively, M-type OXPHOS genes might be
directly associated with reproduction in DUl species.
According to previous studies, M-type mitochondria might be
involved in some aspects of sex differentiation in DUI species
as suggested by several authors (Ghiselli et al., 2012; Milani
et al., 2013b; Zouros, 2013). Since M-type is limited to male
gonads in these samples, it is not surprising to see the co-
transcription between gonad-specific genes and M-type
OXPHOS genes. Therefore, co-transcription could reflect
either functional interaction between M-type and gonad-
specific nuclear genes, or similar independent transcription
profiles.

It is worth mentioning that Maeda et al. (2021) found two
divergent SDHC sequences in their study and one of them
(SDHC-2) showed a gonad-specific  transcription
(Supplementary Figure S3B). Around half of the nuclear genes
co-transcribed with nuOXPHOS were correlated only with the
SDHC-2, which might explain the presence of enriched GO
terms involved in the cell cycle (Supplementary Table S6).
Indeed, SDHC is important for both OXPHOS and Krebs
cycle, and studies indicated that deficiency in this gene would
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increase ROS production and induce metabolic stress,
genomic instability, and hypoxia (Slane et al., 2006; Tretter et
al., 2016). However, the reason behind this remarkable tissue-
specific expression is not clear. A recent study in humans
indicated that tissue-dependent splice variants and OXPHOS
subunit paralogs may also be involved in retaining OXPHOS
activities (Barshad et al., 2018).

Considering the strong co-transcription within F-type, within
M-type and within nuUOXPHOS genes, it is reasonable to
speculate that nuclear regulators may be responsible for
transcribing each group. Here we identified a group of
candidate regulator genes that are either transcription factors
or had a DNA/RNA binding domain (Supplementary Table
S7). These genes included zinc finger protein 341, which can
activate transcription factor STAT1, a gene previously shown
to regulate the OXPHOS process (Pitroda et al., 2009).
Pentatricopeptide repeat domain-containing protein 3 is a
mitochondrial RNA-binding protein and proteins containing
PPR domains are known to play a role in transcription, RNA
processing, splicing, stability, editing, and translation (Miglani
et al., 2021; Schmitz-Linneweber & Small, 2008). Moreover,
the roles of PPR proteins in mitochondrial gene expression
and OXPHOS process has also been reported (Lightowlers &
Chrzanowska-Lightowlers, 2008; Soto et al., 2021). Recently,
a ribosome profiling study in human cells revealed that
balanced mito-nuclear OXPHOS synthesis requires a nuclear-
encoded mt protein LRPPRC (Soto et al., 2021).

Selection acts on both nonsynonymous and synonymous
sites of OXPHOS genes

In DUI species, interspecific comparisons have found that M-
type genes accumulate more mutations and have a higher
evolutionary rate than F-type (Hoeh et al., 1996, 1997, 2002;
Liu et al., 1996; Ort & Pogson, 2007; Smietanka et al., 2009;
Soroka & Burzynski, 2010; Stewart et al., 1995, 1996;
Zbawicka et al., 2010), which led to the hypothesis that F- and
M-type genomes experienced different selective pressures
(reviewed in Zouros, 2013). Here, we found that MK tests
between F-type and M-type in R. philippinarum, and between
mt genes in R. decussatus and M -type in R. philippinarum
genes consistently indicated positive selection on most M-type
OXPHOS genes (Figure 5). M-type COX3 and NAD3 did not
show departure from the neutral expectations, indicating that
selection on M-type might be variable in different genes. On
the other hand, intermediate allele frequency and positive
Tajima's D in M-type OXPHOS genes suggested the
possibility of population bottleneck or balancing selection
(Figure 4). Native to the Pacific coast of east Asia, R.
philippinarum was first transported to America in the 1930s,
and then was transferred to Europe to cope with the
production decline of local clam species during 1970s—1980s
(Chiesa et al., 2017; Cordero et al., 2017). Several researches
revealed that reduced genetic diversity and genetic
differentiation compared to the American population were
consistent with a strong founder effect in the European
population (Chiesa et al., 2017; Cordero et al., 2017). Thus, in
line with these studies, the founder effect can also explain why
F-type and nuclear genes presented generally negative
Tajima’s D and excess of rare alleles.

However, the founder effect was not sufficient to explain
why M-type showed such different patterns both in the Italian
population and also in the American population (Ghiselli et al.,
2013). One possibility could be the narrower germline
bottleneck of M-type mtDNA. Past studies indicated that the F-
type mtDNA copy number in eggs is on average 10 times
higher than the copy number of M-type mtDNA in sperm
(Ghiselli et al., 2011), and that the narrower genetic bottleneck
in M-type mtDNA could lead to the segregation of mtDNA
variants in different tissues, causing remarkable within-
individual variation and therefore also higher variability
between samples (lannello et al., 2021). Alternatively, the
presence of high intermediate frequency alleles and positive
Tajima’s D could be a signal of balancing selection. Balancing
selection on mtDNA has been found in gynodioecious plants
showing cytoplasmic male sterility (CMS), in which a
population consisting of both females and hermaphrodites and
the sex is determined by the interaction between mitochondrial
male-sterility genes and nuclear restorer-of-fertility genes
(reviewed in Chase, 2007; Delph & Kelly, 2014). Under
balancing selection, restorer genes are not fixed in the
population because of the “cost of restoration” and CMS
genes are under negative frequency-dependent selection to
maintain the long-term balanced sex ratio in the population
(Delph & Kelly 2014). DUl and CMS show some common
features (Breton et al., 2010, 2011; Ghiselli et al., 2013; Milani
et al.,, 2016; Mitchell et al., 2016): (1) the presence of novel
lineage-specific mt-ORFs (Ghiselli et al., 2013; Milani et al.,
2013a; Mitchell et al., 2016), which allows potential interaction
between mitochondria and nuclear genes; (2) an excess of
mid-frequency polymorphism in M-type mtDNA (Ort & Pogson,
2007; Quesada et al., 1998), which might lead to
match/mismatch between mitotype and nuclear genes; (3) the
hypothesized association between mtDNA and sex
determination in DUI species (reviewed in Breton et al., 2017;
Zouros, 2013); (4) the presence of biased sex ratios (the
proportion of males in populations range from 8% to 83%)
(Ghiselli et al., 2012; Yusa et al., 2013); (5) recombination of
M-type mtDNA in male gonads(Burzynski et al., 2003;
Ladoukakis & Zouros, 2001), which allows for the emergence
of divergent mitotypes. Under balancing selection, M-type
polymorphisms in the population will not be fixed because two
major mitotypes might have different fitness to the
environment and mitotypes might interact with the nuclear
genes to determine/differentiate the sex. Certainly, this is just
speculation and more studies are needed to shed light on
such aspects.

It is worth mentioning that positive selection on M-type has
also been reported in other DUI species (Ort & Pogson, 2007;
Smietanka et al., 2009), and that selection on M-type inferred
by population genetic tests (e.g., McDonald-Kreitman test) and
phylogeny-based method (e.g., dN/dS) have been inconsistent
in many cases (Ort & Pogson, 2007; Smietanka et al., 2009;
Zbawicka et al., 2010). In R. philippinarum, phylogenetic
analysis indicated the relaxed selection on most M-type
OXPHOS genes (Maeda et al., 2021), whereas population
tests in this study showed a signal of positive selection or
balancing selection. Although demographic events or
bottleneck differences may influence population-based
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methods, several genes such as COX3 and NAD3 showed the
same signal between the two methods. Moreover, these two
genes showed different signals compared to the other genes
in  population-based tests (see discussion above,
Supplementary Table S9), which cannot be explained by
demographic events because we should see the same signal
across all genes if demographic changes were the major
forces.

Selection on synonymous codon usage in different
components of OXPHOS genes was also detected. Although
mt genomes usually encode only one tRNA for each codon
family, more and more evidences from numerous organisms
indicated that pools of tRNA in mitochondria include both
locally encoded and imported tRNAs (see Rubio & Hopper,
2011; Salinas-Giegé et al., 2015 for a review), which enables
selection for both efficiency and accuracy on mt genes. The
deviation from the expected ENC values in the Nc plot
(Supplementary Figure S9) and lack of correlation between
GC12 and GC3 (Table 1) indicated a role of natural selection
in CUB. Moreover, the significant and high correlation
between transcription level and CUB may reflect the selective
pressure to optimize the codon usage in highly transcribed
mRNA to avoid sequestration of ribosomes and slow down the
elongation rate (Gingold & Pilpel, 2011; Plotkin & Kudla,
2011). Similarly, translational selection was also detected in
nuclear OXPHOS genes (Table 1; Figure 6). However,
translational selection in mt and nuOXPHOS seems to favor
codons with different endings. In both mt and nuOXPHOS
genes, GC3 showed a significant impact on codon usage.
Whereas GC3 in mtOXPHOS genes was lower than GCeq,
GC3 in nuOXPHOS genes was higher than Gceq, suggesting
that translational selection in AT-rich mt genomes drives the
codons into an A/U ending, while selection in nuOXPHOS
genes drives the codons into G/C ending. Despite the
presence of translational selection in OXPHOS genes, we
argue that the mutational bias is still a major force in OXPHOS
genes. Our results revealed that CUB in OXPHOS genes is
shaped by the balance between selection favoring preferred
codons and mutation bias coupled with random drift.

The coordination of OXPHOS genes may involve
translational regulation

Although selection on silent sites does not result in changes to
the protein sequence, it can still drive protein evolution in
terms of expression regulation. With the advent of high-
throughput sequencing, increasing evidence shows that
translational selection on CUB facilitates the regulation of
gene expression and the generation of differential protein
abundance (Camiolo et al., 2012; Horn, 2008; Jeacock et al.,
2018; Najafabadi et al., 2009). It was hypothesized that codon
usage may be selected during evolution to synchronize the
efficiency of translation with functional requirements for the
expression of specific proteins at certain times, in a specific
tissue (Camiolo et al., 2012; Najafabadi et al., 2009).

The tight interaction between mt and nuOXPHOS requires
the coordinated regulation of gene expression to ensure the
demands for cellular energy are met. In the present study, we
found separate co-transcription within F-type, M-type, and
nuOXPHOS genes but weak or absent co-transcription
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between OXPHOS genes across genomes (Figure 3;
Supplementary Figure S4), suggesting that co-regulation of
OXPHOS genes is not at transcription stage. Instead,
translational selection was detected for both mt and
nuOXHPOS genes (Table 1; Figure 6), suggesting the
possibility of co-regulation at the translation level. Although
translational selection was detected in all three different
components of OXPHOS genes, the selective strength seems
to be different. A significant correlation was detected between
CAIl and transcription in nuOXPHOS genes and also weakly in
nuclear protein-coding genes, but not in mtOXPHOS genes,
indicating translational selection in nuOXPHOS genes may be
stronger than mtOXPHOS genes. Selection on F- and M-type
mt genes may also be different. Translational selection might
be stronger in M-type, indicated by the significant positive
correlation between CAl and axis 1 in correspondence
analysis and significant negative correlation between CAI and
ENC. Therefore, our results are consistent with previous
hypotheses that translation in mt genes is less efficient than
nuclear genes (Adrion et al., 2016; Havird & Sloan, 2016; Pett
& Lavrov, 2015; Sloan et al., 2013; Woodson & Chory, 2008).
Combined with previous studies in yeast and humans that
indicated translational regulation during OXPHOS complex
synthesis (Couvillion et al., 2016; Soto et al., 2021), we
speculate that the different strengths of translational selection
on OXPHOS genes may be responsible for regulating protein
abundance of OXPHOS genes and that the coordination of
expression of OXPHOS genes may involve translational
regulation in DUI species.

CONCLUSIONS

In addition to the common knowledge of co-transcriptional
coordination between mt and nuOXPHOS genes in mammals,
our study revealed that coordination in other species,
particularly in DUI species, could be different and might
involve post-transcriptional/translational regulation. We found
a clear co-transcription signal within F-type, within M-type and
within nuOXPHOS genes, but the signal is weak or absent
between mt and nuOXPHOS genes, suggesting that
coordination between mt and nuOXPHOS genes may not
occur at the transcription level in DUI species. It will be
interesting to assess if such situation is due to a peculiarity of
the DUI system, or if it is more widespread across bivalves
and/or other invertebrates. Translational selection on
synonymous codon usage of both mt and nuOXPHOS genes
further indicated the possible role of translational regulation in
coordinating the OXPHOS genes. Together, these results
advance our understanding of the coordination between mt
and nuOXPHOS gene, and provide a new perspective of
diverse and complex coordination mechanisms of OXPHOS
genes in the animal world.
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