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Learning-driven Nonlinear Optimal Control via Gaussian Process Regression

Lorenzo Sforni, Ivano Notarnicola, Giuseppe Notarstefano

Abstract— In this paper we propose a novel numerical strat-
egy to solve nonlinear optimal control problems for dynamical
systems with partially unknown dynamics. The goal is to explore
feasible system trajectories minimizing a given finite-time per-
formance criterion. We suppose to be able to actuate an input
sequence on the real system, but only an inaccurate description
of the dynamics is available for the control design. The proposed
learning-driven optimal control strategy combines a trajectory
optimization procedure with a Gaussian process regression to
iteratively enrich the model and perform the optimization steps.
Thanks to this combined scheme, the strategy is able to explore
the trajectory manifold while minimizing the cost function. To
corroborate the theoretical results, numerical simulations on
the optimal control of a pendulum are shown.

I. INTRODUCTION

Optimal control techniques rely on system models which,
if inaccurate, can lead to the design of suboptimal trajectories
for the true system. In this paper we aim at achieving the
twofold goal of finding optimal trajectories while improving
the knowledge on the systems using data.

Literature Review: Classic system identification meth-
ods adopt parametric models and exploit observation to
tune their parameters to achieve model accuracy [1], [2]. In
view of the recent success in the field of machine learning,
data-driven control techniques have gained growing interest
in the control system community [3], [4]. Different data-
driven approaches have been considered, e.g., reinforcement
learning [5], model fitting [6], [7] and stochastic nonpara-
metric estimation [8]. In this paper we leverage Gaussian
Processes (GP) and their associated nonparametric regression
techniques. recognized in the field of controls for its flex-
ibility in modelling complex unknown dynamics [9]. GPs
have also been recently exploited in the quantification of
model uncertainty [10]. In the field of optimal control, GPs
have been exploited as a valid alternative to the prominent
approach of modeling uncertainty as a stochastic disturbance.
In [11] GPs are used in a dynamic programming framework.
In [12], a scenario-based optimal control strategy is proposed
based on a GP approximation of the dynamics. In [13]
a combined Bayesian approach and GPs is proposed to
select the most informative data for optimally updating a
nominal model. Many interesting applications can be found
also in the field of adaptive control [14]–[16]. GPs have
been also successfully applied in robotics [17], [18], aircraft
control [19] and power demand management [20].
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Finally, also Model Predictive Control (MPC) schemes
based on GP have been investigated [21]–[23]. Among
the other works, we refer to [24] where a MPC approach
that integrates a nominal system with an additive unknown
dynamics modeled as a GP is exploited. The strategy is
then extended to autonomous racing driving in [25]. While
GPs have been successfully applied, most approaches lack
formal guarantees for GP models. Recently, some control
approaches with formal guarantees have been developed
in [26], [27]. Bounds on the estimation error, in particular, are
deeply analyzed in the field of Bayesian optimization [28],
[29]. A theoretical analysis of the GP-based MPC controllers
is presented in [30].

Contributions: In this paper we propose a learning-
based optimization strategy to solve nonlinear finite-horizon
optimal control problems with partially unknown dynamics.
We propose a two-step iterative procedure in which the
optimization process and the learning phase are concurrently
performed. Specifically, the unknown term in the dynamics
is approximated through an iteratively refined Gaussian pro-
cess. At each iteration, the current optimal input estimate is
improved by a gradient-like update step performed by taking
derivatives of the nominal dynamics enhanced with the GP
and actuated on the real system. During this experiment,
novel measurements from the system evolution are collected
and used in the learning phase. Under suitable technical
conditions, the proposed strategy is proved to converge to
a neighborhood of a stationary point of the optimal control
problem. In order to prove the result, the algorithmic updated
is recast into a suitable gradient-with-error update with error
uniformly bounded across iterations.

The paper unfolds as follows. In Section II we present
the problem set-up and some preliminaries. In Section III
the learning-based optimal control strategy is presented and
then tested in Section IV on a simulation example.

II. SET-UP AND PRELIMINARIES

In this section we first present the learning-driven optimal
control problem set-up. Then, a gradient method approach for
optimal control and a regression technique based on Gaussian
process are reviewed.

A. Learning-driven Nonlinear Optimal Control

In this paper we focus on discrete-time nonlinear systems
described by

xt+1 = f(xt, ut), t 2 T[0,T�1], (1)

with T[0,T�1] := {0, 1, . . . , T � 1}, where xt 2 Rnx is the
state and ut 2 Rnu is the input at time t. The initial condition



x0 = xinit with xinit 2 Rnx given. The vector field modeling
the dynamics f : Rnx ⇥Rnu ! Rnx is assumed to be twice
differentiable.

The key challenge addressed in the paper is that the
dynamics f(·) is composed by a nominal, known model (e.g.,
derived from first principles), and by an unknown part as

xt+1 = f0(xt, ut) + g(xt, ut), t 2 T[0,T�1], (2)

where f0 : Rnx ⇥Rnu ! Rnx models the nominal dynamics
while g : Rnx ⇥Rnu ! Rnx is unknown. We will refer both
to (2), when we want to highlight the peculiar structure of
the dynamics, and to (1) when we mean the real, though
unknown, system.

We investigate nonlinear optimal control problems in
which we look for trajectories of the unknown system (1)
that minimize a performance criterion defined over a fixed,
time horizon T[0,T ]. Formally, we aim to solve the problem

min
x1,...,xT

u0,...,uT�1

T�1X

t=0

`t(xt, ut) + `T (xT ) (3a)

subj. to xt+1 = f(xt, ut), t 2 T[0,T�1],

x0 = xinit,
(3b)

with stage costs `t : RnuT ! R, for all t, and terminal cost
`T : RnuT ! R. These functions are assumed to be twice
differentiable.

The main challenge of the optimal control problem (3) is
that the dynamics is only partially known and the presence
of the unknown term calls for novel learning techniques to
be combined into an optimal control scheme.

For notational convenience, we let x := (x1, . . . , xT ) and
u := (u0, . . . , uT�1). A pair (x,u) 2 RnxT ⇥RnuT is called
a trajectory of the real system if its components satisfy the
dynamics (1) for all t 2 T[0,T�1].

Let us also introduce the following shorthand notation

ak
t
:= rxt`t(x

k

t
, uk

t
), bk

t
:= rut`t(x

k

t
, uk

t
), (4a)

Ak

t
:= rxtf(x

k

t
, uk

t
)>, Bk

t
:= rutf(x

k

t
, uk

t
)>. (4b)

B. Gradient Method for Optimal Control

In this subsection we briefly recall a strategy proposed
in [31, Section 1.9] to solve discrete-time optimal control
problems (3) based on a gradient method. We point out that
here the dynamics (1) is assumed to be known.

The leading idea is to express the state xt, for all t 2
T[0,T�1], as a function of the input sequence u only. Indeed,
for all t we can formally introduce a map �t : RnuT ! Rnx

such that xt := �t(u). In this way problem (3) can be recast
into the so-called reduced version

min
u2RnuT

T�1X

t=0

`t(�t(u), ut) + `T (�T (u)) = min
u2RnuT

J(u) (5)

where u := (u0, . . . , uT�1) is the only optimization variable.
Problem (5) is an unconstrained optimization problem in

u with a sufficiently regular cost function. Hence, it can be
addressed via a gradient descent method. Let k 2 N, then

the components of the tentative solution uk 2 RnuT are
iteratively updated according to

uk+1
t

= uk

t
� �k rutJ(u

k)| {z }
�v̄

k
t

(6)

for all t 2 T[0,T�1], where the parameter �k > 0 is the
so-called step-size.

The overall procedure is summarized by Algorithm 1
where we assume that the state trajectory is initialized as
xk

0 = xinit for all k and �̄k

T
= r`T (xk

T
).

Algorithm 1 Gradient Method for Optimal Control
for k = 0, 1, 2 . . . do

for t = T � 1, . . . , 0 do
compute a descent direction

�̄k

t
= Ak>

t
�̄k

t+1 + ak
t

(7a)
v̄k
t
= �Bk>

t
�̄k

t+1 � bk
t

(7b)

for t = 0, . . . , T � 1 do
compute the perturbed input

uk+1
t

= uk

t
+ �k v̄k

t

run real system

xk+1
t+1 = f(xk+1

t
, uk+1

t
)

The constructive derivation underlying Algorithm 1 shows
that it generates a sequence of inputs {uk}k�0 that can be
associated to a gradient method applied to problem (5). Thus,
it inherits its convergence results.

We point out that Algorithm 1 cannot be implemented if
the dynamics are partially unknown. In Section III we show
how to enhance the method with a learning procedure.

C. Gaussian Process Regression

In this subsection we recall the popular nonparametric
regression technique in machine learning based on Gaussian
processes as presented, e.g., in [32]. It represents a powerful
tool to infer from data a nonlinear vector-valued function ' :
Rnz ! Rny describing a nonlinear map between the input z
and its corresponding output y = '(z). We suppose to have
access to a data-set D := ((z1, y1), . . . , (zH , yH)) with each
pair (zh, yh) 2 Rnz⇥ 2 Rny obtained as yh = '(zh) + ✏h

where ✏h 2 Rny is a white Gaussian noise with covariance
matrix �2

✏
Iny .

In Gaussian process regression, we assume that values of
the components 'a, a = 1, . . . , ny , of ' are drawn from
independent Gaussian distributions. A GP is fully specified
by a mean m function m : Rnz ! Rny and a kernel
covariance function  : Rnz ⇥ Rnz ! R. To maintain
computational feasibility, it is customary to train independent
GPs for each component 'a(·) of the vector field '(·).

We choose the commonly adopted squared exponential
kernel defined for any z, z0 2 Rnz as

(z, z0) = �2
'
exp

✓
�kz � z0k2

2L'

◆
(8)



where L' > 0 denotes the signal length scale while �2
'

is
its variance.

Given the data-set D and the kernel covariance function,
we introduce the Gram matrix K 2 RH⇥H whose (h, i)-th
entry is Khi = (zh, zi) and the kernel vector (z) 2 RH at
a generic z 2 Rnz with h-th component h(z) = (zh, z).

We specify a zero mean prior on '(·) which means that no
prior knowledge is available. Based on the previous defini-
tions, the posterior predictive distribution of each component
'a(·) conditioned on the data-set D at a given point z is
Gaussian with mean and covariance

ma(z) = (z)>(K+ �2
✏
IH)�1Ya (9a)

�2(z) = (z, z)� (z)>(K+ �2
✏
IH)�1(z), (9b)

for all a = 1, . . . , ny , where Ya 2 RH collects only the a-th
component of measurements yh 2 Y . The resulting posterior
of the vector field '(·) is '(z) ⇠ N (m(z),⌃(z)) with
m(z) := col(m1(z), . . . ,mny (z)) and ⌃(z) := Iny�

2(z).
In the forthcoming strategy, we will also use the derivative

of a GP, which since differentiation is a linear operator, is
another Gaussian process [32]. Specifically, each compo-
nent ma(·) of m(·) has a posterior multivariate Gaussian
rma(z) ⇠ N (m0

a
(z),⌃0

a
(z)) with mean and covariance

m0
a
(z) := r(z)>(K+ �2

✏
IH)�1Ya (10a)

⌃0
a
(z) := r2(z, z)�r(z)>(K+ �2

✏
IH)�1r(z)

(10b)

where r2(z, z) =
�
2
'

L2
'
IH while the h-th row of the matrix

r(z) 2 RH⇥nz is rh(z) =
1
L2

'
(zh, z) (zh � z)> .

III. LEARNING-DRIVEN OPTIMAL CONTROL VIA
GAUSSIAN PROCESS REGRESSION

In this section we present the main contribution of this
paper which is the optimization-based control strategy for
nonlinear systems with partially unknown dynamics. We
start by presenting how to implement the iterative learning
phase specifically tailored for dynamics learning and then we
embed it in the novel optimal control strategy.

A. Dynamics Learning via Gaussian Process Regression

In this subsection we tailor the GP regression presented in
Section II-C to the dynamics learning process. To this end,
we start by modeling the unknown dynamics g(·) in (2) using
a Gaussian process. To ease the presentation and without
loss of generality, we consider in this part a scalar system,
i.e., x 2 R and u 2 R. Therefore, the unknown function is
g(·) : R ⇥ R ! R. As a consequence, also the mean and
the variance of the GP are scalar functions. The results can
be extended to vector-valued functions by considering one
scalar GP for each component.

We consider observations of g(·) taken in the following
form. For each trajectory (x,u) of the real system (1), we
define T observation pairs ((z1, y1), . . . , (zT , yT )) as

zt := (xt, ut)

yt := xt+1 � f0(xt, ut)| {z }
'(zt)

+✏t (11)

with t 2 T[0,T�1], ✏t white Gaussian noise with variance �2
✏
.

The leading idea is to iteratively refine the GP approx-
imation as the optimization process proceeds. Therefore,
we suppose to arrive at a given iteration k with data-set
Dk = (Zk, Y k) collecting state-input trajectories explored
up to k. As described in Section II-C, we assume that g(·)
is drawn from a GP prior and we compute its posterior
distribution which is Gaussian

g(x, u) ⇠ N
⇣
mk(x, u),⌃k(x, u)

⌘

where the mean and the variance are computed as in (9).
Once the GP regression on g(·) has been posed, we choose

to approximate the partially unknown dynamics (1) using a
deterministic approach where g(·) is approximated by the
posterior mean of the GP, i.e.,

xt+1 = f0(xt, ut) +mk(xt, ut), t 2 T[0,T�1]. (12)

Notice that the use of the squared exponential kernel (8)
induces differentiability and boundedness properties to all
functions represented by the GP [32]. Thus also the poste-
rior mean function mk(x, u) is smooth and, as recalled in
Section II-C, its derivative is a GP itself

rmk(xt, ut) ⇠ N (m0k(xt, ut),⌃
0k(xt, ut)) (13)

with mean and covariance computed as in (10).
Clearly, we are also interested in providing a quantitative

measure on the quality of the approximation made using
the approximation described so far. We define the model
estimation error �gk(xt, ut) 2 R, for all k as

�gk(xt, ut) := |g(xt, ut)�mk(xt, ut)|.

Due to the stochastic nature of regression framework, the
approximation error �gk(xt, ut) can be characterized only
probabilistically. According to [28], the maximum estimation
error �gk(·) can be bounded with high-probability only for a
restricted class of functions as stated in the next assumption.

Assumption 3.1: The function g(·) belongs to the repro-
ducing kernel Hilbert space (RKHS) associated to the kernel
function (·, ·) in (8). Moreover, it has bounded RKHS norm
with respect to (·, ·), i.e., kg(·)k2


 Bg . ⇤

We now recall a result based on [28, Thm. 6].
Lemma 3.2: Let Assumption 3.1 hold and define

⇢k
�
:=

q
2Bg + 300 · �k log3((|Dk|+ 1)/�)

for all � 2 (0, 1), where |Dk| is the cardinality of the Dk,
�k is the maximum mutual information1 that can be obtained
about g(·) from the data-set Dk. Then, for all � 2 (0, 1), it
holds

Pr

⇢
|mk(x, u)� g(x, u)|  ⇢k

�
⌃k(x, u),

8 (x, u), k 2 N
�

� 1� �,

1See [28, Sec. IV] for a definition of �k . Informally, it quantifies the
quality of the data for the learning purposes.



with mk(·) and ⌃k(·) being the posterior mean and variance
given data-set Dk. ⇤

If, moreover, we assume that the data points belong to a
compact set, i.e., (x, u) 2 X⇥U with X and U being compact
sets, then a uniform bound on �k can be established [28].
Therefore, under the compactness requirement, Lemma 3.2
also provides a uniform quantitative bound on the error made
by the approximation.

B. GP-Enhanced Gradient for Optimal Control

Let us now consider the optimal control problem (3) in
which the dynamics is only partially known. We exploit
the GP regression presented in Section III-A to include an
iteratively refined approximation of the unknown term g(·)
in the optimal control strategy. Specifically, we insert the
learning procedure in the optimal control strategy and let
both optimization and learning be concurrently performed
as shown in Figure 1.

Optimization

Process

Learning

Process

Real

System

u

x(m(·),⌃(·))

Fig. 1. Scheme representing the information flow of the proposed strategy.

Given the data-set Dk and the corresponding approxima-
tion at iteration k, the optimal control problem to be solved
can be written as

min
x1,...,xT

u0,...,uT�1

T�1X

t=0

`t(xt, ut) + `T (xT )

subj. to xt+1 = f0(xt, ut) +mk(xt, ut),

x0 = xinit, t 2 T[0,T�1],

(14)

in which the dynamics constraint includes the posterior mean
mk(·) in place of the unknown term g(·).

With problem formulation (14) in place, we can resort
to the approach described in Section II-B. Notice that the
adjoint system (7) cannot be computed as done earlier in
Section II-B since g(·) and, hence, Ak

t
, Bk

t
are not known.

Therefore, we consistently adapt the adjoint system (7) to
compute the descent direction based on the approximated
dynamics. The GP approximation of the unknown vector
field allows us to easily evaluate the linearization matrices
about any point (xk

t
, uk

t
) being the derivative of the mean

function a GP itself. Thus, let the shorthands in (4b) be
adapted as

Ak

t
7�! Âk

t
+m0k

x
(xk

t
, uk

t
)

Bk

t
7�! B̂k

t
+m0k

u
(xk

t
, uk

t
),

where m0k
x
(xk

t
, uk

t
) and m0k

u
(xk

t
, uk

t
) are the components of

the mean function m0k(xk

t
, uk

t
) in (13) corresponding to

the state and to the input, respectively. As for the cost
linearization ak

t
and bk

t
they are defined as before, i.e.,

as in (4a). The descent direction based can be therefore
computed as shown in (15).

Next, the input sequence uk, is applied to the real system
through an experiment and, then, T novel measurements
are taken from the resulting state trajectory xk as in (11).
These measurements are then included in the new data-set
Dk+1 = (Zk+1, Y k+1). The proposed method described so
far is summarized in Algorithm 2.

Algorithm 2 GP-Enhanced Gradient for Optimal Control
for k = 0, 1, 2 . . . with �k

T
= r`T (xk

T
) do

for t = T � 1, . . . , 0 do
compute descent direction

�k

t
=

⇣
Âk

t
+m0k

x
(xk

t
, uk

t
)
⌘>

�k

t+1 + ak
t

(15a)

vk
t
= �

⇣
B̂k

t
+m0k

u
(xk

t
, uk

t
)
⌘>

�k

t+1 � bk
t

(15b)

for t = 0, . . . , T � 1 do
compute the perturbed input

uk+1
t

= uk

t
+ �k vk

t
(16)

run the real system

xk+1
t+1 = f(xk+1

t
, uk+1

t
),

collect a measurement

yk+1
t

= xk+1
t+1 � f0(x

k+1
t

, uk+1
t

) + ✏k+1
t

update data-set (Zk+1, Y k+1).

C. Algorithm Analysis

In this subsection we analyze Algorithm 2 showing that
Algorithm 2 realizes a gradient descent method with error.

Let us rewrite the approximate dynamics (12) into an
equivalent form as

xt+1 = f0(xt, ut) +mk(xt, ut)± g(xt, ut)

= f(xt, ut) +�k(xt, ut) (17)

where �k(xt, ut) := mk(xt, ut)� g(xt, ut).
Let �0k

x,t
and �0k

u,t
be the matrices obtained, respectively,

by differentiating �k(x, u) with respect to x and u about
any state-input pair (xk

t
, uk

t
).

Assumption 3.3: The time-varying matrices
{�0k

x,t
}t2T[0,T�1]

and {�0k
u,t

}t2T[0,T�1]
are uniformly

bounded in t and k. ⇤
Assumption 3.4: The set U ⇢ RnuT is compact and the

vector uk 2 U for all k. ⇤
Theorem 3.5: Let Assumption 3.3 and 3.4 hold. Hence,

any limit point u⇤ of {uk}k�0 generated by Algorithm 2
belongs to a neighborhood of a stationary point of prob-
lem (5).

Proof: The proof relies on showing that the strategy
implemented in Algorithm 2 is equivalent to a gradient
method with error, which is then proved to be bounded. In
light of (17), the adjoint system in (15a) can be rearranged



equivalently as

�k

t
= Ak>

t
�k

t+1 + ak
t
+�0k>

x,t
�k

t+1, (18)

where the underlined quantity is the term associated to the
true dynamics f(·).

We can write �k

t
= �̄k

t
+ ��k

t
, where ��k

t
evolves

according to

��k

t
= (Ak

t
+�0k

x,t
)>��k

t+1 +�0k>
x,t

�̄k

t+1 (19)

with terminal condition ��k

T
= 0.

The descent direction in (15b) is an algebraic time-varying
map depending on �k

t+1 and bk
t

and can be expressed as

vk
t

(a)
= �Bk>

t
�̄k

t+1 � bk
t
�Bk>

t
��k

t+1 ��0k>
u,t

�k

t+1

(b)
= v̄k

t
+�vk

t

where in (a) we have used (III-C), and in (b) the term v̄k
t

is
the same computed by the full-knowledge Algorithm 1 and
we have defined

�vk
t
:= �(Bk

t
��0k

u,t
)>��k

t+1 ��0k>
u,t

�̄k

t+1. (20)

Therefore, the components of the updated input uk+1 are

uk+1
t

= uk

t
+ �k v̄k

t
+�k �vk

t
(21)

where v̄k
t

is a t-th component of the gradient �rJ(uk) of
the cost function (cf. problem (5)) using the true, though
unknown, dynamics as described in Section II-B.

By forward simulation of the dynamics (1) we can write
xk := �(uk), for all k, with �(·) being a continuous map
since f is smooth (cf. Section II-B). Therefore, xk 2 X for
all k where X = �(U) is a compact set. Consider now the
linearization of the dynamics as in (4b). From uk 2 U, we
have that Ak

t
= rxtf(�t(uk), uk

t
)> is uniformly bounded in

t and in k. That is, for all t and k it holds kAk

t
k  A0 and

kBk

t
k  B0 for some A0 > 0 and B0 > 0. By exploiting

the linearity of (7a) and defining �̄
k

:= (�̄k

1 , . . . , �̄
k

T
),

we can write �̄
k

= �̂k

1 �̄
k

T
+ R̂k

1a
k for suitably defined

matrices �̂k

1 (collecting the state transition matrices for each
t, made by bounded state matrices) and R̂k

1 (involving the
convolution between the state and the input matrices, both
bounded) where ak := (ak0 , . . . , a

k

T�1). Since both �̄k

T
and

ak are bounded, we can write k�̄kk  c1 for all k and for
some c1 > 0. Then, using similar arguments for the linear
system (19), we introduce ��k := (��k

1 , . . . ,��k

T
) and

write

��k = �̂k

2 ��k

T

=0

+R̂k

2 �̄
k

for suitable matrices �̂k

2 and R̂k

2 , which are defined similarly
to �̂k

1 and R̂k

1 . The norm of ��k can be bounded as
k��kk  c2 k�̄kk  c2c1 for all k and for some c2 > 0.
Finally, stacking the components �vk

t
in a single vector �vk

we can use (20) to compactly write �vk = (ĈkRk

2+D̂k)�̄
k

for suitably defined matrices Ĉk and D̂k. Taking the norms
we can write

k�vkk  kĈkRk

2 + D̂kkk�̄kk  c3c2c1 (22)

for all k and for some c3 > 0.
Then, Algorithm 2 generates a sequence {uk}k�0 that can

be associated to a gradient method with error given by (21).
Being the error uniformly bounded by (22), we can invoke
convergence results for gradient method with error (see, e.g.,
[31, Chap. 1]) to conclude the proof.

It is worth noting that Assumption 3.3 is reasonable since
one expects mk(·) get close to g(·) when data are informative
and Assumption 3.1 is satisfied. Assuming that (x, u) 2 X⇥
U, with X and U compact sets, Lemma 3.2 gives a uniform
quantitative bound on the distance of the posterior mean from
g(·). Moreover, if also rg(·) lives in a RKHS then a uniform
bound on the derivatives can be established as well.

Theorem 3.5 states that the scheme generates a sequence
uk converging to a neighborhood of a stationary point.
However, if, as just discussed, m(·) approaches the unknown
value of g(·), then in the limit ��k vanishes, thus giving a
vanishing error in the gradient scheme.

IV. NUMERICAL SIMULATIONS

We consider, as testbed, a pendulum governed by the
dynamics Ml2✓̈ = �Mgl sin(✓) � f`l✓̇ � fcl✓̇3 + u. where
M is the mass, l is the pendulum length, g is the gravity
acceleration, f` = f`,0 +�f` is the linear friction coefficient
and fc = fc,0 + �fc is the cubic friction coefficient. We
suppose to partially know the linear coefficient, i.e. f`,0 is
known, while the cubic term is unmodeled, i.e., fc = �fc.

Let us consider a discrete-time state-space representation
of the pendulum dynamics, obtained for simplicity via for-
ward Euler. By making explicit the uncertain terms, we can
obtain a system in the form (1), i.e., as the sum of a known
and unknown term given respectively by

f0(xt, ut) =


x1,t

x2,t

�
+ �


x2,t

a0 sin(x1,t) + b0x2,t

�
+ �


0
d0

�
ut

with a0=� g

l
, b0=� f`,0

M0l
, d0= 1

M0l
2 , and

g(xt, ut) = �


x2,t

�bx2,t +�cx3
2,t

�

with �b = � �f
M0l

, �c = ��fc
M0l

. and where x1 corresponds to
✓, x2 corresponds to ✓̇, � is the sampling period. We consider
as nominal parameters l = 1 m, M0 = 1 Kg, f`,0 = 0.5
Nm s

rad and fc,0 = 0 Nm s
rad . The uncertain terms are �f` =

37.5 Nm s
rad and �fc = 30 Nm s

rad .
We consider a tracking problem, which translates in a

quadratic cost function with `t(xt, ut) = kxt � xref,tk2Q +

kut � uref,tk2R and `T (xT ) = kxT � xref,T k2Qf
where Q =

diag(10, 1), Qf = diag(10, 100) and R = 10�3. We set the
sampling period to � = 10�3s�1. As reference trajectory we
used a step signal between two equilibrium configurations.

The step-size is diminishing with �k = 0.1/k0.009. The
parameters of the squared exponential kernel (8) are �2

'
= 1

and L' = diag(10�4, 10, 10�4).



The cost error is represented in Figure 2 and shows
the difference between J(uk), the cost evaluated at the k-
th iteration of the GP-enhanced algorithm, and J(u⇤), the
optimal cost computed with a full knowledge of f(·).
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Fig. 2. Evolution of the cost error across iterations.

In Figure 3 a comparison between the state-input trajec-
tories of Algorithms 1 and 2 is proposed. It can be appre-
ciated that the discrepancies between the real system and
its nominal model are well captured by the GP regression.
Indeed the red and the blue trajectories overlap showing the
effectiveness of the proposed approach.
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Fig. 3. Comparison among the reference curve (dashed blue) and the results
of the algorithms based on full-knowledge (red) and on GP regression (blue).

V. CONCLUSIONS

In this paper we presented an optimal control strategy
that combines a gradient method with a learning procedure
based on Gaussian process regression to deal with nonlinear
systems with partially unknown dynamics. We proposed a
novel optimization-based algorithm in which the unknown
term in the dynamics is approximated with the mean of a
Gaussian process which is iteratively refined concurrently to
the optimization procedure.
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