Chemistry–A European Journal

Supporting Information

Spectroscopic and Molecular Docking Study of the Interaction between Neutral Re(I) Tetrazolate Complexes and Bovine Serum Albumin

Joanna Lazniewska, Mark Agostino, Shane M. Hickey, Emma Parkinson-Lawrence, Stefano Stagni, Massimiliano Massi,* Douglas A. Brooks, and Sally E. Plush*

Author Contributions

J.L. Formal analysis:Equal; Investigation:Lead; Project administration:Supporting; Validation:Lead; Visualization:Equal; Writing – original draft:Equal; Writing – review & editing:Equal

M.A. Formal analysis:Equal; Investigation:Supporting; Visualization:Equal; Writing – original draft:Equal; Writing – review & editing:Equal

S.H. Conceptualization:Equal; Writing - original draft:Supporting; Writing - review & editing:Equal

E.P.-L. Conceptualization:Supporting; Investigation:Supporting; Writing - review & editing:Supporting

S.S. Conceptualization:Equal; Resources:Equal; Writing - review & editing:Equal

M.M. Conceptualization: Equal; Resources: Equal; Writing - review & editing: Equal

D.B. Funding acquisition:Lead; Project administration:Equal; Supervision:Equal; Writing - review & editing:Equal

TABLE OF CONTENTS

Figure S1	1
Figure S2	1
Figure S3	1
Figure S4	2
Figure S5	2
Figure S6	2
Equation S1	3
Figure S7	3
Figure S8	3
Table S1	4

Figure S1. Changes in BSA absorbance upon increasing concentration $(0-10 \ \mu\text{M})$ of (A) complex **1** and (B) **2**. The concentration of BSA was maintained at 10 μ M. Insets show changes in absorbance at 279 nm as a function of probe concentration.

Figure S2. Absorption spectra of increasing concentration $(0-10 \ \mu\text{M})$ of Re(I) complex (A) **1** and (B) **2** in PBS.

Figure S3. Emission spectra of increasing concentration $(0-10 \ \mu\text{M})$ of (A) complex **1** and (B) **2** in PBS. Excitation 280 nm. Insets show changes in fluorescence intensity at ~550 nm as a function of probe concentration.

Figure S4. Linear correlation between (A) F_{530}/F_{346} and complex **1** concentration and (B) between F_{540}/F_{346} and complex **2** concentration.

Figure S5. Emission spectra changes observed upon increasing concentration $(0-10 \ \mu\text{M})$ of (A) complex **1** and (B) **2.** Excitation 350 nm. The BSA concentration was kept constant at 10 μ M. Insets show changes in fluorescence intensity at 530 and 540 nm as a function of concentration of probe **1** and **2**, respectively.

Figure S6. Changes in absorbance upon increasing concentration of BSA (0–21 μ M) added to complex (A) **1** and (B) **2**. The concentration of probes was maintained at 3 μ M. Insets show changes in absorbance at 279 nm as a function of BSA concentration.

$$\frac{F_{S} - F_{0}}{F - F_{0}} = \frac{1}{K_{b}[Q]}$$
(S1)

where F_s , F_0 and F are BSA fluorescence intensities at Re(I) compound concentration where the system is saturated, in the absence of the Re(I) complex, and at an intermediate Re(I) complex concentration, respectively. K_b is the binding constant and [Q] is the concentration of the quencher.

Figure S7. Linear Benesi–Hildebrand plots indicating 1:1 complex formation between BSA and compound (A) **1** and (B) **2**.

Figure S8. Circular dichroism spectra of BSA in the presence and absence of (A) complex **1** and (B) **2**.

Site la ^[b]	Site Ib ^[c]	Trp134 site ^[d]
Tyr149	Arg194	Glu17
Arg198	Leu197	His18
Trp213	Arg198	Glu130
Arg217	Ser201	Lys131
Leu218	Lys204	Trp134
Lys221	Trp213	Asn158
Leu237	Arg217	Asn161
Val240	Val342	Gln165
His241	Ser343	
Arg256	Leu346	
lle289	Asp450	
Ala290	Ser453	
	Leu454	
	Leu480	
	Val481	

Table S1. Residues comprising the three sites used in induced-fit docking.^[a]

[a] For each site, the centre of the docking box is defined as the centroid of the listed residues. [b] Comprises residues within 4.0 Å of ketoprofen in the BSA-ketoprofen complex, including Trp213. [c] Comprises residues within 4.0 Å of naproxen in the BSA-naproxen complex, including Trp213. [d] Comprises Trp134 and nearby residues visibly contributing to a surface pocket near this residue.