
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Application-Driven Network-Aware Digital Twin Management in Industrial Edge Environments

Published:
DOI: http://doi.org/10.1109/TII.2021.3067447

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/872573 since: 2022-11-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TII.2021.3067447
https://hdl.handle.net/11585/872573

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Bellavista, C. Giannelli, M. Mamei, M. Mendula and M. Picone, "Application-
Driven Network-Aware Digital Twin Management in Industrial Edge
Environments," in IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp.
7791-7801, Nov. 2021.

The final published version is available online at:
http://dx.doi.org/10.1109/TII.2021.3067447

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTII.2021.3067447

1

Application-driven Network-aware
Digital Twin Management in Industrial Edge Environments

Paolo Bellavista1, Senior, IEEE, Carlo Giannelli2, Senior, IEEE,
Marco Mamei3, Matteo Mendula1, and Marco Picone3

1Department of Computer Science and Engineering, University of Bologna, Italy
2Department of Mathematics and Computer Science, University of Ferrara, Italy

3Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy

The application of Internet of Things (IoT) within industrial environments is fostering the adoption of the Digital Twin (DT)
approach, applied at the edge of the network to handle heterogeneity stemming from siloed application management solutions and
from protocols originated by different manufacturing tools and enterprise services. In this challenging context, network heterogeneity
also represents a critical element that can significantly limit the design and deployment of DT-oriented applications. The paper
proposes the Application-driven Digital Twin Networking (ADTN) middleware with the twofold objective of: (1) Simplifying the
interaction among heterogeneous devices by allowing DTs to exploit IP-based protocols instead of specialized industrial ones and to
enhance packet content expressiveness, by enriching data via well-defined standards. (2) Dynamically managing network resources in
edge industrial environments, applying Software Defined Networking (SDN) to exploit the communication mechanisms most suitable
to application requirements, ranging from native IP to more articulated based on packet content.

Index Terms—Edge Computing, Industrial IoT, Digital Twin, Software Defined Networking, Application-Driven Management

I. INTRODUCTION

The adoption of the Internet of Things (IoT) is currently
spreading in industrial environments. Complex Industrial IoT
(IIoT) applications stem from the joint exploitation of multiple
and heterogeneous devices adopting multiple protocols and
data formats both co-located in the same plant and remotely
spread in different locations. Such devices need to coordinate
their activities to support industrial operations (e.g., manufac-
turing and assembly) with stringent Quality of Service (QoS)
and safety critical requirements.

The combination of IoT with the industrial ecosystem has
recently revitalized the concept of Digital Twin (DT) as an
innovative technology expected to transform the industrial and
manufacturing ecosystems. Promising improvements are ex-
pected to offer new innovative solutions reducing costs, mon-
itoring assets, optimizing maintenance, reducing downtime,
and enabling the creation of intelligent connected products. As
stated in [1], a DT can be defined as a comprehensive software
representation of an individual physical device including its
properties, conditions, and behavior across the entire object’s
life-cycle. These novel twin-oriented manufacturing systems
are characterized by the possibility to support and handle the
massive heterogeneity of siloed distributed implementations
together with protocols and data flows originated by different
manufacturing and enterprise services [2], [3].

In this challenging context, network heterogeneity repre-
sents a critical element to efficiently handle complex industrial
environments and may also significantly limit the design
and deployment of DT-oriented architectures and applications.
DTs, consumers, and services should be unaware of the com-
plexity behind their communications and should be resilient to
re-configuration and dynamic orchestration. The layering and

Corresponding author: C. Giannelli (email: carlo.giannelli@unife.it).

separation of functionalities represent a key element, (i) to
decouple the networking infrastructure from upper layers and,
(ii) to dynamically control the communications according to
applications and context requirements, e.g., the creation of a
segregated and secured network shared only by a group of
selected DTs and target data consumers.

The approach currently adopted in industrial environments
is based on the manual configuration of networks, usually
consisting of several IP subnets, each one comprising a small
set of strictly related equipment pieces supporting specific
actions in the production flow. To allow the communication
among different subnets, there is the need of properly configur-
ing gateways interconnecting different subnets; this is a time-
consuming and error-prone task that discourages the dynamic
reconfiguration of industrial networks. Thus, it is generally
difficult to modify industrial topologies taking into account
the fact that the same industrial site may be used in different
moments (or even in the same moment concurrently) to run
different industrial applications and produce different products.

Based on these considerations, the paper originally proposes
the Application-driven Digital Twin Networking (ADTN) mid-
dleware to support the twofold objective of simplifying the
interaction with heterogeneous distributed industrial devices
and of dynamically managing network resources (also to max-
imize QoS) in distributed industrial environments by adopting
an application point of view. To this purpose, the ADTN
middleware considerably improves current literature by:

• supporting the adoption of the DT abstraction not only
to simplify the interaction with actual devices via Simple
Digital Twins (SDTs) in charge of mediating the interac-
tion with actual devices (e.g., SDTs serve as protocol
gateways that interact with devices via field protocols
such as Modbus and with remote SDTs via IP-based
protocols such as MQTT [4] or CoAP [5]), but also to

2

represent a complex industrial application as the dynamic
coordination of several SDTs composing a unique Com-
posed Digital Twin (CDT);

• providing the deployment of SDTs on edge nodes, where
each edge node typically hosts multiple SDTs related to
neighbor devices. Note that edge nodes may interact with
each other, thus creating a multi-hop multi-path topology.
In other words, edge nodes not only manage traffic related
to the devices they are directly connected to, but they
also act as intermediary nodes by dispatching packets of
devices managed by other edge nodes;

• simplifying the management of network resources, by
exploiting a high-level representation of an industrial
application (including involved equipment and QoS re-
quirements) to dynamically and autonomously manage
network resources within both a single production site
and multiple production sites. The adoption of such a so-
lution can greatly facilitate the management of industrial
networks, thus allowing faster and safer configuration of
topologies to exploit the same production site for different
industrial applications.

The rest of the paper is structured as follows. Section
II introduces the architectural model of the target industrial
environment, Sections III and IV outline our ADTN middle-
ware, Section V presents achieved performance based on our
prototype, Section VI compares the proposed solution with
the literature, and Section VII ends the paper with conclusive
remarks and future research challenges.

II. ARCHITECTURAL MODELING

IoT applications designed to be deployed on edge com-
puting distributed facilities can be modeled and structured
using a set of common concepts defining the roles and the
responsibilities of each layer and entity. The “edge” here
refers to the computing infrastructure that operates close to
the origin data sources and physical devices. It is a distributed
architecture where data is processed at the periphery of the
network, as close to the originating source as possible.

Fig. 1: High-level scheme of a distributed, edge-based, and
intelligent IoT architecture.

Fig. 1 depicts a schematic and layered overview of a dis-
tributed IIoT deployment composed of multiple decentralized
edge locations handled by one or multiple interconnected
nodes responsible to manage local applications and DTs.
Processing, storage, and networking resources, together with

data and services, are carefully balanced between cloud and
the edge facilities to obtain the best performance according
to the target business logic, e.g., real-time decision on the
edge and massive data analytics in the cloud (note that cloud
management is out of the scope of the paper).

At the bottom resides the Physical Devices layer, composed
of heterogeneous sensors, controllers, and actuators.

Above the Physical Devices layer resides the Edge layer,
divided into two sub-layers: DTs and an Edge Network Man-
ager. The former comprises digital replicas of original physical
counterparts facilitating interaction with physical devices. The
latter models and implements the local application-driven
intelligence to: i) take decisions more quickly and efficiently;
ii) reach decisions according to local identity management and
access control policies; iii) securing the data close to its source.
Furthermore, it supports application-aware QoS maximization
to optimize inter-edge node communication through dynamic
network control, based on traffic management rules received
from the Control Room layer.

The Control Room layer resides close to the Edge layer
and is aware of the Edge layer topology, the location of
available physical devices (and related DTs), and the current
state of industrial and network resources. The Control Room
layer allows technicians to have an overall view of the plant,
also managing the Edge layer to dynamically optimize the
communication among DTs taking into consideration specific
characteristics and QoS requirements.

To better describe our proposal, let us consider the so-called
Smartphone Assembly industrial use case where a shop floor
acts as a (simplified) smartphone manufactury. It consists of:
i) a conveyor (CO) carrying parts from the warehouse; ii)
an assembler (AS) putting parts together; iii) a drill (DR)
finalizing the assembly; and iv) a checker (CH) verifying
the quality of the final product. The same shop floor can
be exploited to assembly different smartphones and thus a
centralized controller informs about the kind of smartphone it
is currently assembled. To monitor the production, CO notifies
to a centralized Control Room (CR) its speed, AS the type and
amount of used parts, DR its current vibrations, and CH the
amount of finalized products, either faulty or not.

CO, AS, DR, and CH interact with dedicated DTs, each
one hosted on a different edge node. The four DTs together
compose a unique industrial application with specific QoS
requirements. CR exploits the knowledge about the industrial
application to properly manage the network. At startup, CR
configures the DR edge node to aggregate vibration data
in packets containing the average and standard deviation
vibration of 1s periods. In case the amount of vibrations is
slightly more than usual, CR reduces the period to 0.1s, thus
increasing bandwidth exploitation, to better assess the state of
DR. Moreover, it also activates the video streaming industrial
application composed of multiple DTs (one for each surveil-
lance camera SC), to remotely verify the current situation.
To this purpose, CR configures the network to provide higher
priority to vibration and video stream packets, asking to edge
nodes to temporarily store or even discard information related
to other applications.

To enable the example above, the proposed solution orig-

3

Fig. 2: Primary components of the ADTN middleware.

inally adopts Software Defined Networking (SDN) to dy-
namically modify how edge nodes manage traffic flows, also
considering payloads in a per-packet fine-grained manner. To
this purpose, in our proposed novel solution DTs adapt and
enhance packet payloads, e.g., to comply with a common syn-
tax, making easier the adoption of advanced traffic engineering
mechanisms based on the actual payload content. For instance,
AS and DR can structure and model their data through the
use of the IETF Sensor Measurement Lists (SenML) data
format [6] by leveraging on its already available fields, e.g.,
measurement type, time references, and versioning, and/or
by extending them to include dynamic QoS requirements,
e.g., delay tolerance and bandwidth constraints, to foster the
adoption of fine-grained SDN-based novel solutions.

III. THE APPLICATION-DRIVEN DIGITAL TWIN
NETWORKING (ADTN) MIDDLEWARE

Based on the model presented in Section II, we designed,
developed, and experimentally evaluated the original ADTN
middleware that supports the dynamic aggregation and config-
uration of heterogeneous and sparse industrial equipment, rep-
resented as a single business unit. In other words, products and
services are respectively crafted and supported by an aggre-
gation of things, e.g., sensors, actuators, and simple devices,
and their dynamic and flexible orchestration is optimized by
an SDN-based cross-layer approach taking into consideration
application-driven indications together with QoS requirements
and network configuration adaptation capabilities.

The ADTN middleware is responsible to handle and effec-
tively orchestrate scalable and reliable communications among
physical devices, DTs, and modules with respect to a dynamic
set of application-driven rules and indications coming from
external authorized services. In particular, primary ADTN
components are the Simple Digital Twin (SDT) on the edge
side and the Composed Digital Twin (CDT) on the control
room side (see Fig. 2).

SDT is a software agent running at the edge layer providing
an effective one-to-one mirroring of a physical IoT device
through the digitalization and cloning of all its features and
functionalities. Each SDT maintains the communication and
synchronization with the associated counterpart creating a
standardized and uniform abstraction of the device to en-
able interoperability and cooperation of devices, services, and
applications. Furthermore, the SDT can extend the original
device’s behaviour in terms of supported protocols, integrating
with external services and managing how incoming and out-
going packets are exchanged and internally processed. In other

words, the SDT provides the opportunity of dynamically aug-
menting the information coming from physical things through
the conveniently reformatting/pre-processing of headers and
payloads or the introduction of additional metadata.

CDT is a software component in the Control Room layer
shaping the digital representation of a new entity capable
to aggregate multiple SDTs at the same time to efficiently
model complex distributed applications and behaviours. In real
deployment environments, physical devices are often a compo-
sition of different heterogeneous components, and things from
different edge locations can participate to common application
goals, such as the various tools in the Smartphone Assembly
example. The ability - denoted as Composability - of grouping
different objects into an aggregated one and then of observing
and controlling the behavior of the resulting object (as well
as the individual entities) represents a strategic feature for DT
design and development. Thanks to the standardization and
homogeneity obtained through the use of SDTs, a CDT has the
ability to easily compose and aggregate multiple twins while
abstracting the complexity of a larger system and focusing only
on few application-oriented relevant status and behaviors.

The one-to-one uniformed mirroring of physical devices
combined with the dynamic composability of multiple replicas,
provided respectively by SDTs and CDTs, are a strategic
and innovative application-driven feature to model complex
IoT scenarios. It can be applied with multiple granularities
both for devices belonging to the same equipment/plant and
to aggregate twins among multiple objects and distributed
locations to create new abstract digital representations. In this
context, the IIoT is the perfect large scale ecosystem where
the adoption of SDT and CDT can introduce effective benefits
for services, data, and networking management.

In particular, CDT can change and adapt the configuration
and the behaviour of one or multiple SDTs according to a
set of rules received by the Control Room. For example, by
considering the Smartphone Assembly use case, a CDT can
aggregate SDTs associated with the assembler (AS-SDT) and
the security camera #1 (SC1-SDT) in the same plant area.
When the AS-SDT detects an anomaly related to an increased
vibration level, it immediately communicates the new context
variation to the CDT. According to its application-driven rules,
the CDT triggers the re-configuration of both the AS-SDT and
the SC1-SDT to increase camera image quality and to adapt
the processed payload metadata requesting a personalized QoS
prioritization to the underlying intelligent network layer.

In addition to SDTs, the edge layer is composed of:
• STD-Manager (SDT-M), with the responsibility of con-

figuring, instantiating, and handling the life-cycle of
SDTs. Each edge node hosts an independent SDT-M
associated with the middleware to create and maintain
an active virtual replica for physical devices the edge
node is directly connected to. The SDT-M performs SDT
advertising and receives SDT configuration commands by
remotely interacting with the CDT Manager (see below);

• SDN Control Agent (S-CA), residing on host nodes to-
gether with the SDT-M. S-CA remotely interacts with
the Control Room (and in particular the SDN Controller,
see below) to send information about edge node computa-

4

tional, memory, networking characteristics and its current
state. Moreover, S-CA receives from the Control Room
the traffic engineering rules to apply to the local edge
node with the goal of optimizing packet management in
an application-driven manner.

In addition CDTs, the Control Room layer is composed of:
• CDT Manager (CDT-M), a software component orches-

trating the creation and management of CDTs, according
to application-driven rules and specifications. CDT-M
actively communicates with deployed and active S-CAs
to gather information about available physical devices and
about supported features of related SDTs. The CDT-M is
also responsible to push and dynamically adapt CDTs’
configurations to shape their behaviour and how they can
react to context variations detected by active SDTs;

• SDN Controller (S-Ctrl), which i) receives per-edge node
networking data from S-CAs, with the goal of generating
the whole network topology, and ii) remotely distributes
and activates traffic engineering rules, based on CDT
QoS requirements. In particular, primary supported traffic
management rules are:
– adoption of differentiated routing mechanisms, span-

ning from traditional solutions based on destination
IP address to articulated ones considering the payload
content;

– per-flow traffic priority packet scheduling, also by de-
laying/discarding packet dispatching to ensure delivery
deadlines of higher priority traffic flows;

– per-packet payload management, e.g., by adding meta-
data to enhance payload expressiveness or by discard-
ing part of the payload to reduce packet size.

It is worth noting that S-Ctrl not only interacts with edge
nodes hosting SDTs related to active CDTs, but also with
other edge nodes acting as intermediary nodes along end-
to-end inter-SDT paths.

• Application-driven Network Manager (ANM), the entry
point of the whole solution allowing technicians to ad-
d/remove and de/activate CDTs (via CDT-M) and to
manage the whole topology (via S-Ctrl). To this purpose,
ANM actively interacts with the local CDT-M to get
the set of running CDTs and related QoS requirements
and with the local S-Ctrl to manage remote edge nodes
and require them to properly tune network resources to
activate traffic management rules, e.g., to achieve the
desired delay, jitter, and/or throughput.

By exploiting the above components, the ADTN middleware
can achieve the notable and original twofold objective of not
only semantically-enriching SDT packet content to provide
more expressive information, but also exploiting the increased
expressiveness to actually perform traffic flow management
and packet dispatching optimization. This is done by also
considering application-driven requirements, as better detailed
in the following section.

IV. ADTN DESIGN AND IMPLEMENTATION GUIDELINES

The main effective and measurable advantages provided by
ADTN are related to: i) the creation of a uniformed data

layer to support and handle the intrinsic IoT heterogeneity;
ii) the reactive DT management and the consequent proactive
adaption of QoS requirements for each relevant data stream;
and iii) the dynamic and application-driven networking among
devices, DTs, and services.

A. Uniformed Data Layer & Heterogeneity Management

As previously anticipated, we state that providing a uniform
and standardized data format for information representation is
strategic to allow the network to dynamically react to events,
easily detect anomalies, and more generally support advanced
management features without the need of customized and
technician-driven operations. For instance, by adopting a well-
known and easy-to-parse packet payload format, edge nodes
can efficiently monitor the content of traversing packets and
trigger a change of QoS requirements or even a network re-
configuration, in case relevant content is identified. Also note
that the relevance of the content typically depends on the given
application use case, and thus management rules on interme-
diary edge nodes not only should be able to easily monitor
the content, but also to effectively enforce new management
rules provided by the centralized ANM in relation to activated
SDTs and CDTs.

To this purpose, SDTs and CDTs use SenML [6] as stan-
dard and uniform communication data format normalizing
and neutralizing the fragmentation of data and information
coming from physical devices. Each SDT is responsible to
handle the bidirectional adaption with its counterpart for each
involved packet and according to the supported protocols
(e.g., MQTT and CoAP) and communication paradigms (e.g.,
Pub/Sub and RESTful). Furthermore, we enhance and extend
the SenML format to allow SDTs to add contextual and
operational information (denoted as “attribute” or “target”)
to each measurement, also allowing a simplified definition of
network and QoS rules.

As illustrated in Fig.4, SDT is responsible to transform
raw data incoming from the physical device into a SenML
structured payload, comprising the timestamp (t), the current
measurement value (v), the name associated with the device
or data source (n) and the data unit (u), by following the
IANA units specifications1. By following the specifications
of the SenML standard, we have extended the data format
to add three new additional metadata useful to support the
proposed dynamic application-driven network management.
The droppable attribute specifies if the current packet can
be safely dropped whenever required (thus packet drop does
not cause any major service misbehavior), the delayable field
provides the maximum amount of time (in ms) that a packet
can be delayed, and the app name uniquely identifies the
industrial application associated with the generated packet.
These metadata can be used to dynamically model packet
prioritization at the network level according to application
requirements and current context. QoS requirements flags are
then used by the SDN CA on intermediary edge nodes to
autonomously determine if (according to the global network
status and the specified packet constraints) it is required to

1IANA SenML Units - https://www.iana.org/assignments/senml/senml.xhtml

5

increase or decrease packet priority, shape bandwidth, change
packet delay, or even drop it (more details in Section IV-C).

B. Dynamic DT Management & QoS Requirements

As previously illustrated in Section III, SDTs and CDTs
actively collaborate to shape the target application behaviour
and proactively detect and react to events and context varia-
tions. This is meant to provide to the network management
layer all the required information to improve the performance
and properly prioritize the traffic. CDTs receive events and
notifications from SDTs and, according to their application
management rules, command the re-configuration of one or
more SDTs. These dynamic changes can involve how SDTs
process datastreams and how they adapt and enrich the ex-
posed payload. For instance, in case of anomalous vibration
detection, CDT may require the drill-related SDT to tag pack-
ets with vibration data as not droppable or delayable. Listing
1 and Listing 2 report two examples of data management rules
sent by CDT to the target DR-SDT (Drill SDT) to control how
it sets data enrichment and QoS requirements metadata. The
Standard rule specifies that packets can be safely dropped and
delayed up to 200ms; the Anomaly rule that packets cannot
be dropped or delayed. Thanks to this distributed coordination,
applications can modify their QoS requirements in an effective
and fine-grained way, according to the target goal and the
current deployment context.

Listing 1: Drill Standard data management rule.
name : urn : dev : ow: 1 0 e2073a01080063
u n i t : %
d a t a t y p e : numer ic
app name : Smartphone Assembly
d r o p p a b l e : t r u e
d e l a y a b l e : 200

Listing 2: Drill Anomaly rule update.
d r o p p a b l e : f a l s e
d e l a y a b l e : 0

For the sake of clarity, Fig. 3 illustrates the primary steps
of this dynamic adaptation for a simplified version of the
Smartphone Assembly industrial use case, by focusing only on
the drill (DR-SDT) and the security camera (SC1-SDT) parts.
The sequence diagram is broken down into three main phases:
A) Startup, identifying the network location of SDTs related
to physical devices; B) Operational, when physical devices
provide raw data and related SDTs generate SenML-compliant
enriched packets sent back and forth to the control room; and
C) Alerting, triggered by an anomaly detection and involving
the dynamic adaptation of data and network management.

In details, the Startup phase involves: A1) technicians
activate DR-SDT and SC1-SDT to mirror the IoT resources
on their physical counterparts; A2) SDTs mirror the physical
devices by discovering and cloning their resources into a
digital replica; A3) the CDT Manager autonomously discov-
ers the two newly activated SDTs and store their network
location and capabilities; and A4) technicians interact with
CDT Manager to provide the ”Smartphone Assembly CDT”

as the composition of the two SDTs together with the data
management rules that specify how to enrich packets with QoS
requirements. During the Operational phase: B1) technicians
activate the Smartphone Assembly CDT, by enabling the
associated SDTs and by triggering the activation of physical
devices; and B2) SDTs process the received packets to make
the data format compliant with SenML, by also enriching
them with QoS requirements parameters. The Anomaly phase
consists of: C1) the detection of an anomaly vibration by DR-
SDT and the corresponding notification to CDT; C2) according
to its internal rules, CDT reacts to the alert by pushing an
updated configuration to both AS-SDT and SC1-SDT, e.g.,
to switch from Listing 1 to Listing 2 thus modifying the
value of delayable/droppable QoS parameters of traffic flows
coming from the drill; and C3) the involved SDTs adapt their
behaviours by changing the generated and exchanged packets.
Let us stress that CDTs (by reconfiguring SDTs) only modify
the value of QoS parameters, while their proper management
is delegated to S-CAs running on edge nodes. This highly
decoupled approach allows, on the one hand, to create a
dynamic, scalable, and uniformed environment able to detect
and react to anomalies and events, and on the other hand,
to efficiently distribute responsibilities among application-
aware semantically-informed CDTs/SDTs and network layer
components that efficiently manage packets in a (mostly)
application-agnostic manner.

C. Fine-Grained Application-Driven QoS Management
Each SDT hosted on an edge node is uniquely identifiable

and reachable through a dedicated logical name or a distinctive
identifier, e.g., logic-name:port such AS:1234), able to hide its
actual IP address, thus allowing to route traffic flows and pack-
ets while reducing networking complexity. To this purpose,
the developed ADTN middleware exploits the SDN-based
Multi Layer Routing (MLR) approach, specifically supporting
network management in edge-based multi-hop deployment
environments [7]. MLR allows to exploit, even at the same
time, different routing strategies and mechanisms suitable for
applications with heterogeneous features and requirements.
Based on its centralized point of view, S-Ctrl dynamically
determines and configures the proper MLR forwarding mech-
anism, ranging from traditional IP and sequence-based over-
lays to more articulated forwarding solutions based on the
inspection of payload content types and values. In particular,
the SDN-enabled MLR approach allows to exploit the same
network topology even at the same time by different industrial
applications (represented by different CDTs) to dispatch traffic
flows based on native IP, overlay networking information, and
payload content. Moreover, MLR allows the exploitation of
the multi-hop and multi-path network by supporting an overlay
network which distinguishes edge nodes based on fixed unique
identifiers rather than with time-varying private IP addresses.

As specified in Section IV-B, CDT-M takes as input a high-
level representation of an industrial application and provides
as output the dynamic reconfiguration of CDTs amd SDTs. In
addition, S-Ctrl interacts with S-CAs on edge nodes to tune
how traffic flows are actually managed, based on per-packet
metadata as well as the knowledge of the network current state.

6

Fig. 3: Primary steps of Smartphone Assembly use case, with SDT enrollment and distributed coordination in case of anomaly.

Fig. 4: Example of SenML-based dynamic payload enrichment
with delayable, droppable, and app name attributes.

Taking into consideration again the Smartphone Assembly
use case, S-Ctrl adopts four different network management
approaches, by also considering the payload type. To this
purpose, S-Ctrl and S-CAs identify three packet types: Video,
carrying frames provided by surveillance cameras, Vibration,
representing the data provided by the drill, and Info, logs
generated by the conveyor, the assembler, and the checker.

In case there is no network congestion, network manage-
ment rules are not activated and thus packets are dispatched
in a best effort manner.

In case S-Ctrl identifies low network congestion, S-Ctrl en-
ables on S-CAs a network management rule dropping packets
with probability (percentage/100)hopCount (with hopCount
> 0) and percentage set to 25%, 33%, and 33% for Info, Video,
and Vibration packets respectively. Of course, this rule only
applies to packets tagged as droppable. For instance, according
to the Smartphone Assembly policies and Listings 1 and 2,
Vibration packets can be dropped only in case no anomalies
have been detected. Let us note that by dropping packets based
on the hop count, the probability of dropping a packet along
a multi-hop path is

pathLength∑
hopCount=1

(
percentage

100
)hopCount (1)

and with pathlength → ∞ the overall probability a packet is
dropped is 33% and 50% if percentage is set to 25% and 33%
respectively. In this manner we achieve the notable effect of
adopting a simple dropping mechanism that can be applied on
each edge node in a stateless manner, while imposing a limit
to the percentage of packets that can be dropped.

In addition, at each step the network management rule de-
lays packets with delayable > 0 by temporarily queuing them

in case other not delayable packets are currently dispatched by
the edge node, thus ensuring additional networking resources
to packets tagged as not delayable. In particular, at each step
Video packets are delayed by 10 ms, Vibration packets by 25
ms, and Info packets by 5 ms. In addition, packets are delayed
only if current time - timestamp < delayable: by setting an
upper bound to delayable packets the network management
rule allows to ensure that they are not indefinitely buffered
on edge nodes. For instance, without vibration anomaly Info
packets are not delayed since the data management rule sets
delayable to 0, while Vibration/Video packets are delayed up
to 150 ms.

In case S-Ctrl identifies medium network congestion, the
same considerations apply but with higher values for dropping
percentages and delays for droppable and delayable packets. In
case S-Ctrl identifies high network congestion, it interacts with
edge nodes generating traffic flows to switch not droppable
and not delayable packets (e.g., Vibration packets in case of
anomaly detection) to OS routing, thus minimizing network
management overhead and achieving best performance.

Finally, let us stress that edge nodes applying network
management rules are aware neither of the current application
state (either ”regular” or ”anomaly”) nor of the semantic of the
Smartphone Assembly use case. They only monitor traversing
packets and, based on the current traffic situation and the
packet type, they apply the associated delayable and droppable
rules as much efficiently as possible.

V. EXPERIMENTAL EVALUATION

This section presents our experimental testbed environment
and the performed evaluations of our ADTN middleware. The
aim is to measure and analyze the ADTN performance in terms
of communication delay and processing overhead, as well as
to discuss its capability to efficiently and dynamically adapt
to context and application variations.

A. Experiment environment

Achieved performance results are based on our working Java
prototype of the ADTN middleware that we have developed
not only to demonstrate the feasibility and the efficiency of
the presented model, but also to provide the community with

7

La
te

nc
y

[m
s]

0
50

100
150
200
250
300
350
400
450
500
550
600

Arrival time [s]

0 5 10 15 20 25 30 35 40 45

Info
Video
Vibration

Fig. 5: Message delay at increasing message rate while applying the proposed QoS management solution.

M
es

sa
ge

 D
el

ay
 [s

] -
 L

og
 S

ca
le

0

1

100

Se
nM

L
En

ric
hm

en
t P

ro
ce

ss
in

g
Ti

m
e

[m
s]

0

1

3

4

5

6

8

9

10

Message Rate [msg/sec]
1 10 50 100 200 500 1000

SenML Delay - RaspberryPi
SenML Delay - Intel i7
Message Delay - RaspberryPi
Message Delay - Intel i7 Node

Fig. 6: SDT SenML data enrichment delay and message
forwarding with respect to the variation of the message rate.

a working solution to foster the research in this field. The
source code of the adopted libraries and implementations has
been released as Open Source projects2.

In particular, we analyzed two different aspects. The first
one relates to the investigation of SDT performance in terms
of i) SenML data enrichment delay and ii) its impact on the
twin forwarding delay between data producers and consumers.
The second aspect is about how our ADTN middleware
dynamically manages network configurations in relation to
application requirements and network state.

In the former case, involved tests have been conducted on
ten independent runs considering an uncongested network, a
target set of 10000 messages with IoT smart objects and DTs
using MQTT as protocol, and an average payload size of
100 bytes. SDTs are implemented using Java and the WLDT
library, a modular software stack based on a shared multi-
thread engine able to effectively implement DT behaviour and
to define its mirroring procedures, data processing, and the
interaction with external applications [8]. Implemented SDTs
are executed as independent processes, but can also be easily
packed as containers to run on virtualized environments and
microservices. In order to evaluate the SDT’s suitability to
different hardware profiles, we tested the implementation both
on an high specs Linux edge node (i7 Intel CPU and 32 GB
of RAM) and on a Raspberry Pi (RPi) Model B board with
700 MHz CPU, 128 MB of RAM and a 10/100 Mbps Ethernet
connectivity.

21) https://github.com/DSG-UniFE/ramp and 2) https://github.com/wldt

In the latter case, we focused on the capacity of the ADTN
middleware to dynamically introduce new networking policies
depending on the congestion level of the network, by activating
different traffic management rules on an intermediary edge
node, as proposed in Section IV-C. To this purpose we made
measurements over a test-bed composed by N1, N2, and
N3, three high specs RPis (Model 3B+ with 1 Gb RAM
and 1.4GHz 64-bit quad-core processor). N1 and N2 are
connected via 100 Mbps Ethernet, N2 and N3 via 10 Mbps
IEEE 802.11. N1 acts as SDT and sends data (with 100 bytes
payload), while N3 is the receiver and N2 plays the role of the
intermediary edge node. These three nodes interact via peer-
to-peer communication channels, negotiated and instantiated
during the discovery phase. When a new node joins the
network, it looks for a node acting as S-Ctrl. In our test-
bed, S-Ctrl is placed on N1 with the sender SDT. Once each
node has notified its presence in the network, S-Ctrl performs
parameter negotiation (e.g. IP addresses and ports) required for
peer-to-peer socket instantiation between sender and receiver.
The high-level API offered by our middleware allows S-Ctrl
to activate networking rules on S-CAs not only by using the
information about the congestion level, but also by taking into
account the content of a specific packet. In this way packets
with prioritized data can be delivered while respecting more
demanding QoS requirements.

B. Achieved results

Histograms (left y-axis) in Fig. 6 depicts the processing
delay required on the SDT to enrich the incoming payload
(as illustrated in Section IV-A) into a standard and structured
SenML packet and to serialize it using JSON data format.
As expected, the i7 edge node is able to efficiently process
packets with a negligible delay of about 0.56 ms, while the
RPi delay is higher with an average of 4.35 ms. The second
graph (right y-axis) in Fig. 6 reports the forwarding delay (with
respect to the message rate) due to SDT forwarding. Illustrated
results clearly show how the high specs edge node is able to
handle an increasing message rate ranging from 1 msg/sec to
1000 msg/sec with an average overall delay (considering also
the SenML processing) of 6 ms. In contrast, the very limited
capabilities of the RPi allows to keep up good performance
until 50 msg/sec before saturating its resources.

At the beginning, N2 is configured with no network con-
gestion rule and N1 sends data at 150 msg/sec. Then, N1
increases the message rate by 500 msg/sec every 12 s. As

8

Fig. 5 shows, at about 12 s, the receiver notices a packet
latency greater than the 150 ms threshold ms and informs
S-Ctrl about it. Then, S-Ctrl informs S-CA on N2 to activate
the low network congestion, i.e., the intermediary edge node
has to discard or delay part of Video and Vibration messages.
Network congestion lowers for a while and N3 receives
packets at reduced latency. However, the message rate keeps
increasing and at about 25 s N3 notices a latency greater
than 300 ms and again it interacts with S-Ctrl to trigger the
activation of the medium network congestion. This rule further
increases the amount of dropped and delayed packets, limiting
the overall packet latency. Finally, at about 36 s the latency
becomes greater than 450 ms. The receiver informs S-Ctrl
about the current situation and the latter activates the high
network congestion rule, thus imposing sender and receiver to
communicate via OS routing instead of the overlay network.
In this case the network latency considerably lowers, but with
the drawback of reduced traffic management at the application
level, since N2 is not able to access the payload of traversing
packets anymore.

C. Discussion

The results presented above demonstrate that the ADTN
middleware is able, on the one hand, to enrich packets in a
very efficient manner also providing a uniformed standard data
layer and, on the other hand, to dynamically manage traffic
flows in an application-driven manner also considering the
current state of the network. In particular, we found that the
additional overhead imposed by SDTs to format and enrich
the packet payload in the SenML syntax is very limited,
largely justified by the advantages of greatly improving the
QoS management features of traffic flows via articulated and
fine-grained network rules on intermediary edge nodes.

However, it is worth noting that while experimental results
prove that the ADTN middleware provides an efficient high
level interface for DT management, they do not show how
our solution behaves in terms of other highly demanding
QoS requirements, e.g., scalability, privacy awareness, and
reliability. Therefore, based on the encouraging results already
obtained, we are now working on the development of a full-
fledged industrial pilot.

VI. RELATED WORK

Traditionally, SDN emerged primarily to manage switches
of closed and geographically centralized datacenters. However,
its adoption has quickly proven its benefits also in scenario
characterized by more limited computational and networking
capabilities. Considering Fog and Edge computing, [9] pro-
poses to exploit SDN to deliver and deploy new services in IoT
environments in a faster and more cost-effective manner. The
SDN approach can be also adopted together with Blockchain,
e.g., to deliver a fully-distributed Cloud architecture based on
Fog nodes [10] or to improve credibility and authenticity of
nodes while addressing the issues associated with the fact that
the SDN controller represents a single point of attack [11].
Finally, SDN is fruitfully adopted to support load balancing
in Fog environments [12], [13]. Interested readers can refer to

[14], [15] for comprehensive studies on the adoption of SDN
in Edge and Fog environments.

By focusing on industrial environments, SDN has emerged
in the communication research and industrial fields of IIoT
[16] primarily to manage switches of closed environments such
as datacenters and department networks via the OpenFlow
protocol. More recently, [17] focused on the adoption of the
SDN paradigm in the context of IIoT to dispatch packets with
different delay constraints in a per-flow tailored manner, by
considering time deadlines, traffic load balances, and energy
consumption. Similarly, [18] adopted SDN to efficiently man-
age the interplay between edge and cloud environments by
considering energy efficiency, bandwidth, and latency. Finally,
some efforts have focused on edge IoT scenarios with indus-
trial wireless sensors networks. For instance, [19] manages
both transmission scheduling and node mobility allowing to
ensure bounded end-to-end delays. [20] aims at improving
industrial performance by adopting end-to-end QoS control. To
this purpose it adopts a unique SDN instance for IoT environ-
ments consisting of wireless and wired segments, by exploiting
6TiSCH as industrial IoT and open network platform allowing
to orchestrate every network segment. Compared with this
previous work, our solution adopts SDN to dynamically ex-
ploit the communication mechanisms most suitable to current
application requirements, ranging from native IP to more
articulated ones based on packet content [7] . In addition,
it takes advantage of SenML enriched packet payload to
efficiently enforce fine-grained content-based traffic flow rules,
allowing to better satisfy per-application QoS requirements.

The great interest in DT-based solutions from both academic
and industrial point of views is demonstrated by the vast recent
literature. In fact, during last years, several researches, organi-
zations, and consortiums worked to define and shape the role
of DTs and their responsibilities among different architectural
and technological infrastructures and layers. In particular, DTs
show a strong and renewed relationship with IoT and IIoT [21]
since the peculiar properties of DTs can bring actual benefits
in the context of large distributed deployments, factories, and
smart cities. An extensive, clear and detailed survey of Digital
Twins is reported in [22].

The DT research area is attracting a wide interest involving
a multitude of diverse and approaches related, e.g., to big
data analytics [23], behavioral modeling [24], ontology def-
inition [25], specific device mirroring [26]. In this fragmented
context, the industrial world and in particular the Industrial
Internet of Things Consortium is proposing a shared reference
architecture [27], [28] taking into account DT relationships,
composition, and main services (e.g., prediction, maintenance,
safety). It also covers different production stages and use
cases, in particular related to manufacturing [29] and product
design [30]. However, limitations of proposed solutions are
mainly related to the adoption of a centralized DT management
(often deployed only on Cloud infrastructure) where a unique
entry point is responsible to maintain twin instances and by
moving the integration responsibilities to external modules or
connectors. Furthermore, DTs are not in charge of supporting
or handling the heterogeneity associated with the connected
devices. This missing role feed the creation of unnecessary

9

substrates of domain specific technologies and legacy inter-
action forms. In this context, edge processing has already
shown its fundamental role to effectively and efficiently handle
IoT heterogeneity through the introduction of intermediate
proxies and hubs, responsible to manage objects and data
streams through centralized approaches [31], [32]. Despite
these advancements, the adoption of DTs on the edge is still
under-explored and represents a novel research area, including
the seamless integration of data and services in heterogeneous
systems. Authors in [33] describe the importance of bringing
DTs on the edge by highlighting the relevant interest in this
new research field and its experimentation. In [34], [35] the
authors present two interesting initial evaluations of edge DTs
in the specific contexts of blockchain technologies and Social
Internet of Things (SIoT). In [36], instead, the authors propose
a different and significant point of view by incorporating DTs
into edge networks to support real-time federated learning with
reduced communication costs.

The above reviewed projects and research activities provide
excellent solutions in their operational fields and show how
DTs can be flexible and fundamental for next-generation
applications in the area. The primary differences with our
approach are mainly related to the fact that they keep DTs
as separated and supplementary architectural entities, by ad-
dressing domain-specific contexts without generalizing and
investigating the real role of DTs on the edge. On the contrary,
we deeply integrated DTs in the edge architecture and mea-
sured how they can be active and fundamental components to
enable interoperability and intelligent networking. To the best
of our knowledge, our work is the first one adopting the DT
approach to support application-aware dynamic management
of edge network resources in industrial environments. In fact,
it originally adopts awareness of the industrial environment
to perform application-driven network management and soft-
ware component coordination. To this purpose, it exploits
a DT abstraction layer to make easier the interaction with
actual devices and to enable the adoption of semantically-
rich standards, while allowing the dynamic reconfiguration of
network devices to maximize QoS in the multi-hop multi-
path industrial edge topology. Our middleware adopts DTs
not only to more easily interact with actual devices, e.g., by
exploiting traditional IP-based protocols instead of specialized
industrial ones, but also to enhance packet content expressive-
ness, e.g., by reformatting monitored information by means of
well-defined data syntax standards (in particular the SenML
format).

VII. CONCLUSIONS

The paper presents the novel ADTN middleware composed
of semantically-enriching SDTs distributed on edge nodes and
centralized CDTs performing their flexible orchestration, to
significantly lower the management complexity deriving from
heterogeneous industrial environments. In addition, the adop-
tion of an application-aware SDN solution based on multiple
traffic forwarding techniques allows to maximize the tradeoff
among packet expressiveness and their efficient dispatching.

While the obtained encouraging results demonstrate both
the feasibility and the efficiency of the proposed solution, there

are still some aspects that could be considered and investigated
to further foster its adoption in real-world industrial environ-
ments. First of all, it could be useful to offer a wide set of
pre-configured SDTs able to manage a plethora of industrial
protocols, thus allowing our middleware to easily interact
with several industrial devices with no additional effort by
application domain developers. In addition, developing CDTs
for complex and articulated industrial applications can be
very challenging for industrial technicians. Thus, we plan to
investigate how to develop CDTs based on high-level repre-
sentation of applications and required QoS, e.g., by adopting
semantically-enriched solutions to make their development
(semi-)automatic. Moreover, network rules can be hard to
enforce in a safe manner when several competing industrial
applications may coexist (emergence of conflicting require-
ments). In conclusion, we believe that one of the paramount
challenges that should be addressed as future research is to find
a proper trade-off among traditional single-application static
solutions (under-exploiting available industrial resources) and
novel highly dynamic solutions allowing to fully exploit every
resource by running multiple competing applications based on
automatic mechanisms (with the risk of compromising the full-
functionality and safety requirements of the plant).

REFERENCES

[1] S. Haag and R. Anderl, “Digital twin – proof of concept,” Manufacturing
Letters, vol. 15, pp. 64 – 66, 2018, industry 4.0 and Smart Manufactur-
ing.

[2] Q. Qi and F. Tao, “Digital twin and big data towards smart manufacturing
and industry 4.0: 360 degree comparison,” IEEE Access, vol. 6, pp.
3585–3593, 2018.

[3] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context:
A survey on technical features, scenarios, and architectural models,”
Proceedings of the IEEE, pp. 1–40, 2020.

[4] “MQTT Version 3.1.1,” September 2014. [Online]. Available: http:
//docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[5] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014.

[6] C. Jennings, Z. Shelby, J. Arkko, A. Keranen, and C. Bormann, “Sensor
measurement lists (senml),” Internet Requests for Comments, RFC
Editor, RFC 8428, August 2018.

[7] P. Bellavista, C. Giannelli, and D. D. P. Montenero, “A reference
model and prototype implementation for sdn-based multi layer routing
in fog environments,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2020.

[8] M. Picone, M. Mamei, and F. Zambonelli, “Wldt: A general purpose
library to build iot digital twins,” SoftwareX, vol. 13, p. 100661, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2352711021000066

[9] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2018.

[10] P. K. Sharma, M. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115–124, 2018.

[11] Y. Gao, Y. Chen, X. Hu, H. Lin, Y. Liu, and L. Nie, “Blockchain based
iiot data sharing framework for sdn-enabled pervasive edge computing,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2020.

[12] X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy
of software-defined cloud/fog networking in the internet of vehicles,”
China Communications, vol. 13, no. Supplement2, pp. 140–149, 2016.

[13] S. Misra and N. Saha, “Detour: Dynamic task offloading in software-
defined fog for iot applications,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 5, pp. 1159–1166, 2019.

[14] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2359–2391, 2017.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.sciencedirect.com/science/article/pii/S2352711021000066
https://www.sciencedirect.com/science/article/pii/S2352711021000066

10

[15] F. Y. Okay and S. Ozdemir, “Routing in fog-enabled iot platforms: A
survey and an sdn-based solution,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 4871–4889, 2018.

[16] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos,
“Software-defined industrial internet of things in the context of industry
4.0,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7373–7380, 2016.

[17] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmission opti-
mization in sdn-based industrial internet of things with edge computing,”
IEEE Internet of Things J., vol. 5, no. 3, pp. 1351–1360, 2018.

[18] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues,
and M. Guizani, “Edge computing in the industrial internet of things
environment: Software-defined-networks-based edge-cloud interplay,”
IEEE Communications Magazine, vol. 56, no. 2, pp. 44–51, 2018.

[19] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Ex-
perimental assessments and analysis of an sdn framework to integrate
mobility management in industrial wireless sensor networks,” IEEE
Trans. on Industrial Informatics, vol. 16, no. 8, pp. 5586–5595, 2020.

[20] N. B V and R. M. R. Guddeti, “Fog-based intelligent machine mal-
function monitoring system for industry 4.0,” IEEE Transactions on
Industrial Informatics, pp. 1–1, 2021.

[21] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2019.

[22] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin:
Definitions, characteristics, applications, and design implications,” IEEE
Access, vol. 7, pp. 167 653–167 671, 2019.

[23] D. Riemer, “Feeding the digital twin: Basics, models and lessons learned
from building an iot analytics toolbox (invited talk),” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 4212–4212.

[24] J. Sleuters, Y. Li, J. Verriet, M. Velikova, and R. Doornbos, “A digital
twin method for automated behavior analysis of large-scale distributed
iot systems,” in 2019 14th Annual Conference System of Systems
Engineering (SoSE), 2019, pp. 7–12.

[25] C. Steinmetz, A. Rettberg, F. G. C. Ribeiro, G. Schroeder, and C. E.
Pereira, “Internet of things ontology for digital twin in cyber physical
systems,” in 2018 VIII Brazilian Symposium on Computing Systems
Engineering (SBESC). IEEE, 2018, pp. 154–159.

[26] E. Y. Song, M. Burns, A. Pandey, and T. Roth, “Ieee 1451 smart
sensor digital twin federation for iot/cps research,” in 2019 IEEE Sensors
Applications Symposium (SAS), 2019, pp. 1–6.

[27] S. Malakuti and S. Grüner, “Architectural aspects of digital twins in iiot
systems,” in Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, ser. ECSA ’18. New York, NY,
USA: Association for Computing Machinery, 2018.

[28] V. Souza, R. Cruz, W. Silva, S. Lins, and V. Lucena, “A digital twin
architecture based on the industrial internet of things technologies,” in
2019 IEEE Int. Conf. on Consumer Electronics (ICCE), 2019, pp. 1–2.

[29] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016 – 1022, 2018, 16th IFAC
Symp. on Information Control Problems in Manufacturing 2018.

[30] R. Wagner, B. Schleich, B. Haefner, A. Kuhnle, S. Wartzack, and
G. Lanza, “Challenges and potentials of digital twins and industry 4.0 in
product design and production for high performance products,” Procedia
CIRP, vol. 84, pp. 88 – 93, 2019, 29th CIRP Design Conference 2019,
08-10 May 2019, Póvoa de Varzim, Portgal.

[31] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Mag., vol. 54, no. 12, pp. 22–29, 2016.

[32] S. Cirani, G. Ferrari, N. Iotti, and M. Picone, “The iot hub: a fog node
for seamless management of heterogeneous connected smart objects,”
in 2015 12th Annual IEEE Int. Conf. on Sensing, Communication, and
Networking - Workshops (SECON Workshops), 2015, pp. 1–6.

[33] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8, pp.
108 952–108 971, 2020.

[34] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning and permissioned
blockchain for digital twin edge networks,” IEEE Internet of Things
Journal, pp. 1–1, 2020.

[35] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and
A. Molinaro, “Optimal placement of social digital twins in edge
iot networks,” Sensors, vol. 20, no. 21, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/21/6181

[36] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning for digital twin edge net-
works in industrial iot,” IEEE Transactions on Industrial Informatics,
pp. 1–1, 2020.

Paolo Bellavista received MSc and PhD degrees in
computer science engineering from the University
of Bologna, Italy, where he is now a full professor
of distributed and mobile systems. His research
activities span from pervasive wireless computing to
online big data processing under quality constraints,
from edge cloud computing to middleware for Indus-
try 4.0 applications. He serves on several Editorial
Boards, including IEEE COMST (Associate EiC),
ACM CSUR, and Elsevier JNCA and PMC. He
is the scientific coordinator of the H2020 BigData

project IoTwins - https://www.iotwins.eu/

Carlo Giannelli received the Ph.D. degree in com-
puter engineering from the University of Bologna,
Italy, in 2008. He is currently an Associate Professor
in computer science with the University of Ferrara,
Italy. His primary research activities focus on Indus-
trial Internet of Things, Software Defined Network-
ing, Blockchain technologies, location/based ser-
vices, heterogeneous wireless interface integration,
and hybrid infrastructure/ad hoc and spontaneous
multi-hop networking environments.

Marco Mamei is full professor in Computer Science
at the University of Modena and Reggio Emilia,
since 2019. He received the PhD in Computer Sci-
ence from the same University in 2004. His work
focuses on data mining applied to mobile phone data
and Internet of Things applications. In these areas
we published more than 100 papers, 8 patents, and
won several best paper awards.

Matteo Mendula is currently a Ph.D. student at the
Department of Computer Science and Engineering,
University of Bologna (Italy). He completed his
MSc in Computer Engineering at the University
of Bologna after completing his internship at the
University of Central Florida (USA). His main topics
of interest are big data processing and distributed
learning on the edges of the network. In partic-
ular, his research relates to architectural aspects
and Machine Learning enhanced techniques in Fog
Computing scenarios.

Marco Picone is a Senior Postdoctoral Researcher
at the University of Modena and Reggio Emilia. He
received the Ph.D. in Information Technology and
the M.Sc. (cum Laude) in Computer Engineering
from the University of Parma. He published several
research papers in international journals/conferences
and the main research interests include Internet of
Things, Edge/Fog Computing and Digital Twins.

https://www.mdpi.com/1424-8220/20/21/6181

	Copertina_postprint_IRIS_UNIBO
	Application_driven_Network_aware_Digital_Twin_Management_in_Industrial_Edge_Environments
	Introduction
	Architectural Modeling
	The Application-driven Digital Twin Networking (ADTN) Middleware
	ADTN Design and Implementation Guidelines
	Uniformed Data Layer & Heterogeneity Management
	Dynamic DT Management & QoS Requirements
	Fine-Grained Application-Driven QoS Management

	Experimental Evaluation
	Experiment environment
	Achieved results
	Discussion

	Related Work
	Conclusions
	References
	Biographies
	Paolo Bellavista
	Carlo Giannelli
	Marco Mamei
	Matteo Mendula
	Marco Picone

