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ABSTRACT The human brain is a highly complex structure, which can be only partially described by
conventional metrics derived from magnetic resonance imaging (MRI), such as volume, cortical thickness,
and gyrification index. In the last years, the fractal dimension (FD) – a useful quantitative index of fractal
geometry – has proven to well express the morphological complexity of the cerebral cortex. However,
this complexity is likely higher than that we can observe using MRI scanners with 1.5 T or 3 T field
strength. Ultrahigh-field MRI (UHF-MRI) improves imaging of smaller anatomical brain structures by
exploring down to a submillimetric spatial resolution with higher signal-to-noise and contrast-to-noise ratios.
Accordingly, we hypothesized that UHF-MRI might reveal a higher level of the structural complexity of
the cerebral cortex. In this study, using an improved box-counting algorithm, we estimated the FD of the
cerebral cortex in six public or private T1-weighted MRI datasets of young healthy subjects (for a total
of 87 subjects), acquired at different field strengths (1.5 T, 3 T, and 7 T). Our results showed, for the first
time, that MRI-derived FD values of the cerebral cortex imaged at 7 T were significantly higher than those
observed at lower field strengths. UHF-MRI provides an anatomical definition not achievable at lower field
strengths and can improve unveiling the real structural complexity of the human brain.

INDEX TERMS Brain, cerebral cortex, complexity, fractal dimension, ultrahigh-field magnetic resonance
imaging.

I. INTRODUCTION
The human brain is highly complex both in its structure and
functions. This high level of complexity enables to efficiently
control all the body functions and interpret information from
the outside world. Magnetic resonance imaging (MRI) plays
an increasingly important role in the in vivo non-invasive
evaluation of the complexity of the brain and in particular of
the cerebral cortex that is reflected in its highly ordered and
intricated structure [1]. Neuroimaging biomarkers are impor-
tant tools for understanding subtle morphological changes
due to physiological brain maturation and healthy aging,
as well as neurological diseases. However, conventional mor-
phological metrics derived from MRI (e.g., volume, cortical
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thickness and gyrification index) can capture only partially
the high structural complexity of the cerebral cortex.

The fractal geometry can describe the morphological com-
plexity of objects that show self-similarity, geometrical or at
least statistical, in a proper range of spatial scales [2], [3].
In particular, the most widely used index of fractal geometry,
i.e., the fractal dimension (FD), has the potential to provide
crucial and complementary information, while, at the same
time, summarizes cortical thickness, sulcal depth, and fold-
ing area into a single numeric value [4]. In 1991, Hofman
firstly showed that the whole cerebral cortex manifests fractal
features [5]. Then, the fractal properties of the cerebral cortex
have beenwidely investigated and FD has proven to be a valu-
able quantitative index of cortical complexity [4], [6]–[8].
Indeed, the FD was able to detect morphological subtle
changes in healthy brain maturation [9], [10] and physio-
logical aging [10]–[12], as well as to identify alterations in
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the folding structure associated with abnormal brain devel-
opment [13]–[15] and neurodegeneration [16]–[19].

Currently, the fractal analysis has consistently been applied
on brain MRI at 1.5 and 3 T, which allows an exploration
of the human brain typically down to 1 mm – the spatial
scale equal to the size of the voxel of typical 3-D T1-
weighted images. Thus, by this way, we can probe only a
few of the spatial scales of observation in which the cerebral
cortex might exhibit statistical self-similarity. Reasonably,
the cerebral cortex is likely to exceed that we can explore with
conventional 1.5 T and 3 T MRI scanners.

The not-quite-new but not-yet-fully-investigated ultrahigh-
field (UHF) MRI, i.e., at 7 T, can lead to many advancements
in the investigation of the morphological complexity of the
brain. Indeed, the higher signal-to-noise-ratio (SNR), spatial
resolution and contrast-to-noise-ratio (CNR) achievable at
7 T can allow higher sensitivity to tissue properties and
anatomical details, resulting in clearer tissue boundaries [20].

The capability of imaging smaller anatomical structures
and the possibility to explore more spatial scales (down to
the typical submillimetric spatial resolution of UHF-MRI
scanners) might allow an estimate of the FD of the cerebral
cortex closer to its real (unknown) value. Notably, the fractal
analysis has not been yet applied on brain images acquired at
UHF-MRI.

For these reasons, in this study, we aimed at analyzing
the fractal properties of the cerebral cortex in datasets of
T1-weighted MR images acquired at various field strengths
(1.5 T, 3 T and 7 T). In particular, we hypothesized that
UHF-MRI has the potential to reveal a higher level of struc-
tural complexity of the cerebral cortex, in terms of FD, when
compared to that measured using typical MRI acquisitions at
1.5 T or 3 T.

The manuscript is organized as follows. Section II
describes the methodology in detail. In particular, in sub-
sections II-A and II-B the datasets are introduced. In sub-
sections II-C, II-D, II-E, and II-F the data processing and
statistical analysis are described. Results are detailed in
Section III and discussed in Section IV.

II. MATERIALS AND METHODS
In this study, we used six public or private datasets of
T1-weighted MR images of healthy subjects acquired at var-
ious field strengths (1.5 T, 3 T and 7 T). In particular, four
datasets have been used for a quantitative comparison among
the FD estimates. Two other datasets containing T1-weighted
images of the same subjects (one and two subjects, respec-
tively) at different field strengths were used for a more
qualitative analysis. The main characteristics of each dataset
are summarized in Table 1 and detailed in the following
subsections.

A. DATASETS FOR QUANTITATIVE GROUP ANALYSIS
From the datasets of subjects examined at 3 T and 1.5 T,
we selected subjects in order to match age and sex with those
belonging to the 7T dataset and, at the same time, tomaximize

the number of subjects selected (see next subsections and
Table 1). The age- and sex-matching was performed after the
tissue segmentation process (see subsection II-C), in order
to consider only the subjects whose T1-weighted images
were successfully processed. After this procedure, no sig-
nificant differences were found among datasets for both age
(p-value = 0.49 at ANOVA test) and sex (p-value = 0.17 at
χ2 test).

1) 7T DATASET
The 7T dataset included the T1-weighted images of
healthy subjects belonging to the Consortium for reliabil-
ity and reproducibility (CoRR) and publicly available at
https://openneuro.org/datasets/ds001168/ [21]. This public
dataset contains 22 participants (10 women), acquired on a
7 T whole-body MRI scanner (MAGNETOM 7 T, Siemens
Healthcare, Erlangen, Germany) using a 3-D Magnetiza-
tion Prepared two Rapid Gradient Echo (MP2RAGE) [22]
sequence with an isotropic voxel size of 0.7 mm (further
details in [21]). Due to segmentation errors (see subsection II-
C), 5 subjects were excluded. Thus, in this study, 17 subjects
were considered for further analysis (Table 1).

2) 3T_A DATASET
The 3T_Adataset was formed by 14 subjects out of 21 healthy
volunteers belonging to the Kirby21 dataset [23], who were
selected in order to match age and sex of those of the 7T
dataset (Table 1). The data are part of the ‘‘Multi-Modal MRI
Reproducibility Resource’’ (MMRR) and are accessible via
the Neuroimaging Informatics Tools and Resources Clearing-
house (NITRC, http://www.nitrc.org/projects/multimodal).
The T1-weighted images were acquired on a 3 T scanner
(Achieva, Philips Medical System, Best, The Netherlands),
using a high-resolution 3-D sequence (Magnetization Pre-
pared Rapid Gradient Echo, MPRAGE) with a voxel size
equal to 1 mm × 1 mm × 1.2 mm (further details in [23]).

3) 3T_B DATASET
The 3T_B dataset was constituted using public data collected
by the International Consortium for Brain Mapping (ICBM)
and belonging to the 1000 Functional Connectomes Project
(accessible at http://fcon_1000.projects.nitrc.org/). In order
to match age and gender with those of the 7T dataset,
we selected 33 subjects (Table 1). All subjects had
high-resolution T1-weighted images acquired on a 3 T scan-
ner (GE Healthcare, Chicago, IL, US) with an isotropic voxel
size of 1 mm (further details in [24]).

4) 1.5T DATASET
The 1.5T dataset included data of healthy subjects used in a
previous study [17]. In order to match age and sex with those
of the 7T dataset, we selected 20 of the 24 healthy subjects
(Table 1). The MRI scans were acquired on a 1.5 T scan-
ner (Intera, Philips Medical System, Best, The Netherlands),
employing an isotropic voxel size equal to 1 mm (further
details in [17]).
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TABLE 1. Main characteristics of all datasets. No significant differences among 7T, 3T_A, 3T_B and 1.5T datasets were found for age (p-value = 0.49 at
ANOVA test) and sex (p-value = 0.17 at �2 test).

B. DATASETS FOR QUALITATIVE ANALYSIS
We have used two additional datasets containing, respec-
tively, two healthy subjects acquired both at 3 T and 7 T
(3T&7T dataset) and one subject examined at 7 T with dif-
ferent native ultrahigh isotropic resolution (UHR) equal to
0.25 mm, 0.5 mm and 1 mm (7T_UHR dataset).

1) 3T&7T DATASET
This dataset was a subset of theMMRR resource and contains
MRI data of two subjects (men, age 22 and 24 years), who
were examined on both a 3 T (Achieva, Philips Medical
System, Best, The Netherlands) and 7 T (Achieva, Philips
Medical System, Best, The Netherlands) scanner. The T1-
weighted MR images were acquired using a high-resolution
3-D sequence [MPRAGE and Turbo Field Echo (TFE), for
3 T and 7 T scanner, respectively], with an isotropic voxel
dimension of 1 mm for the 3 T scanner and of 0.7 mm for the
7 T scanner (further details in [23]).

2) 7T_UHR DATASET
The 7T_UHR dataset contained the T1-weighted images of a
single young healthy subject (male, born in 1982), examined
on a 7 T scanner (Siemens Healthcare, Erlangen, Germany)
[25]. This subject was scanned with a native isotropic voxel
size of 1 mm, 0.5 mm and 0.25 mm (further details in [25]).
In particular, to achieve an adequate SNR, eight T1-weighted
volumes were acquired with the voxel size of 0.25 mm using
prospective motion correction and, after inhomogeneity cor-
rection and reorientation to a common space, the volumes
were averaged to increase SNR.

C. CORTICAL RECONSTRUCTION AND SEGMENTATION
OF THE CEREBRAL CORTEX
An overview of the T1-weighted image processing is pre-
sented in Fig. 1.

Completely automated cortical reconstruction and volu-
metric segmentation of each subject’s structural T1-weighted
scan was performed by using the FreeSurfer suite version 6.0,
which is well documented (see [26] for a review) and freely
available (http://surfer.nmr.mgh.harvard.edu/). The stable
version 6.0 introduced improvements for better segmenta-
tion and surface reconstruction of images acquired on 7 T

FIGURE 1. Overview of the processing applied on each T1-weighted scan
(except for the 7T_UHR dataset, see text). CNR and SNR computation
were performed in the datasets used for quantitative analysis. The -hires
option has been used for all the images with voxel size smaller than
1 mm.

scanners. In particular, it allows to run the pipeline (recon-
all) for data with voxel size less than 1 mm (-hires flag).

All the 1.5 T and 3 T T1-weighted images were pro-
cessed at the default FreeSurfer isotropic voxel size (1 mm)
using the standard recon-all pipeline. The data acquired
at 7 T, with an isotropic voxel of 0.7 mm, were pro-
cessed using the -hires flag in the recon-all procedure
in order to preserve the submillimetric spatial resolu-
tion with the exception of the 7T_UHR dataset. Indeed,
for the 7T_UHR dataset, we used the FreeSurfer version
5.3 outputs made available online by Lüsebrink et al. [25]
(https://datadryad.org/stash/dataset/doi:10.5061/
dryad.38s74). In particular, they downsampled each scan to
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an isotropic resolution of 1 mm using the recon-all pipeline
without the -hires flag.

Aiming to assess a possible effect on FD estimates of the
voxel size selected during the T1-weighted images process-
ing, we performed a further analysis. First, we upsampled
the images of the 1.5 T dataset to an isotropic voxel size
of 0.7 mm (1.5T_Upsampled dataset). Second, we downsam-
pled the images of the 7 T dataset to an isotropic resolution
of 1 mm (7T_Downsampled dataset). Both the upsampling
and downsampling were carried out through a trilinear inter-
polation. The upsampled 1.5 T T1-weighted images were
then segmented preserving the submillimetric spatial resolu-
tion, whereas the downsampled 7 T images were segmented
using the standard recon-all procedure.

After the recon-all automated procedures, all the segmen-
tations and surfaces reconstructions were visually inspected
for defects and the correction methods proposed by the
FreeSurfer developers were applied up to two times (http://
surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Troubleshoot
ingData). The correction procedures consist of editing the
brain mask and white matter (WM) mask (especially for the
scans acquired at 7 T), adding control points and re-running
the FreeSurfer pipeline. After all these procedures, in the
CoRR dataset (at 7 T), the segmentation procedure failed
for 5 subjects who were excluded, while the other subjects
formed the 7T dataset (see II-A1 paragraph above). All
segmentations of the other datasets were judged successful.

For the 7T, 3T_A, 3T_B, 1.5T and 3T&7T datasets, all
the computations were performed on the same Dell Pow-
erEdge T620 workstation equipped with two 8-core Intel
Xeon E5-2640 v2, for a total of 32 CPU threads, and 128 GB
RAM, using the Oracle Grid Engine batch-queuing system.
The FreeSurfer segmentation and reconstruction procedure
required ≈10 hours (with additional ≈5 hours for each
re-running after manual correction) for each 1.5 T and 3 T
scan, and ≈25-35 hours (with additional ≈17 hours for each
re-running after manual correction) for each 7 T scan.

At the end of each FreeSurfer process, the 3-D binary
mask of the cerebral cortex segmentation, obtained merg-
ing labels 3 (Left-Cerebral-Cortex) and 42 (Right-Cerebral-
Cortex) of the aparc+aseg.mgz volume, entered the fractal
analysis.

D. FRACTAL ANALYSIS
The FD of the cerebral cortex of each subject was estimated
using the fractalbrain toolkit version 1.0 (freely available
at https://github.com/chiaramarzi/fractalbrain-toolkit) [10].
Fractalbrain implements an improved box counting algo-
rithm with automated selection of the fractal spatial scales.
Briefly, let I (x, y, z) be the 3-D binary segmentation of
the cerebral cortex. Using the box counting algorithm [27],
we superimpose on I (x, y, z) a grid containing 3-D cubes
of side s and we count the number of not null intersections
between the grid and I (x, y, z). This procedure is repeated
for different s values, using an exponential sampling in the
natural scale s (with s = 2k number of voxels, where

k = 0, 1, . . . , 8), which corresponds to a uniform sampling
in the log-log plane. To reduce the bias introduced by the
selection of a fixed grid origin, for each s value, we apply
20 uniformly distributed random offsets on the grid origin
and we average all box counts (one for each offset) to obtain
a single N (s) value for each s [28]. Plotting N (s) against s
in a bi-logarithm plane, we fit a linear regression model and
compute the FD as the slope (with the sign changed) of the
regression line. In the natural scale, this linear relationship
in the log-log plane corresponds to a power law N (s) =
K ∗ s−FD, where FD is the exponent (with a negative sign)
and K is the prefactor [3].

For an ideal fractal, the linear regression model can be
theoretically fitted using a range of spatial scales starting
from the object size down to an infinitesimal spatial scale.
However, since the human brain is a real structure, it may
exhibit fractal properties only over a narrower spatial range
only and the actual assessment of this range is a fundamental
prerequisite for a reliable and proper estimation of the FD
of the cerebral cortex [29]. For this purpose, fractalbrain
automatically selects the range of spatial scales where the
cerebral cortex exhibits more marked fractal properties, iden-
tifying the range of s values in which the linear regression
shows the highest coefficient of determination (adjusted for
the number of data points) R2adj, and, in case of equal rounded
R2adj coefficients, preferring the widest interval. Indeed, wide
intervals are required for an object to be considered fractal
[30]. This method has been proved to yield the most accurate
machine learning models for individual age prediction as
compared to other approaches in two international datasets
of healthy subjects [10].

E. SNR AND CNR COMPUTATION
Theoretically, UHF-MRI at 7 T implies higher SNR values
when compared with conventional MRI at 1.5 T or 3 T.
This gain in SNR can be exploited – by properly setting the
acquisition parameters – to improve the spatial resolution and
the gray matter (GM)/WM CNR [31]–[33]. To characterize
the image quality of different datasets, for each T1-weighted
scan, we have estimated both the SNR and CNR.

For each T1-weighted scan data, a circular 2-D region of
interest (ROI) was selected for SNR estimation. The ROI
was automatically centered at the centroid of a reasonable
homogeneous brain region. For this purpose, we chose the
thalamus, previously segmented through FreeSurfer, in the
axial slice in which the thalamus mask showed the largest
area.We drew a circular ROI of about 1 cm in diameter (9 mm
for images with a voxel size of 1 mm and 9.1 mm for scans
with a voxel size of 0.7 mm), corresponding to the maximum
possible value that allowed the ROI to be completely included
within the segmentation mask of the thalamus. In this way,
we ensured that all the pixels of the ROI were within the
thalamus mask. Thus, the SNR was calculated as the mean
signal intensity divided by the standard deviation within the
ROI [33]. The SNR was measured on both the right and left
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thalamus and the mean SNR was computed for each T1-
weighted scan.

The CNR was estimated as the difference between the
mean signal of WM and GM segmentations, divided by the
standard deviation of the signal in the WM, as suggested by
Springer et al. [33].

Both the SNR and CNR computations were implemented
in Python language, using the neuroimaging packageNiBabel
3.1.0 [34].

F. DATA ANALYSIS
1) DATASETS FOR QUANTITATIVE GROUP ANALYSIS
For each dataset (1.5T, 3T_A, 3T_B and 7T), we calculated
the descriptive statistics of the FD values of the cerebral
cortex along with those of SNR and CNR.

Then, we evaluated possible differences among datasets
for FD, SNR and CNR values through the non-parametric
Kruskal-Wallis test [35]. We computed post hoc Dunn’s
test, i.e., pairwise tests for multiple comparisons of mean
rank sums [36] using the Bonferroni method for adjusting
p-values. For each test, we considered an adjusted signifi-
cance threshold of α = 0.05.
To further investigate a possible association between FD

values and the acquisition voxel size, potential differences
in FD values between 1.5T_Upsampled vs. 7T and 1.5T
vs. 7T_Downsampled datasets were evaluated through a
non-parametric Mann-Whitney test. A significance threshold
of α = 0.05 was considered.

All statistical tests were performed in custom Python
scripts using scipy v. 1.4.1, scikit_posthocs v. 0.6.4 and
statsmodels v. 0.11.1 packages.

2) DATASETS FOR QUALITATIVE ANALYSIS
As previously mentioned, the 3T&7T and 7T_UHR
datasets – collecting data of the same subjects acquired at
different field strengths and/or at different native spatial reso-
lutions – contained a too small number of subjects precluding
any statistical analyses. For this reason, we applied only a
qualitative data exploration to these datasets.

III. RESULTS
A. DATASETS FOR QUANTITATIVE GROUP ANALYSIS
The descriptive statistics of the FD of the cerebral cortex,
SNR and CNR values are reported in Table 2.

TABLE 2. Descriptive statistics of the FD of the cerebral cortex, SNR and
CNR of the 1.5T, 3T_A, 3T_B and 7T datasets. Median (interquartile range)
values are reported.

TABLE 3. Post-hoc comparisons using Dunn’s test of the FD of the
cerebral cortex, SNR and CNR. Differences between median values
(column - row) and post-hoc tests Bonferroni adjusted p-values are
shown. * indicates median differences significant with a p-value < 0:05.

The FD, SNR and CNR median values differed signifi-
cantly among datasets at the Kruskal-Wallis test (p-value <
10−9) (Fig. 2). Post hoc pairwise comparisons for FD, SNR
and CNR values are summarized in Table 3. In particular,
the FD values of the cerebral cortex imaged at 7 Twere signif-
icantly higher (post-hoc tests Bonferroni adjusted p-values <
10−3 – see Table 3 for details) than those derived from images
acquired at lower field strength (1.5 T and 3 T). Moreover,
for all subjects, the lower limit of the range of spatial scale at
7 T was 0.7 mm. Finally, the FD of the cerebral cortex of the
subjects belonging to the 1.5T dataset was smaller (post-hoc
tests Bonferroni adjusted p-value < 10−4) than those of
subjects belonging to the 3T_B dataset (Fig. 2a).
The SNR values of the dataset acquired at 7 T showed sig-

nificant smaller values than those observed at 3 T (post-hoc
tests Bonferroni adjusted adjusted p-values < 0.05 – see
Table 3 for details), while no significant difference between
the SNR values of the 7T and 1.5T datasets was found. Also,
the 1.5T dataset showed a SNR value significantly smaller
than those of the datasets acquired at 3 T (post-hoc tests
Bonferroni adjusted p-value < 0.01) (Fig. 2b).
Post-hoc pairwise tests revealed that T1-weighted images

acquired at 7 T have higher CNR values as compared to scans
acquired at 1.5 T and 3 T (post-hoc tests Bonferroni adjusted
p-values < 10−4 – see Table 3 for details). Moreover,
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FIGURE 2. Box plot of the (a) FD of the cerebral cortex, (b) SNR and (c) CNR among 1.5T, 3T_A, 3T_B and 7T datasets. Post-hoc test Bonferroni
adjusted p-values are reported when significant (p<0.05) (see Table 3 for details). The horizontal line inside each box represents the median
value of the plotted data. The box shows the 1st and 3rd quartiles, while the whiskers extend to show the rest of the distribution, except for
points that are determined to be outliers.

FIGURE 3. Box plot of the FD of the cerebral cortex for (a) 1.5T_Upsampled vs. 7T datasets and (b) 1.5T
vs. 7T_Downsampled datasets. It is clearly noticeable that the FD of the cerebral cortex acquired natively
at 7T is significantly higher as compared to that measured at 1.5T, irrespective of the resampling
procedure [Mann-Whitney test p-values are < 10-5 (see section III for details)]. The horizontal line inside
each box represents the median value of the plotted data. The box shows the 1st and 3rd quartiles,
while the whiskers extend to show the rest of the distribution, except for points that are determined to
be outliers.

the dataset 3T_A showed the smallest median CNR value
(Fig. 2c).

The median FD values of the images acquired at 1.5 T
and upsampled to a voxel size of 0.7 mm [FD = 2.4953
(0.0152), median (interquartile range)] were still significantly
lower than those of the images acquired at 7 T with a native
resolution of 0.7 mm [FD = 2.5578 (0.0161)] (p-value <

10−6 at Mann-Whitney test) (Fig. 3a). Moreover, the median
FD values of the images acquired at 7 T and downsampled
to a voxel size of 1 mm [FD = 2.4943 (0.0146)] were still
significantly higher than those of the images acquired at 1.5 T
with a native resolution of 1 mm [FD = 2.4633 (0.0131)]
(p-value < 10−5 at Mann-Whitney test) (Fig. 3b).

B. DATASETS FOR QUALITATIVE ANALYSIS
A preliminary data exploration carried out on the 3T&7T and
7T_UHRdatasets showed a higher FD estimate at higher field
strength and lower acquisition voxel size.

TABLE 4. FD values of the cerebral cortex of the subjects belonging to
the 3T_7T dataset. The acquisition voxel size is also reported.

Indeed, the two subjects of the 3T&7T dataset, acquired
both at 3 T (1 mm-native voxel size) and 7 T (0.7 mm-native
resolution), yelded higher FD values at 7 T (Table 4). More-
over, for both subjects, the lower limit of the range of spatial
scales at 7 T was 0.7 mm.

Finally, the 7T_UHR dataset, containing images of a single
subject acquired on a 7 T scanner with a different native
isotropic voxel size (i.e., 1 mm, 0.5 mm, and 0.25 mm) and
resampled to a resolution of 1 mm, showed a gradual increase
of FD of the cerebral cortex with decreasing the acquisition
voxel size (see Table 5).
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TABLE 5. FD values of the cerebral cortex of the subject belonging to the
7T_UHR dataset. The lenght of the acquisition voxel side is also reported.

IV. DISCUSSION
To our knowledge, this is the first study that has assessed
the structural complexity of the cerebral cortex, in terms of
FD, at 7 T. We found that UHF-MRI examinations were
able to reveal a higher level of structural complexity of the
cerebral cortex when compared to that observed at lower field
strengths. These results seem to be directly related to the
intrinsic properties of UHF-MRI acquisitions, and, in partic-
ular, to the higher CNR and improved spatial resolution. The
SNR value of the 7 T dataset was not significantly different as
compared to that of the 1.5 T dataset and was lower than those
measured at 3 T. We can reasonably interpret this finding
by considering that the differences in SNR values did not
significantly impact the segmentation quality because all the
scans in this study showed sufficient SNR to ensure a good
quality segmentation.

The combination of the higher CNR and the smaller voxel
size in acquisition could explain the ability of the UHF imag-
ing to better resolve the structural complexity of the cerebral
cortex. Indeed, in comparison to 1.5 T and 3 T, MRI at 7 T
can result in a more accurate segmentation of brain tissues
[20]. In particular, the higher CNR can help to distinguish
WM, GM and CSF tissues [37]. Moreover, the higher spatial
resolution allows a sharper definition of the WM/GM and
GM/CSF interfaces. In this regard, we note that the spatial
resolution in acquisition, rather than the voxel size in post-
processing, is a key factor for a more accurate estimation of
the structural complexity of the cerebral cortex. In fact, when
imaged at 1.5 T with a native spatial resolution of 1 mm and
resampled at 0.7 mm (1.5T_Upsampled dataset), the cerebral
cortex still showed a lower FD as compared to the FD mea-
sured at 7 T with original spatial resolution of 0.7 mm (7T
dataset). Similarly, downsampling the images acquired at 7 T
with native spatial resolution of 0.7 mm to a spatial resolution
of 1 mm (7T_Downsampled dataset), the FD values of the
cerebral cortex remained higher than those computed at 1.5 T
with native spatial resolution of 1 mm (1.5T dataset). This
was confirmed also in the 7T_UHR dataset, in which the
same subject was examined on a 7 T scanner at different
native isotropic resolutions (0.25, 0.5 and 1 mm), and the
FD of the cerebral cortex, resampled and segmented at the
same spatial resolution of 1 mm, boosted when increasing
the native spatial resolution (i.e., lower native voxel size).

Our results suggest that UHF-MRI has the potential to
reveal more subtle changes in shape, showing a higher
measure of complexity of the cerebral cortex. Our findings
are in line with those by Chen and colleagues [38] who
found an increase of the mean curvature (an alternative
measure of structural complexity) of the right hemisphere

when using 7 T data [38]. Other studies comparing con-
ventional morphological metrics at different field strengths,
including volumes [39], [40], cortical thickness, surface area
and mean curvature [25], [38], [41], [42], reported that also
these metrics varied across different field strengths and,
in particular, the cortical thickness was overestimated by
most studies at 3 T as compared to UHF examinations
because of partial volume effects during the segmentation
procedures [25], [38].

From a biophysical point of view, when the magnification
level (i.e., spatial resolution) is increased, the morphology of
the constituent elements, such as neurons, may become appar-
ent [43] and the fractal properties may change or disappear.
However, it is reasonable to hypothesize that this effect does
not occur at the typical spatial resolution of T1-weighted MR
images that is of approximately 1mm. This was confirmed by
the automated selection of the fractal spatial scales. Indeed,
we found that the cerebral cortex still shows fractal properties
at spatial scales down to 0.7 mm.

Our study has some limitations. First, we performed quan-
titative analyses on datasets which contained different sam-
ples of healthy subjects. Unfortunately, datasets composed
of images acquired at various field strengths for the same
subjects, which could be useful to confirm our findings,
are actually very limited in the number of subjects. Second,
the used different datasets we selected do not necessarily used
the same acquisition sequence/parameters, which may be not
optimal for estimating MRI-derived morphological metrics.
However, we wish to point out that we used public or private
MRI datasets acquisitions whose images parameters were
those typically set in the current clinical and research routine
without any a priori selection.

In conclusion, our results showed that MRI-derived FD
values of the cerebral cortex at 7 T were significantly higher
than those observed at lower field strengths. UHF-MRI
allows improved anatomical definition of brain structures,
with the potential of better unveiling the real structural com-
plexity of the human brain.
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