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Assessing robustness of carotid 
artery CT angiography radiomics 
in the identification of culprit 
lesions in cerebrovascular events
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Jonathan R. Weir‑McCall2, Michael Roberts8,10,11, Fiona J. Gilbert2, Elizabeth A. Warburton4, 
Carola‑Bibiane Schönlieb8,11, Evis Sala2,3 & James H. F. Rudd1*

Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis 
and prognostication. However, radiomic features are susceptible to image acquisition and 
segmentation variability. Ideally, only features robust to these variations would be incorporated into 
predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery 
computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature 
robustness to region-of-interest perturbations, image pre-processing settings and quantisation 
methods using both single- and multi-slice approaches. We assessed the ability of the most robust 
features to identify culprit and non-culprit arteries using several machine learning algorithms and 
report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were 
superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation 
method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features 
into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone 
[AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics 
into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke 
prediction and target therapies to those at highest risk.

Carotid CT angiography (CTA) is commonly performed following an ischaemic stroke or transient ischaemic 
attack (TIA) to help guide patient management, for example between carotid endarterectomy surgery plus 
medical therapy or medical therapy alone. Carotid CTA imaging allows measurement of carotid artery luminal 
stenosis and unenhanced images provide information about calcification of the artery wall. The decision to 
perform carotid endarterectomy surgery, to reduce future stroke risk, is based on the degree of carotid stenosis 
and the presence of relevant symptoms. However, whilst stenosis provides important information about disease 
burden, it does not inform about the underlying plaque stability or degree of inflammation and patients may 
have second events with only mild to moderate carotid artery narrowings1.

Radiomics, sometimes called ‘texture analysis’, comprises image analysis methods that involve the high-
throughput extraction of minable imaging features2 from radiological images. Radiomic features quantify sim-
ple and complex patterns in the data, such as the roundness of a tumour, the spatial arrangement of voxels or 
variations in signal intensity across a lesion of interest. These features have been used to develop diagnostic and 
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prognostic prediction models, particularly in oncology3,4 where radiomic features can predict lung and other 
cancer survival times better than the gold standard TNM (Tumour, Node, Metastasis) staging system5–7. There 
is growing interest in the application of radiomics to cardiovascular imaging8–11, for example to differentiate 
causes of prosthetic valve obstruction using cardiac computed tomography (CT) radiomic features9, to distin-
guish between hypertensive and hypertrophic cardiomyopathy from magnetic resonance imaging (MRI)10, or 
to characterise carotid artery plaques from ultrasound images12,13.

A radiomic biomarker should be reproducible, robust and accurate14. However, radiomic features are suscep-
tible to variations15,16, including image acquisition (e.g. use of different CT scanner manufacturers and models, 
acquisition protocols and image reconstruction methods), image segmentation (e.g. inter-observer and intra-
observer variability in delineating the region-of-interest [ROI]/volume-of-interest [VOI]) and at the feature 
extraction stage (e.g. use of different radiomics software, different image pre-processing settings or radiomic 
feature definitions). To minimise such variations6, there is a growing call for the standardisation of protocols at 
every stage of the radiomics workflow17. Where harmonisation is not possible (e.g. using the same type of CT 
scanner in every hospital), robustness analyses are essential in determining the extent to which such variations 
can be tolerated for each specific application, i.e. without affecting predictive performance. Robustness analyses 
evaluate the impact of changes in these parameters on radiomic features, aiming to find those most immune to 
such perturbations. These ‘robust’ features are expected to perform well when tested on new image datasets, a 
characteristic referred to as ‘good generalisability’18.

The majority of published robustness and repeatability studies have been conducted using phantoms19,20 and 
restricted to oncology21–23, such as in non-small cell lung cancer16 or oesophageal cancer24. In cardiovascular 
imaging, there have been relatively few studies—one using a phantom in single photon emission computed 
tomography25 and the other finding robust myocardial radiomic features from cardiac MRI26. However, feature 
robustness is specific to the disease phenotype being studied and to the imaging modality used18. Therefore, there 
is an unmet need for the assessment of radiomic robustness in cardiovascular disease, specifically in carotid CT 
angiography (CTA) imaging.

In this study, we first investigated the robustness of 93 individual carotid CTA radiomic features following 
ROI/VOI perturbations under different CTA image pre-processing and across single vs multiple artery slice 
situations. We then determined (1) the optimal image pre-processing settings (i.e. the settings that provided the 
highest proportion of radiomic features with excellent robustness) and (2) the most robust and non-redundant 
(i.e. not highly correlated) radiomic features for machine learning classification of culprit versus non-culprit 
carotid arteries in patients with prior cerebrovascular events.

In summary, we sought to understand whether radiomic features extracted from standard clinical CT scans 
were robust and reliable and whether they could provide additional prognostic information to help identify 
higher-risk culprit arteries from lower-risk non-culprit carotid arteries.

Results
Carotid CTA scans from 41 patients with previous stroke or TIA were analysed in this study comprising 41 culprit 
and 41 non-culprit carotid arteries (82 carotid arteries in total). The clinical characteristics of the patients and 
the plaque characteristics of their carotid arteries are shown in Table 1. 

Assessing the ability of morphological operations to capture inter‑observer 
segmentation variability
We found that there was low variability in intra-observer segmentation, as shown in Fig. 1, but there was greater 
variability in inter-observer segmentation. The morphological operations applied to the ROIs captured the range 
of variability that occurred with human inter-observer variability, demonstrated in Fig. 1.

Assessing feature robustness in different image configurations
Feature robustness in single‑slice analysis.  Over 50% of radiomic features that were extracted had 
excellent robustness to ROI perturbations when using the original image (i.e. no prior normalisation or reseg-
mentation) and a fixed BW for image quantisation, ranging from 10 to 35 (in increments of 5). Using a fixed BW 
of 10 led to a higher proportion of poorly robust (ICC < 0.5) radiomic features compared with the other BWs, 
see Supplementary Fig. S1.

The best BW setting (i.e. had the most features with excellent robustness) for single-slice analysis with no 
image pre-processing was BW 25–30. This corresponds with the PyRadiomics default setting (fixed BW of 25) 
and a detailed breakdown of the radiomic features by robustness category and feature class type for this setting is 
provided in Supplementary Table S1. Overall, using a fixed BW of 25 in single-slice analysis resulted in 52.7% of 
radiomics features having excellent robustness, 35.5% having moderate robustness and 11.8% having poor robust-
ness. Using a fixed BW rather than a fixed BN (from 8 to 256) for image quantisation led to a higher proportion 
of radiomic features with excellent robustness. If using fixed BNs as the method for image quantisation, the upper 
limit of BNs investigated (from 8 to 256 in powers of 2) led to the highest proportion of poorly robust radiomic 
features (15.1% of radiomic features had poor robustness, whilst the proportions were < 10% for other BNs).

Prior normalisation of the image reduced the proportion of poorly robust radiomic features but did not 
impact the proportion of radiomic features with excellent robustness, when compared to no prior normalisation. 
In the prior normalisation pre-processing setting, only different BNs could be investigated as using different BWs 
in the range of 10–35 led to ROIs with too few grey values for radiomic feature calculation.

Resegmentation in single-slice analysis reduced the proportion of radiomic features with excellent robust-
ness (from 52.7 to 8.6%), but also reduced the proportion of poorly robust radiomic features as compared to no 
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Table 1.   Patient and culprit versus non-culprit carotid characteristics. Plaque type comparisons: McNemar’s 
test on paired proportions; Calcium score comparison: Wilcoxon signed-rank test; Carotid stenosis 
comparison: paired Student t-test. n, number of carotids or number of patients respectively; AU, Agatston 
units; IQR, interquartile range, SD, standard deviation; TIA, transient ischaemic attack; * p value < 0.05, *** p 
value < 0.001.

Patient characteristics (n = 41)

Age (years)—mean (SD) 74.1 (8.4)

Male—n (%) 32 (78.0%)

Presence of cardiovascular risk factors

Diabetes mellitus—n (%) 8 (19.5%)

Hypertension—n (%) 27 (65.9%)

Smoking history (current or former)—n (%) 29 (70.7%)

Cerebrovascular event

Stroke—n (%) 30 (73.2%)

TIA—n (%) 11 (26.8%)

Carotid characteristic Culprit (n = 41) Non-culprit (n = 41) p value

Plaque type

Calcified—n (%) 9 (22.0%) 15 (36.6%) 0.070

Noncalcified—n (%) 2 (4.9%) 5 (12.2%) 0.250

Mixed—n (%) 30 (73.2%) 21 (51.2%) 0.012*

Calcium burden (AU)

Median (IQR) 263 (95–701) 387 (63–659) 0.706

Minimum 0 0 -

Maximum 1963 1671 -

Carotid stenosis (%)

Mean (SD) 72 (17) 40 (22) 4.70 × 10–9***

Minimum 29 3 -

Maximum 99 88 -

Figure 1.   Violin plots of image segmentation agreement as determined by the Dice coefficient with the original 
ROI. Intra-observer variability was determined by manual segmentation of the ROIs by the same observer 
(EPVL) at two separate time points for 8 carotid arteries. Inter-observer variability was determined by manual 
ROI segmentation by two independent observers (EPVL and CW), performed on 8 carotid arteries. The ROIs 
drawn by the primary observer (EPVL) on 82 carotid arteries were compared with those generated following 
dilation and erosion morphological operations in single-slice analysis to determine the Dice coefficient 
distribution of systematic ROI perturbations. The violin plots each contain a black box-plot of the Dice 
coefficients, with the white dot representing the median Dice coefficient. Whereas the box-plots correspond to 
the actual data points of the Dice coefficients, the coloured shapes provide a visualisation of the underlying Dice 
coefficient distributions via kernel density estimations.
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resegmentation (from 11.8 to 3.2%). In resegmentation, the majority of radiomic features had moderate robust-
ness against ROI perturbations, 88.2% compared with only 35.5% when no image pre-processing was applied.

Across the 19 different image settings investigated (see Supplementary Table S2), only 2 radiomic features (a) 
GLDM: Large Dependence High Grey Level Emphasis and (b) GLRLM: Long Run High Grey Level Emphasis, 
demonstrated excellent robustness across all 19 settings (100%). However, 61 out of 93 (65.6%) extracted radi-
omic features showed excellent robustness in at least 1 setting, see Supplementary Fig. S2.

Feature robustness in multi‑slice analysis.  In multi-slice analysis, the image quantisation method 
leading to the highest proportion of radiomic features with excellent robustness involved using fixed BWs, as 
opposed to fixed BNs, consistent with our single-slice analysis findings. Over 55% of all radiomic features had 
excellent robustness when using the original image in multi-slice analysis, with similar proportions across all 
BW settings from 10 to 35. There was a slight decrease in performance between BW 30 to BW 35 (BW 30; 58.1% 
excellent robustness, 9.7% poor robustness; BW 35; 55.9% excellent robustness, 11.8% poor robustness).

Similar to our single-slice analysis findings, prior normalisation in multi-slice analysis reduced the propor-
tion of poorly robust features but had little impact on the proportion of excellent robustness radiomic features. 
Following resegmentation, the proportion of features with excellent robustness decreased (from 55.9% to 15.1%), 
however, so did the proportion of poorly robust features (from 10.8% to 2.2%). The majority of radiomic features 
shifted to moderate robustness, 82.8% compared with 33.3% when no image pre-processing was applied. Table 2 
provides a breakdown of the different radiomic feature classes by robustness category (excellent, moderate and 
poor) in multi-slice analysis following (A) no image pre-processing and (B) resegmentation.

Across the 19 image settings investigated in multi-slice analysis (see Supplementary Table S2), 4 radiomic 
features demonstrated excellent robustness across all settings (100%), these were: a) GLDM: Grey Level Variance, 
b) First Order: Mean Absolute Deviation, c) GLRLM: Grey Level Variance and d) GLDM: Large Dependence 
High Grey Level Emphasis. In at least 1 setting, 67 out of 93 (72%) extracted radiomic features showed excellent 
robustness, see Supplementary Fig. S3.

Radiomic feature robustness similarities and differences in single‑slice and multi‑slice 
approaches.  In single-slice analysis, 61 features had excellent robustness in at least one image setting out of 
the 19 settings investigated, whilst 67 features had excellent robustness in multi-slice analysis. There was consid-
erable overlap in the radiomic features with excellent robustness between single-slice and multi-slice approaches 
(n = 56), these included First Order: Variance and GLCM: Autocorrelation. However, there were also radiomic 
features that had excellent robustness in the single-slice approach only (n = 5) such as First Order: Kurtosis and 
GLDM: Small Dependence Emphasis or the multi-slice approach only (n = 11) such as First Order: Uniformity 
and GLCM: Joint Energy, these are illustrated in Fig. 2A.

In single-slice analysis, 18 features were identified as poorly robust in at least 1 out of the 19 settings inves-
tigated, whilst 23 features were identified as poorly robust in multi-slice analysis. There were no radiomic fea-
tures that were poorly robust in all 19 settings. Figure 2B illustrates the radiomic features that were identified 
as poorly robust in both single-slice and multi-slice analysis (n = 13) such as First Order: 10th Percentile and 
GLDM: Low Grey Level Emphasis, as well as those unique to single-slice (n = 5) analysis such as GLSZM: Grey 
Level Variance and NGTDM: Contrast or multi-slice analysis (n = 10) such as GLCM: Inverse Variance and 
NGTDM: Coarseness.

Table 2.   Number of radiomic features with excellent, moderate and poor robustness by feature class in multi-
slice analysis. Definition of ICC used = 2-way mixed-effects model, absolute agreement, single rater intraclass 
correlation coefficient; n, number of radiomics features.

Feature class
Excellent robustness
ICC ≥ 0.9

Moderate robustness
0.5 ≤ ICC < 0.9

Poor robustness
ICC < 0.5

Multi-slice Analysis: Original, fixed bin width = 25, B-spline interpolation

First order (n = 18) 10 (55.6%) 6 (33.3%) 2 (11.1%)

GLCM (n = 24) 17 (70.8%) 7 (29.2%) 0 (0.0%)

GLDM (n = 14) 5 (35.7%) 7 (50.0%) 2 (14.3%)

GLRLM (n = 16) 11 (68.8%) 1 (6.3%) 4 (25.0%)

GLSZM (n = 16) 6 (37.5%) 8 (50.0%) 2 (12.5%)

NGTDM (n = 5) 3 (60.0%) 2 (40.0%) 0 (0.0%)

Total (n = 93) 52 (55.9%) 31 (33.3%) 10 (10.8%)

Multi-slice Analysis: Resegmentation, fixed bin width = 25, B-spline interpolation

First order (n = 18) 3 (16.7%) 13 (72.2%) 2 (11.1%)

GLCM (n = 24) 2 (8.3%) 22 (91.7%) 0 (0.0%)

GLDM (n = 14) 3 (21.4%) 11 (78.6%) 0 (0.0%)

GLRLM (n = 16) 3 (18.8%) 13 (81.3%) 0 (0.0%)

GLSZM (n = 16) 3 (18.8%) 13 (81.3%) 0 (0.0%)

NGTDM (n = 5) 0 (0.0%) 5 (100.0%) 0 (0.0%)

Total (n = 93) 14 (15.1%) 77 (82.8%) 2 (2.2%)
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Figure 2.   Venn diagram to show the radiomic features that had (A) Excellent robustness in single-slice and/or 
multi-slice analysis and, (B) Poor robustness in single-slice and/or multi-slice analysis.
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Multi‑slice analysis: Impact of PyRadiomics interpolation method
The proportion of robust radiomic features was similar whether B-spline or linear interpolation was used to 
resample the 3 mm slice thickness images and VOI segmentation masks to 1 × 1 × 1mm3. The vast majority of radi-
omic features showed excellent absolute agreement and consistency between the two methods of interpolation. 
No features were poorly robust with regards to the method of interpolation used. The breakdown by radiomic 
feature class is shown in Supplementary Table S3.

Culprit versus non‑culprit carotid arteries: Machine learning classification
Since a fixed bin width of 25 was found to produce the highest proportion of radiomic features with excellent 
robustness, we used the radiomic features extracted using this image quantisation level in the following image 
settings for machine learning classification: (1) single-slice approach: original image, (2) single-slice approach: 
with resegmentation, (3) multi-slice approach: original image and (4) multi-slice approach: with resegmentation.

Non‑redundant radiomic feature sets with excellent robustness in single‑slice and multi‑slice 
approaches.  Different sets of non-redundant radiomic features with excellent robustness were identified 
depending on the image setting used (1–4), these radiomic features are detailed in Supplementary Table S4. For 
single-slice analysis using the original image, this consisted of 14 radiomic features; following resegmentation, 
this comprised 7 radiomic features. For multi-slice analysis using the original image, this consisted of 14 radi-
omic features that decreased to 10 radiomic features following resegmentation.

Machine learning classification performance determined by five‑fold cross‑validation.  Several 
machine learning classifiers were investigated in a five-fold cross-validation scheme using (1) carotid calcium 
score as the only predictor, (2) radiomic features (non-redundant with excellent robustness) as the only predic-
tors and (3) radiomic features with carotid calcium score (termed the ‘integrated model’) as predictors to differ-
entiate culprit from non-culprit carotid arteries. The image setting that led to the highest predictive performance 
was the multi-slice approach with resegmentation (image setting 4). Within this setting, the best performing 
machine learning classifier amongst those investigated was the Elastic Net logistic regression-based classifier. 
Elastic Net regression uses a mixture between L1 and L2 regularisation whereby L1 regularisation reduces the 
coefficients of certain features to zero, thereby reducing the number of variables in a model (i.e. sparse feature 
selection) and the L2 penalty term constrains the magnitude of the feature coefficients so that a model is not 
dominated by any single feature. In this image setting and using this best performing model (Elastic Net, weight 
for L1 and L2 penalties = 0.5), carotid calcium score alone was a poor predictor of culprit versus non-culprit 
carotid artery status, see Supplementary Table S5.

The mean (standard deviation, SD) area under the receiver operating characteristic curve (AUC) for carotid 
calcium score alone was 0.44 (0.11) and the mean (95% confidence intervals [CI]) accuracy was 46% (25–56%), 
see Fig. 3. Please note, in five-fold cross-validation, an AUC is provided for the model performance in each fold. 
The mean cross-validated AUC is the average of the AUC values across the five folds.

Figure 3.   Mean receiver operating characteristic (ROC) curves of five-fold stratified cross-validation in multi-
slice analysis with resegmentation for Elastic Net logistic regression (weight for L1 and L2 penalties = 0.5) using 
(1) radiomic features only as predictors, (2) radiomics features and calcium and (3) calcium only. Image setting: 
multi-slice analysis with resegmentation and a fixed bin width of 25. Dashed line indicates expected AUC for a 
random chance classifier. AUC, area under the ROC curve; SD, standard deviation.
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Using radiomic features (with resegmentation to [0, 200 HU]) alone as predictors performed better than 
carotid calcium alone, with a mean (SD) AUC of 0.67 (0.08) and a p-value of 0.043. The combination of radiomic 
features with carotid calcium as predictors led to the highest predictive performance, with a mean (SD) AUC 
of 0.73 (0.09), a mean (95% CI) accuracy of 69% (47–88%) and a p-value of 0.043 when compared with carotid 
calcium alone and a p-value of 0.042 when compared with radiomic features alone. The performance (mean AUC 
with SD) of the other machine learning classifiers using radiomic features and carotid calcium as predictors were: 
decision tree 0.58 (0.19), random forest 0.67 (0.08), LASSO 0.72 (0.09), neural network 0.60 (0.09) and XGBoost 
0.56 (0.09). Please see Supplementary Table S6 for the sensitivity and specificity of each individual model.

The radiomic feature set (n = 10) for multi-slice analysis with resegmentation is shown in Fig. 4 along with 
the coefficients for each feature as determined by the Elastic Net classifier per fold within the cross-validation 
scheme. The feature coefficients indicate the importance of the features for the model’s predictions. Larger 
positive coefficient values suggest higher importance for predicting the culprit carotid artery class, whilst larger 
negative coefficient values suggest higher importance for predicting the non-culprit carotid artery class.

Overall, there were 3 radiomic features that were highly consistent in being relevant predictors for carotid 
artery status across every cross-validation fold: (1) GLDM: Dependence Variance, (2) GLSZM: Grey Level NonU-
niformity and (3) GLRLM: Long Run High Grey Level Emphasis.

Figure 4.   AUC and feature coefficients of predictors used in the Elastic Net logistic regression classifier 
in multi-slice analysis with resegmentation. The coefficients of the non-redundant radiomic features with 
excellent robustness in multi-slice analysis with resegmentation according to the Elastic Net model per fold of 
the five-fold cross-validation scheme are provided. The name of these radiomic features are provided on the 
left-hand side, whilst their corresponding feature classes are given on the right-hand side of the table. The AUC 
for each fold of cross-validation is provided and the mean AUC and standard deviation are stated in bold. The 
predictive performance of (A) when calcium is used as the only predictor, (B) when only radiomic features are 
the predictors, and (C) when using both radiomic features and calcium in an integrated model are provided. * 
p-value < 0.05, *** p-value < 0.001 when comparing the classification performance per fold of radiomic models 
B and C with the calcium only model (A) using DeLong’s method. The colours highlight non-zero feature 
coefficients where non-zero coefficients indicate how features played a role in the model’s predictions.
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Discussion
To our knowledge, this is the first systematic approach to evaluate the robustness and reproducibility of carotid 
CT angiography radiomics and its impact on the ability to identify culprit carotid arteries in stroke and TIA 
patients. We revealed factors that impacted robustness and identified a radiomics set that could be used to predict 
patient symptom state. We compared our robust feature set with carotid calcium scoring using several machine 
learning models, demonstrating superior performance.

The ROI perturbations (morphological operations: dilations and erosions) that we used mimicked the ROI 
over- and under-estimation variations introduced by human subjectivity in clinical practice (inter-observer 
variability) when using manual delineation methods. Not all of the 93 radiomic features that we extracted were 
robust against these morphological perturbations and the proportion of radiomic features with excellent robust-
ness varied depending on the image settings used.

We found that without image pre-processing, the majority of radiomic features (but not all) had excellent 
robustness against ROI perturbations. There were similarities between the radiomic features with poor robust-
ness in both single-slice and multi-slice analysis to include the radiomic features: First Order: 10th Percentile 
and GLDM: Low Grey Level Emphasis. These radiomic features are related to low grey values within the CTA 
image and therefore most likely reflect the varying amounts of carotid artery perivascular fat captured in the 
segmentation mask following the morphological perturbations. Following grey value range resegmentation, 
which restricted radiomic feature calculation to Hounsfield units between 0 and 200 inclusive, the proportion 
of poorly robust radiomic features was greatly reduced as the low grey values that reflect perivascular fat were 
excluded. However, resegmentation also reduced the number of radiomic features with excellent robustness and 
shifted them into the moderate robustness category.

Whereas prior image normalisation appears necessary for image pre-processing of MRI scans for radiomic 
work (where the grey values are arbitrary), it does not seem necessary for carotid CTA scans (where grey values 
are calibrated to Hounsfield units). In our study, prior normalisation of CTA scans with PyRadiomics did not 
increase the proportion of radiomic features with excellent robustness. This is in line with most CT imaging 
radiomic studies that do not tend to apply prior normalisation27.

The use of bin number versus bin width as image quantisation methods were not interchangeable. The radi-
omic features in one setting were not necessarily robust in another setting. We found that a fixed bin width of 25 
or 30 for image quantisation led to the greatest proportion of radiomic features with excellent robustness. Since 
the PyRadiomics default is already a fixed bin width of 25, we recommend use of that setting in future carotid 
CTA radiomics studies. In the bin width settings that were investigated in this study (from 10 to 35 in increments 
of 5), we found a decrease in the proportion of radiomic features with excellent robustness when using the higher 
limit of 35, and so we did not investigate higher values than this. When using fixed bin numbers as the method 
for image quantisation, we found that using BN = 256 led to the highest proportion of poorly robust features.

For the different image settings, we investigated both a single-slice approach and a multi-slice approach. 
Multi-slice analysis, which involved ROI delineation of the carotid artery on multiple carotid CTA axial slices, 
produced a higher proportion of radiomic features with excellent robustness than single-slice analysis, which used 
only one CTA axial slice at the carotid artery bifurcation. Although there was a considerable overlap between the 
radiomic features with excellent robustness in both single-slice and multi-slice approaches, there were certain 
radiomic features that had excellent robustness only in either single-slice analysis or multi-slice analysis. This 
was also the case for radiomic features with poor robustness; certain radiomic features had excellent robustness 
in multi-slice analysis, but poor robustness in single-slice analysis, for example GLCM: Joint Energy. Single-slice 
and multi-slice analysis approaches may reveal different radiomic features that are robust because the features 
extracted from a single-slice are more dependent on ROI placement around the carotid bifurcation, whereas 
radiomic features extracted during multi-slice analysis include more voxels, capturing more information about 
the carotid artery. The multi-slice approach led to the highest proportion of robust radiomic features and had 
better predictive value than the single-slice approach. These results echo those in oncology radiomic studies, 
which found that using a multi-slice approach compared to a single-slice approach (i.e. whole tumour analysis 
versus the largest cross-sectional area) was more representative of tumour heterogeneity28.

For the identification of culprit versus non-culprit carotid arteries in symptomatic patients, we investi-
gated several machine learning algorithms which have been extensively applied to radiomics and quantitative 
imaging29–31. This approach acknowledged the “no free lunch” theorem32—that there is no universal best model 
for every task33. In our study, the ElasticNet model achieved the highest performance amongst those investigated. 
We identified 10 non-redundant radiomic features with excellent robustness when using a multi-slice approach 
with grey value range resegmentation ([0, 200] HU) that significantly outperformed carotid calcium scoring in 
machine learning classification. As a univariable predictor, carotid calcium had poor predictive performance. 
This was not surprising since there was no statistically significant difference between the carotid calcium score 
of culprit and non-culprit carotid arteries. Subsequently, the best predictive model consisted of the radiomic 
feature set with resegmentation to [0, 200] HU, alongside carotid calcification. This may reflect how resegmenta-
tion excluded high grey values, largely related to carotid calcification and luminal contrast, so that differences 
between culprit and non-culprit carotid artery radiomic profiles could be more easily identified. In addition, this 
demonstrates that carotid calcium and the information captured by our radiomic features after resegmentation 
are complementary.

Other groups have also reported using metrics derived from CTA images, for example, Gupta et al. inves-
tigated the discriminative ability of CTA plaque thickness measurements to identify symptomatic carotid 
artery stenosis34. This indicates that carotid CTA imaging contains information beyond luminal stenosis and 
in this proof-of-principle study, we have shown that radiomics is a feasible and reliable approach to extract this 
information.
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Overall, our findings suggest that: (1) a multi-slice approach is better than a single-slice approach in terms 
of radiomic feature robustness and predictive accuracy, (2) there is no need for image normalisation in carotid 
CTA radiomic studies, (3) grey value range resegmentation can help improve predictive accuracy and (4) because 
radiomic features can be susceptible to changes in the imaging and radiomics workflow, it is important that future 
studies include detailed descriptions of the image settings used to ensure reproducibility and replicability. This 
information would ideally include the image acquisition protocols, image pre-processing details and method of 
interpolation, method and value of image quantisation, and radiomic feature definitions.

Limitations
One limitation of this study is its retrospective nature—the carotid imaging datasets were pooled from three 
prior vascular imaging studies: ICARUSS35, VISION36 and CHAI37. Additionally, all images were acquired using 
the same scanner in one centre. Consequently, the robust radiomic features identified here may be specific to 
datasets derived in similar settings. In addition, our imaging dataset captured information from culprit carotid 
arteries after plaque rupture had occurred. Ideally, we would highlight high risk arteries before that stage. Now 
that we have identified CT-based carotid radiomic features that are robust, a prospective study of at-risk patients 
using different hardware manufacturers will be an important next step.

We also acknowledge that the use of a 3 mm slice thickness may result in loss of some information and might 
lead to partial volume effects. Nevertheless, even using this slice thickness, we did identify a robust subset of 
features that could classify carotid plaques with reasonable accuracy. Further work should test the hypothesis 
that thinner image slices perform better.

Another consideration is that we used anatomical criteria to standardise the region of the carotid artery that 
was segmented for single-slice analysis (i.e. the axial slice through the bifurcation) and multi-slice analysis (14 
slices about the carotid bifurcation). A possible limitation of this approach, particularly for single-slice analysis, 
is that the responsible carotid plaque may not be fully captured in the ROI. To account for this, we tested the 
predictive performance of a multi-slice analysis. We also investigated the impact of prior resegmentation of the 
image to limit the HU values analysed and counter possible differences in arterial contrast densities.

Finally, here we investigated only unfiltered radiomic features. There are other radiomic parameters that can 
be extracted after image filtering, such as Gabor filters and wavelet transformations. However, as this was a first 
proof-of-principle study using first-order and higher-order radiomic features, we wanted to limit the number 
of features extracted. Future work could expand on this. As the primary objective of this study was robustness 
analysis rather than developing a definitive radiomics signature, the default Python scikit-learn configurations 
for the machine learning classifiers were used, without extensive hyperparameter tuning. This avoided further 
reduction of the limited dataset that could be used for training the machine learning classifiers. Nevertheless, it 
may be that the predictive performance we have already achieved could be bettered with hyperparameter tun-
ing in future work.

Conclusion
In summary, to the best of our knowledge, this is the first systematic approach to evaluate the robustness and 
reproducibility of CT radiomics in carotid artery atherosclerosis. We identified a set of radiomic features that 
are robust, non-redundant and have superior predictive performance, over and above the degree of calcification, 
for the classification of culprit versus non-culprit carotid arteries in patients with stroke and TIA. If validated 
prospectively, this carotid CT radiomic features set could improve stroke prediction and target therapies to 
those at highest risk.

Methods
Carotid CT dataset.  This study used carotid CTA scans pooled from three observational vascular imaging 
research datasets from a single institution (Addenbrooke’s Hospital, Cambridge University Hospitals National 
Health Service Foundation Trust, Cambridge, UK)35–37. All studies had appropriate ethical approvals in place by 
the Cambridge Central Research Ethics Committee; informed consent was obtained from all patients and the 
studies were conducted according to relevant guidelines and regulations. The studies had similar inclusion and 
exclusion criteria, which are listed in the published papers35–37. All participants had experienced a carotid artery-
related ischaemic stroke or TIA during the 3 months before imaging.

In total, data from 41 patients were included, comprising 82 carotid arteries (41 culprit and 41 non-culprit). 
The culprit carotid artery was determined by the side consistent with the clinical presentation of stroke (or TIA) 
symptoms, and the non-culprit carotid artery was defined as the artery contralateral to the culprit. Further details 
of how the culprit carotid plaque was identified and how carotid images with and without contrast were acquired 
using a standard clinical protocol are described in Supplementary Methods S1.

Image analysis.  Figure 5 illustrates the radiomics workflow within this study. All CT images were analysed 
by a reader (EPVL) blinded to the clinical status of the carotid artery. Where a second reader is mentioned, 
(CW), they were also blinded in the same fashion. Details of the methodology used to assess carotid artery 
plaque characteristics are found in Supplementary Methods S2, and details of intra- and inter-observer repro-
ducibility evaluation are provided in Supplementary Methods S3.

Manual segmentation: single‑slice analysis.  In single-slice analysis, one axial CTA slice, at the carotid bifurca-
tion, was used on each side, with original slice thickness of 0.625 mm and slice spacing of 0.4 mm. ROIs were 
drawn to encompass the whole vessel as closely as possible, including the outer wall, using commercially avail-
able research software (TexRad; Feedback Medical Ltd, Cambridge, UK).
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Manual segmentation: multi‑slice analysis.  CTA slices were resampled to 3 mm slice thickness using the OsiriX 
MD software resampling plugin (Pixmeo SARL, Bernex, Geneva, Switzerland) as per published methods35–37. 
14 consecutive carotid artery slices were manually segmented using TexRad (as in single-slice analysis) with 
ROIs drawn around the carotid artery adventitia, with the carotid bifurcation designated as slice zero35–37. Reads 
incorporated all slices from 3 below the carotid bifurcation to 10 slices above, covering portions of the common 
carotid and internal carotid arteries. For each carotid artery, the 14 consecutive slices were amalgamated into a 
single VOI from which radiomic features were subsequently extracted.

Radiomics feature extraction.  PyRadiomics is an open-source Python package developed for the standardisa-
tion of radiomic feature extraction38. PyRadiomics and Python were used for feature extraction from the ROIs 
and VOIs described above. Six feature classes were extracted: (1) first-order intensity histogram statistics, (2) 
Grey Level Co-occurrence Matrix features (GLCM)39,40, (3) Grey Level Run Length Matrix features (GLRLM)41, 
(4) Grey Level Size Zone Matrix (GLSZM)42, (5) Grey Level Dependence Matrix (GLDM)43 and (6) Neighbour-
ing Grey Tone Difference Matrix Features (NGTDM)44. Please see Supplementary Table S7 and S8 for details of 
the individual extracted radiomic features.

Robustness analysis.  ROI perturbations.  Manual segmentation (as opposed to automatic segmentation) 
is a source of intra- and inter-observer variability. Automatic segmentation methods are not currently widely 
available in medicine, although this is an area of active development. We therefore evaluated the impact of 
perturbations to ROI delineation on the extracted radiomic features by systematically performing ROI dilation 
and erosion. This was to simulate certain variations in ROI/VOI placement that may occur in clinical practice, 
including over-estimation (with dilation), and under-estimation (with erosion).

ROI Segmentation

Single-slice Analysis

Multi-slice Analysis

ROI Perturbations Image Pre-Processing

Normalisation

Resegmentation [0-200 HU]

Image Quantisation

Different Bin Number [8-256]

Different Bin Widths [10-35]ROI Dilation

ROI Erosion

I. Image Segmentation and Pre-Processing

Feature Extraction

First Order Histogram

Higher Order Features

Feature Robustness Feature Redundancy

Univariable Logistic Regression

Spearman Rank Correlation

Machine Learning

5-fold Stratified Cross Validation

Supervised Binary ClassificationIntraclass Correlation Coefficient

II. Radiomic Analysis

GLCM
GLDM

GLRLM
GLSZM
NGTDM

Decision Tree
Random Forest

LASSO
Elastic Net

Neural Network
XGBoost

Excellent: ICC ≥ 0.9
Moderate: 0.5 ≤ ICC < 0.9

Poor: ICC < 0.5

Figure 5.   Radiomics workflow. The upper panel illustrates the steps taken from manual segmentation of the 
carotid CTA images to create ROIs for single-slice analysis (and VOIs for multi-slice analysis) to segmentation 
mask perturbations, prior image normalisation or resegmentation and image quantisation. The lower panel 
outlines the subsequent process of radiomic features extraction, robustness analysis and machine learning 
for the differentiation of culprit versus non-culprit carotid arteries. The predictive ability of the classifiers was 
assessed via five-fold stratified cross-validation.
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To achieve these perturbations, the original ROIs delineated by the primary reader (EPVL) were subjected to 
the dilation and erosion image morphological operations implemented in Python, see Fig. 6.

For single-slice analysis, we used a circular structuring element of radius 1, with iterations of 1–2 for ROI 
dilation and erosion. For multi-slice analysis, we used a spherical structuring element of radius 1, with iterations 
of 1–2 for ROI dilation, but only 1 iteration for ROI erosion in order to ensure that a sufficient number of pixels 
would be available for the downstream radiomic feature calculation after erosion. Where resegmentation was 
applied as a pre-processing scheme, ROI erosion was not performed, only ROI dilation to ensure that all ROIs 
had sufficient pixels for radiomic feature extraction, details of resegmentation are provided below.

Image pre‑processing.  Prior to radiomic feature calculations, there are different image pre-processing schemes 
that can be applied to a CTA scan. Three schemes were investigated: (a) Original image (no image pre-processing 
applied), (b) Normalisation and (c) Resegmentation.

Normalisation is generally a necessary image pre-processing step for magnetic resonance images since their 
grey values are arbitrary. In contrast, the grey values in CT images are already calibrated to HUs. However, CTA 
images may have differences in contrast filling and so we investigated the impact of prior image normalisation 
to the robustness of the extracted radiomic features. When investigating the image normalisation scheme, the 
CTA image was normalised such that the pixel values assumed an approximate Gaussian distribution.

Resegmentation refers to the process whereby only pixels within a specified grey value range are retained for 
radiomic feature calculation within the ROI/VOI45. Resegmentation was applied with an upper limit of 200, and 
a lower limit of 0 which restricted radiomic feature extraction to only the pixels with HU values between 0 and 
200. This grey value range resegmentation aids with excluding the effects of excess carotid macro-calcification and 
limits the effect of luminal contrast and perivascular carotid fat within the CTA ROI/VOI. For resegmentation, 
we used a fixed BW of 25 only (PyRadiomics version 3.0 default) for image quantisation, described further below.

Image quantisation.  Image quantisation refers to the conversion of image grey values to a discrete set of grey 
value counts. Before radiomic features are calculated, the image must be quantised by using a fixed number of 
bins, or by using a fixed BW. We varied the BWs of the image grey value histogram from 10 to 35, in increments 
of 5. For BN variations, we varied the fixed number of bins as follows: 8, 16, 32, 64, 128 and 256. This range of 
bin sizes was chosen based on the guidance in the PyRadiomics documentation46,47.

Multi‑slice analysis: Image resampling and interpolation method.  Higher-order radiomic feature extraction 
requires isotropic images, i.e. the pixel dimensions in the x, y and z directions are the same, to be rotationally 
invariant48,49. In CT imaging, images are often isotropic in-plane but will have a larger z-axis slice spacing and 
therefore be anisotropic in 3D. In radiomics studies, it is common for images to be isotropically resampled. We 
investigated the effect of using B-spline interpolation (PyRadiomics default) versus linear interpolation (faster 
and simpler) to resample the 3 mm slice thickness images and VOI segmentation masks to 1 × 1 × 1mm3 on the 
extracted radiomic features.

Statistical analysis.  For statistical comparisons between culprit versus non-culprit carotid arteries, the dif-
ference between the two paired groups were assessed for normality visually with histogram plots and statistically 
with the Shapiro–Wilk test. Where the normality assumption was met, the paired t-test was used, if not, the 
non-parametric Wilcoxon signed-rank test was used. A p-value < 0.05 was considered statistically significant.

The Dice coefficient (DC), a measure of segmentation overlap commonly used in computer vision and 
machine learning applications50, was calculated to assess agreement between ROI segmentations in the follow-
ing ways: (1) comparing the ROIs for 8 carotid arteries drawn by the primary reader (EPVL) at two separate time 
points to determine intra-observer variability, (2) comparing ROIs for 8 carotid arteries drawn by the primary 
reader with those drawn by a second independent reader (CW) to determine inter-observer variability and (3) 
comparing the ROIs for 82 carotid arteries drawn by the primary reader with the ROIs generated following 

Figure 6.   ROI segmentation and perturbations. Carotid CTA images were manually segmented to delineate 
the carotid artery. The original ROI was subjected to morphological operations: erosions and dilations aimed to 
assess the robustness of radiomic features to perturbations in image segmentation.
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morphological operations (dilations and erosions) to determine the variability generated by systematic ROI 
perturbations.

The DC measures the level of agreement between different image segmentations by considering the level 
of overlap between ROI X and ROI Y over the total number of pixels in ROI X and ROI Y according to Eq. (1):

where |·| denotes the cardinality of the pixels contained in a certain set.
We measured the degree of robustness using the 2-way mixed-effects model, absolute agreement, single rater 

and the 2-way mixed-effects model, consistency, single rater intraclass correlation coefficient (ICC) according 
to the McGraw and Wong convention51 and according to the ICC guidelines of Koo and Li52, as appropriate.

Let n and k be the number of subjects and number of raters/measurements, respectively, the ICCs used are 
defined as follows:

two-way mixed effects, consistency, single rater/measurement:

two-way mixed effects, absolute agreement, single rater/measurement:

where MSR , MSE and MSC are the mean square for rows, mean square for error and mean square for columns, 
respectively.

The ICC values fall between 0 and 1. Radiomic features were classified into three groups, with ICC values < 0.5, 
between 0.5 to 0.9, and ≥ 0.9, being indicative of poor, moderate and excellent robustness, respectively53.

All statistical analysis was performed in IBM SPSS Statistics for Macintosh and Python. Further details about 
the software and packages used are provided in Supplementary Methods S4.

Machine learning classification.  Only the features with excellent robustness were used for the classification of 
culprit versus non-culprit carotid arteries. To reduce multicollinearity and feature redundancy, pairwise fea-
ture-to-feature correlations were determined using the Spearman Rank correlation. For pairs of features with 
a Spearman|rs| ≥ 0.95, the feature with the highest AUC in univariate logistic regression was retained, and the 
latter was discarded54.

The features were subsequently standardised to have a mean of zero and a variance of one. 6 machine learning 
classifiers were evaluated, using a random state of 42 for reproducibility: decision tree55, random forest56, LASSO 
regression57, Elastic Net regression (weight for L1 and L2 penalties = 0.5)58, a neural network59 and XGBoost60. 
Further details about the machine learning classifier configurations are provided in Supplementary Methods S5. 
The dataset was shuffled and the average performance (accuracy and AUC) of the classifiers calculated following 
five-fold stratified cross-validation.

The AUC of the radiomics-only models, and of the integrated models (using radiomics features and calcium 
as predictors) were compared with the AUC of the calcium-only models using DeLong’s method61 to compare 
classifier performance for both single- and multi-slice approaches in each fold of the five-fold cross-validation 
scheme. The distribution of AUC values was compared using the Wilcoxon signed-rank test for the following 
comparisons: (1) calcium-only versus radiomics-only model, (2) calcium-only versus integrated model and (3) 
radiomics-only versus integrated model.

Data availability
The anonymised datasets used in the current study are available from the corresponding author upon reason-
able request.
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