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Molecular imaging techniques have rapidly progressed over recent decades providing unprecedented in vivo
characterization of metabolic pathways and molecular biomarkers. Many of these new techniques have been
successfully applied in the field of neuro-oncological imaging to probe tumor biology. Targeting specific

l();]l;;ma signaling or metabolic pathways could help to address several unmet clinical needs that hamper the management
MRI of patients with brain tumors. This review aims to provide an overview of the recent advances in brain tumor
Theranostics imaging using molecular targeting with positron emission tomography and magnetic resonance imaging, as well

as the role in patient management and possible therapeutic implications.

1. Introduction

Molecular imaging is a rapidly evolving area with the development
of many new molecular imaging techniques and applications, ranging
from hardware, novel imaging agents, acquisition protocols, and
advanced image analysis approaches. Despite significant advances in the
oncological management of many brain tumors, many of these continue
to have a very poor prognosis with more than two-thirds of adults
diagnosed with glioblastoma dying within 2 years of diagnosis, which is

partly due to the high degree of morphological, metabolic, and genetic
heterogeneity observed both within and between tumors [1-4]. A better
understanding of these mechanisms by using non-invasive methods of in
vivo tissue characterization may contribute to this area of unmet need.
Conventional imaging techniques demonstrate many aspects of tumor
heterogeneity, but molecular imaging techniques can reveal and quan-
tify this phenomenon in new ways, which can help to more accurately
characterize these tumors and evaluate their response to therapy.
Cerebral metabolism is a highly regulated process, with a complex
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interplay between glial cells and neurons to meet the demand for
adenosine triphosphate (ATP) production [5]. The main clinical tools to
probe metabolic pathways include proton magnetic resonance spec-
troscopy (*H MRS) and positron emission tomography (PET). PET is a
very sensitive technique, providing a wide range of neurotracers to
specifically image a range of metabolic pathways and provide quanti-
tative measurement of metabolic parameters. Although MRS is less
sensitive, it provides a non-invasive way of characterizing endogenous
tumor metabolites, and allows for multiple metabolic pathways to be
simultaneously explored without radiation exposure [6,7]. Magnetic
resonance (MR) can be used to detect signal from several nuclei in
addition to protons or 'H, that can be used to explore tissue metabolism
and cellular processes in vivo. For example, steady state distribution of
tissue sodium (23Na) can be used to probe biological compartments
[8,9]. More recently, dynamic monitoring of hyperpolarized carbon-13
(*3C) labelled compounds has been used to probe both oxidative and
reductive brain metabolism [10,11].

2-[18F]ﬂuoro-2-deoxy-D-glucose ([18F] FDG) is a glucose analog
which is transported by the transmembrane glucose transporters
(GLUTs) and is phosphorylated by hexokinase in the first step of
glycolysis. Owing to the physiologically high [\®F]FDG uptake in normal
brain tissue, tumors may present with a relatively low tumor-to-
background ratio, which may hinder detection especially in low-grade
brain neoplasms [12]. There are several PET tracers that target meta-
bolic pathways with a higher tumor-to-background ratio, such as protein
synthesis, membrane lipid synthesis, and fatty acid synthesis [13,14].
The Response Assessment in Neuro-Oncology (RANO) working group
has recommended amino acid tracers for glioma imaging, owing to their
superiority over [*8F]FDG for several clinical indications, including
differential diagnosis and grading of new brain lesions and assessment of
tumor extension [15].

This review focuses on isotopic imaging of brain tumors using PET
and MRI which could have a future role in neuro-oncology. It will also
discuss the potential of combining molecular imaging with therapy in
the form of theranostics, which is also likely to find an increasing role in
future clinical practice.

2. Current role for imaging and unmet clinical needs in neuro-
oncology

Gliomas are the most common primary brain tumors, accounting for
nearly 70% of central nervous system (CNS) cancers, with glioblastoma
(GBM) being the most frequent and malignant of the high grade gliomas
(HGG)[16]. Maximal surgical resection is often the primary aim in the
management of HGGs, although there is no consensus on the role of
surgery for low-grade gliomas (LGGs) [17-19]. Therefore, an accurate
assessment of tumor extent is mandatory to achieve gross total resection.
However, as the tumor is very infiltrative, this can often be difficult to
assess using conventional MRI protocols such as: To-weighted images
(ToWI), Ty fluid-attenuated inversion recovery (FLAIR), diffusion
weighted imaging (DWI), and T;-weighted images (T;WI) acquired pre-
and post-gadolinium-based contrast agent administration (GBCA)
[20-22]. DWI, based on the assumption of Brownian motion of water
within tissues, can aid in assessing tumor infiltration within the peri-
tumoral edema, but has limited specificity and sensitivity [23-27].
Advanced diffusion-based techniques such as diffusion kurtosis imaging
(DKI) or the vascular, extracellular and restricted diffusion for cytom-
etry in tumors (VERDICT) have emerged as novel potential tools to
assess glioma microstructure, function, and heterogeneity which may
improve the identification of tumour infiltration [28,29].

5-aminolevulinic acid (5-ALA), an endogenous precurser of heme,
can be used intra-operatively for optical assessment of tumor infiltra-
tion. Exogenously administered 5-ALA leads to the accumulation of
fluorescent protoporphyrin IX within malignant cells due to reduced
ferrochelatase activity, which can be visualized at surgery [30,31]. The
prolonged progression-free survival achieved by combining 5-ALA and
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MRI guidance for tumor detection and delineation, underlines the po-
tential importance of targeting hybrid imaging techniques [32-34].

The delineation of tumor boundaries is also of key importance for
radiotherapy planning, an integral component in the treatment of brain
tumors both after the initial surgery/biopsy and at recurrence, as rec-
ommended by the American Society for Radiation Oncology (ASTRO)
guidelines [35,36]. Image-guided identification and selection of the
radiotherapy target can significantly reduce the dose delivered to
normal tissues while maximizing treatment efficacy using novel tech-
niques such as intensity-modulated radiotherapy (IMRT) and image-
guided radiotherapy (IGRT) [37]. For example, tumor hypoxia is
related to resistance of both radiation therapy and conventional
chemotherapy and non-invasive assessment of tumor hypoxia can be
used for “dose painting” or modulation of radiotherapy doses in areas of
hypoxia as well as informing on the use of hypoxia-targeting drugs [38].

Non-invasive assessment of molecular biomarkers for in vivo phe-
notyping of gliomas is also a growing application for molecular imaging.
Isocitrate dehydrogenase (IDH) has become one of the key biomarkers of
underlying glioma biology and a cornerstone of the WHO brain tumor
classification [39]. The discovery of the importance of IDH in tumori-
genesis and aggressiveness led to non-invasive methods to detect the
presence of the mutation using 'H MRS. Specific mutations in IDH result
in neomorphic enzyme function and the accumulation of the oncome-
tabolite 2-hydroxglutarate (2HG). Detection of the oncometabolite 2HG
in vivo indicates the presence of mutant IDH, which can be used not only
to detect the mutation but also to predict therapy response earlier than
morphological techniques [40-42].

Imaging also plays a significant role in treatment evaluation, which
is currently based on the 2010 update of the RANO criteria [43]. Ac-
cording to those, both the T;{W post GBCA and the ToW/FLAIR are used
to assess interval change in size of the lesion. However, the updated
RANO criteria still fall short of definitively distinguishing tumor pro-
gression, pseudoresponse (defined as decrease in contrast enhancement
due to normalization of abnormally permeable tumor vessels), and
pseudoprogression (defined as increased contrast enhancement after
treatment which is not tumor related), resulting in uncertainties for up
to 12 weeks after therapy [44]. Sensitive and specific methods to
determine treatment evaluation are required to better define manage-
ment at the earliest stage possible. Advanced imaging techniques that
probe tumor biology could play a significant role in early therapy
assessment and long-term follow-up in a routine clinical environment.

3. Developments in magnetic resonance imaging (MRI) for brain
tumor imaging

MRI is the main imaging technique for assessment of patients with
brain tumors. The current standard of practice in Europe is based on the
recommendations of the RANO working group with significant limita-
tions in therapy assessment within the first 3 months after treatment
[43].

Several biological processes can be measured using proton MRS (‘H
MRS), such as lactate concentration, membrane turnover, and cellular
proliferation [45]. However, 'H MRS requires interpretation by an
experienced reader and clear thresholds for tumor grading are still a
matter of debate [46]. Moreover, acquiring 'H MRS across the brain
using multi-voxel acquisition strategies leads to lengthy scan times and
presents several technical challenges such as obtaining spectra close to
the skull. A further challenge with clinical field strength (<3 T) MRS is
the limited metabolic resolution leading to a restricted number of
pathways that can be explored [47-49].

MRI can also be used to detect nuclei other than protons (or 'H) to
explore metabolic processes in vivo. However, the signal from nuclei
such as 3!P, 2Na, or 13C is significantly reduced compared to protons
due to lower in vivo concentrations, smaller gyromagnetic ratios, and
relatively decreased nuclear polarizations. Therefore, until recently,
multi-nuclei imaging with conventional MRI systems has been
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challenging. With the more widespread availability of higher-field (>3
T) magnets and the improvement in coil technology and acquisition
sequences, these nuclei can now be successfully imaged within a clini-
cally practical timescale. These techniques may provide useful data to
complement conventional multi-parametric MRI protocols.

3.1. Phosphorus-31 magnetic resonance spectroscopy P MRS)

Investigation of 3'P MRI to detect cerebral cellular energetics dates
back to the 1980s. Initial experiments with >!P MRS in preclinical
models of glioma and neuroblastoma demonstrated high nucleoside
triphosphate and phosphomonoesters with low peaks of phosphocrea-
tine [50]. Necrosis is typically associated with decreased nucleoside
triphosphate, decreased phosphomonoesters, and increased inorganic
phosphate. Hirawaka et al. subsequently postulated that non-invasive
assessment of >!P could provide early assessment of therapy response
before morphological changes, for instance through early increase in the
inorganic phosphate concentration within the lesion [50].

Phospholipids (PL) are a key component of cellular membranes and
probing PL provides information on cell replication and viability.
Phosphomonoesters (PME) are precursors of PL while phosphodiesters
(PDE) are products of PL catabolism. Both PME and PDE can be quan-
tified with 3'P MRS and an increase in PME has been associated with cell
proliferation, tumor progression and/or recurrence in GBM [51]. In
contrast, low grade gliomas are characterized by low proliferative rates
and have lower PME levels which can potentially be used in the differ-
ential diagnosis compared to higher grade tumors [51]. This distinction
between HGG and LGG on 3'P MRS could be particularly useful for
detecting areas of increased proliferation, as is present in in trans-
forming gliomas.

Recently, the combination of higher filed strengths, improved coil
design and acquisition sequences has permitted whole-brain spectro-
scopic imaging (3P MRSI), paving the way for whole brain mapping of
adenosine triphosphate (ATP) and phosphocreatine (PCr) [52]. It also
offers the possibility of spatial mapping tissue pH within brain tumors
[53]. HGGs typically show an acidified extracellular compartment
which confers a survival benefit, facilitates infiltration by creating a
hostile environment for normal tissue, and promotes malignancy
through induction of cancer stem cells [54]. Some reports using single
voxel MRS have shown mild intracellular alkalinization of astrocytomas,
meningiomas and lymphomas compared to normal brain parenchyma
[55-57]. A more recent report demonstrated a pH gradient from pseu-
donormal values within the leading edge to pronounced acidosis within
the necrotic zone of a tumor [58]. The ability to image the spatial dis-
tribution of pH in vivo could provide valuable insights into glioma
pathophysiology, identification of areas rich in cancer stem cells as a
target for therapy, as well as the potential of monitoring response to
therapy. A better insight into the role of pH in gliomas could also pave
the way for new treatments, such as lysosome destabilizing drugs [59].

3.2. Sodium-23 magnetic resonance imaging (*®*Na MRI)

In the 1980s, Maudsley and Hilal [8] postulated that sodium MRI
would distinguish features of brain tumors that could not be detected on
conventional proton imaging. Following on from this work, Feinberg
[60] demonstrated the use of the technique in brain tumor patients.
Subsequent research explored the use of 2>Na MRI in healthy brain and
other neurological diseases, with promising results [61-63]. Recent
developments in pulse sequence design and quantification have led to a
renewed interest in this technique [64-68]. Imaging of the sodium ion is
of significant interest for brain diseases [69] because an increase in
cellular metabolism is associated with changes in Na'/K"-ATPase ac-
tivity. For example, when ATP utilization is increased in a proliferating
tumor, the activity of the sodium pump may be reduced, resulting in
changes in the gradient of sodium ions across the membrane [9].

In 2003, Ouwerkerk et al[70] demonstrated that sodium
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Scan 2

Scan 1

Fig. 1. 3D 2°Na-MRI of a healthy volunteer showing total sodium concentra-
tions across brain regions from two different sites (A and B) and at two different
time points (scan 1 and scan 2). Images demonstrate repeatability and repro-
ducibility of the technique. Adapted with permission from Riemer et al. [68].

concentration is increased both in malignant tumors and in the sur-
rounding non-enhancing FLAIR hyperintense parenchyma (Fig. 1). The
signal increase was attributed to a combination of changes in the
extracellular volume fraction and intracellular sodium concentration. In
an attempt to disentangle the extracellular and intracellular sodium
component, Nagel et al. explored the use of relaxation-weighted 2>Na
sequences (>*NaR) to quantify the intracellular compartment [71]. An
increased 2>NaR signal intensity was observed in GBMs and in a cerebral
metastasis which may relate to higher cellular proliferation as demon-
strated by a strong correlation between the intracellular sodium con-
centration and the expression of mindbomb homolog-1 (MIB-1), a
marker of proliferation rate [72,73]. Further studies have shown an
increased apparent total sodium concentration and extracellular sodium
concentration within tumors compared to the normal appearing white
matter demonstrating the ability of 2*Na MRI to distinguish different
tissue compartments [9,71,74-76]. Moreover, 23Na MRI has been shown
to correlate with the IDH mutation and could therefore act as a prog-
nostic factor [77]: for example, the ratio of 23NaR to the total sodium
signal has been shown to correlate with mutant IDH expression, accu-
rately classify glioma grade, and to predict survival [77].

23Na MRI has also been evaluated as an imaging biomarker for
therapy evaluation in GBM combined with 3'-deoxy-3' -['8Ffluo-
rothymidine ([*8F]FLT)-PET. Laymon et al. have demonstrated that 23Na
MRI and [*®F]FLT-PET are complementary in assessing therapy response
[78]. More recently, Thulborn et al.[79] assessed the potential utility of
23Na MRI as an early biomarker of therapy response in patients under-
going fractionated chemoradiation. Using a two-compartment model,
they converted the total sodium concentration maps into cell volume
fraction bioscale maps from which they subsequently derived the re-
sidual tumor volume and tumor cell death component. Changes in cell
volume fraction, residual tumor volume, and tumor cell death were
identified during the course of the 6-week regimen but over the same
period, there was little biological variation in the normal appearing
tissue. However, these changes did not correlate with prognosis which
may reflect the heterogeneity of GBM response treatment.

3.3. Hyperpolarized carbon-13 magnetic resonance imaging (HP 1°C
MRI)

Hyperpolarized '3C MRI is an emerging clinical technique with the
potential to increase the understanding of neurological, psychiatric, and
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Fig. 2. Hyperpolarized 1*C-MRI in two healthy volunteers (A and B) demonstrating metabolite distribution within the healthy human brain following injection of

hyperpolarized '*C-pyruvate. Adapted with permission from Grist et al. [86].

neuro-oncological conditions by probing cerebral metabolism [80]. The
most commonly used compound in clinical studies to date has been
[1-13Clpyruvate, which informs upon both oxidative and glycolytic
metabolism. The hallmark of oxidative metabolism is the formation of
CO5 by pyruvate dehydrogenase, which exchanges with bicarbonate.
Tricarboxylic acid (TCA) cycle metabolism in mitochondria is an effi-
cient process for ATP generation, whilst glycolytic metabolism is less
energetically efficient and results in the formation of lactate through the
action of lactate dehydrogenase (LDH).

The process of hyperpolarization involves the mixing of a '3C-
labelled metabolic substrate of interest with a source of free electrons
known as a radical. The sample is then stored inside a sterile unit known
as a ‘fluid path’ and placed inside a magnetic field (commonly 5 T for
clinical applications) in a bath of liquid helium at approximately 0.8 K
while undergoing irradiation with a microwave source. These conditions
increase the available signal from the molecule in the order of > 10,000
fold [81]. To make use of this transient increase in signal, a bolus of
super-heated water is used to dissolve the molecule-radical mix, which is
then filtered to remove the radical before neutralization and cooling.
The final product is then checked against quality control parameters,
notably the pH of the mixture and the concentration of the molecule of
interest in solution, and subsequently rapidly released into the partici-
pant within the clinical MRI scanner [82]. Owing to the difference in
chemical shift between the injected substrate and its subsequent

downstream metabolites, either slice localized spectroscopy or imaging
are commonly performed. Post-processing of data commonly relies
either upon ratiometric (for example the lactate-to-pyruvate ratio) or
model-based approaches to derive the apparent forward rate constant
for the enzyme LDH (kpy)[83-85].

Hyperpolarized 13C MRI has been undertaken in the healthy brain
and in small studies of patients with brain tumors. Initial results have
demonstrated the feasibility of imaging both glycolytic and oxidative
metabolism within the healthy brain [86,87], detecting lactate and bi-
carbonate formation within the parenchyma (Fig. 2). The spatial vari-
ation of lactate formation across the healthy brain is well preserved
across individuals and could be used to detect dysregulated metabolism
in cerebral pathology [88]. Results from initial neuro-oncological
studies have demonstrated lactate formation within both metastases
and HGGs [89,90]. There have been a number of preclinical studies
showing the potential for hyperpolarized MRI to demonstrate early
response of brain diseases to therapeutic intervention [91-95] with
preliminary evidence of an increase in the rate constants in patients
treated with bevacizumab [96].

3.4. Chemical-exchange-dependent saturation transfer MRI (CEST MRI)

Chemical-exchange-dependent saturation transfer (CEST) is based
on the proton exchange between bulk water and a target molecule,

Fig. 3. Proton and Amide Proton Transfer (APT)-weighted MR images of a patient with an IDH-wildtype, WHO grade-II diffuse astrocytoma. The tumor (red arrows)
was heterogeneously hyperintense on the To-weigthed image, hypointense on the T;-weigthed image, with no definite enhancement after contrast injection. On the
APT-weighted image, the lesion showed scattered areas of hyperintensity. The yellow arrow indicates a cystic-appearing component. Adapted with permission from

Jiang et al. [104].
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Fig. 4. 13-year-old female with a diffuse anaplastic astrocytoma of the left basal ganglia. MRI performed 1 month after initiation of radiotherapy. (A) Axial FLAIR,
(B) axial T;-weighted (T;W) after injection of a gadolinium-based contrast agent (GBCA) and (C) axial fused [*®FIDOPA /T;W post GBCA. FLAIR signal changes
centered in the left thalamic region. The nodular bright spot represents post biopsy hemorrhage with no enhancement. ['®F]DOPA-PET shows intense uptake
centered at the level of the thalamic region. Follow up MRI at 8 months: (D) axial FLAIR, (E) axial T;W post GBCA and (F) axial fused [*®F]DOPA/T;W post GBCA. A
similar FLAIR signal abnormality is seen with the expected evolution of the previous hemorrhagic changes without contrast enhancement. The [*®F]DOPA-PET
demonstrated response at the original tumor site with new spread of disease along the lateral border (white arrow).

either of endogenous or exogenous origin [97]. Depending on which
mobile protons are used to generate the signal, several techniques are
possible with the most common being amide CEST (also known as amide
proton transfer - APT), amine CEST and hydroxyl CEST [98]. In neuro-
oncological imaging, APT and GlucoCEST, a type of hydroxyl CEST,
have been the most widely investigated [99-108].

APT derives its signal from cytosolic proteins abundant in cancer
cells, therefore components of gliomas show higher values than peritu-
moral edema or necrosis [99,100]. Similarly, APT can be used to
differentiate radiation necrosis and tumor progression [101] and as an
early biomarker for tumor proliferation [102,103]. Recent evidence
suggests that APT could potentially differentiate IDH-wildtype gliomas
(Fig. 3)[104] and detect tumor methylation status [105].

GlucoCEST is based on exogenously injected D-glucose to generate
the CEST effect [106]. Preclinical models studied at ultra-high field
strength have demonstrated the potential of the technique to assess
tumor blood volume and blood-brain barrier (BBB) permeability
[106,107]. Recently, Xu et al. proposed a novel method to acquire
GlucoCEST at clinical field strength [108] which showed a discrepancy
between the glucose enhancement and the enhancement after GBCA,
suggesting that it measures tissue metabolism in addition to BBB
permeability. Further optimization of the procedure is required,
including the ideal mode of D-glucose injection [108], but potentially
the technique offers a novel method to study tumor metabolism.

4. Developments in positron emission tomography (PET) for
brain tumor imaging

PET imaging may play a role in addressing several unmet clinical
needs. Owing to the heterogeneous nature of brain tumors, image-
guided biopsies based on morphological features may not accurately
target the tumor, or precisely sample the most biologically aggressive
tumor regions [109-111]. PET can provide an in vivo metabolic tumor
map to guide tissue collection from the most metabolically active tumor
area, allowing improved grading compared to sampling based on
morphological or functional information [111,112]. Guiding biopsy or
treatment using metabolic changes may identify patients with a more
aggressive histological or molecular tumor profile, or a higher risk of
recurrence and worse outcome, who may benefit from tailored treat-
ments and stricter imaging follow-up. Pirotte et al. demonstrated the
superiority of L- [methyl—“C]—methionine ([“C]MET) over [18F]FDG in
guiding tissue sampling [113]. However, the half-life of ''C is approx-
imately 20 min, thus limiting its application to facilities with a cyclotron
on site [114].

['8F]FLT is a marker of DNA synthesis and consequently, cellular
proliferation. Interestingly, the volume of tumor assessed using [*8F]FLT
is similar to that measured using [1'C]MET suggesting the possibility of
using this tracer for lesion delineation [115]. Suchorska et al. demon-
strated that a smaller biological tumor volume (BTV) delineated by
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Table 1
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Some of the main PET radiotracers currently in use in neuro-oncological routine imaging (indicated with *) or with potential utility in the future. FDA approved tracers
are currently in use with specific indication for brain tumor imaging. Non-FDA approved tracers are still being investigated with mounting evidence for their future use.

Radiotracer Biological target FDA status EMA status
[*8F]FDG* Glucose metabolism Approved Approved
[*'CJacetate Oxidative metabolism Not approved Not approved
['8F]E-DOPA* Amino acid transport Orphan Drug Designation Approved
["'CIMET* Protein metabolism and amino acid transport Not approved Not approved
[*8F]FET Amino acid transport Orphan Drug Designation Not approved
[*8F]FMISO Tumor hypoxia Not approved Not approved
['8Ga]FAPI Marker of cancer-associated fibroblasts Not approved Not approved

means of O-(2-[ISF]-ﬂuoroethyl)-L-tyrosine ([*8F]FET) PET, correlates
with improved progression-free survival (PFS) and overall survival (OS),
suggesting that maximal PET guided-tumor resection may be beneficial
[116].

6—[lsF]ﬂuoro—L—3,4—dihydroxyphenylalanine ([18F]DOPA, Fig. 4) is
another promising radiotracer in neuro-oncology [117]. ['8F]DOPA-
PET and MRS were compared by Morana et al. in 27 patients with
infiltrative gliomas showing similar accuracy in differentiating gliomas
from non-neoplastic lesions (accuracy of 78% for PET vs. 93% for MRS)
[118]. More recently, Fraioli et al. compared [*®FIDOPA-PET images
against cross-sectional MRI in 40 patients with brain tumors investi-
gated using hybrid PET/MRI imaging, and concluded that the combined
PET/MRI approach, including use of conventional 'H sequences and
contrast-enhanced perfusion-weighted imaging, improved overall tumor
detection post-treatment [119].

PET imaging may also be advantageous for the early evaluation of
treatment response and for the discrimination of tumor recurrence,
pseudoprogression and radionecrosis [12,120,121]. Although an overall
good performance has been described for the assessment of recurrence
using [*®F]FDG-PET/CT in patients with gliomas [122], a relatively high
rate of false negative results has been reported in LGGs [123]. Amino
acid tracers in this setting appear more effective, reaching a sensitivity
of 88% (95% CI: 85-91%) and a specificity of 85% (95% CI: 80-89%),
according to a recent meta-analysis of 23 studies that included a total of
889 patients [124].

Radiotherapy planning may also benefit from the routine use of
metabolic PET imaging to delineate PET-adapted treatment volumes
reflecting metabolic activity, and to perform dose escalation [15,111].
In a series of 26 patients followed-up for 15 months after radiotherapy,
[*!CIMET-PET identified areas of high risk of recurrence, suggesting the
utility of incorporating this tracer into standard radiotherapy planning
[125]. The evaluation of hypoxia in HGGs is important to minimize
resistance to radiotherapy and chemotherapy within hypoxic tumor
regions. The main hypoxic radiotracer used to study brain tumors is
[*8F]fluoromisonidazole ([*®F]FMISO). Toyonaga et al. showed hypoxic
glucose metabolism to be a clinically significant prognostic factor in 32
patients with GBM using [®F]FMISO, and ['®F]FDG [126]. Second-
generation hypoxic radiotracers with improved pharmacodynamics
have been developed with the aim to improve tumor-to-background
tissue localization and faster clearance from normal tissue.

Recently, the fibroblast activation protein (FAP) expressed on
cancer-associated fibroblasts has emerged as a novel target for PET
imaging [127]. ®®Ga-labeled inhibitors of FAP, %8Ga-FAPI, have been
evaluated in patients with GBM demonstrating tumor volumes that
differed from those obtained using T{W MRI, suggesting potential
additional information for targeting biopsy or radiotherapy planning
[128]. Interestingly, °8Ga-FAPI was found to be positive in IDH-wildtype
GBMs and grade III/IV IDH-mutant gliomas, but not in IDH-mutant
grade II gliomas [129]. A list of the main PET radiotracers currently
used or under development for imaging brain tumors is found in Table 1.

5. Theranostics

Brain tumors constitute a major therapeutic challenge [3] as surgery,

radiotherapy and chemotherapy have well recognized limitations and
new therapeutic approaches are required. Theranostics is a broad
concept referring to the use of a diagnostic agent or method to guide a
therapeutic intervention, mostly relevant to the field of cancer. Radio-
nuclide based methods are well suited for this approach because radi-
olabeled targeting agents can both visualize and characterize
biochemical properties of tumors, while informing on the possibility of
specifically delivering therapeutic radiation to the target volume sparing
non-target tissues. This general concept has been applied since the 1950s
when sodium iodide (*3'1) was first used to image and treat advanced
differentiated thyroid cancers [130]. Over the years a number of cancer-
specific, highly expressed targets have emerged with clinical approval
for use in neuroendocrine tumors [131] and hematological malignancies
[132].

Several biological and molecular targets are currently under inves-
tigation for potential theranostic applications in brain tumors as com-
bination treatments intended to provide a local radiation boost for
supplementary therapeutic benefit. These targets cover the spectrum of
tumor biology: metabolism, proteins or receptors overexpressed on the
surface of glioma cells, markers expressed on neovasculature, proteins
within the extracellular matrix, and cells within the tumor microenvi-
ronment. Consequently, a wide range of targeting agents are being
investigated such as peptides and small molecules, antibodies and
antibody fragments, and metabolic substrates. Imaging with these
agents has largely been undertaken using PET. The therapeutic coun-
terparts for these drugs are generally the same or very similar com-
pounds labelled with beta-emitting, and recently alpha-emitting,
radionuclides that provide a high linear energy transfer (LET) and
localized absorbed dose necessary for therapeutic efficacy.

Traditionally theranostic agents are delivered through intravenous
injection, and tumor targeting is based on the biological properties of the
radiolabeled agent and its ability to concentrate in the tumor due to the
expression of the molecular target. Targeting gliomas offers additional
challenges due to the poor diffusion of molecules from the systemic
circulation into the tumor. Concurrent administration of drugs to in-
crease BBB permeability has been attempted with limited success [133].
For targeted radionuclide therapy, there are several examples where the
theranostic agent has been administered directly into the tumor or into
an existing surgical cavity [134]. In convection enhanced delivery, hy-
draulic pressure provided by a pumping device attached to a catheter
introduced into the tumor or surgical cavity is used to improve diffusion
within the tumor [135]. The aim of these strategies is to obtain higher
concentrations of the agent within the tumor which should ultimately
result in improved binding to the molecular target, longer retention in or
around tumor cells, increased local absorbed dose, and lower systemic
toxicity. Imaging of the distribution of the agent can be used to monitor
distribution of radioactivity within the tumor and to estimate the tumor
absorbed dose, which could potentially be modulated on a patient-by-
patient basis.

5.1. Antibody based approaches

Monoclonal antibodies have traditionally been used as vehicles to
deliver targeted radionuclide therapy. Tenascin, an extracellular matrix
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Fig. 5. Axial (A), sagittal (B) and coronal (C) PET/CT images obtained after local co-injection of 10 MBq %8Ga-DOTA labelled Substance P (SP) with a therapeutic
dose of 22°Ac-DOTAGA-SP into the resection cavity of a GBM, demonstrating that the activity is concentrated within the lesion. Adapted with permission from: L.

Krélicki et al.[156]

protein expressed on multiple cancer types, is the most investigated
radioimmunotherapy target for gliomas. In the early 1990s locally
administered 3'I-labelled murine monoclonal antibodies against
tenascin were used in a small series of patients with newly diagnosed
and recurrent glioma showing 40% overall response rates [136]. The
same target was also investigated in several early phase clinical studies
in the 2000s using a chimeric antibody (81C6) against tenascin labelled
with 1311 [137,138] or the alpha emitter 2!!At [139]. This approach
showed promising results and orphan drug designation for [*3'1]-81C6
was obtained in the United states in 2006, no additional steps toward
approval have occurred since then. An ?°I-labelled murine antibody
against the epidermal growth factor receptor (EGFR) known as mAb 425
has been used for adjuvant treatment of gliomas through multiple
intravenous injections, either alone or in combination with temozolo-
mide [140]. This phase II study involved nearly 200 patients over 20
years and showed a survival benefit of several months in the combina-
tion arm with very limited side effects. This is one of the rare examples of
successful use of a poorly penetrating Auger electron emitter such as 12°I
for targeted therapy and is attributed to internalization of the labeled
antibody/receptor complex after binding. An additional target
addressed by radioimmunotherapy with convection enhanced delivery
in an early phase clinical trial is DNA histone H1 complex [141].

Alternative immune based targeting strategies have been investi-
gated mostly aimed at developing lower molecular weight agents that
would display more favorable pharmacokinetics and diffusion. A de-
rivative of a monoclonal antibody against the extra domain B of fibro-
nectin (L19), a marker of tumor neoangiogenesis, has been engineered
to an 80 kDa small immunoprotein (L19-SIP). Early phase clinical
studies in patients with brain metastases using a systemically adminis-
tered 12*I-labeled derivative for PET imaging and dosimetry have been
carried out to guide radioimmunotherapy with an !3!I-labeled coun-
terpart [142]. Along these general lines, a class of very low molecular
weight antibody derivatives known as affibodies (~6 kDa) show rapid
circulation times, high stability and high target affinity. Preliminary
proof of concept of this approach in targeting vascular endothelial
growth factor receptor (VEGFR) has been obtained in an animal model
of glioma [143].

5.2. Peptides and small molecules

Lower molecular weight radiopharmaceuticals such as peptide-based
agents (1-2 kDa) or small molecules binding to specific cell surface re-
ceptors or other proteins are proving to be very successful in theranostic
applications in solid tumors outside the CNS. Most notable is the
theranostic application of somatostatin analogs in neuroendocrine tu-
mors, which has now been applied for well over two decades and is

clinically approved [144]. These classes of ligands show better diffusion
and may achieve higher concentrations in the target tissue when
administered systemically compared to higher molecular weight com-
pounds. There is histological evidence of expression of somatostatin
receptors in gliomas [145] and very high levels of expression have been
demonstrated in grade 2 gliomas [146]. The potential for this approach
has not been fully explored in clinical studies. There is poor correlation
between histologically determined somatostatin receptor expression in
gliomas and uptake of [8Ga] somatostatin on PET imaging [145]. This
again indicates that diffusion and BBB permeability issues may be
impairing access to the target. However, findings from a small case se-
ries suggest that local injection of the therapeutic [°°Y]DOTA-TOC can
provide lasting responses in progressive recurrent gliomas [147].

The prostate specific membrane antigen (PSMA) is highly expressed
on neovasculature of various tumors including gliomas [148]. Pre-
liminary evidence has shown a high target-to-background uptake ratio
in PET imaging of gliomas [149] and higher uptake in HGGs compared
to LGGs [150]. There is anecdotal evidence that this approach may be
relevant to treating gliomas [151] but dedicated clinical therapeutic
trials have not been conducted.

Intracavitary injection of radiolabeled substance P, a small peptide
that binds the neurokinin-1 receptor which is highly expressed in gli-
omas and other cancers [152], has been evaluated in small case series.
This peptide coupled to the chelator DOTAGA (DOTAGA-SP) was
initially labeled with '''In for imaging and °°Y for therapy and applied
in 12 patients in a dosimetry study [153]. Expansion of this series re-
ported on results of therapy in 17 patients [154]. More recently the same
approach has been utilized for therapy with the alpha emitters 2'3Bi
[155] and %?°Ac [1 56](Fig. 5), which have been monitored using PET
imaging by co-injecting ®3Ga labeled peptide. These approaches, while
safe and well tolerated, require validation in terms of efficacy.

5.3. Metabolism

Very low molecular weight metabolic substrates are rapidly diffus-
ible and theranostic applications have been considered. While imaging
applications have been relatively straightforward through standard PET
labeling procedures, application of these drugs for therapy is quite
challenging as there are limited possibilities for labeling these com-
pounds with therapeutic radioisotopes without altering their biological
properties. One of the few theranostic approaches attempted in the clinic
is the use of iodinated phenyl alanine (IPA). [*23I]IPA has been used to
image gliomas [157] and [*3'I]IPA has been used in combination with
external beam radiotherapy in glioma patients in a small case series
[158]. A phase 1-2 study addressing this approach is currently recruit-
ing (clinicaltrials.gov, NCT03849105).
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6. Conclusion

Molecular imaging has been evolving rapidly over the past two de-
cades and will have a significant role in improving our understanding of
brain tumor biology and metabolism, aid tumor stratification, and may
foster the discovery of new treatments [3]. The growing availability of
hybrid PET/MRI systems and the possibility of obtaining multinuclear
imaging opens up the possibility of using multimodal imaging to provide
a wealth of information in individual patients [159]. Advances in im-
aging will pave the way for better outcomes from personalized care and
identification of new targets. In parallel, there are extensive research
efforts in expanding theranostic applications through development of
new ligands, novel approaches for drug delivery and the application of
more effective radionuclides such as alpha emitters. Future neurora-
diological practice will be based on the integration of a multitude of
diagnostic tools but will also have an increasing role on brain tumor
treatments moving towards less invasive and more targeted approaches.
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