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A new global ocean temperature and salinity climatology is proposed for two time periods:
a long time mean using multiple sensor data for the 1900–2017 period and a shorter time
mean using only profiling float data for the 2003–2017 period. We use the historical
database of World Ocean Database 2018. The estimation approach is novel as an
additional quality control procedure is implemented, along with a new mapping
algorithm based on Data Interpolating Variational Analysis. The new procedure, in
addition to the traditional quality control approach, resulted in low sensitivity in terms
of the first guess field choice. The roughness index and the root mean square of residuals
are new indices applied to the selection of the free mapping parameters along with
sensitivity experiments. Overall, the new estimates were consistent with previous
climatologies, but several differences were found. The cause of these discrepancies is
difficult to identify due to several differences in the procedures. To minimise these
uncertainties, a multi-model ensemble mean is proposed as the least uncertain
estimate of the global ocean temperature and salinity climatology.

Keywords: global ocean climatologies, temperature analysis, salinity analysis, data interpolating variational
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1 INTRODUCTION

Defining the climatological state of the ocean is a formidable task. Climatology can be defined
as the study of the statistics of environmental variables that characterise the ocean’s physical
and biochemical state. The focus of this work is on estimating the monthly mean values of
temperature and salinity in the global ocean using data derived from historical observational
records. Climatology is an essential input to numerical ocean models in terms of initialization
and validation, and is intrinsically useful for understanding climate anomalies.

Standardising historical observations is a major challenge in climatological studies, in terms
of metadata and quality control. The observations are collected from numerous sources and
contain various errors. Thus, a robust quality control procedure is essential before any kind of
analysis is conducted. Interpolating or mapping the observations is also major step in
estimating climatologies. As defined by Daley (1993): “Spatial analysis is the estimation by
numerical algorithm of state variables on a three-dimensional regular grid from observations
available at irregularly distributed locations.” These numerical algorithms are based on
theoretical and statistical assumptions that have significantly evolved over the past
20 years. Such techniques are referred as interpolation schemes.

Our analysis is based upon the World Ocean Data (WOD) archive of temperature and salinity
profiles, which is probably the most comprehensive archive of data collected in the 20th century. The
database already contains quality flagged profiles, which are described later in the paper. We applied
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another layer of quality checks to this, which were found to be
significant as they eliminate further outliers.

The first global ocean gridded climatology, referred to as the
World Ocean Atlas (WOA), was proposed by Levitus (1982) and
is the basis for all subsequent estimates. The WOA has been
regularly updated every 4 years since 1994. WOA uses the basic
interpolation schemes defined by Barnes (1964). We use the latest
WOD18 and WOA18 updates (Garcia et al., 2018), and
(Locarnini et al., 2019; Zweng et al., 2019). The WOCE
(World Ocean Circulation Experiment) Argo Hydrographic
Global Ocean Climatology [WAGHC, Gouretski (2019)] is
another global ocean climatological estimate and is the first to
be produced at isopycnal and isobaric levels. The WAGHC
interpolation scheme is based on Objective Analysis (OA)
following Gandin (1960). In this study, we propose a new
climatology developed within the framework of the
SeaDataCloud project (Simoncelli et al., 2021) and computed
with the Data Interpolating Variational Analysis [DIVAnd,
(Brasseur, 1991), Troupin et al. (2012), and Barth et al.
(2014)]. The SeaDataCloud global climatology is available
from the SeaDataNet web catalog 1 together with its relative
Product Information Document (Shahzadi et al., 2020),
(Shahzadi et al., 2020). Hereafter, it will be referred as SDC
climatology, and a climatology using the Objective Analysis (OA)

interpolation scheme of Bretherton et al. (1976), for the first time
adapted to the global ocean by Jia et al. (2016), referred to as
B-OA (Bretherton et al., 1976).

An obvious question is why another climatology is required.
Climatologies are based on different observational datasets and
use different interpolation schemes, so they address uncertainties
in different ways. The specific interpolation of observations across
land-sea boundaries represents a common uncertainty. Most
established interpolating algorithms do not naturally consider
objective methods that prohibit the use of observations across
land-sea boundaries, which is an important characteristics of our
algorithm. To show deviations between climatological
interpolating algorithms at the land-ocean interface, we
analyzed the differences among climatologies around
peninsulas. For example, in the Isthmus of Panama, a narrow
land area between the Caribbean Sea and the Pacific Ocean,
observations could be misinterpreted, as they span unconnected
ocean water masses. Figure 1 gives a comparison of the four
available climatologies, and it is clear that they give very different
estimates. In Figure 1C the B-OA shows that salinity spreads
from the Pacific to the Atlantic along the Columbian coast. By
contrast, Figure 1D demonstrates that the SDC climatology
completely suppresses the contamination of the Caribbean Sea
with Pacific Ocean salinities and vice-versa. However, in
WAGHC and WOA, despite the use of the separate first guess
fields across the Isthmus (Tim Boyer personal communications,
and an anonymous reviewer), low salinity anomalies are reported

FIGURE 1 | January salinity near the Panama Isthmus. (A) WOA18 estimate (correlation length � 214 km, using all data from WOD18), (B) WAGHC (correlation
length � 333 km, signal to noise ratio � 0.5, using data from WOD13, in particular Ocean Station Data, Conductivity Depth Temperature, Profiling Floats and
Autonomous Pinniped, with additional data from the AlfredWegener Institute, Bremerhaven, and from other institutions in Canada), (C)B-OA estimate (correlation length
� 300 km and observational error variance � 0.3), and (D) DIVAnd estimate (correlation length � 300 km and noise to signal ratio equal to 0.5).

1https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html.
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for the Caribbean Sea, which are not present in the other gridded
products. As the interpolation scheme and first guess field are
computed separately in each basin in these two estimates then
salinity variations among these estimates could be due to different
observations used or the interpolation scheme. Another
difference between climatologies is evident along the Louisiana
coasts of the Gulf of Mexico, where the Mississippi river outflow
dominates, which could be due to the algorithm, the first guess or
the volume of data used in the analyses. Climatologies may
therefore differ both qualitatively and quantitatively in general
and specific aspects. DIVAnd objectively solves the problem of
the interpolation of oceanographic observations across land
boundaries, but it is similar to other statistical models as it
makes assumptions about the statistical distribution
parameters of the ocean variables of interest. Thus, a multi-
model ensemble of all available climatologies is likely to provide a
more accurate solution, as demonstrated later in this paper.

The main objective of this study is to estimate a global ocean
climatology using DIVAnd, after applying proper quality control
to the historical dataset. The additional quality control algorithm
we use is defined in section 2.1. Sensitivity experiments are also
conducted for interpolation parameters such as the signal to noise
ratio and the field correlation length. Finally, the results are
compared with the WOA18 and WAGHC datasets. Those for
the B-OA are disregarded because they are similar to the results
for the WAGHC.

In section 2, the historical datasets used for climatology are
reviewed together with the quality control procedure. The
interpolation scheme and the implementation domain,
together with the choices of the interpolation parameters, are
discussed in section 3. Monthly mean temperature and salinity
fields are compared with those of other climatologies in the
section 4 while the section 5 concludes the paper.

2 HISTORICAL DATASETS

Two climatology versions were estimated based on two datasets
extracted from the World Ocean Database 18 [WOD18, Garcia
et al. (2018)]. Dataset1 (see Table 1) uses multiple platforms,
such as bottle data from Ocean Station Data (OSD) and
Conductivity Temperature and Depth (CTD) from ship
surveys, Mooring Buoys (MRBs) and Profiling Floats (PFLs).
MRB profiles are only distributed across the equatorial and
tropical regions, while CTD, OSD and PFL profiles cover the
global ocean domain. The data from other available platforms
were not used because we considered corresponding
measurements of temperature and salinity and an
approximately equal number of profiles for the surface and
the upper pycnocline. Thus, Expendable Bathythermograph

(XBT) and Mechanical Bathythermograph (MBT) data were
disregarded because only temperature measurements were
available. Drifting Buoy (DRB), and Surface-Only (SUR) data
were also not selected because the recordings for these are only
taken at the surface, and Autonomous Pinniped
Bathythermograph (APB) and gliders (GLD) were not used
because they consist of high temporal resolution measurements
that are not considered appropriate for climatological estimates.
The observations selected for Dataset1 cover 1900 to 2017 and
the climatology estimated from this dataset is referred to as
SDC_V1.

Dataset2 (see Table 1) only contains PFL profiles, which are
from autonomous vehicles equipped with several oceanographic
sensors. This contains data from manufacturer floats such as
PLACE, MARVOR, SOLO and APEX. The Argo program
launched in 2000 revolutionised ocean observations, and such
floats have since become numerous in all of the world’s ocean
basins. In Dataset2, only profiling floats from 2003 to 2017 were
considered, and the majority of PFLs were APEX floats. PFL
measurements before 2003 were not considered because these are
affected by problems such as pressure drift (Barker et al., 2011),
offsets in the salinity due to biofouling (Wong et al., 2003),
(Owens and Wong, 2009) and transmission errors. We therefore
only selected consolidated profiles from 2003 to 2017 to avoid
erroneous observations. The volume of PFL data from the last
15 years exceeds the data available from all other platforms, as
shown in Figure 2.

2.1 Additional Quality Control Procedure
WOD implements two types of quality control checks,
represented by different quality flags: first an individual
value flag (WODf) for each measured point in the vertical
for checking systematic errors in the observations; and second
a profile flag (WODfp) that denotes a statistical quality check,
as explained in Locarnini et al. (2019). In the following text,
WODf and WODfp are together referred to as WOD QC.
Uncertainties in the ocean historical observations are sum of
gross errors and representativeness errors as pointed by Janjić
et al. (2018) and Cowley et al. (2021) which defined it as Type
A and Type B uncertainty. A more sophisticated automated
quality control procedures has been achieved during the last
years by the International Quality-Controlled Ocean
Database (IQuOD) v0.1. Further IQuoD v0.1 contains only
temperature profiles with the uncertainty estimate of gross
error (Type A) while quality control of representativeness
error (Type B) was out of the scope of the project as
mentioned by Cowley et al. (2021). Therefore, we felt there
is a need of Additional QC (AQC) to remove the observations
containing representativeness error (Type B) and we
implemented it as follow:

TABLE 1 | Number of profiles and measurements in Dataset1 and Dataset2.

Dataset Name Temperature profiles Temperature measurements Salinity profiles Salinity measurements

Dataset1 6,012,750 803,362,255 5,265,504 757,320,791
Dataset2 1,658,955 384,430,391 1,557,989 362,928,173
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i) The domain is divided into 5× 5° boxes, wheremean and standard
deviations (std) are computed and used as thresholds in step (ii).

ii) Data outside 2 std in each box is eliminated and the procedure
is repeated until convergence is achieved, which is denoted
when no data are greater in value than the std level.

The AQC is iterative, unlike the WOD QC, and it is applied
after the WOD QC is considered. The numbers of observations
before and after the application of the AQC are given in Figure 3.
Distribution of salinity observations (January) at surface before
and after the application of AQC are shown in Supplementary
Figure S5 in supplementary material. The application of AQC
has eliminated the observations with representative error which
were still present with WOD18, i.e. (WODf and WODfp) QC.
The application of AQC eliminates less than 15% of the total
profiles.

3 INTERPOLATION SCHEME

DIVAnd is based on the Variational Inverse Method (VIM) and
applied on a curvilinear orthogonal grid using a finite difference
scheme (Barth et al., 2014). This method is equivalent to Optimal
Interpolation (OI), and the main difference between DIVAnd and
OI is in the consideration of land boundaries, as explained in the
introduction.

In DIVAnd, the cost function is minimised and contains three
terms: the misfit between the observations and the reconstructed
Field; the regularity or smoothness constraint; and the advection
constraint. This cost function can be written as:

J[ϕ] � ∑N
i�1

μi[di − φ(xi, yi)]2 + ‖φ − φb‖2 + Jc(φ), (1)

where di are the observations at the location (xi, yi), φ is the target
field in the regular grid, or the analysis, φb is the first guess field or
“background” and μi are weights derived from specific error
estimates (Troupin et al., 2012) and the correlation length L,
which are described later. Jc is the advection constraint, in which
variable gradients are assumed along the coasts only, thus
imposing no normal flux of temperature and salinity across
land-sea boundaries. The smoothness constraint is defined as:

FIGURE 2 |Number of profiles from the four measuring platforms used in this study and extracted fromWOD18: Ocean Station Data (OSD); Moored Buoys (MRB);
Conductivity Depth Temperature (CTD); and Profiling Floats (PFL).

FIGURE 3 | Number of observations (Temperature) using WOD QC and
AQC for Dataset1 and Dataset2: January (top); August (bottom).
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‖φ − φb‖2 � α2∫
Ω
(∇∇φ : ∇∇φ + α1∇φ.∇φ + α0φ

2)dΩ, (2)

The non-dimensional form of the cost function is:

~J[ϕ] � ∑N
i�1

μiL
2[di − φ(xi, yi)]2 + ∫

~Ω
(~∇~∇φ: ~∇~∇φ

+ α1L
2 ~∇φ.~∇φ + α0L

4φ2)d ~Ω + Jc(φ),
(3)

: is generalisation of the scalar product of two vectors and is
defined as

∇∇φ : ∇∇φ � ∑
i

∑
j

(z2φ/zxizxj)(z2φ/zxizxj). (4)

In DIVAnd the following values are assumed:

α0L
4 � 1

α1L
2 � 2

α2 � 1

μiL
2 � 4π

σ2

ϵ2i

(5)

Equation 5 shows that μ is defined as the ratio of signal variance
σ2, which is considered the background error variance of the
observations, ϵ2i . For more details of the solution method, see
Barth et al. (2014).

The best estimate or analysis depends on the values of two key
parameters, the correlation length L and the Noise to Signal ratio
(N/S), i.e., 1μi Eq. 5. Large values of the correlation length indicate a
larger number of weighted average observations in the estimate of
the field at each grid point, resulting in a smoother field, while

smaller values will allow for smaller-scale feature resolution,
resulting in a noisier field.

Large N/S of imply larger analysis field deviations from the
observations, or conversely, the analysis field is closer to the
background field. However, small values of N/S mean that the
analysis field is closer to the observations relative to the first guess
field. We denote this parameter to always be less than one so the
observations are more important than the background. As
discussed in the following sections, the importance of the
background is limited in our analysis due to the AQC used.

3.1 Horizontal and Vertical Analysis Domain
The global domain for the analysis extends from 0°E to 360°W
and from 80°N to −80°S. The grid spacing is 1

4
° in latitude and

longitude. The bathymetry is specified from the GEBCO 30” data
(IOC and IHO, 2003). We consider 45 (surface to 6000m) and 36
(surface to 2000m) non-uniform depth layers in this analysis for
SDC_V1 and SDC_V2, respectively, as listed in Table 2.

We considered a vertical discretization consisting of 10 m
layers around the nominal vertical depth of the analysis, as
reported in Table 2. This prevents vertical smearing of the
vertical temperature and salinity gradients, and unrealistic
thermocline and halocline results being obtained. In addition,
we avoid the use of data far from the interpolation level as the
profiles may have vertical data gaps.

To better resolve the upper thermocline structure, a larger number
of layers are defined from the surface to 500m, and the remaining
levels are at distances of 100m between 500m and 1900mdepth and
of 500m between 1900m and 6,000m. Data are grouped inmonthly
time steps and all data collected during the month contribute equally
to the estimate of the monthly climatology.

TABLE 2 | Depth layers used for SDC climatology: the nominal depth is selected at the middle of each layers. The levels for SDC_V1 extend from 5 m to 6,000 m and for
SDC_V2 from 5 to 2000 m.

No Nominal Depth(m) Layer No Nominal Depth(m) Layer

1 5 0–10 24 370 365–375
2 10 5–15 25 400 395–405
3 20 15–25 26 450 445–455
4 30 25–35 27 500 495–505
5 40 35–45 28 600 595–605
6 50 45–55 29 700 695–705
7 60 55–65 30 800 795–805
8 70 65–75 31 900 895–905
9 80 75–85 32 1,100 1,095–1,105
10 90 85–95 33 1,300 1,295–1,305
11 100 95–105 34 1,500 1,495–1,505
12 120 115–125 35 1700 1,695–1705
13 140 135–145 36 1900 1895–1905
14 160 155–165 37 2,200 2,195–2,205
15 180 175–185 38 2,700 2,695–2,705
16 200 195–205 39 3,200 3,195–3,205
17 220 215–225 40 3,700 3,695–3,705
18 240 235–245 41 4,200 4,195–4,205
19 260 255–265 42 4,700 4,695–4,705
20 280 275–285 43 5200 5195–5205
21 300 295–305 44 5700 5695–5705
22 320 315–325 45 6,000 5995–6,005
23 340 335–345
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3.2 Background Fields
The choice of the first guess field or background field may be
important when data are irregularly spaced both horizontally and
vertically. Two types of backgrounds were tested in this study.
The first, Background1, is a vertical profile corresponding to a
spatial mean of observations over the entire global ocean
(Figure 4) for Dataset1. The second, Background2, is
estimated by using the DIVAnd obtained from Background1,
a correlation length of 1,000 km and a N/S ratio of 0.5. Similarly
to Background1 several authors have taken zonal averages of
observations and used it as first guess for climatologies (Levitus,
1982). However, averaging water masses across the deep portions
of different ocean basins that are completely disconnected on the
timescales of 100 years give rise to high standard deviations in
deep waters. Notwithstanding these limitations and the simplicity
of the first guess, the use of DIVAnd and AQCmakes the analysis
quite insensitive to the background as shown below.We select the
background according to the computed climatology residuals,
calculated as:

ri(xoα, yoβ, zc) � H(θic(xk, yj, zp)) − yo(xoα, yoβ, zc) (6)

where (xk, yj, zp) are the m, n, q grid points of the three
dimensional interpolating grid, respectively, yo(xoα, yoβ, zoc)
are the observations at α, β, c points and θic is the i − th
climatology under consideration. H is the bilinear
interpolation or observational operator that interpolates the
climatology to the observational point. ri is clearly an estimate
of the error of the climatology at the observational grid points,
due to the smoothing carried out by the interpolation scheme and
all of the assumptions within the numerical scheme.

Figures 5A,B show the Root Mean Squares(RMS) of residuals
of the SDC_V1 analysis conducted using Background1 and the

WOD QC. Figures 5C,D shows the difference of the residuals
between the climatologies computed with Background2 and
Background1. The difference is visible and quantitatively
significant.

However, when AQC is used, as shown in Figures 5E,F the
background does not appreciably change the climatological
estimate. The AQC eliminates outliers or non-representative
data, which reduces the sensitivity of the analysis to the
background specification. The quality of the input dataset
determines the influence of the background on the estimate: if
only the WOD QC input dataset is used, i.e., outliers/non-
representative data are left in, the choice of background
becomes more important and the difference between residuals
using different backgrounds is large, particularly for salinity.
Thus, we conduct our analysis for both Dataset1 and Dataset2
with Background1.

3.3 Sensitivity Experiments for DIVAnd
Parameter Choices
Selecting the correlation lengths L and N/S for a global ocean
domain is challenging. The global ocean contains a multiplicity of
scales. Therefore, a single L value could either overly smear the
general circulation fronts (such as the western boundary
currents) or contaminate the climatology with mesoscale
eddies or other higher frequency processes. L has previously
been estimated using the data itself, by binning the data and
fitting analytical curves (Nittis et al., 1993). However, in the global
ocean the data is so non-uniformly spaced that the L estimation
quality of different ocean areas will be very different. Thus, we
take a new view of the traditional approach and use equal L values
for every location, as in WOA18 (Locarnini et al., 2019).

FIGURE 4 | Background1(spatial mean of data at each layer) for SDC_V1 computed from Dataset1: Temperature (A); and Salinity (B).
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We conducted several sensitivity experiments to select
reasonable values using L values ranging from 100 to 1,000 km
and N/S values from 0.1 to 50.

A roughness index is defined as the mean of the derivative of
field in the two directions as:

RI � 1
N

∑n,m
i,j�1

��������������
(Δxi f )2 + (Δyj f )2

√
(7)

where Δ is the finite difference derivative in the latitudinal and
longitudinal directions, xi is the grid spacing in the longitudinal
direction and yj in the latitudinal direction, and N � n p m is the
total number of the interpolating grid points.

RI gives a measure of the spatial scale of the field. For example,
a field with mesoscale features will have high RI values while a
smoother field with large-scale features will have low values. We
do not find that using the Rossby radius of deformation and/or its

corresponding wavelength can correctly define the correlation
length for a climatology. The correlation length is the result of
many propagating waves in the ocean, which combine to form a
mean field that is necessarily smooth. Thus, a roughness index or
its inverse, a smoothness index, is a better choice for establishing
the correlation length of the interpolating algorithm in terms of
the wavelength of the primary process that creates the
climatology. Many climate indices are in fact “smoothed” to
extract basic long-term signals.

As expected, for large L values the analysis gives a small RI
value, as shown in Figure 6. We also establish that the RI should
not exceed the standard deviation (std) of the data itself, as shown
by the dotted blue line in Figure 6. The criteria of accepting a
value of RI less than the field STD evidently only eliminates L at
100 km, varying slightly with depth. The “elbow” of all of the
curves lies between 0.4 and 0.6 for the N/S ratio, and thus we
select 0.5. When selecting this N/S value and taking an RI equal to

FIGURE 5 |Residual and residuals difference for Temperature (A,C, E) and Salinity (B,D,F) at 5 m usingWODQCwith choice of Background1. RMS of residuals in
(A) 0.69°C, and (B) 0.94PSU. Difference of residuals with Background2 and Background1 usingWODQC, RMS of residuals in (C) 0.02°C, and (D) 0.03PSU. Difference
of residuals of Background2 and Background1 using AQC, RMS of residuals in (E) 0.02°C, and (F) 0.01PSU.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 7113637

Shahzadi et al. Global Ocean Climatology

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


approximately half of the field STD, we obtain a value for L of
300 km.

4 DISCUSSION

We conducted temperature and salinity mapping with a
correlation length of 300 km and an N/S of 0.5 for Dataset1
and Dataset2 for all depths and months. Figure 7 shows the
mapped temperature and salinity fields for Dataset1 for January
at different depth levels. The fields are masked if the analysis
errors are greater than 30% (relative to the field standard
deviation). We find that the Pacific area still suffers from a
scarcity of data, in addition to the deep ocean.

SDC_V1 is a longer-term average while SDC_V2 is an
estimate of the last 15 years. The difference between these
two estimates is shown in Figure 8. SDC_V2 is warmer and
more saline than SDC_V1, and the root mean square (RMS)
difference varies from 0.4° to 0.5 °C and 0.7 to 0.6 PSU for
temperature and salinity, respectively. To better quantify the
sign of the differences we computed the global mean bias of
salinity and temperature in Figure 9. The negative mean bias at
the surface indicates that SDC_V2 is less saline than SDC_V1.
This might be due to the last 15 years (2003–2017) increase of
freshening of surface waters with respect to the (1900–2017)
time period. However such freshening does not go subsurface
due to buoyancy effects. In the subsurface at the contrary,
SDC_V2 is more saline than SDC_V1 and we argue that this
is allowed by compensating effects between high tempratures
and high salt in the equation of state, as described by Chen et al.
(2019).

4.1 Validation Using Other Climatologies
Validating the analysis is an essential step, as it indicates the
reliability of the results. We validate our results using theWOA18
and WAGHC (isobarically averaged version) climatological

estimates because they have similar interpolating grids at 1/4°

resolution. Other climatologies might exist but at lower space and
time resolution. The main source of data in WAGHC is from
WOD13, and in particular OSD, CTD, PFL and APB. Additional
data were obtained from the Alfred Wegener Institute,
Bremerhaven, and from various institutions in Canada for the
period between 1900 and 2016 (Gouretski, 2018). The data
considered in WOA18 are profiles from OSD, CTD, PFL,
MRB, Mechanical Bathythermographs, Digital
Bathythermographs, Expendable Bathythermographs, moored
and drifting buoys, gliders, undulating oceanographic
recorders (UOR), pinniped mounted CTD sensors and
surface-only data (Locarnini et al., 2019) and (Zweng et al.,
2019). WOA18 monthly climatology is computed from surface
to 1500 m on 22 depth levels at a spatial resolution of 0.25 over
the 6 decades of 1955–1964, 1965–1974, 1975–1984, 1985–1994,
1995–2004 and 2005–2012. While seasonal fields are computed
for deeper depth from surface to 6000 m on 57 depth levels. We
understand the climatologies are done for different periods but
we argue that a comparison is a first step to check consistency
between them.

To compute the differences between the climatologies, we
interpolated the WOA18 time average fields over the 6 decades
on the DIVAnd analysis grid using linear interpolation, and
similarly for WAGHC. Supplementary Figures S1–S4 in the
supplementary material show that differences are localised and
are maximum in dynamically active regions such as along the
Gulf Stream, the South equatorial current, the Gulf of Guinea,
the Bay of Bengal, etc. Moreover, largest differences are found in
the Arctic region that might be mainly due to different
observational data sets used. We have also added several
Supplementary Tables S1–S14 in the supplementary
material evaluating the BIAS and the RMSD of salinity and
temperature computed as the spatial average of the differences
between the climatologies in different layers for the equatorial
regions (-10°S to 10°N), north and south Atlantic, Pacific (11°N

FIGURE 6 | Roughness Index of SDC_V1: Temperature (left) and Salinity (right) for January at 5m for different CL and N/S (dotted blue line represents the
standard deviation of in-situ observations).
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to 80 °N) and (-80°S to -9°S), respectively, and Indian Ocean
(20°N to -40°S). SDC_V1 has a positive bias with respect to
WOA and a negative bias for WAGHC for both temperature
and salinity at all the depths in all regions. Maximum differences
are found at surface and thermocline depths. Further, larger
temperature differences are noticed in the north and south

Atlantic, and Indian ocean for WOA, while WAGHC has
maximum differences in the north Atlantic region. Maximum
temperature differences are found in equatorial Atlantic and Pacific
for WOA while for WAGHC maximum RMSD is found in
Atlantic ocean. Overall, the comparison of RMSD values shows
larger differences for both temperature and salinity with WOA as

FIGURE 7 | Temperature (A,C,E,G) and Salinity (B,D,F,H) climatology for January at 5m, 900m, 1050m and 3700m, respectively, from SDC_V1.
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compared to WAGHC that is probably due to the fact the
interpolation scheme SDC and WAGHC are similar.

Moreover, Hovmoller diagram was constructed for the
horizontal spatial average of the RMS differences between
WOA18 and WAGHC. Figure 10 shows that the largest RMS
temperature differences are found with SDC_V1 at the
thermocline depth for both WOA18 and WAGHC, but the

differences are more prominent with WOA18. We argue that
this difference at the thermocline is due to the different
interpolations of the observational profiles at the levels, which
create potential anomalies or simply different data being used.
The differences in salinity are greater in the surface layer and for
the summer months, probably due to the different number of
profiles used.

FIGURE 8 | January mapping differences between SDC_V2 and SDC_V1 for Temperature with RMSD (A) 0.4°C, (C) 0.39°C, (E) 0.08 °C, (G) 0.04 °C, and Salinity
with RMSD (B) 0.66PSU, (D) 0.05PSU, (F) 0.01PSU, and (H) 0.01PSU at 5m, 100m, 900m and 1500m, respectively.
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4.2 Ensemble Mean Climatology
In the previous section we reveal some of the differences between the
four climatological estimates. Such uncertainties are due to the
characteristics of the selected input dataset, the specific background
and statistical interpolation algorithms, and the type of quality control
applied.As for numericalmodels, amulti-model statistical estimate can
reduce the errors of specific quality assessment indices. Thus, a diverse
combination of climatological estimatingmethods can provide the best
estimate of the climatological state of the ocean. Ensemble
methodologies have been proposed in the past for the
reconstruction of atmospheric temperatures (Krishnamurti et al.,
1999) and for climatologies of global ocean salinities (Liu et al.,
2020). Furthermore it is well knwon that ensemble mean is a
commonly used post-processing methodology for reanalyses
(Frankcombe et al., 2018) and climate projections (Solomon et al.,
2007). In these works, it is shown that the ensemble mean is a
statistically better estimate of the truth, so we have applied this to
the different global ocean climatologies. The multi-model ensemble
mean will reduce the uncertainties associated with the statistical
ensemble mean estimate. Our multi-model ensemble climatology is
the ensemble mean of four climatologies WOA, WAGHC, and
SDC_V1 and SDC_V2. Each member of the ensemble is
considered to be a different climatology derived from a different
statistical interpolating model, and the ensemble mean of these
models should be superior to that of any of the single models

within a particular evaluation score (Krishnamurti et al., 1999). The
evaluation score applied is derived from the comparison between the
ensemble mean residual and each single climatology residual.

The climatology multi-model ensemble mean, θEc (x, y, z) is
defined as:

θEc (x, y, z) � ∑N
i�1

θic(x, y, z)
N

, (8)

The residual defined in Eq. 6 contains various sources of errors in
addition to the difference between the climatology and the observations.
We assume first that the climatological estimate is the sum of true
climatological value and the interpolation errors, so-called ϵH:

H(θic(xk, yj, zp)) � H(θic(xk, yj, zp))T + ϵH. (9)

Moreover, the observations itself are sum of true observational
values and errors, ϵo:

yo(xoα, yoβ, zc) � yo(xoα, yoβ, zc)T + ϵo, (10)

Finally, the residuals in the Eq. 6 can now be decomposed as
follows:

ri(xoα, yoβ, zc) � H(θic(xk, yj, zp))T + ϵH − yo(xoα, yoβ, zc)T − ϵo
(11)

FIGURE 9 | Global mean bias profile (difference between SDC_V2 and SDC_V1) for (A) Temperature and (B) Salinity during January.
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Thus the residuals are the sum of the differences between the true
climatology and the true observational values plus the two different
types of errors. We call this synthetically residual errors. A lower
residual error is not a necessary condition for a high quality climatology

butwe argue that it is a sufficient criteria.A climatological estimatewith
lower residual will be considered as a better estimate.

The resulting vertical profile is denoted by ~r(z) and is
defined as:

FIGURE 10 | Hovmoller diagram of the root mean square difference between SDC_V1 and WOA for (A,C) and SDC_V1 and WAGHC for (B,D). Left panels give
temperature and right panels salinity.

FIGURE 11 | Standard deviation of anomaly residuals ~r i for available climatological estimates (θ i
c) (dashed lines), average of the four residuals (continuous blue line)

and standard deviation of ensemble mean climatology residuals (black continuous line).
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~ri(zc) �
������������������������∑M,L

α,β�1

(ri(xoα, yoβ, zc) − �ri(zl))2
M p L

√√
. (12)

where M p L is the number of horizontal observational grid
points.

Figure 11 shows the ~ri. The ensemble residual STD is the
second lowest, confirming that themulti-model ensemble mean is
a good estimate of the climatology. The lowest values are achieved
by SDC_V1, but we argue that this is due to the fact that we
computed the residuals directly from the dataset used to generate
the SDC_V1 climatology.

5 SUMMARY AND FUTURE WORK

Two versions of a global ocean climatology for temperature and
salinity were estimated using a new interpolation scheme,
DIVAnd, which enables a better assessment of coastal
constraints. We demonstrated that an additional quality
control is required to produce a good quality climatology. Two
backgrounds were analyzed: a spatial mean of observations in the
horizontal and an analysis conducted with a very large correlation
length of 1000 km and N/S of 0.5. The results show that if pre-
processing is carried out using the AQC procedure, the resulting
analysis field is less dependent on the choice of the background
field (see Figure 5).

In addition, ours is the first study in which the selection
of DIVAnd parameters is deduced from a new roughness
index (RI), which quantifies the degree of smoothness of
the analysis as a function of the correlation length and N/S
values.

When comparing the SDC_V1 climatology with WOA and
WAGHC we find reasonable agreement, but also significant
differences in terms of the thermocline and surface layers. The
SDC_V1 climatology is closer toWAGHC thanWOA18 in terms
of both temperature and salinity. One reason could be connected
to the fact that the OA parameters used and the technique itself
are similar to DIVAnd. Currently available historical datasets
enable an almost complete reconstruction of the global ocean
fields. However, data gaps still exist, and differences among
interpolation schemes and input dataset quality control lead to
significant uncertainties in the climatological estimates. For the
first time, we have demonstrated that a multi-model ensemble of
different climatologies can produce low residual error compared
to each single climatological estimate.

Future work can consider the application of the improved
quality control procedure developed in Shahzadi et al. (2021)
using a regime-oriented division instead of regular 5° square
rectangles in a global domain. An optimised choice of DIVAnd

parameters that are different for each level may improve the
results. A validation with independent datasets such as satellite
observations or a randomly subsampled input dataset will enable
an assessment of whether the analysis under- or over-fits the
observations. Further as pointed by Lozier et al. (1994), an
isopycnal climatology using DIVAnd is required to avoid the
artificial mixing water masses.
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