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Abstract 

Estimators of biological age (BA) – defined as the hypothetical underlying age of an 

organism – have attracted more and more attention in the last years, especially after the 

advent of new algorithms based on machine learning and genetic markers. While different 

aging clocks reportedly predict mortality in the general population, very little is known on 

their overlap. Here we review the evidence reported so far to support the existence of a 

partial overlap among different BA acceleration estimators, both from an epidemiological 

and a genetic perspective. On the epidemiological side, we review evidence supporting 

shared and independent influence on mortality risk of different aging clocks - including 

telomere length, brain, blood and epigenetic aging – and provide an overview of how an 

important exposure like diet may affect the different aging systems. On the genetic side, we 

apply linkage disequilibrium score regression analyses to support the existence of partly 

shared genomic overlap among these aging clocks. Through multivariate analysis of 

published genetic associations with these clocks, we also identified the most associated 

variants, genes, and pathways, which may affect common mechanisms underlying 

biological aging of different systems within the body. Based on our analyses, the most 

implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, 

suggesting them as potential molecular targets for future anti-aging interventions. Overall, 

this review is meant as a contribution to the knowledge on the overlap of aging clocks, 

trying to clarify their shared biological basis and epidemiological implications. 



1. Introduction

As the global population ages and average life expectancy increases, research on healthy 

aging has gained notable importance (Gialluisi et al., 2019). To this end, computing 

Biological Age (BA) – i.e. the actual underlying age of an organism – and its discrepancy 

with Chronological Age (Δage, a measure of BA acceleration; Figure 1), allows to define 

biological aging trajectories and may help identifying ways to modify these trajectories 

through a personalized approach. To reach this “precision healthy aging” goal, it is 

important to develop reliable BA estimators (James H. Cole et al., 2018), which have been 

reported as useful public health markers in diverse populations (see below).  So far, many 

of these estimators were based on simple regression methods, where BA is a function of one 

or few bodily measures, e.g. circulating blood markers (Klemera and Doubal, 2006) or 

spirometry measures (Yamaguchi et al., 2012). More recently machine learning approaches 

for the estimation of BA have been developed (J. H. Cole et al., 2018; Polina Mamoshina et 

al., 2016; Evgeny Putin et al., 2016), which showed higher accuracy in predicting 

chronological age (Pearson’s r>0.9). However, these algorithms are highly population-

specific (Gialluisi et al., 2019; P Mamoshina et al., 2018). Moreover, although the resulting 

BA acceleration is significantly associated with the main determinants of disease like 

lifestyles (e.g. diet, smoking, drinking habits) and socioeconomic factors (education, 

household income, housing and occupational status), these explain less than 50% of the total 

variance in Δage, suggesting that genetic factors might influence interindividual variation 

in biological aging (Gialluisi et al., 2021). In spite of these recent developments, the overlap 

among the different BA markers developed so far is largely unexplored (X. Li et al., 2020), 



  

as the underlying biology and genetic basis of BA acceleration. In particular, it is unclear 

whether the same genes or pathways underly variation in biological aging of different 

systems within the body, a hypothesis never investigated before. These open issues warrant 

further research on the reciprocal relationships among BA acceleration markers and on their 

combined influence on healthy aging, possibly analyzing additional estimators and clinical 

events and investigating their biological bases through multi-omic approaches. 

The present review will focus on the epidemiological and biological overlap across different 

estimators of biological aging – i.e. parameters indicating the difference between biological 

and chronological age based on different sources of biomedical data – also known as aging 

clocks. First, we will provide a brief overview of the different clocks available and their 

properties as public health screening tools, then we will focus on their epidemiological 

overlap, especially on how they jointly predict mortality risk and how they relate to dietary 

patterns, one of the most important exposures affecting healthy aging. Given the relatively 

low number of studies, the few evidence collected so far and the heterogeneity of studies in 

terms of population setting, statistical analyses and BA acceleration markers tested, we 

opted for a narrative review approach, analyzing all the evidence in favor or against the 

existence of an overlap of the markers analyzed until June 2021.  

Finally, through bioinformatic elaboration of genetic associations with published aging 

clocks, we will focus our attention on genes and molecular pathways underlying different 

aging clocks, trying to get biological insights into their common variance. 

 



  

2. Aging clocks from biomedical data: an overview 

To estimate biological aging, a number of methods have been developed based on different 

sources of biomedical and molecular data. These include organ-specific measures, such as 

spirometry (Yamaguchi et al., 2012), structural neuroimaging (Cole and Franke, 2017), 

electroencephalography (Sun et al., 2019), photographic images of the human skin (Bobrov 

et al., 2018), or blood biomarkers (Klemera and Doubal, 2006; P Mamoshina et al., 2018; E 

Putin et al., 2016), the latter conceived as markers of organismal BA. In addition to these 

instrumental data-based biomarkers, other parameters based on molecular data have been 

developed in the last few years (Jylhävä et al., 2017a).  

Biological age estimates were mostly based on classical linear regression methods, in which 

age is a function of one or few bodily measures (Klemera and Doubal, 2006). However, 

supervised machine learning algorithms have been recently developed (Bobrov et al., 2018; 

J. H. Cole et al., 2017b; P Mamoshina et al., 2018; E Putin et al., 2016; Sun et al., 2019), showing 

very good accuracy in predicting chronological age (Gialluisi et al., 2019). These methods 

consist of a group of algorithms which, based on a number of input variables (or features), 

learn to predict a known (either categorical or continuous) outcome, usually called label. 

This is accomplished through a phase in which the algorithm strains to predict the label as 

accurately as possible in a training set, and a phase where the accuracy and generalizability 

of the model is tested in an independent dataset, the test set. The advantage of these 

algorithms is that they allow to model complex relationships of several features with the 

label, taking into account also non-linear relationships, at variance with classical statistical 

methods (Gialluisi et al., 2019). The most prominent example of such methods is represented 



  

by Deep Neural Networks, algorithms which typically present an input layer, a variable 

number of hidden “decision” layers and an output layer (Ching et al., 2018). These 

algorithms are capable of capturing hidden underlying features and learning complex 

representations of highly multidimensional data (P Mamoshina et al., 2016), and 

automatically select features that are most relevant to predictions (Zhavoronkov and 

Mamoshina, 2019). This way, for each vector of input features provided (i.e. the blood test 

of a given subject), the algorithm is able to return an accurately predicted age value 

(Zhavoronkov et al., 2019).  

 

2.1 Telomere length 

Among all biological aging clocks developed so far, the first molecular marker to be 

discovered and deeply investigated to predict biological aging was telomere length (TL).  

Telomeres are nucleo-protein complexes located at the end of all eukaryotic chromosomes, 

which tend to shorten at each cell division within somatic cells (Harley et al., 1990). For this 

reason, TL is often considered an ageing biomarker (Zglinicki and Martin-Ruiz, 2005). 

Commonly measured in leukocytes, this has been associated with a number of 

environmental factors, including socio-economic status, smoking, oxidative and 

psychological stress (James H. Cole et al., 2018), as well as with an increased risk of clinical 

events and all-cause mortality (Cawthon et al., 2003; Wilbourn et al., 2018). Many of these 

associations however are not as robust (Sanders and Newman, 2013) and the correlation 

with chronological age remains quite modest as compared to other aging clocks (Pearson’s 

r = −0.3) (Jylhävä et al., 2017b; Müezzinler et al., 2013). For these reasons, in the last decade 



  

the focus of investigation in the field moved onto more accurate and powerful clocks (see 

below). 

 

2.2 Predictors of biological aging based on DNA methylation 

In 2013, two independent DNA methylation-based predictors were developed, also known 

as “DNAm age” or “epigenetic clocks” (Hannum et al., 2013; Horvath, 2013). DNA 

methylation is the addition of a methyl group to cytosine residues in cytosine-phosphate-

guanine dinucleotides across the genome (known as CpG sites). These predictors are based 

on the assumption that cells undergo changes in DNA methylation patterns across the 

genome as subjects age (James H. Cole et al., 2018). These measures represent an important 

milestone in the field and have represented for years one of the most robust BA estimator 

available, showing high correlations (Person’s r 0.96 for Horvath and 0.91 for Hannum 

clock) and small Mean Absolute Errors (MAE 3.6 and 4.9 years) with chronological age, 

along with high predictivity of incident mortality risk (Hannum et al., 2013; Horvath, 2013; 

Marioni et al., 2015). While similar in methodology - since both are based on penalized 

regression models aimed at predicting chronological age as accurately as possible starting 

from CpG sites - these two clocks are indeed only moderately correlated (Lu et al., 2018) and 

somewhat different, with only six overlapping CpG sites (Jylhävä et al., 2017a). Indeed, the 

Hannum’s clock, based on 71 CpGs measured in peripheral blood cells, is strongly 

dependent on the composition of the blood sample, is thought to track aspects of immuno-

senescence, and is also known as extrinsic epigenetic age acceleration. On the contrary, 

Horvath’s clock, based on 353 CpGs from 51 different human tissues/cell types, is instead 



  

independent of age-related changes in blood cell composition and is thought to tag an 

intrinsic cell aging process conserved across different cell types, hence it is defined as 

intrinsic epigenetic age acceleration (Gibson et al., 2019). 

More recently, additional epigenetic clocks have been proposed, either incorporating white 

blood cell composition into the DNAm age metrics (Chen et al., 2016) or using different 

methods and CpG methylation data sources to estimate BA, e.g. incorporating information 

on morbidity and mortality risk (e.g., smoking, plasma protein levels, white blood cell 

counts), and chronological age itself. The most prominent examples of these “second 

generation” DNAm age acceleration estimators are represented by GrimAge, a metric based 

on DNAm surrogate biomarkers for seven plasma proteins and smoking pack-years trained 

to best predict mortality (Lu et al., 2019), and by DNAmPhenoAge, a 513 CpG predictor 

trained on a measure that itself was trained on mortality, based on 42 circulating biomarkers 

and chronological age as input features (PhenoAge) (Levine et al., 2018). Both estimators 

further improved the prediction of mortality and of a variety of health-related metrics, 

morbidity and physical function (Chen et al., 2016; Levine et al., 2018; Lu et al., 2019).  

 

2.3 Biological age acceleration based on blood biomarkers 

In a pioneering study in the field of machine learning applied to aging markers, Putin and 

colleagues used anonymized blood biochemistry records from 62,419 subjects from the 

general Russian population to estimate BA through an ensemble of Deep Neural Networks 

based on 41 standardized blood markers and sex of subjects (Evgeny Putin et al., 2016). This 

showed the best performance in predicting BA, when compared to other algorithms, with a 



  

standard coefficient of determination (R2, the fraction of variance in chronological age 

explained by the model) of 0.83, a Pearson correlation of 0.91, and a MAE of 5.55 years 

(Evgeny Putin et al., 2016). Mamoshina and colleagues (Polina Mamoshina et al., 2018) 

exploited these models to train similar algorithms on population-specific datasets, using 

samples from three ethnically different populations, namely South Koreans (N=65,760), 

Eastern Europeans (N=55,920) and Canadians (N=20,699). Algorithms were trained within 

each population and tested on independent test sets of the three populations available, using 

sex and 19 blood markers. These models showed good predictivity of chronological age 

when they were trained and tested on the same population (R2 0.49-0.69, and MAE 5.59- 6.36 

years). However, accuracy dropped when the models were tested on a population other 

than that of the training set, suggesting a high population-specificity (Polina Mamoshina et 

al., 2018). The aging acceleration (Δage) resulting from the above-mentioned BA estimate 

was associated with incident all-cause mortality in two North-American cohorts (Polina 

Mamoshina et al., 2018). This finding was replicated with a similar blood aging marker in 

an Italian population cohort, the Moli-sani study (N=4,772). Associations were observed not 

only with mortality, but also with hospitalization risk, for all and specific causes, as well as 

with measures of mental and physical wellbeing (Gialluisi et al., 2021). Deep learning 

architectures were recently proposed to estimate inflammatory age (iAGE), based on 50 

circulating cytokines, chemokines and growth factors. In centenarians, iAge was on average 

40 years lower than their corresponding chronological age, and was significantly associated 

with both multi-morbidity and immune-senescence (Sayed et al., 2021).  



  

Proportional hazards mortality models have also been increasingly used in BA estimation. 

As a good aging clock should first estimate mortality risk as accurately as possible (Pyrkov 

and Fedichev, 2019), different clocks have been developed to maximize the accuracy of these 

estimation. Prominent examples in the field include MORTAL-bioage, based on the 

prediction of mortality risk by blood markers and chronological age through Cox models, 

and re-calibration of the risk in years (Pyrkov and Fedichev, 2019), and Phenotypic Age (or 

PhenoAge), based on modelling mortality through the application of Gompertz models to 

blood markers and age (Liu et al., 2018). The latter prediction was then used to train the 

DNAmPhenoAge (Levine et al., 2018) (see above). Thus, training biological aging prediction 

using biological rather than chronological age as a label, could further improve the efficacy 

of aging clocks as public health markers (Levine et al., 2018). 

 

2.4 Brain-predicted age acceleration 

Another accurate BA estimation method is based on the use of brain imaging features, either 

coming from structural Magnetic Resonance Imaging (MRI)(J. H. Cole et al., 2017b; James 

H. Cole et al., 2018) or from multimodal neuroimaging sources (Cole, 2020). 

The most prominent example in the field is represented by brainPAD, a predicted brain 

aging clock where the BA measure was derived through Gaussian Process Regression 

applied to gray and white matter structural features (J. H. Cole et al., 2018, 2017c). This 

measure significantly predicted mortality in the aging Lothian Birth Cohort 1936 (mean (SD) 

age 73 (1) years), with a predictive capacity higher than other “molecular” clocks, like 

telomere and Horvath’s epigenetic clock (J. H. Cole et al., 2018). This measure was robust to 



  

the type of MRI scanner used (with high intraclass correlation between 1.5 T and 3T), as well 

as to the use of raw– rather than segmented – neuroimaging data, showing comparable 

accuracy (J. H. Cole et al., 2017b). More recently, a multi-modal estimation algorithm based 

on Lasso regression including T1-weigthed structural MRI, T2- fluid-attenuated inversion 

recovery (FLAIR), susceptibility-weighted imaging (SWI), diffusion-MRI, task functional 

MRI, and resting-state functional MRI, revealed an even better accuracy in the prediction of 

brain age (Pearson’s r = 0.78 and MAE = 3.55 years) (Cole, 2020). 

Overall, the above-mentioned evidence supports BA acceleration as a robust marker of 

public health, which may be used to screen health status and mortality risk in populations, 

through the use of different health records. However, the main hindrance to a wide use of 

some of these estimators like epigenetic clocks and brainPAD is represented by the costs 

implied to get their source data. Indeed, the costs of genome-wide methylation arrays and 

neuroimaging scans are yet too high for a potential spread application in public health. Last, 

but not least, a number of other molecular markers have been developed to predict aging in 

the field, including those based on protein glycosylation, lipidomic, transcriptomic, 

metabolomic and proteomic data (James H. Cole et al., 2018; Jylhävä et al., 2017b). However, 

these markers showed a worse performance than the predictors mentioned above and have 

not been tested for overlap with other aging clocks, thus, they will not be further discussed. 

 

3. Epidemiological overlap of aging clocks 

3.1 Nutrition as a modulator of Biological Age: common pathways across different 

metrics/biomarkers 



  

The identification of the most powerful and common determinants of biological age is also 

necessary to develop and validate interventions that could slow down or counteract the 

aging process and its associated pathologies. A potential strategy to impact on aging is to 

intervene on lifestyle factors, such as diet or physical activity. Nutrition represents one of 

the most promising approaches to prolong healthspan and achieve longevity (Ekmekcioglu, 

2020). A growing amount of data reveals that nutritional interventions such as calorie 

restriction (CR), intermittent fasting (IF) and Mediterranean Diet (MedDiet) can influence 

the health status of subjects (Dato et al., 2016; Heiss et al., 2018; Longo et al., 2015; Shlisky et 

al., 2017; Wahl et al., 2016; Xia et al., 2017), thus affecting biological age. 

 

3.1.1 Mediterranean Diet 

MedDiet is rich in plant-based foods such as vegetables, fruits, olive oil, legumes, grains, 

nuts, seeds and also comprises a high intake of fish and a moderate intake of red wine 

around meal times. Conversely, red meat, high-fat dairy products, and highly processed 

foods are consumed infrequently (Bach-Faig et al., 2011). This dietary pattern contains an 

abundance of bioactive compounds, including a range of vitamins and minerals, 

polyphenols, fibers, nitrate and mono-unsaturated and poly-unsaturated fatty acids (Tosti 

et al., 2018), many of which have been shown, individually or in combination, to elicit 

beneficial effects (Hernández and Rentero, 2018; Martucci et al., 2017) on cardiovascular risk 

(Estruch et al., 2018, 2006), blood pressure (Jennings et al., 2019; Mitjavila et al., 2013), cancer 

(Ostan et al., 2015), cognitive function (Marseglia et al., 2018), inflammation (Martínez-

González et al., 2015; Santoro et al., 2020) or frailty status (Kojima et al., 2018), also mediated 



  

by the gut microbiota (Ghosh et al., 2020). A recent systematic review and meta-analysis 

supported a strong association of high adherence to MedDiet with better physical 

performance (walking speed) and global cognitive function, as well as with a lower 

longitudinal decline of the latter in dementia-free adults (Coelho-Júnior et al., 2021). Overall, 

MedDiet is considered to be one of the most recognized diets for disease prevention and 

healthy aging (Soltani et al., 2019; Trichopoulou et al., 2005), partially due to its 

demonstrated anti-inflammatory and antioxidative properties which may impact on several 

hallmarks of aging (Crous-Bou et al., 2019; Esposito et al., 2021; Shannon et al., 2021).  

Telomeric DNA is highly susceptible to oxidative damage and dietary habits may have an 

impact on telomere attrition rates through the mediation of oxidative stress and chronic 

inflammation. Although contrasting data are present (Davinelli et al., 2019; Meinilä et al., 

2019), the majority of the studies investigating the relationship between MedDiet and both 

leukocytes TL and telomerase activity reported a positive association (Boccardi et al., 2013; 

Crous-Bou et al., 2014; García-Calzón et al., 2015; Gu et al., 2015; Shivappa et al., 2017). An 

observational study of 217 old people from the South of Italy reported that individuals with 

high adherence to MedDiet had longer telomeres and higher telomerase activity compared 

with those with medium or low MedDiet adherence (Boccardi et al., 2013). Higher plasma 

concentrations of monounsaturated fatty acids were associated with greater leukocyte TL 

in those carrying the CC variant of the telomerase gene (TERC) polymorphism rs12696304 

(Gomez-Delgado et al., 2018). In the Prevención con Dieta Mediterránea (PREDIMED) Study 

of middle-aged people at higher cardiovascular risk, 5 years intervention with a MedDiet 

supplemented with additional nuts was associated with greater risk of telomere shortening 



  

when compared with the low-fat control diet. However, intervention with MedDiet plus 

additional extra-virgin olive oil did not influence telomere length when compared with the 

low-fat control diet (García-Calzón et al., 2016). Interestingly, a recent meta-analysis 

reported a positive association between adherence to MedDiet and TL in the whole sample 

set and in women only (Canudas et al., 2020).  Similarly, another study observed longer 

telomeres in women with greater adherence to MedDiet (Crous-Bou et al., 2014) and in 

another analysis of the PREDIMED cohort, higher adherence to MedDiet at baseline was 

linked with higher TL only in female participants (García-Calzón et al., 2016). 

Nutrition influences the ageing trajectory and the risk of all common age-related diseases 

also by epigenetic processes (Park et al., 2017). Whole genome DNA hypomethylation 

occurs during ageing and is associated with an increased risk of several cancers and 

cardiovascular events (Muka et al., 2016), possibly as a consequence of greater genomic 

instability (Cardelli, 2018). Nutritional interventions, known as “epigenetic diets”, also 

represent a promising approach to positively counteract the epigenetic changes associated 

with ageing and promote the health for older adults (Bacalini et al., 2014). MedDiet might 

constitute a palatable and readily available epigenetic diet.  

A study reported that young healthy women with a low consumption of fruit (low MedDiet 

adherence) had 3.7 times increase of genome hypomethylation in blood leukocytes than 

women with a higher consumption. A similar effect was seen in those women with lower 

folate intake (Agodi et al., 2015). In the PREDIMED study, Arpon et al. (Arpón et al., 2016) 

observed that the methylation status in peripheral blood mononuclear cells of eight genes 



  

related to inflammation and immunocompetence, including EEF2, COL18A1, IL4I1, LEPR, 

PLAGL1, IFRD1, MAP-KAPK2 and PPARGC1B, correlated with adherence to MedDiet.  

DNAm age, the pattern of DNA methylation used to calculate the epigenetic clock, is 

influenced by lifestyle factors, including diet (Quach et al., 2017). A pilot study conducted 

within the NU-AGE project (Berendsen et al., 2014; Santoro et al., 2014), used Horvath’s 

Clock to estimate DNAm age before and after intervention with a MedDiet for 1 year in old 

Italian and Polish participants (65–79 years). Results suggested that MedDiet intervention 

may promote epigenetic rejuvenation in elders but the effect is dependent on several 

individual-specific factors including sex and country of origin (Gensous et al., 2020). 

DNAmPhenoAge is also modulated by dietary habits, with a higher consumption of fruits 

and vegetables being associated with lower values of epigenetic age (Levine et al., 2018).  

A deep learning blood based biomarker of biological aging recently showed negative 

associations with both high adherence to MedDiet (Gialluisi et al., 2021) and with dietary 

content of polyphenols (Esposito et al., 2021). Moreover, high adherence to MedDiet diet 

showed significant improvements in global cognition and episodic memory compared to 

those older adults with lower adherence, suggesting that MedDiet could slow down age-

related cognitive decline (Marseglia et al., 2018). Nutritional epidemiology has suggested a 

protective role of healthy diets and of several candidate nutrients for brain aging outcomes. 

Existing evidence suggests that some nutrients or food ingredients, in particular specific 

vitamins, flavonoids and long chain ω-3 fatty acids have a potential to beneficially affect 

cognitive function (Flanagan et al., 2020) by slowing down neuroinflammation and 

oxidative stress. 



  

Overall, the available evidence suggests that higher adherence to a MedDiet pattern may 

improve cognitive function and reduce blood aging, telomere attrition and changes in 

epigenetic markers and molecules, although the latter beneficial effects may be confined to 

specific population sub-groups.  

 

3.1.2 Calorie Restriction 

The reduction of caloric intake (by 10% to 40%) without causing malnutrition – also known 

as caloric restriction - has proven to be by far the most effective intervention that can extend 

the maximum lifespan in a wide range of organisms including yeast, nematodes, flies, and 

rodents (Liang et al., 2018). Interestingly, observations also demonstrated an effect on 

healthspan overlapping with a significant decrease in age-related diseases such as 

cardiovascular events, diabetes, neurodegenerative diseases and cancers (Balasubramanian 

et al., 2017; Colman et al., 2009; Fontana et al., 2010; Mattison et al., 2012). Centenarians, who 

represent the best model to study successful aging, share several health benefits with adults 

undergoing CR (Franceschi et al., 2018c). The beneficial effects of CR occur through a wide 

range of molecular mechanisms, largely overlapping with aging hallmarks, among which 

inflammation, oxidative stress and epigenetic factors have recently gained interest (Gensous 

et al., 2019). Although some studies exist on CR in humans such as the CALERIE study (Das 

et al., 2017), most of the studies regard animal models. In a rat model of diabetes, CR-treated 

rats compared with high-fat-diet rats increased telomerase activity without changes of 

telomere length and enhanced autophagy in heart tissue (Makino and Maeda, 2021)(Makino 

et al., 2015). In humans no clear evidence emerged that CR, as currently practiced in 



  

humans, delays immune aging related to TL or T-cell immunosenescent markers 

(Tomiyama et al., 2017). 

Epigenetic data on the effects of pure CR in humans are limited, as this intervention is 

difficult to implement in the long-run in humans. Two studies reported the results of 

epigenomic responses to a hypocaloric diet intervention, but no study has specifically 

evaluated the impact of CR on DNA methylation signatures of aging in humans (Bouchard 

et al., 2010; Milagro et al., 2011). A significant overlap between the genes that showed altered 

expression in response to CR and those whose methylation varies during aging has been 

reported (Ions et al., 2013). 

Collectively, several studies reported that CR is protective against age-related DNA 

methylation changes in mammals in different tissues and organs like kidney (Kim et al., 

2016), blood (Maegawa et al., 2017; Sziráki et al., 2018), liver (J. J. Cole et al., 2017; Hahn et 

al., 2017), hippocampus (Hadad et al., 2018), and cerebellum (Lardenoije et al., 2015).  

Recently, according to age and tissue type it has been found that CR is responsible for a 

prevalent increase in DNA methylation levels of genes involved in the mitochondrial 

biogenesis (Polg, Polg2, Tfam, Fis1, and Opa1). Particularly, this increase was more 

pronounced when this diet was administered during adulthood and at old age (D’Aquila et 

al., 2020). 

The remodeling of DNA methylation patterns associated with CR can target genomic 

regions associated with the development of age-related diseases. For example, in the kidney 

of old rats, CR was able to attenuate age-dependent methylation alterations in the promoters 



  

of genes that are associated with inflammation, cancer, or diabetes (Kim et al., 2016), while 

in mouse liver, CR had a specific impact on genes involved in lipid metabolism-related 

pathways, resulting in the regulation of the lipid profile (with an attenuation of the age-

associated increase in liver triglyceride content) (Hahn et al., 2017). 

Important work has been recently carried out in animal models regarding the effect of CR 

on epigenetic clocks (Gensous et al., 2019; Xia et al., 2021). Animals treated with CR were 

significantly epigenetically younger than their untreated counterparts (Maegawa et al., 

2017; Petkovich et al., 2017; Thompson et al., 2018; Wang et al., 2017) with only one exception 

(Meer et al., 2018). 

Notably, disruption of brain energy metabolism with reduced glucose consumption, 

increased central insulin resistance, and impaired mitochondrial function have been linked 

to the mechanisms leading to neuroinflammatory and age-related neurodegenerative 

diseases (Cunnane et al., 2020; Zilberter and Zilberter, 2017). CR is also able to improve 

cognitive function in older people by counteracting inflammation (Fontana et al., 2021). 

 

3.1.3 Intermitted Fasting 

IF is a dietary pattern alternating between fasting and non-fasting periods. Specifically, the 

IF diet in a particular mouse strain extended both mean and maximal lifespans (Chung et 

al., 2013). Furthermore, IF lowered the occurrence of diabetes and levels of fasting glucose 

and insulin (Hsieh et al., 2005). These effects of IF are similar to those observed with CR 

(Chung et al., 2020). The beneficial results of IF on different cancers are also explained by 



  

many research groups (Descamps et al., 2005). The observations in animals indicate that, 

owing to dietary intake reduction, IF could effectively regulate the number of risk factors 

and thereby prevent chronic diseases. Such modulatory effects of IF are similar to those of 

CR. Implementation of IF in humans has been proposed to prevent major risk factors for 

age-associated diseases (Varady and Hellerstein, 2007). To our knowledge, no study has 

evaluated the impact of intermittent fasting on telomere length and epigenetic signatures of 

aging. 

There is a need of gaining insights into the precise molecular mechanisms of action of 

healthy dietary patterns as anti-aging strategies. It should be kept in mind that, in humans, 

nutritional interventions are context-dependent, relying on specific populations, gender or 

genetic factors. While some interventions can have beneficial effects in certain individuals, 

they could, at the same time, be detrimental in other groups. However, even if such 

heterogeneity exists the impact of nutrition on the different biological metrics seems to act 

by lowering levels of inflammation and oxidative stress and improving immune lipid and 

glucose metabolism by modulating the nutrient sensing pathways, autophagy and 

mitochondrial biogenesis (Figure 2). 

 

3.2 Shared influence of biological aging on mortality 

A handful of studies have been focused on the comparison of different BA markers, mostly 

analyzing few molecular and functional markers and reporting partial overlap in their 

influence on mortality risk and low to moderate reciprocal correlations, only partly 



  

dependent on their shared variance with chronological age (J. H. Cole et al., 2018; Gao et al., 

2019; Gialluisi et al., 2019; Kim et al., 2017; X. Li et al., 2020; Marioni et al., 2016; Murabito et 

al., 2018; Zhang et al., 2018). Marioni and colleagues (Marioni et al., 2016) were the first to 

investigate telomere length and epigenetic (Hannum) age acceleration jointly in the Lothian 

Birth Cohorts 1921 and 1936 (combined N>1,300). They observed weak, non-significant 

correlations between the two measures, which explained largely independent and 

complementary fractions of variance in chronological age in a combined cohort analysis 

(2.8% for telomere length, 34.5% for Hannum clock and 37.9% in joint models). The authors 

reported one SD increase in baseline Hannum age and TL were associated with a 25% 

increase and a 11% decrease in mortality risk, respectively, with the two estimators showing 

again independent influences (Marioni et al., 2016). 

Kim et al. (Kim et al., 2017) found a frailty index based on 34 common health and functional 

impairment variables to outperform (Horvath) DNAm age acceleration in survival models 

predicting mortality risk in the Louisiana Healthy Aging Study cohort from US (N=262; 60-

103 years). In particular, the association of the latter with mortality did not hold after 

adjustment for chronological age and leukocyte cell fractions. Moreover, when frailty and 

the DNAm age accelerator were included in the same model, only the former remained 

significant. This discrepancy was explained by the fact that frailty index assesses biological 

factors with a large effect on survival, whereas DNAmAge typically shows small effect sizes 

requiring larger samples to be detected (Kim et al., 2017). Zhang et al. (Zhang et al., 2018) 

developed a methylation-based mortality score based on aberrant methylation of 10 CpG 

sites in a Lasso regression model (MRscore), which was compared with the same frailty 



  

index and DNAm age accelerator computed above, in >2,300 community-dwelling German 

adults (50-75 years) over 14 years of follow-up. They observed that both the methylation-

based estimators were independently associated with frailty index, and all were associated 

with incident death risk. However, when the three indicators were included simultaneously 

in survival models, only associations of MRscore and frailty index persisted, with a 91% and 

37% increase of mortality risk per SD increase, respectively. MRscore was further compared 

with telomere length and two other epigenetic clocks – DNAmPhenoAge and Horvath’s age 

acceleration - in 534 males aged 55–85 years from the US Normative Aging Study (Gao et 

al., 2019). MRscore was associated with incident all-cause, cardiovascular and cancer 

mortality, outperforming TL, DNAmPhenoAge and Horvath’s age acceleration. 

Interestingly, DNAmPhenoAge acceleration was the only aging biomarker that showed 

independent associations with all-cause and cardiovascular mortality along with MRscore, 

although with a lower accuracy (Gao et al., 2019). 

Murabito and colleagues (Murabito et al., 2018) compared clinical, inflammatory, and 

DNAm age acceleration estimators in consecutive assessment of the Framingham Offspring 

cohort from US (from mean age 45±10 to 67±9 years). Specifically, they compared the 

Klemera-Dubal biological aging estimator based on different blood biomarkers (Klemera 

and Doubal, 2006), an inflammatory index based on circulating levels of acute phase 

reactants (chemokines, cytokines, selectins, and cell adhesion molecules), an extrinsic and an 

intrinsic alternative DNAm age acceleration. Increased blood, inflammatory, and extrinsic 

DNAm age acceleration were all independently associated with a 3-5% increase in the 

incident risk of all-cause mortality, while only blood and inflammatory indices were 



  

associated with increased cardiovascular risk and only the former with increased cancer 

risk, in multivariable models. This supported a notable complementarity in predicting 

mortality and age-related disease risk for most of the clocks analyzed (Murabito et al., 2018).  

In the Lothian Birth Cohort (N=669), Cole et al (J. H. Cole et al., 2018) reported brain age 

acceleration to predict mortality independently from DNAm (Horvath’s) age acceleration, 

but not from telomere length, in a multivariable survival analysis including the three 

estimators. Specifically, one year increase in Δage was associated with a 6% and 7% increase 

in all-cause mortality for brain and DNAm age, respectively, with the model combining the 

two clocks showing a better accuracy than the single-clock models (J. H. Cole et al., 2018). 

More recently, Li et al reported the most comprehensive study on the epidemiological 

overlap of different aging clocks, analyzing nine BA acceleration composite markers in a 

Swedish population-based cohort (N=845) and examining longitudinal trajectories, 

correlations, and associations with incident death risk over a 20 years follow-up (X. Li et al., 

2020). Methods assessed included telomere length; a physiological age marker using a set 

of blood and urine biomarkers and physical examination data; a latent score of cognitive 

function including crystallized and fluid intelligence, memory, and perceptual speed 

abilities; a functional aging index based on sensory abilities, muscle strength, walking speed 

time and lung function; a frailty index based on self-reported health symptoms, diseases, 

disability, mood, and activities in daily living;  and four types of epigenetic clock (Horvath, 

Hannum, DNAmPhenoAge, and GrimAge). All aging clocks except for TL were associated 

with mortality risk, independently of chronological age, with the strongest associations 

being reported for GrimAge and frailty index. In a multivariable survival model including 



  

all the clocks tested, Horvath DNAmAge, DNAmGrimAge, and frailty index remained 

significantly predictive of all-cause mortality (X. Li et al., 2020). Interestingly, molecular and 

functional estimators were only weakly correlated, with TL showing the least correlation 

with all other aging biomarkers, in line with previous evidence from a cohort of ⁓1,000 

middle-aged adults from the Dunedin Study (Belsky et al., 2018b). This further suggests that 

these markers tap into different domains of the aging process. 

Overall, the evidence reported in this paragraph indicates that combining estimators based 

on different biomedical sources may help improve their efficacy as public health markers in 

the general population, through exploiting their complementarity in tagging different 

biological aging domains. However, these studies were mostly focused on few types of 

aging indices, comparing molecular and functional measures. When more types of clocks 

were available, these were compared within relatively low samples (usually ranging 

between ⁓200 and ⁓1,000 subjects). Moreover, the reviewed studies often analyzed all-cause 

mortality as an outcome, largely neglecting specific causes of deaths and other measures of 

interest in the healthy aging process, which is far to be defined as a simple predictor of 

mortality and longevity (X. Li et al., 2020).  

 

4. Shared genetic underpinnings of aging clocks 

Very little is known on the genomic and biological overlap among different BA acceleration 

parameters. Moderate to high heritability has been reported for both longevity (Giuliani et 

al., 2018) – a trait strictly related to biological aging – and BA acceleration based on telomere 



  

length (0.44-0.86)(Broer et al., 2013; Njajou et al., 2007), DNA methylation (0.34-0.55) and 

brain features (≥0.5)(J. H. Cole et al., 2017b). Also, cross-time phenotypic correlations 

between epigenetic clocks at different time points is largely mediated by genetic factors 

(Jylhävä et al., 2019), in line with the evidence suggesting partial genetic basis for blood-

based biological aging (Gialluisi et al., 2021). Still, only few studies attempted to identify 

genetic variants and genes influencing the aging clocks developed so far. Genome Wide 

Association Scans (GWAS) detected significant associations of common genetic variants 

with TL (C. Li et al., 2020), DNAm age (Gibson et al., 2019; Lu et al., 2018; Van Dongen et 

al., 2016) and brainPAD (B.A. Jonsson et al., 2019; Kaufmann et al., 2019), revealing further 

insights into their underlying biology. They provided genetic links between TL and DNAm 

age acceleration (Lu et al., 2018), supported strong genetic correlations of the latter with 

longevity and lifestyle/socioeconomic factors (Mccartney et al., 2020), and revealed a 

significant overlap between brainPAD in healthy individuals and polygenic risk of several 

neuropsychiatric and neurodegenerative disorders (Kaufmann et al., 2019). These findings 

make the search for shared genetic underpinnings of BA acceleration estimators very 

promising, even through “classical” tools like GWAS studies, as suggested elsewhere 

(Giuliani et al., 2018). 

  

4.1 Previous GWAS on aging clocks 

Different BA estimators – mostly based on molecular data – have been tested for association 

with Single Nucleotide Polymorphisms (SNPs) and small insertions/deletions (indels) 

throughout the genome, revealing genes robustly implicated in biological aging by 



  

independent GWAS studies (Codd et al., 2013, 2010; Gibson et al., 2019; B. A. Jonsson et al., 

2019; Kaufmann et al., 2019; Kuo et al., 2020b; Levy et al., 2010; C. Li et al., 2020; Lu et al., 

2018; Mangino et al., 2012; Mccartney et al., 2020; Pooley et al., 2013; Prescott et al., 2011). 

The first and most investigated estimator in this sense was telomere length, for which robust 

associations have been reported at different genes like those involved in contrasting attrition 

and preserving telomeres. These include TERC (encoding telomerase RNA component, the 

RNA subunit of telomerase; 3q26.2), TERT (telomerase reverse transcriptase; 5p15.33), 

OFBC1 (oligonucleotide/oligosaccharide-binding fold containing 1, a component of the 

telomere-binding complex implicated in telomere length regulation; 10q24.3), NAF1 

(nuclear assembly factor 1, required for assembly of H/ACA box small nucleolar RNA, 

which TERC belongs to; 4q32.2) and RTEL1 (regulator of telomere elongation helicase 1; 

20q13.3), among others (Codd et al., 2013, 2010; Levy et al., 2010; C. Li et al., 2020; Mangino 

et al., 2012; Mccartney et al., 2020; Pooley et al., 2013; Prescott et al., 2011). 

Some of the above mentioned genes were later found associated with Horvath DNAm age, 

such as TERT and OBFC1 (Lu et al., 2018). Prominently, variants lying within TERT showed 

genome-wide significant associations, although the direction of effect was not concordant 

with those previously observed with TL. This controversial pleiotropy was attenuated at the 

phenotypic level, where no associations between TL and Horvath’s clock had been detected, 

suggesting a prominent influence of environmental factors on their reciprocal relationship 

(Lu et al., 2018). A larger study stemming from this later investigated both Horvath and 

Hannum DNAm age acceleration in ⁓13,500 individuals of European ancestry, revealing 

further genes implicated in epigenetic aging, involved in metabolism (e.g. NHLRC1, TPMT), 



  

immune system pathways (e.g. TRIM46, TRIM59, EDARADD), or both (UBE2D3, MANBA), 

or regulating other important aspects like neuroprotection (MTRNR2L7), autophagy (FAIM, 

TERT) and  lifespan (CISD2) (Gibson et al., 2019). Interestingly, no genome-wide significant 

variants or genes were found to overlap between the two epigenetic clocks tested, 

supporting the hypothesis that they represent different aspects of ageing, in line with 

moderate phenotypic correlations previously reported (Gibson et al., 2019). More recently, 

McCartney and colleagues investigated four different epigenetic clocks, which included 

both first – Hannum’s and Horvath’s DNAm age acceleration – and second generation 

clocks – DNAmPhenoAge and GrimAge (Mccartney et al., 2020). They identified more than 

100 novel genome-wide significant associations, in a multi-ethnic dataset (N > 41,000). Novel 

shared loci included some genes previously implicated in epigenetic and telomere aging 

like TERT, TRIM59 and EDARADD, as well as new interesting candidates like TET2 (tet 

methylcytosine dioxygenase 2; 4q24), whose product catalyzes the conversion of 5-

methylcytosine to 5-hydroxymethylcytosine at CpGs. Interestingly, cross-clock genetic 

correlation (indicating the SNP-based coheritability of the different clocks) were in the range 

[0.3-0.6], in line with that previously observed between Hannum and Horvath clocks (0.6) 

by Gibson et al (Gibson et al., 2019). Similar estimates (0.4) were obtained when comparing 

two partly related biological aging predictors based on blood chemistry/cellular markers, 

chronological age and other clinical variables, namely PhenoAge and BloodAge 

accelerations, which were tested in an independent GWAS on ⁓380,000 European-descent 

participants from the UK Biobank (Kuo et al., 2020b). Authors identified the strongest 

signals at two major protein-coding SNPs in APOE (apolipoprotein E, 19q13.32), a gene 



  

known to be implicated in age-related disorders like cardiovascular disease and late-onset 

Alzheimer’s disease. However, while BloodAge acceleration was associated positively with 

the APOE-e4 risk allele (rs429358) and negatively associated with the APOE-e2 protective 

allele (rs7412) - in line with expectations – these variants showed opposite effects on 

PhenoAge acceleration. A pathway enrichment analysis of all the genes identified revealed 

a link of BloodAge acceleration with lipid-related pathways, consistent with the role of 

APOE in transporting extracellular cholesterol and with the influence of the e2 allele on 

decreasing its circulating levels (Kuo et al., 2020a; Martínez-Magaña et al., 2019). Genes 

associated with PhenoAge acceleration showed enrichment for immune system, cell 

function, and carbohydrate homeostasis pathways (Kuo et al., 2020b). Overall, this evidence 

may be interpreted as a possible indication that the two measures, although based on partly 

overlapping markers, may capture different aging domains. Of interest, APOE was not 

among the top associated loci in a GWAS of brainPAD in the UK Biobank (N⁓17,000), which 

instead revealed two significant hits: one near KCNK2 (potassium channel, subfamily K, 

member 2; 1q41) and another one tagging a well-known inversion spanning over a ⁓1 Mb 

region covering the MAPT gene (microtubule-associated protein tau; 17q21.31) (B. A. 

Jonsson et al., 2019). Of note, the tau protein has been previously involved in the etiology of 

Parkinson disease and of different forms of dementia, and this association correlated with 

reduced white matter surface area, a known structural feature of brain aging and 

neurodegeneration (B. A. Jonsson et al., 2019). In a larger study using structural MRI data 

from 20,170 adult healthy individuals of European ancestry from the UK Biobank, 

Kaufmann and colleagues (Kaufmann et al., 2019) further clarified the genetic 



  

underpinnings of brain aging, identifying a novel associated locus at MOBP (myelin-

associated oligodendrocyte basic protein; 3p22.1). Moreover, they detected substantial 

pleiotropic influences of different genes on regional/global brain aging and common brain 

disorders such as major depression, autism spectrum, bipolar and attention deficit 

hyperactivity disorder, multiple sclerosis, dementia and schizophrenia (Kaufmann et al., 

2019). However, no genetic overlap with other aging clocks was computed, nor enrichment 

of association with molecular pathways or functional genomic elements was tested.  

 

4.2 Cross-clock genomic overlap through LD-score regression 

For the purpose of this review, we assessed here genetic overlap across all the biological 

aging clocks tested so far at the genomic level, namely telomere length (Codd et al., 2013), 

epigenetic age acceleration (Hannum, Horvath, GrimAge and DNAmPhenoAge) 

(Mccartney et al., 2020), blood-based markers like PhenoAge and Blood(Bio)Age (Kuo et al., 

2020b), and brainPAD (Kaufmann et al., 2019). To do so, we used the relevant GWAS 

summary statistics coming from the largest datasets publicly available without restrictions 

(see URLs).  

The overlap was computed as genetic correlations through LD score regression, a method 

that allows to compute SNP-based co-heritability for a given pair of traits as the ratio 

between their genetic covariance and the squared root of the product of their heritabilities, 

taking into account SNPs’ LD in 1 cM bins genome-wide (Bulik-Sullivan et al., 2015). 

Correlations were deemed significant when they survived Bonferroni correction for testing 



  

of eight different aging markers (for a total of 56 pairwise comparisons, excluding those of 

each clock with itself, α = 9 × 10-4). 

Beyond low to moderate positive correlations among DNAm age accelerations – in line with 

previous evidence (Gibson et al., 2019; Mccartney et al., 2020) - this analysis revealed for the 

first time additional significant genetic correlations – e.g. for DNAm clocks with both blood 

ages and TL (p < 9×10-4). Indeed, DNAmPhenoAge was positively correlated with both 

Blood and PhenoAge acceleration, while GrimAge was significantly correlated only with 

the latter. On the other hand, TL showed significant negative correlations with both 

GrimAge and Hannum epigenetic clocks, and brainPAD did not show any significant 

genomic overlap (Figure 3). Overall, this patchy correlation pattern suggests the existence 

of partly different genetic underpinnings for the diverse clocks, in line with previous 

epidemiological and – to a lesser extent - genetic evidence. 

 

4.3 Single variants, genes and molecular pathways underlying biological aging 

To identify pleiotropic variants influencing more than one biological aging domain among 

those tested so far, we performed a multivariate genetic association analysis on 2,076,998 

variants tested in all the analyzed studies (Codd et al., 2013; Kaufmann et al., 2019; Kuo et 

al., 2020b; Mccartney et al., 2020). This analysis was carried out through TATES (van der 

Sluis et al., 2013), combining the univariate association P-values of the single aging markers 

while taking into account their cross-clock genetic correlations, which were taken as proxies 

of phenotypic correlations due to the lack of a comprehensive analysis testing all the 



  

markers. This revealed 2,322 genome-wide significant multivariate associations (p < 5×10-8; 

Figure 3a), mostly driven by the results of univariate GWAS and not always concordant 

across all clocks tested (Table S1), in keeping with previous evidence (see above). We report 

in Table 1 those variants predicted to have a HIGH or MODERATE impact on gene function, 

as classified by Ensembl Variant Effect Predictor (VEP) v103 (McLaren et al., 2016). 

Interestingly, among those SNPs with HIGH functional impact, two variants were stop-

gain. rs857725 is located within SPTA1 (1q23.1, spectrin, alpha, erythrocytic 1), encoding a 

component of the erythrocyte plasma membrane, and has been previously associated with 

hemoglobin concentration (Chen et al., 2020). This SNP is in high LD with another variant, 

rs2779116, associated with glycated hemoglobin levels, a clinical marker of diabetes (Wojcik 

et al., 2019). rs2228671, within LDLR (19p13.12; low density lipoprotein receptor), was 

previously associated with both total and LDL-cholesterol circulating levels (Aulchenko et 

al., 2009). Interestingly, the loss of this gene favors the development of hypercholesterolemia 

and ApoE/LDLR−/− mice – an animal model of atherosclerosis – present several biochemical 

changes, including the decrease in phospholipid composition of erythrocyte membranes 

and alterations in the secondary structure of hemoglobin (Dybas et al., 2020). Another HIGH 

impact multivariate association was found at rs650692, within EDARADD (1q42.3; EDAR-

associated death domain), a gene previously associated with epigenetic age acceleration, 

implicated in innate immunity and cytokine signaling (Gibson et al., 2019). 

To have further biological insights into the underlying biology of common variance of 

different aging biomarkers, multivariate associations underwent gene and pathway 

enrichment tests through MAGMA v1.08 (de Leeuw et al., 2015) within the FUMA platform 



  

(Watanabe et al., 2017). The analysis of 18,859 genes which the variants were annotated to 

(within a ±10 kb interval) revealed 252 genes with significant enrichment of associations 

surviving correction for multiple testing (p < 2.7×10-6, Figure 3b; Table S2). The most 

significantly enriched genes included TOMM40 (translocase of outer mitochondrial 

membrane 40 homolog), NHLRC1 (NHL repeat containing 1; 6p22.3), TMEM258 

(transmembrane protein 258; 11q12.2) and APOE (19q13.32). These genes are involved in 

known aging-related processes and diseases, like white matter integrity, Alzheimer’s 

disease (APOE and TOMM40) (Lyall et al., 2014; Roses et al., 2016), dementia in the context 

of a neurodegenerative epilepsy (NHLRC1) (Nitschke et al., 2018) and intestinal 

inflammation (TMEM258)(Graham et al., 2017). 

To have a more network-oriented view, we submitted the list of genes with a statistically 

significant enrichment to the STRING v11.0 platform, a database of known and predicted 

protein-protein interactions (Szklarczyk et al., 2019). The resulting network showed a 

significant excess of interactions (enrichment p = 1.1×10-16; 240 nodes, 166 edges vs 81 

expected, average node degree 1.38 and average local clustering coefficient 0.39), suggesting 

the gene products are highly likely to be linked in molecular networks (Figure 5). Moreover, 

they highlighted some local networks of interests, such as the one among the 

apolipoproteins APOE, APOC1 and APOA5, which play an essential role in triglyceride and 

cholesterol transport and metabolism (Dominiczak and Caslake, 2011), as well as in 

cardiovascular risk (Zhou et al., 2018). Similarly, the interaction among CRP (C-reactive 

protein), TNF (tumor necrosis factor) and SELP (P-selectin, a marker of platelet activation), 

along with IL6R (interleukin-6 receptor), underlines the importance of low-grade 



  

inflammation in the aging process, a phenomenon better known as “inflammaging” 

(Franceschi et al., 2018a). Other genes of interest in the network are represented by LEPR 

(leptin receptor), involved in regulating appetite/food intake, inflammation and fat 

metabolism (Klok et al., 2007), and by ZBTB12, which was previously associated with 

inflammation, platelet activation and cardiovascular risk (Noro et al., 2019). 

A competitive gene-set enrichment analysis, testing 9,996 Gene Ontology terms and 5,500 

curated (KEGG, Reactome and BioCarta) pathways, revealed 15,485 gene sets annotated 

with at least two enriched genes, five of which revealed significant enrichments surviving 

Bonferroni correction (p < 3.2×10-6; Table S3). These included the GO terms triglyceride rich 

lipoprotein particle clearance, transdifferentiation, negative regulation of biosynthetic process, 

response to carbohydrate and positive regulation of gene expression (Table S4a-e). These findings 

represent further links with some important characteristics of the aging process, especially 

with lipid and carbohydrate homeostasis. Indeed, plasma glucose levels tend to increase 

with age, which can trigger irreversible glycosylation of proteins, a peculiar phenomenon 

of biological aging (Franceschi et al., 2018b). Similarly, changes in circulating lipid profiles 

(Johnson and Stolzing, 2019) are associated with aging and longevity (Franceschi et al., 

2018b), and markers like triglycerides, HDL and LDL cholesterol were among the most 

important features in blood-based biological aging algorithms developed in diverse 

ethnicities, along with glucose (Gialluisi et al., 2021; Polina Mamoshina et al., 2018) and 

glycated haemoglobin (Belsky et al., 2018a). Prominently, lipids represent important players 

in different aging-related processes, including inflammaging (Franceschi et al., 2018b). 

Specific sphingolipid and phospholipid blood profiles have also been reported to change 



  

with age and are associated with exceptional human longevity (Johnson and Stolzing, 2019). 

Moreover, defects in sphingolipid metabolism seem to play a role in neurodegenerative 

processes and were suggested as promising targets for their treatment (Di Pardo and 

Maglione, 2018). 

 

5. Conclusions 

We reviewed evidence of a significant but partial overlap across different markers of 

biological aging, both at the epidemiological and at the genetic level. While epidemiological 

evidence supports quite consistently the existence of different aging domains within the 

human body, connected in a sort of aging network (Whitwell et al., 2020), it also warrants 

further investigations to clarify the degree of overlap with additional aging clocks in 

predicting mortality risk, stemming from diverse sources of biomedical data. On the genetic 

side, the field is still in a rather embryonic phase and the genetic overlap across diverse 

clocks has been under-investigated. Here we attempted to fill in this gap of knowledge by 

testing and reporting novel genetic correlations and multivariate single-variant associations 

across different aging clocks. These allowed to identify genes and pathways enriched for 

associations with biological aging estimators tested in GWAS so far, providing support to 

the existence of a complex molecular network underlying common variation in BA clocks. 

Findings reported here suggest immune-metabolic health - in particular inflammation, lipid 

and carbohydrate metabolism - as the most promising molecular targets for successful anti-

aging interventions in the future. Such interventions should be ideally aimed at slowing 

down biological aging before the onset of age-related diseases, through promoting a healthy 



  

diet, physical activity and any other prevention strategy which allows to reduce the pace of 

aging in one or more body domain. Also, the importance of genetics as underlined in this 

review – mostly based on common variants with typically low effect sizes - and the current 

lack of power to detect rare variants heavily affecting longevity (Garagnani et al., 2021) 

suggest the need for a personalized approach to building aging maps, as also supported by 

evidence that even known “successful” interventions like MedDiet do not reduce epigenetic 

aging uniformly in all individuals (Gensous et al., 2020). In this perspective, the use of novel 

machine learning techniques combining, genetic, lifestyle, socioeconomic, gender and any 

other “exposomic” information may help building targeted anti-aging strategies for each 

individual. 

 

Take-home message box: dietary patterns and biological aging 

• Nutritional interventions like calorie restriction (CR), intermittent fasting (IF) and 

Mediterranean Diet (MedDiet) can influence health status and the pace of biological 

aging. 

• A higher adherence to a MedDiet pattern has been associated with reduced telomere 

attrition, blood and epigenetic ageing, as well as improved walking speed and 

cognition.  

• In particular, the intake of fruits, vegetables, and polyphenols has reported beneficial 

associations with reduced biological ageing. 

• CR represents an effective intervention to extend lifespan and slow down biological 

aging in a wide range of organisms, although robust evidence in humans is still 

lacking.  



  

• IF showed effects similar to CR in animal models, acting through the same pathways, 

namely lowering inflammation and oxidative stress levels and improving lipid and 

glucose metabolism. 

• Further research is needed in humans to clarify the effect of CR and IF, and to 

understand why generally healthy interventions like MedDiet show heterogeneous 

effects. In this perspective, a personalized nutrition approach taking into account 

population, gender and genetic factors is warranted. 

 

Take-home message box: epidemiological overlap of different aging clocks 

• The studies which jointly analyzed different biological aging markers generally 

revealed low to moderate reciprocal correlations, suggesting these markers may tap 

into different domains of the aging process. 

• These studies also identified a partial overlap and a certain complementarity in 

predicting mortality, for all and specific causes, across different ethnicities. 

• In particular, different types of epigenetic aging markers showed influences on 

mortality independent from other functional markers based on frailty indices, and from 

aging clocks based on blood/inflammatory markers and brain neuroimaging data. 

• Even different types of epigenetic clocks showed independent influences on 

mortality, while telomere length generally showed non-significant associations when 

modelled together with other biological aging markers. 

• Evidence collected so far suggest that combining estimators based on different 

biomedical sources may help improve their efficacy as public health markers in the 

general population, through exploiting their complementarity in tagging different 

biological aging domains. 



  

• Further studies analyzing diverse types of clocks – including both molecular and 

functional indices – in larger populations are needed. These should also aim at testing 

clinical outcomes other than mortality, like hospitalizations, and other measures of 

interest in the healthy aging process (e.g. quality of life). 

 

Take-home message box: shared genetic basis of aging clocks 

• Both longevity and aging clocks show moderate to high heritability, and additional 

epidemiological evidence suggests the existence of a genetic influence on biological 

aging. 

• Genome Wide Association Studies (GWAS) mostly identified common genetic 

variants (SNPs) influencing biological aging and revealed substantial genomic 

overlap with longevity, lifestyle/socioeconomic factors, and age-related (e.g. 

neurodegenerative) disorders. 

• Genes most robustly associated with aging clocks are involved in telomere 

elongation/preservation, metabolism, immunity, neuroprotection and autophagy. 

• A post-hoc analysis of GWAS summary statistics revealed a patchy correlation 

pattern across the diverse clocks, suggesting the existence of partly independent 

heritabilities. 

• Significant multivariate associations with the different aging clocks were identified, at 

variants with high predicted impact on protein function, e.g. in genes involved in 

glycated hemoglobin (SPTA1) and LDL cholesterol levels (LDLR), as well as in innate 

immunity and cytokine signaling (EDARADD). 

• Genes implicated in known aging-related processes and diseases, like white matter 

integrity, Alzheimer’s disease/dementia and neurodegeneration (APOE, TOMM40 

and NHLRC1) showed the strongest enrichment of associations with aging clocks. 



  

• A network-based analysis of associations with aging clocks supported non-random 

interactions among the enriched genes, suggesting they are likely to be linked in 

molecular networks. Among these, the local network of the apolipoproteins APOE, 

APOC1 and APOA5 suggests the importance of triglyceride and cholesterol transport 

and metabolism in biological aging, while the interaction among CRP (C-reactive 

protein), TNF (tumor necrosis factor), SELP (P-selectin, a marker of platelet 

activation), and IL6R (interleukin-6 receptor), further supports the prominence of 

inflammation in the aging process (inflammaging). 

• Pathway-based enrichments corroborated evidence collected at the network level, 

providing further links with lipid and carbohydrate homeostasis. 

  

 

Figure 1. Biological aging. 

 



  

 

Biological aging can be quantified through computing the difference between Biological and 
Chronological Age (ΔAge = BA – CA). ΔAge > 0 suggests accelerated biological aging of an 
organism compared to its chronological age, while Δage < 0 indicates decelerated biological 
aging. A typical example of decelerated biological aging is represented by centenarians 
(Horvath et al., 2015b), while an accelerated biological aging was observed in Down 
Syndrome patients, compared to controls (J. H. Cole et al., 2017a; Horvath et al., 2015a). 

 

 

 

 

 

 

 

 

Figure 2. Main healthy nutritional dietary patterns affecting biological aging. 

 



  

 

These dietary patterns influence biological aging by modulating common pathways 

related to inflammation, oxidative stress and metabolism. 

 

 

 

 

 

 

 

 

Figure 3. Genetic correlation matrix of the different aging clocks. 



  

 

 

Reciprocal genetic correlations (rg) as computed in LDSC (Bulik-Sullivan et al., 2015) are 
reported, for each pairwise comparison among the aging clocks analyzed. Squares in the 

matrix are colored differently based on the level of significance of rg. 
 

 

 

 

 

 

 

 

Figure 4. Manhattan plot of a) multivariate single-variant associations with different aging 

clocks and b) relative gene-based enrichment analysis. 



  

a) 

 

 

b) 

 

Red dashed lines represent the statistical significance thresholds (α) for the two analyses, 
namely a) 5 × 10-8; and b) 2.7 × 10-6. In b), the 25 most enriched genes are reported (see 

Figure S2 for a full list). 

  

 

Figure 5. Interaction network of genes enriched for associations with aging clocks. 



  

 

The reported network - including both direct (physical) and indirect (functional) 
associations – was based on the STRING v11.0 database (Szklarczyk et al., 2019). Only high-
confidence interactions between proteins are reported (interaction score > 0.7), while 



  

disconnected nodes in the network were hidden. Each node represents all the proteins 
produced by a single protein-coding gene locus, while edges represent protein-protein 
associations. Line color indicates the type of interaction evidence: light blue = from curated 
databases; purple = experimentally determined; green = gene neighborhood; red = gene 
fusions; blue = gene co-occurrence; yellow = text-mining; black = co-expression; violet = 
protein homology. 



  

Table 1. Single-variant multivariate associations with aging clocks with a HIGH (H) and MODERATE (M) predicted impact on 

protein function. 

Variant Location Allele Consequence IMPACT Gene 
Aminoacid 

change 
Codon 
change 

1000g EUR 
Allele Freq (%) 

Multivariate 
P 

rs857725 1:158607935-158607935 A stop_gained H SPTA1 K/* Aag/Tag - 1.52E-17 
rs650692 1:236514002-236514002 G splice_acceptor_variant H EDARADD - - 35.38 8.21E-14 

rs2228671 19:11210912-11210912 A stop_gained H LDLR C/* tgC/tgA - 3.69E-20 
rs2305480 17:38062196-38062196 A missense_variant M GSDMB P/S Cca/Tca 28.67 5.56E-09 
rs174535 11:61551356-61551356 A missense_variant M MYRF S/R agT/agA - 7.08E-26 

rs1041981 6:31540784-31540784 A missense_variant M LTA T/N aCc/aAc 38.96 3.69E-12 
rs3130618 6:31632134-31632134 A missense_variant M GPANK1 R/L cGa/cTa 13.34 9.39E-10 
rs587404 1:39908506-39908506 A missense_variant M MACF1 A/T Gcc/Acc 34.41 2.53E-09 

rs1265054 6:31079643-31079643 C missense_variant M C6orf15 K/E Aag/Gag 53.19 5.71E-09 

rs1260326 2:27730940-27730940 C 
missense_variant, 

splice_region_variant 
M GCKR L/P cTg/cCg - 1.66E-08 

rs1142345 6:18130918-18130918 C missense_variant M TPMT Y/C tAt/tGt 3.91 4.45E-52 
rs857685 1:158577109-158577109 C missense_variant M OR10Z1 N/T aAt/aCt 24.22 2.31E-18 

rs3811444 1:248039451-248039451 T missense_variant M TRIM58 T/M aCg/aTg 22.74 2.67E-15 
rs3197999 3:49721532-49721532 A missense_variant M MST1 R/C Cgc/Tgc 19.19 1.01E-13 
rs2230590 3:49936102-49936102 A missense_variant M MST1R Q/L cAa/cTa - 2.24E-12 
rs1062633 3:49924940-49924940 C missense_variant M MST1R R/G Aga/Gga 41.91 2.82E-12 
rs3130617 6:31627523-31627523 T missense_variant M C6orf47 G/R Ggg/Agg 81.57 3.61E-11 
rs1046080 6:31595882-31595882 A missense_variant M PRRC2A T/K aCa/aAa 81.55 7.23E-11 
rs2296172 1:39835817-39835817 G missense_variant M MACF1 M/V Atg/Gtg 11.82 7.95E-11 
rs2272593 6:31601344-31601344 C missense_variant M PRRC2A L/P cTt/cCt 81.53 7.95E-11 
rs1169288 12:121416650-121416650 C missense_variant M HNF1A I/L Atc/Ctc 29.85 1.16E-09 
rs1339847 1:248039294-248039294 A missense_variant M TRIM58 V/I Gtc/Atc 12.6 4.12E-09 
rs3208856 19:45296806-45296806 G missense_variant M CBLC H/D Cac/Gac - 4.12E-09 
rs3129941 6:32337686-32337686 G missense_variant M C6orf10 C/R Tgt/Cgt - 7.95E-09 
rs1801133 1:11856378-11856378 A missense_variant M MTHFR A/V gCc/gTc 24.54 9.39E-09 
rs855791 22:37462936-37462936 G missense_variant M TMPRSS6 V/A gTc/gCc - 1.23E-08 



  

rs2276038 11:57137424-57137424 A missense_variant M P2RX3 A/E gCg/gAg - 1.37E-08 
rs11073964 15:91543761-91543761 A missense_variant M VPS33B G/C Ggt/Tgt - 3.76E-13 
rs1488689 17:3352294-3352294 G missense_variant M SPATA22 I/T aTa/aCa 26.7 1.64E-12 
rs1488690 17:3352331-3352331 G missense_variant M SPATA22 V/L Gtg/Ctg - 1.68E-12 
rs1137100 1:66036441-66036441 G missense_variant M LEPR K/R aAg/aGg 32.03 1.01E-11 
rs4691896 4:164085425-164085425 A missense_variant M NAF1 I/F Att/Ttt - 1.13E-11 
rs3741367 11:66083129-66083129 C missense_variant M CD248 H/R cAt/cGt 29.21 1.34E-10 
rs8176746 9:136131322-136131322 T missense_variant M ABO L/M Ctg/Atg 15.28 3.25E-10 
rs8176743 9:136131415-136131415 T missense_variant M ABO G/S Ggc/Agc 15.3 4.7E-10 

rs10876024 12:50747005-50747005 A missense_variant M FAM186A R/W Agg/Tgg - 7.01E-10 
rs10876023 12:50746917-50746917 G missense_variant M FAM186A L/P cTt/cCt 60.92 7.15E-10 
rs7296291 12:50744119-50744119 A missense_variant M FAM186A H/Y Cat/Tat 60.52 7.95E-10 

rs12303082 12:50754563-50754563 G missense_variant M FAM186A K/Q Aag/Cag 60.54 7.95E-10 
rs1137101 1:66058513-66058513 G missense_variant M LEPR Q/R cAg/cGg 58.43 6E-09 

 

Variants were annotated through Ensembl VEP v103 (McLaren et al., 2016). Multivariate association p-value, as per TATES output, is 

reported. A full list of genome-wide significant multivariate associations is reported in Table S1, along with details of associations 

with each aging clock.
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